
Citation: Tundis, R.; Patra, J.K.;

Bonesi, M.; Das, S.; Nath, R.; Das

Talukdar, A.; Das, G.; Loizzo, M.R.

Anti-Cancer Agent: The Labdane

Diterpenoid-Andrographolide. Plants

2023, 12, 1969. https://doi.org/

10.3390/plants12101969

Academic Editor: Corina Danciu

Received: 31 March 2023

Revised: 8 May 2023

Accepted: 10 May 2023

Published: 12 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Review

Anti-Cancer Agent: The Labdane Diterpenoid-Andrographolide
Rosa Tundis 1 , Jayanta Kumar Patra 2 , Marco Bonesi 1, Subrata Das 3, Rajat Nath 4 , Anupam Das Talukdar 4,
Gitishree Das 2,* and Monica Rosa Loizzo 1

1 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
rosa.tundis@unical.it (R.T.)

2 Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea;
jkpatra@dongguk.edu

3 Department of Botany and Biotechnology, Karimganj College, Assam University, Assam 788710, India
4 Department of Life Science and Bioinformatics, Assam University, Assam 788011, India
* Correspondence: gdas@dongguk.edu

Abstract: In spite of the progress in treatment strategies, cancer remains a major cause of death
worldwide. Therefore, the main challenge should be the early diagnosis of cancer and the design
of an optimal therapeutic strategy to increase the patient’s life expectancy as well as the contin-
uation of the search for increasingly active and selective molecules for the treatment of different
forms of cancer. In the recent decades, research in the field of natural compounds has increasingly
shifted towards advanced and molecular level understandings, thus leading to the development
of potent anti-cancer agents. Among them is the diterpene lactone andrographolide, isolated from
Andrographis paniculata (Burm.f.) Wall. ex Nees that showed shows a plethora of biological activities,
including not only anti-cancer activity, but also anti-inflammatory, anti-viral, anti-bacterial, neuropro-
tective, hepatoprotective, hypoglycemic, and immunomodulatory properties. Andrographolide has
been shown to act as an anti-tumor drug by affecting specific molecular targets that play a part in
the development and progression of several cancer types including breast, lung, colon, renal, and
cervical cancer, as well as leukemia and hepatocarcinoma. This review comprehensively and system-
atically summarized the current research on the potential anti-cancer properties of andrographolide
highlighting its mechanisms of action, pharmacokinetics, and potential side effects and discussing
the future perspectives, challenges, and limitations of use.

Keywords: cancer; mechanism of action; apoptosis; autophagy; angiogenesis; enhanced
radio-sensitivity

1. Introduction

In spite of the progress of treatment strategies, cancer remains a major cause of death
worldwide [1]. The conventional cancer treatments include chemotherapy, radiotherapy,
and surgical removal. However, in some cases the resistance of cells to these therapies
reduces their effectiveness. The incidence of cancer and the mortality rate have risen
exponentially, with about 19.3 million new cancer cases in 2020 [2]. Despite the advances
of cancer treatments, that include surgery, conventional chemotherapy, radiation therapy,
hormone therapy, and immunotherapy, the overall disease-free survival rate is still inad-
equate. Additionally, the toxicity often associated with anti-cancer drug therapy poses
additional challenges. Therefore, the search for non-toxic alternative therapies, including
the use of non-toxic natural compounds of plant origin, for the prevention and treatment
of cancer is drawing increasing attention. Due to their availability and wide margin of
safety, plant-derived products have made a great impact on drug discovery and are gaining
increasing attention for both cancer prevention and treatment [1,3].

