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Abstract: Auxin response factors (ARFs) play important roles in plant development and environ-
mental adaption. However, the function of ARFs in cadmium (Cd) accumulation are still unknown.
Here, 23 SaARFs were detected in the genome of hyperaccumulating ecotype of Sedum alfredii Hance
(HE), and they were not evenly distributed on the chromosomes. Their protein domains remained
highly conservative. SaARFs in the phylogenetic tree can be divided into three groups. Genes in the
group I contained three introns at most. However, over ten introns were found in other two groups.
Collinearity relationships were exhibited among ten SaARFs. The reasons for generating SaARFs may
be segmental duplication and rearrangements. Collinearity analysis among different species revealed
that more collinear genes of SaARFs can be found in the species with close relationships of HE. A total
of eight elements in SaARFs promoters were related with abiotic stress. The qRT-PCR results indicated
that four SaARFs can respond to Cd stress. Moreover, that there may be functional redundancy among
six SaARFs. The adaptive selection and functional divergence analysis indicated that SaARF4 may
undergo positive selection pressure and an adaptive-evolution process. Overexpressing SaARF4
effectively declined Cd accumulation. Eleven single nucleotide polymorphism (SNP) sites relevant to
Cd accumulation can be detected in SaARF4. Among them, only one SNP site can alter the sequence
of the SaARF4 protein, but the SaARF4 mutant of this site did not cause a significant difference in
cadmium content, compared with wild-type plants. SaARFs may be involved in Cd-stress responses,
and SaARF4 may be applied for decreasing Cd accumulation of plants.

Keywords: Sedum alfredii Hance; ARF; collinearity analysis; SNP; cadmium

1. Introduction

Cadmium (Cd) is released into the environment mainly by industrial activities [1].
This released Cd can enter the human body via the food chain cycle [2], and excess Cd
will lead to serious health problems [3]. For crop production, we should decline the Cd
content in edible parts of plants to minimize Cd intake for people [2]. However, plants
applied in phytoremediation should have the ability to accumulate higher Cd on their
aerial parts, as this ability can enhance the effect of phytoremediation for removing Cd
from the environment [4]. Whereas plants cannot accumulate excess Cd, as Cd is also toxic
to plants [5]. Meanwhile, plants do not effectively separate Cd and essential elements,
and Cd is thus inevitably accumulated in edible parts of plants. For example, OsHMA2
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can transport zinc and Cd simultaneously [6]. Therefore, it is a requirement for people
to flexibly modulate the current status of Cd accumulation in plants according to their
different purposes. The transgenic technology is an important strategy to alter Cd accumu-
lation in plants. Furthermore, exploring ideal genes is a precondition for this technology.
For example, overexpression of HMA3 from low Cd-accumulating cultivars of rice can
block the Cd translocation process from the roots to above-ground tissues [7]. SaMT2
from Sedum alfredii Hance can significantly increase Cd accumulation of the transgenic
tobacco [8]. Therefore, genes related with Cd accumulation in plants may all have the
practical application value. Exploring the related novel genes is significant for ensuring
food security and controlling Cd pollution.

Up to date, many genes were identified to be relevant with Cd accumulation [9,10].
The functions of these genes can mainly be divided into three groups: The first group is
responsible for the intracellular transport of Cd between different organelles. For example,
SpHMA1 protected the photochemical reactions by exporting Cd from chloroplasts to
cytoplasm [11]. The second group plays roles in the transmembrane transport of Cd. For
example, expressing OsABCG36 of rice in yeast exhibited efflux activities for Cd [12]. Genes
in the third group act on Cd long-distance transportation. For example, AtHMA4 plays
roles in Cd loading in the xylem, and this process was responsible for transporting Cd from
the roots to the shoot [13]. These genes associated with Cd accumulation are mainly from
ZIP, CDF, NRAMPs, HMAs, and ABC gene families [14–18]. However, most of them are
metal transporters; whether transcription factors could change Cd accumulation remains
further confirmed.

Auxin is the initial signal for triggering the expression of downstream genes in the
auxin pathway [19]. Moreover, previous studies indicated that auxin can change Cd
accumulation [20]. Therefore, genes in auxin pathway may play roles in modifying Cd
metabolism in plants. Auxin response factors (ARFs) are important transcription factors for
the transduction of auxin signals in the auxin pathway [21]. They are involved in almost
all the auxin-related processes [22]. For example, overexpression of ARF4 affected the
salt resistance of poplars by inhibiting the lateral root development [23]. Decreasing the
expression of SlMIR160a and SlARF10A in tomato can restore the abnormal phenotypes of
leaves and flowers of tomato CR-slmir160a mutants [24]. However, it is unclear that ARFs
are responsible for the Cd accumulation process.