Generally, natural compounds display multi-targeted effects, affecting various molec-
ular targets including cytokines, transcription factors, growth-factor receptors, adhesion
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molecules, and inflammatory enzymes. Moreover, the combination of natural compounds
with standard chemotherapeutic drugs, namely doxorubicin, cisplatin, and fluorouracil, has
considerably improved patient survival by making cancer cells more sensitive to radiother-
apy and chemotherapy [3–8]. Paclitaxel, vincristine, and etoposide are just a few examples
of plant-derived compounds used in therapy. To date, new generations of compounds have
been developed and some of these are in clinical use, whereas others are in clinical trials. In
recent years, some classes of diterpenes have been investigated for their potential role as
anti-cancer agents [9]. In particular, the diterpenoid andrographolide has attracted interest
in the medicinal chemistry research community with its potential multiple pharmacologi-
cal activities such as antioxidant [10,11], anti-inflammatory [12], immuno-regulatory [13],
hypoglycemic [14], and antimicrobial [15–18] properties, and its role in improving memory
impairment [19], regulating blood lipids levels, and mitigating cartilage damage [20]. Cur-
rently a number of medications and pills containing andrographolide and its derivatives
(Figure 1) such as chuanhuning (potassium dehydroandrographolide succinate), yanhuning
(potassium sodium dehydroandrographolide succinate), and lianbizhi (andrographolide
sodium bisulfite) are available commercially and are utilized in the clinical treatment of
diseases such as bacillary dysentery, pediatric pneumonia, and upper respiratory tract
infections [21–25].

Figure 1. The chemical configuration of andrographolide and its derivatives that are used commer-
cially in clinical practices. Reproduced with permission from Zhang et al. [21], licensed content
publisher—Elsevier.

Considering all the potential benefits of the labdane diterpenoid andrographolide, the
aim of the current review was to summarize and describe the most recent studies on the
anti-cancer properties of this compound. By analyzing all the studies published within
the last ten years, the mechanism of action at the cellular level, pharmacokinetics, and
therapeutic potential in cancer treatment, are described.

2. Methodology Adopted for the Current Investigation

Extensive research was conducted into several scientific databases such as PubMed,
Scopus, Web of Science, SciFinder, and Science Direct from 2012 to 2022 using the terms “an-
drographolide”, “Andrographis”, “Andrographis paniculata”, “cancer,” “signaling pathways”,
“apoptosis”, “metastasis”, “synergistic action”, “radiation”, “angiogenesis”, “cell cycle
arrest”, “cell cycle regulation”, “cytotoxicity”, “antioxidant”, “breast cancer”, “cervical
cancer”, “colorectal cancer”, “toxicity”, and “pharmacokinetics”.

The inclusion criteria comprised papers that reported the anti-cancer activity of an-
drographolide, articles published in English, and book chapters that reported studies on
cell cultures or animal models with evidence of the mechanisms of action. The exclusion
criteria comprised abstracts, case reports, and conference proceedings that did not meet the
inclusion criteria. Selected works included data on experimental models, concentration
and/or dose, and the analysis of the anti-cancer mechanism of action.
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3. Occurrence and Chemistry of the Labdane Diterpenoid Andrographolide

From long ago, the herbaceous plant species Andrographis paniculata (Burm.f.) Nees.
which belongs to the family Acanthaceae, has been extensively used in the Chinese, Indian,
and South-East Asian countries such as Thailand and Vietnam, in the traditional and
clinical system of medicine for the treatment of bacterial and viral infections such as cough,
sore throat, cold, carbuncle, fever, and sores [21,26]. It has several local names in different
countries such as kalmegh in India, boner kalomegh in Bangladesh, Chuan-Xin-Lian in
China, hempedu bumi in Malaysia, and fah talai in Thailand [26,27]. It is also known as the
known as the “king of bitters”.

A. paniculata has been used for centuries in traditional Asian medicines for the treat-
ment of diarrhea, malaria, flu, leptospirosis, leprosy, rabies, syphilis, upper respiratory
infections, sinusitis, HIV infection, and tuberculosis [28–31].

Since 1911, many types of compounds, such as flavonoids, lactones, terpenoids, and diter-
penoids, have been identified from different parts of the plant species [32,33]. However, the
most common bioactive compound from this plant species is the labdane diterpenoid andro-
grapholides, 14-deoxyandrographolide and 14-Deoxy-11,12-dehydroandrographolide [21,26,34].
As reported by Gorter [32], andrographolide mostly accumulates in the leaves of the plant
rather than in other plant parts. Recently, the diterpenoid was also isolated from the leaves of
Andrographis lineata Wall. ex Nees var.l awii C.B. Clarke [35]. However, A. paniculata remains the
main source of this promising anti-cancer diterpene lactone.

Andrographolide (chemical formula: C20H30O5; PubChem CID: 5318517; CAS No. 5508-
58-7) is a naturally occurring labdane diterpenoid (Figure 2). It is sparingly soluble in water.

Figure 2. A. paniculata and its main compound andrographolide.

The other names of andrographolide are (S,E)-4-hydroxy-3-(2-((1R,4aS,5R,6R,8aS)-6-hydroxy-
5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethylidene)dihydrofuran-
2(3H)-one and 3alpha,14,15,18-tetrahydroxy-5b,9bH,10a-labda-8(20),12-dien-16-oic acid gamma-
lactone. Its molar mass is 350.455 g/mol and melting point is 230–231 ◦C.

4. Pharmacological Importance of Andrographolide and Its Derivatives

During modern times, andrographolide and several its derivatives have been reported
to possess several pharmacological properties, including anti-inflammatory, hepatoprotec-
tive, anti-viral, neuroprotective, antioxidant, anti-fibrosis, anti-hyperglycemic, anti-tumor,
anti-atherosclerosis, antimicrobial, and cardiovascular protective activities. These prop-
erties have been discussed in detail in several outstanding review articles [21,33,36–39].
Andrographolide exhibits free-radical-scavenging activity and anti-inflammatory effects by
inhibition of lipopolysaccharide-induced nitric oxide (NO) production and inducible NO
synthase (iNOS) expression, and by suppression of IL-2 production and T-cell prolifera-
tion. The lactone diterpene demonstrated its effectiveness in the treatment of Alzheimer’s
disease, Parkinsonism, spatial memory deficits, depression, and neuro-inflammation [36].
Jayakumar et al. [37] reported several works that evidenced the promising hepatoprotective
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effects of andrographolide. The diterpene has been shown to be able to inhibit hepato-
cyte apoptosis, to attenuate concanavalin-A-induced liver injury, and to protect against
ethanol-induced hepatotoxicity in mice with an equivalent efficacy of silymarin. Antiviral
activity has been reported against Zika virus, human immunodeficiency virus (HIV), herpes
simplex virus (HSV), hepatitis C virus, pestiviruses, and flaviviruses [36,37].

5. Anti-Cancer Properties and Mechanism of Action of Andrographolide and Its
Derivatives

Recently, much attention has been focused on the anti-tumor/anti-cancer effects of
andrographolide and its derivatives and these compounds have been demonstrated to
exhibit promising anti-tumor effects in terms of inhibition of the growth, propagation, and
relocation of a number of cancerous cells such as prostate carcinoma cells, colon cancer
cells, bladder cancer cells, chronic myeloid leukemia cell lines, colorectal cancer cell lines,
breast cancer cells, murine leukemia cells, lymphoma, adenocarcinoma PC-3, and leukemic
HL-60 cells and many more human cancerous cells (Figure 3) [21,33,40–45].

Figure 3. The chemical structure of the characteristic C-3 and C-19 esters of the andrographolide (1)
compound with anti-cancer activity; (a) & (b) are the most active compounds with GI50 values of
1.46–9.19 µM against A549 (lung cancer), DU145 (prostate cancer), KB (oral cancer), and KB-Vin tumor
cells. Reproduced with permission from Kumar et al. [33], 2020, licensed content publisher—Elsevier.

Various literature reviews have shown that andrographolide and its derivatives was
able to reduce cancer cell proliferation/viability and that it is cytotoxic to a broad range
of cancer cell lines, but the mechanisms were different for different cell types (Figure 4).
Recent published literature has confirmed the multiple anti-cancer effects of the diterpene,
in particular against the breast cancer [46], lung cancer [47], colon cancer [48,49], renal
carcinoma [50], and cervical cancer [51], as well as hepatoma cancer [52]. The principal
mechanism or mode of action of these compounds is less understood and it needs to be
explored further in detail. The reduced viability of cancer cells in most of the cases could
be partially described by the induction of apoptosis [53–55], but in some liver cancer cells
the death resulted from the diterpene and was not due to the induction of apoptosis [56].