The hyperaccumulating ecotype of S. Alfredii (HE) is one of the most famous Cd
hyperaccumulators [25,26]. Recently, it has been applied for harnessing Cd-contaminated
soils [27]. Although HE has an excellent ability of accumulating Cd in aerial parts of plants,
another ecotype of S. alfredii (NHE) is unable to accumulate excessive Cd [28]. Therefore,
the two ecotypes have been become the ideal materials for studying the Cd accumulation
mechanisms [29,30]. For example, HMA3 from HE was transformed into NHE to identify its
roles in the Cd accumulation process [16]. However, the lack of genomic information of HE
blocked the identification of candidate genes. We finished the whole-genome sequencing
of HE and NHE (unpublished), which can be helpful for the genome-wide detection and
analysis of candidate genes in the past few years.

In this study, we detected 23 ARF genes from the HE genome. The candidate genes
with their possible roles in Cd accumulation were screened from the ARF gene family,
mainly based on the evolutionary analysis. Then, the transgenic method was used for
verifying the roles of the candidate genes in Cd accumulation, and this function was further
demonstrated by generating the key single nucleotide polymorphism (SNP) mutant of the
candidate gene.

2. Results
2.1. Phylogenetic Analysis, Protein Domains, Promoter Motifs, Exons, and Introns of SaARFs

A total of 23 SaARFs were detected in the HE genome (Supplementary Material S5).
The basic information of SaARF proteins is listed in Table S2, including their genomic
location, molecular weight, protein isoelectric point, extinction coefficient, length, and
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hydrophilicity. The phylogenetic tree of the SaARF gene family was constructed, and three
clades were thus divided (Figure 1A). The protein domains, the DNA binding domain
(DBD), and the auxin_responsive domain (Auxin_resp), can be detected in all SaARFs. The
first clade contained nine members, and these members all lacked the Phox and Bem1 (PB1)
domain (Figure 1B). Conversely, the PB1 domain can be found in other members (except
SaARF3 and SaARF8). Then, we analyzed the composition of the introns and exons of
these SaARFs. The results showed that many introns (at least 10 introns) can be observed
in members of the second and third two clades (Figure 1C, the red lines). Furthermore,
the longest exon (full or at least part of its sequences) in each gene was located in the
PB1 domain (Figure 1C, the red dotted boxes). In sharp contrast, very few introns (at
most three introns) were contained in members of the first clade. For example, SaARF18
in the first clade only contained three introns in its full-length sequences. After that, the
promoter–element analysis of SaARFs revealed that the elements related with abiotic stress
responses, developmental processes, and plant hormones can be detected in their promoters
(Figure 1D).
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Figure 1. Phylogenetic analysis and sequence analysis of SaARFs. (A) Phylogenetic tree and amino
acid number for each gene. Members signed by red were collinearity genes. aa, amino acid. (B) Protein
domains, different colors indicated different domains. The blue, orange, and green areas indicated
the DBD, Auxin_resp and PB1 domain, respectively. (C) Exons (blue areas) and introns (red lines).
(D) Promoter motifs. The motifs were displayed, which were related with plant hormones, abiotic
stress, and plant development. Different colors indicated different motifs.
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2.2. Genomic Location and Collinearity Analysis of SaARFs

Analyzing the distribution of ARFs in chromosomes may contribute to clarify the
evolutionary history of the gene family [31]. We found that SaARFs were uneven throughout
chromosomes. In detail (Figure 2A), only one member was each situated on chromosomes
1, 4, 7, 8, 10, 11, 21, 25, 28; two SaARFs positioned each in chromosomes 2, 6, 9, 19; while
chromosome 15 and 33 each contained three SaARFs. Whereas no SaARFs were located in
other chromosomes.
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Figure 2. Genomic localization and hypothetical evolutionary histories of SaARFs. (A) The distri-
bution of SaARFs in chromosomes and the collinearity relationships throughout the whole genome.
The cyan lines indicated the collinearity relationships of genes (except SaARFs). Other colored lines
indicated the collinearity relationships among SaARFs. The genes marked by purple IDs were located
in the positive strand of DNA, while others signed by orange IDs were in negative strand. The
black dotted lines indicated the collinearity area. (B) The grey lines indicated the predicted modes of
chromosomal segment duplication.