Figure 4. The principal mechanisms of action of andrographolide as an anti-cancer agent.
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Other mechanisms of action include arrest of the cell cycle and inhibition of cancer
angiogenesis. In addition, the enhanced sensitization of cancer cells to radiotherapy is
another interesting aspect. Furthermore, the in vivo studies related to the anti-cancer effects
of these compounds appear to be only partial and could be further explored. Zeng et al. [36]
have also provided a detail pictorial representation of the main anti-cancer mechanisms of
action of andrographolide such as the induction of cell apoptosis, blockage of the cell cycle,
and inhibition of cancerous cell proliferation (Figure 5). The mechanism of action of the
anti-cancer potential of andrographolide and its derivatives, as published during the last
ten years (year 2012–2022), are discussed below.

Figure 5. A pictorial representation of the anti-cancer mechanism of action of andrographolide.
Reproduced with permission from Zeng et al. [36].

5.1. Induction of Apoptosis and Growth Inhibitory Activity

Andrographolide has played a notable role in the recent advancement of pharma-
cophore development, especially anti-cancer drug development. In anti-cancer-drug de-
velopment processes, apoptosis induction in carcinoma cells is known to be an important
focus [57]. The process of apoptosis in the cell helps in the maintenance of tissue home-
ostasis by careful exclusion of undesirable cells [58,59]. Andrographolide is credited with
potentially inducing apoptosis in several cancer cells and can enhance interleukin-2 secre-
tion by cytotoxic T-lymphocytes for inhibition of tumor growth in mice [60].

A recent report on the identified compounds of A. paniculata states that andrographolide
endorses the apoptosis process in human cancer cells through the induction of mitochon-
drial cytochrome c, accompanied by enhanced expression of Bax and reduced Bcl-2 in
human leukemia HL-60 cells [61] and caspase 8 and caspase 3 activation in human prostate
cancer cells PC-3 [62]. It also reported that this compound could inhibit the activity of
NF-κB, one of the most important transcription factors accountable for cell proliferation
and apoptosis [63,64] (Table 1).

Andrographolide was proposed for potential application in cancer therapy for its
apoptosis-induction activity [65]. Andrographolide was found to be accountable for phos-
phorylation of p53, as well as the transcriptional upregulation of death receptor 4 (DR4)
induced by p53. This stimulation process caused the stimulation of the apoptosis via the
tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Andrographolide also
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increased the TRAIL-induced apoptosis process through the DR4 in the TRAIL-resistant
cells [65]. Treatment of T-47D mammary cells by andrographolide caused epidermal
growth-factor receptor (EGFR) and transferring receptor (TfR) internalization owing to
the downregulation of cell-surface receptors and dilapidation of the EGFRs and TfRs [27].
Andrographolide also caused apoptotic cell death by reducing the mRNA and protein
levels of IL6 (needed for prostate cancer proliferation) [66].

Andrographolide is explicitly studied for its anti-cancer activity and is reported to
possess capability to induce cell-cycle arrest in human colorectal carcinoma LoVo cells [67]
and to inhibit cell proliferation of cell [68].

Induction of apoptosis in human ovarian teratocarcinoma (PA-1) cells was recently
described by Bhat et al. [35]. An increased number of cells with activated caspase 3 and a
low level of Bcl-2 after treatment with andrographolide was reported in comparison to the
untreated cells. Shi et al. [67] described the pharmacophore activity of andrographolide
and stated that it arrests the cell at the G1/S phase of the cell cycle via the CKI–cyclin–
Cdk network. Andrographolide also showed G0/G1 phase arrest in MCF-7 cells [69].
In addition, 10–30 µM of andrographolide showed pro-apoptotic and growth inhibitory
activity in rheumatoid arthritis by G0/G1 phase arrest of the cell cycle via p21 and p27
inhibition, reduced ratio of Bcl2/Bax, and decreased level of CDK-4 protein [70].

The arrest of the G2/M phase of the cell cycle was also caused by the action of andro-
grapholide in glioblastoma U251 and U87 [71], human leukemia (K562) [17] and breast cancer
cells [72,73]. Similarly, 3,19-(3-chloro-4fluorobenzylidene) and 3,19-(2-bromobenzylidene),
derivatives of andrographolide exhibited superior cytotoxic and growth-inhibition activity in
HCT- 116 and MCF-7 cell lines. Both derivatives showed potent inhibitory activity by arrest
in the G1/S phase of the cell cycle and apoptosis in MCF-7 and HCT-116 cells [74].