The segmental and tandem gene duplication are considered as the two important
reasons for generating gene family members [32]. The collinearity relationships across
the whole HE genome were detected to identify the reasons for SaARFs formation. The
results showed that there were collinearity relationships between five pairs of SaARF
members (Figure 2A,B). Meanwhile, most of them were distributed in the first clade of the
phylogenetic tree (Figure 1A, red lines). We also found that these genes were all located in
the corresponding collinear blocks of the genome (Figure 2A, indicated by black dotted
lines). Combined with the possible reasons for the formation of these blocks (Figure 2B, the
grey arrows), we considered that the segmental duplication and rearrangements may be
two important reasons for the generation of these SaARFs (Figure 2B).
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2.3. Comparative Genome Analysis of ARFs among Different Species

Collinearity relationships usually exist between genes originated from common ances-
tors in angiosperms [33]. As HE is a dicotyledonous plant, we analyzed the collinearity
relationships of HE genes with those in two dicotyledonous plants (Arabidopsis thaliana
and Populus trichocarpa) and two Crassulaceae plants (Kalanchoe fedtschenkoi and NHE) to
clarify the phylogenetic mechanisms of ARF family. Our results indicated that 7.08% of
A. thaliana genes have collinearity relationships with genes in HE, while this percentage
was 10.14% in P. trichocarpa. In contrast, it is much higher in the corresponding percentages
in K. fedtschenkoi and NHE (34.90% and 76.29%, respectively) than those in A. thaliana and
P. trichocarpa (Figure 3). In other words, the higher percentage can be observed in the species
that are more closely related to HE. Meanwhile, we found that one gene in Arabidopsis and
three genes in P. trichocarpa have collinearity relationships with SaARF6.1, SaARF8.1 and
SaARF9.2, SaARF18.2, and SaARF19.2, respectively. However, a large amount of collinearity
genes of SaARFs can be found in NHE and K. fedtschenkoi genome (21 collinearity genes and
11 collinearity genes, respectively). The corresponding collinearity genes of all 23 SaARFs
in HE can be detected in NHE genome. Moreover, one collinearity gene in NHE usually
corresponded to two or three SaARFs in HE (Figure 3, the blue arrows). These results
indicated that more collinearity genes of SaARFs can be found in the species that have a
close relationship with HE.
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Figure 3. Collinearity relationships between HE and other species. The grey lines indicated collinear-
ity relationships of other genes (except SaARFs). The red lines indicated the collinearity relationships
of SaARFs. The blue arrows indicated that one ARF gene of NHE corresponded to two or three ARF
genes of HE.

2.4. Expression Patterns of SaARFs under Cd Stress

Then we needed to identify whether the expression of SaARFs are affected by Cd
stress. We detected SaARFs expression in different organs during 0–12 h under Cd stress.
The qRT-PCR results indicated that the expression of SaARFs can respond to Cd stress. In
general, the highest expression level of 14 SaARFs in roots were observed during 1–4 h
under Cd stress (Figure 4A, the black dotted box); in stems, the peak values of 18 SaARFs
expressions were distributed between 2 h and 8 h (Figure 4B, the black dotted box); however,
the peak values of 18 SaARFs expressions in leaves were mainly found after 4 h under Cd
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stress (Figure 4C, the black dotted box). In other words, the responses of SaARFs in roots
seemed to be faster than those in the two other organs, and their responses in leaves were
slower than those of other organs. This trend was consistent with the order in the Cd signal
delivered in plants. We considered that the response rate of SaARFs under Cd stress should
be in accordance with this order. Therefore, SaARF4, SaARF6.2, SaARF8.1, and SaARF18.2
in 23 SaARFs may be the ideal candidate genes (Figure 4). For example, the peak value
of SaARF18.2 expression was observed in the roots at 1 h after Cd treatment (Figure 4A,
SaARF18.2, the red arrow). However, the expression level of SaARF18.2 in the stems was
highest at the 2 h (Figure 4B, SaARF18.2, the red arrow), while the highest expression of
SaARF18.2 was detected in leaves at the 12 h (Figure 4C, SaARF18.2, the red arrow).
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Figure 4. Expression patterns of SaARFs in different organs under Cd stress. (A)The expression level
of 14 SaARFs in roots under Cd stress. The black dotted box indicated the highest expression level
of 14 SaARFs in roots were observed during 1–4 h. The red arrows indicated the highest level of
corresponding SaARFs during Cd stress. (B) The expression level of 18 SaARFs in stems under Cd
stress. The black dotted box indicated the peak values of 18 SaARFs expressions were distributed
between 2–8 h. (C) The expression level of 18 SaARFs in leaves under Cd stress. The black dotted box
indicated the peak values of 18 SaARFs expressions in leaves were mainly found after 4 h.

2.5. Coexpression Network Analysis

As the typical transcription factors, SaARFs should be controlled by upstream genes,
and they can regulate the expression of downstream genes. Therefore, there should be
strong expression relationships between SaARFs and the related genes. The transcriptome
data obtained under Cd stress were used for generating a coexpression network [34], and
the related information about SaARFs was extracted from the coexpression network. We
found that six SaARFs (SaARF2, SaARF4, SaARF8.2, SaARF9, SaARF18.2, and SaARF19) in
23 SaARFs were identified as hub genes in the coexpression network. The expression of
3002 genes was related with the six SaARFs (Figure 5A,B). Moreover, further analysis of
these related genes indicated that the six SaARFs can be divided into two groups, and there
were lots of common genes in each group (Figure 5A,B). Our attention was mainly focused
on the transcription factors, transporters, and the genes involved in the pathway of plant
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hormone. The results indicated that the transcription factors in the coexpression network
were mainly distributed in WRKY, bZIP, and bHLH gene families; many ABC transporters
were contained in the transporters group; meanwhile, the genes related with the ethylene
and auxin pathway were also found in the coexpression network (Figure 5C,D). After that,
we extracted the promoter sequences of the hub genes and analyzed the similar segments
in these sequences. The results indicated that many similar segments of promoters can
be found in each group (Figure 5E), indicating that they may be regulated by the same or
similar factors.
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2.6. Functional Divergence and Positive Selection Analysis

Genes that contain positive selection loci are subjected to selection pressure of adaptive
evolution [35]. The paml4.8 was used to identify which SaARFs contained the positive
selection sites. Two other Crassulaceae plants (K. fedtschenkoi and K. laxiflora) and HE were
together chosen for further analysis (Supplementary Material S5). Among them, only HE
was the Cd hyperaccumulator plant. A total of 81 ARFs were detected, and these ARFs
can be divided into four clades (Figure 6). We adapted the branch site model for analyzing
positive selection sites. The results indicated that 10 positive selection sites (1 M, 9 T, 18 T,
22 I, 30 Q, 36 A, 38 T, 40 E, 42 C, and 43 H) were distributed in the first clade (Table 1). Only
two sites were detected in the second clade (6M and 23S), and few sites were in other clades.
Furthermore, the functional divergence analysis showed that the first clade has significant
functional differentiation compared with other clades (p < 0.01, Table 2). Only SaARF3 and
SaARF4 were distributed into the first clade. In other words, SaARF3 and SaARF4 may
undergo the positive selection pressure. According to the above analysis, SaARF4 was
chosen for identifying its function in Cd accumulation.
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Table 1. Positive selection sites in each clade.

Clade Model npa lnL 2∆lnL Positive Selection Sites

I
Model-null 163 −5552.702535 Not allowed

Model-alte 164 −5552.702535 0

1 M 0.980 *, 9 T 0.984 *, 18 T
0.987 *, 22 I 1.000 **, 30 Q

1.000 **, 36 A 1.000 **, 38 T
1.000 **, 40 E 1.000 **, 42 C

1.000 **, 43 H 0.992 **

II
Model-null 163 −5565.273813 Not allowed
Model-alte 164 −5565.273813 0 6 M 1.000 **, 23 S 0.971 *

III
Model-null 163 −5570.062526 Not allowed
Model-alte 164 −5570.062526 0 None

IV
Model-null 163 −5572.824836 Not allowed
Model-alte 164 −5572.824836 0 None

* means p < 0.05 and ** means p < 0.01. The reference sequence was SpARF19, according to the alignment results.

Table 2. Function divergences of ARF gene family.

Group 1 Group 2 Type I Type II

θI ± s.e. MFE z-score LRT θII ± s.e.
I II 0.398 ± 0.198 −2.24 5.565 * −0.581 ± 0.618
I III 0.270 ± 0.179 −1.65 8.117 ** 0.085 ± 0.328
I IV 0.266 ± 0.167 −1.76 11.987 ** 0.194 ± 0.223
II III 0.215 ± 0.114 −2.20 5.477 * −0.172 ± 0.505
II III 0.021 ± 0.074 −0.30 2.723 0.135 ± 0.338
III IV 0.042 ± 0.070 −0.64 0 0.071 ± 0.258

* means p < 0.05 and ** means p < 0.01. The reference sequence was SpARF19, according to the alignment results.

2.7. Overexpressing SaARF4 Decreases Cd Accumulation

In order to identify whether the candidate gene, SaARF4, could affect Cd accumulation,
we transformed 35S::SaARF4 into NHE, and then we measured the Cd accumulation
of the overexpression transgenic lines. Furthermore, we performed the whole-genome
resequencing to identify the possible SNP sites related with Cd accumulation using more
than 100 natural individuals (Supplementary Material S6). We found that 10 SNP sites with
p < 0.01 were distributed in SaARF4 sequences (three in upstream sequences and seven
in coding-region sequences, Figure S3). Only one SNP can change the protein sequences
of SaARF4. Thus, we used overlapping-PCR technology to restructure SaARF4 sequences
(SaARF4-SNPm). After that, 35S::SaARF4-SNPm was also transformed into NHE to identify
whether this site could influence Cd accumulation.

As shown in Figure 7, the structure of SaARF4-SNPm was seriously changed
(Figure 7A-1) compared with SaARF4 (Figure 7A). The interaction proteins surround-
ing the mutant amino acid (aa) were changed from five aa (TYR-523, SER-524, LEU-535,
THR-538, and PHE-516) of SaARF4 (Figure 7B, the orange one) to three aa (GLN-540, HIS-
562, and HIS-566) of SaARF4-SNPm (Figure 7B-1, the orange one). Furthermore, the charge
distribution of the two proteins indicated that the surrounding charges of the mutant AA
(Figure 7C, the white arrow) were altered from the positive charges (Figure 7C, the blue
areas) to the neutral charge (Figure 7C-1, the white areas). We also found that overex-
pressing SaARF4 can effectively decline the Cd content compared with WT plants of NHE
(p < 0.01). However, the overexpression of SaARF4-SNPm did not significantly decrease
Cd accumulation (Figure 7D), indicating that this SNP may play important roles in Cd
accumulation.
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different significance, p < 0.01.

3. Discussion

In this study, a total of 23 SaARFs were identified across the whole genome, and then
their phylogenetic analysis (Figure 1A), structure analysis (Figure 1B,C), chromosomal
location (Figure 2A), and coexpression network analysis (Figure 5) were made. Furthermore,
the combination with other species, the collinearity analysis (Figure 3), the positive selection
analysis (Figure 6 and Table 1), and the functional divergence analysis (Table 2) were
conducted. Meanwhile, qRT-PCR analysis indicated that their expression patterns were
altered with different Cd-treatment times (Figure 4). Based on these results, we finally chose
SaARF4 as the candidate gene for further analysis. The result of the transgenic experiment
showed that overexpressing SaARF4 can effectively decrease Cd content (Figure 7D). In
order to further determine the effect of SaARF4 on Cd accumulation, the SNP sites related
with Cd accumulation were detected in SaARF4 sequences. Among these SNP sites, only
one SNP can change SaARF4 protein sequences. We artificially altered SaARF4 sequences
based on the SNP site. The results indicated that overexpression of the mutant sequences
did not significantly decrease the Cd content (Figure 7D).

Eukaryotic genes are divided into intron-less (no introns), intron-poor (at most three
introns), and intron-rich [36]. A recent study indicated that intron-poor genes were evolved
from a subfamily of genes that are intron-rich [37]. We found that 23 SaARFs can be
divided into three groups, and genes in the first group contained at most three introns
(Figure 1A,C). Moreover, the branch length of the first group was longer than those of other
groups (Figure 1A). New members of a gene family are produced by gene duplication, and
the evolutionary process makes their sequences divergent to produce different proteins.
Interestingly, in this study, the collinearity genes in the ARF family (Figure 1A, the red
lines) were mainly also distributed in the first group, indicating that these genes may
be undergoing the evolutionary process. This evidence indicates that the evolution of
these genes may be later than other SaARFs. Furthermore, the PB1 domain in ARFs is
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responsible for the response to auxin level in plants [21]. In detail, AUX/IAA proteins
can bind to the PB1 domain to repress ARFs functions under low auxin concentrations.
However, the AUX/IAA proteins will be degraded under a high auxin level, and the ARFs
are thus released to play their roles on the relevant downstream genes [21]. Therefore,
after removing the PB1 domain from ARFs, the transformed plants exhibited ‘high auxin’
phenotypes (even though, under low auxin concentration) when overexpressing these
ARFs mutants [38]. This domain was absent from the genes in the first group (Figure 1B),
indicating that the regulatory effect of auxin concentration on their expression may be
weaker than other ARFs. Furthermore, in the second and third groups, the sequences of
the longest exon were all or partly located in the PB1 domain (Figure 1C, the red dotted
boxes), indicating that the translation product of this domain may be more stable than
other domains with a low effect of differential splicing. This may be required for the fine
regulation of ARFs by auxin.

Collinearity genes are considered to evolute from the same ancestor [39]. The con-
struction of collinearity relationships throughout the whole genome will be conductive
to clarify the evolutionary history of a gene family [40]. In general, the segmental and
tandem gene duplication are two important ways for generating new members of a gene
family [39]. In this study, we found that there were collinearity relationships between five
pairs of SaARFs (Figure 2). Meanwhile, they were located in the collinearity blocks of the
HE genome (Figure 2A), indicating that the segmental duplication may be a reason for
the generation of these SaARFs. When comparing the collinearity relationships among
different species, the results indicated that the number of collinearity genes of SaARFs in
Crassulaceae plants was more than those in two other species (Figure 3). Moreover, there
were positive relationships between the number of collinearity genes of SaARFs in different
species and the amount of all collinearity genes in different species (Figure 3). In other
words, more collinearity genes of SaARFs can be detected in the genome of the species
that is closely related with HE. In combination with previous studies, we found that ARFs
seemed to play roles in the nodes of plant differentiation. For example, roots are important
for plants to adapt to the terrestrial environment. Correspondingly, ARF2, ARF3, and ARF4
are relevant for the development of lateral roots [41]. The developmental differences of
flower organs are significant between gymnosperms and angiosperms. SlARF10A is critical
for flower development [42]. Meanwhile, herbaceous and woody plants are distinguished
by the differences in xylem development. In poplars, PtoARF5 has been demonstrated
to be related with the secondary xylem development [43]. Therefore, our results and
previous studies together verified that the ARF gene family may play important roles in
species differentiation.

There was functional redundancy among SaARFs, based on the results of the co-
expression network (Figure 5). For example, a total of 289 genes have close expression
relationships with SaARF4 (Figure 5B). Among them, the expression of 213 genes was also
relevant with SaARF8.2. Furthermore, similar sequences can also be found in their pro-
moters (Figure 5E), indicating that they may be regulated by similar or same factors. This
phenomenon can also be found in the ARF family of Arabidopsis. Okushima reported that
ARF7 and ARF19 in Arabidopsis together act in the lateral root formation, and overlapping
functions were between them [44]. According to previous studies, ARFs mainly acted in
developmental events of plants [45,46]. Therefore, overlapping functions among ARFs may
be an important strategy for plants to ensure the normal development, because if one gene
was impaired, another can rescue this deficit. In this study, our attention was the influence
of the candidate gene on Cd accumulation. The Cd accumulation of transgenic plants was
the phenotype that we focused on. The protein structure and surface charge distribution
of a transcription factor are important factors to affect its binding with the downstream
gene promoter [47–49]. We found that the surface charge distribution and protein structure
of SaARF4 were all altered (Figure 7A,A-1,C,C-1), after changing its protein sequences
using the method of site-directed mutagenesis. Therefore, the downstream genes regulated
by SaARF4 may be different from those genes controlled by SaARF4-SNPm. Interestingly,



Plants 2022, 11, 1273 12 of 17

the Cd accumulation of 35S::SaARF4 was significantly decreased, compared with those of
NHE WT plants. However, the significant difference in Cd accumulation was not observed
between the 35S::SaARF4-SNPm and WT plants (Figure 7D). This evidence indicated that
SaARF4 and its downstream genes may play important roles in Cd accumulation. We will
explain the detailed mechanism about how SaARF4 regulates its downstream genes to
decrease Cd accumulation in a further study.

4. Methods and Materials
4.1. Plant Materials

HE and NHE were originally obtained from Quzhou [50] and Fuyang [16] countries,
respectively, Zhejiang Province, China. The branches from these materials were used for
cuttage propagation under the condition of 25 ◦C, 16 h light/8 h dark cycle.

4.2. Genome-Wide Identification of ARFs in Different Species

Genome sequencing of HE and NHE were performed, and then chromatin assembly
of HE was also finished. The protein sequence file of HE was used for screening ARF genes.
Except for HE and NHE, the genomic files of other species were all downloaded from Phy-
tozome (https://phytozome.jgi.doe.gov/pz/portal.html (accessed on 18 March 2022)) [51].
The Hidden Markov Model (HMM) profile of the Auxin_resp domain (PF06507.12) was
downloaded from pfam website (http://pfam.sanger.ac.uk/ (accessed on 18 March 2022)).
Then, these protein sequence files and the pfam profile were used for identification of
ARFs on the platform of SPDE [52]. Genes with default E-value (<0.1) were considered as
ARFs. The intactness of conserved protein domains was tested by using NCBI-BLASTP
(https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 18 March 2022)), and the incorrect
genes were removed. After obtaining the gene identifications (IDs), SPDE was used for ex-
tracting the relevant sequences in batch. After that, these obtained sequences were blasted
to the database using the website of TAIR (https://www.arabidopsis.org/ (accessed on
18 March 2022)) and named according to their homologous genes in Arabidopsis. If two or
more genes have a same homologous gene of Arabidopsis, they were named as 1.1, 1.2, etc.

4.3. Phylogenetic Analysis, Protein Structures, Promoter Elements, Exons, and Introns

The phylogenetic trees were constructed using MEGA-X (https://www.megasoftware.
net/ (accessed on 18 March 2022)) with Minimal Evolution, Neighbor-Joining, and max-
imum likelihood (ML) methods (bootstrap, 1000). Only ML tree was displayed, as the
three trees were consistent. The NCBI-BLASTP (https://blast.ncbi.nlm.nih.gov/Blast.cgi
(accessed on 18 March 2022)) was used to identify the protein-domain locations of SaARFs.
The promoter analysis of SaARFs was conducted using PlantCARE (http://bioinformatics.
psb.ugent.be/webtools/plantcare/html/ (accessed on 18 March 2022)). Then, GSDS2.0
(http://gsds.gao-lab.org/ (accessed on 18 March 2022)) and TBtools [53] were used for
displaying the protein structures, promoter elements, exons, and introns.

4.4. Chromosomal Locations and Collinearity Analysis

The required files were generated by SPDE using genomic data. Then, these files
were used to display the genomic information by the software of Circos (http://circos.ca/
(accessed on 18 March 2022)). The collinearity analysis was made by MCScanX software
with E-value < 1 × 10−5 (http://chibba.pgml.uga.edu/mcscan2/ (accessed on 18 March
2022)). Other operations were conducted as stated in the manual.

4.5. Comparative Genomics Analysis

The related genomic files were downloaded from Phytozome. Then, these files were
used for comparing the genomic information between different species with TBtools.

https://phytozome.jgi.doe.gov/pz/portal.html
http://pfam.sanger.ac.uk/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.arabidopsis.org/
https://www.megasoftware.net/
https://www.megasoftware.net/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://gsds.gao-lab.org/
http://circos.ca/
http://chibba.pgml.uga.edu/mcscan2/
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4.6. Coexpression Network Construction

The data reported in our previous studies [34] were used for extracting the relevant
information to construct the coexpression network. After identification of hub genes in
SaARFs, the 2000 bp promoter sequences of the hub genes were extracted from genome
sequences using SPDE. Then, the conserved segments of these sequences were detected
using the website of MEME (http://meme-suite.org/tools/meme (accessed on 18 March
2022)). The venn diagrams were drawn by Bioinfrmatics & Evolutionary Genomics (http://
bioinformatics.psb.ugent.be/webtools/Venn/ (accessed on 18 March 2022)). The cytoscape
software was used for constructing the coexpression network [54]. After that, the images
were further processed by Abode Illustrator.

4.7. Functional Divergence and Positive Selection Analysis

The functional divergence of SaARFs was analyzed using DIVERGE v3.0 program [55].
The positive selection analysis was conducted by using the PAML package, and the param-
eters were set as previously described [56].

4.8. Quantitative Reverse Transcription-PCR (qRT-PCR)

Wild-type (WT) plants of HE were water-cultured under the condition (25 ◦C, 16 h
light/8 h dark cycle) for about 3 weeks. Then, these materials were treated under 400 µM
CdCl2. The roots, stems and leaves were collected at 0 h, 0.5 h, 1 h, 2 h, 4 h, 8 h and
12 h, respectively. Each sample with three biological replicates was immediately put into
liquid nitrogen for RNA extraction. Total RNA was extracted from leaves using an RNA
extraction kit (RNAprep Pure Plant Kit, TIANGEN, Beijing, China) followed by DNase I to
remove genomic DNA. Next, first-strand cDNA was produced using the cDNA synthesis
kit (PrimeScript™ RT Master Mix, TAKARA, Beijing, China). qRT-PCR was performed as
Shuang-Shuang et al. described [50]. The primers were designed by SPDE in batch and
listed in the Table S1.

4.9. SNP Sites Detection and Three-Dimensional Structure Visualization

After sequencing HE genome, we collected 106 individuals (including 52 HE and
54 NHE) from eleven natural populations. Then, the whole-genome resequencing ap-
proach was performed to SNP sites. Meanwhile, we determined the Cd content of the
106 individuals. Association analysis between SNP sites and Cd content was made us-
ing Tassel 5 [57], and SNP sites with p-value < 0.01 were remained. The SNP site that
can change the protein sequence of SaARF4 was utilized for further functional verifi-
cation. The three-dimensional structures of proteins were constructed using I-TASSER
website (https://zhanglab.ccmb.med.umich.edu/I-TASSER/ (accessed on 18 March 2022)),
and then the software of Chimera was used for displaying their three-dimensional struc-
tures [58].

4.10. Plasmid Construction and Transgenic Experiment

Total RNA was extracted from the HE leaves, according to the above method (stated
in Section 4.8). Then, the total RNA (2 µg) was used for synthesizing the first-strand cDNA
by Superscript RT III first-strand cDNA synthesis kit (Invitrogen, Carlsbad, NM, USA)
followed by RNase H treatment. The primers for SaARF4 clone were listed in Table S1.
The coding sequence of SaARF4 was cloned from HE cDNA. Furthermore, the sequence
mutant of SaARF4 (SaARF4-SNPm) was produced using overlapping PCR, according
to the results of SNP analysis. The vectors, pDONR222 and pK2GW7.0, were used for
constructing 35S::SaARF4 and 35S::SaARF4-SNPm, respectively. Next, the recombinant
vectors were transformed into the Agrobacterium tumefeciens strain EHA105. The NHE
leaves were used for A. tumefeciens infection. The transgenic experiment was performed as
previously described [16]. Minor modifications: differentiation medium: MS + 2 mg·L−1

6-benzylaminopurine + 0.3 mg·L−1 1-naphthaleneacetic acid; rooting medium: 1/2 MS +
2 mg·L−1 3-indolebutyric acid. The concentration of kanamycin was 30 mg·L−1.

http://meme-suite.org/tools/meme
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
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4.11. Cd Content Determination

The RNA extraction and qRT-PCR were conducted as stated above for choosing the
three different transgenic lines with similar expression levels (Figures S1 and S2). The
WT, 35S::SaARF4 (Figure S1, the red arrows), and 35S::SaARF4-SNPm (Figure S2, the red
arrows) plants were cultured in the same condition (25 ◦C, 16 h light/8 h dark cycle) for
three months. Then, different lines with three biological repeats were cultured under 50 µM
CdCl2 for 14 d. The Cd content was measured as described before [16]. In detail, the aerial
parts of these plants were collected and weighted. Each sample was dried at 60 ◦C, and
treated with concentrated nitric acid at 200 ◦C. The Cd content was determined by ICP-OES
(inductively coupled plasma optical emission spectrometer).

4.12. Statistical Analysis

One-way ANOVA was utilized for significance analysis. All data were showed as
means ± SD. The least significant difference (LSD) test was applied to analyze differences
at a 0.05 or 0.01 level (*, p < 0.05; **, p < 0.01).

5. Conclusions

In this study, bioinformatic analysis was used to screen the candidate gene from the
ARF family of HE, and then a transgenic method was utilized to identify whether the candi-
date gene could influence the Cd accumulation of plants. We found that SaARF4 underwent
the positive selection pressure, and there may be a functional divergence between SaARF4
and other SaARFs. Furthermore, SaARF4 was a hub gene in the coexpression network,
and it may affect over 280 genes under Cd stress. The results of qRT-PCR indicated that
the expression of SaARF4 can be induced by Cd stress; therefore, it was chosen as the
candidate gene to determine its roles in Cd accumulation. Overexpressing SaARF4 effec-
tively decreased Cd accumulation of NHE. According to the previous study, the protein
structure and surface charge distribution may influence the binding of a transcription
factor and the promoter of its downstream genes. We detected an SNP site that can alter
the protein structure and charge distribution of SaARF4. The technology of site-directed
mutagenesis was used to change SaARF4 sequences based on this SNP site. Overexpressing
the mutant of SaARF4 did not significantly decline the Cd accumulation of NHE. There-
fore, we considered that SaARF4 and its downstream genes may play important roles in
Cd accumulation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11091273/s1, Figure S1: Relative expression level of SaARF4;
Figure S2: Relative expression level of SaARF4-SNPm; Figure S3: SNP sites; Table S1: Primers; Table S2:
Basic information; Table S3: Positive selection sites in each clade; Table S4: Function divergences of
ARF gene family; Supplementary Material S5: ARFs in Crassulaceae plants; Supplementary Material
S6: Cd content.
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