Recent research has shown that andrographolide inhibits cell-cycle progression at the
G2/M checkpoint in LNCaP, C4-2b, and PC3 cells and at the G1/S checkpoint in DU-145
cells. Cyclin B1 was also upregulated by andrographolide in LNCaP and PC3 cells [75].

Wang et al. [76] have shown that the osteosarcoma cell proliferation was inhibited
by andrographolide by the process of arresting of the cell cycle at the G2/M phase and
by enhancing the caspase-mediated apoptosis process. In vitro andrographolide inhibited
the growth of osteosarcoma cells by causing G2/M phase cell-cycle arrest and inducing
apoptosis via the reactive oxygen species (ROS)/c-Jun N-terminal kinase (JNK) signaling
pathway.

In vivo, andrographolide exhibited significant anti-tumor activity with minimal toxicity.

5.2. Inhibition of Tumor Angiogenesis

The term tumor angiogenesis refers to the formation of new blood vessels within a
tumor, which provide the growth center with a constant supply of oxygen and nutrients.
Andrographolide decreased tumor-specific angiogenesis by lowering the manufacture of
the pro- and anti-angiogenic factors such as interleukin-2, vascular endothelial growth
factor, nitric oxide, and tumor necrosis factor TNF-α, in the C57BL/6 mice infected with the
B16F-10 melanoma cells (Table 1) [75]. In addition, it was able of inhibit the angiogenesis-
critical matrix metalloproteinase 2 (MMP-2) and metalloproteinase 9 (MMP-9) activities
in colon cancer cells [77]. When it comes to A549 cells and non-small-cell lung cancer
(NSCLC), HIF-1 is responsible for cancer growth.

Andrographolide inhibited HIF-1, reduced vascular endothelial growth factor (VEGF),
and boosted hydroxyl-HIF-1 and prolyl hydroxylase expression [78]. These results empha-
size the promise of andrographolide as a potential chemotherapeutic or anti-angiogenesis
drug for the treatment of NSCLC. Serum levels of tissue inhibitors of metalloproteinase
1 (TIMP-1), VEGF, and pro-inflammatory cytokines such as TNF-α, IL-1b, and IL-6, and
granulocyte monocyte colony stimulating factor (GM-CSF) were decreased by andro-
grapholide after being induced by the B16F-10 melanoma cell line in the C57BL/6 mice [60].

The andrographolide derivative 17-hydro-9-dehydro-andrographolide inhibited vas-
cular endothelial cell proliferation and angiogenesis in rats at 1–10 mM [79]. At 50 mg/kg,
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andrographolide inhibited the expression of PCNA, vascular endothelial growth factor,
and cyclin D1 in hamster buccal cells [38]. In another study, it is stated that biochemi-
cal analysis had identified andrographolide as a significant docking molecule that can
bind to the ATP-binding pocket of vascular endothelial growth-factor receptor (VEGFR2)
and thus inhibit its kinase activity by potentially interacting with the kinase domain of
VEGFR2 [80]. VEGFR2 is the major receptor of VEGF. It is expressed in vascular endothelial
cells and plays a very significant role in angiogenesis. In fact, by binding and activating
VEGFR2, VEGF mediates endothelial invasion, migration, cell proliferation, and survival,
and increases vascular permeability and neo-vascularization. In addition, in another study
the author discussed the inhibition of angiogenesis by andrographolide by the process
of inhibition of the Mir-21-5p/TIMP3 signaling pathway [81]. The results showed that
andrographolide was able to inhibit the growth of the vascular tissues in the membranes
of chick embryo chorioallantois and yolk sac, along with the suppression of the tumor
angiogenesis [81]. Furthermore, they also stated that the proliferation, migration, and tube
formation of the vascular endothelial cells was also inhibited by andrographolide action
under in vitro action. The outcome of the process was principally facilitated through the
inhibition of the expression of miR-21-5p and added targeting of the TIMP3; this proved
that andrographolide was directly involved in the inhibition of angiogenesis [81]. Another
article discussed the overall mechanism of action of andrographolide by the inhibition of
the PI3K/AKT, NF-κB, v-Src, and STAT3 activities followed by the downregulation of the
mediators of progression of the cell cycle, metastasis, and angiogenesis [82].

In a study by Li et al. [83], the author stated that a new andrographolide derivative
(AGS-30) was able to display anti-angiogenic properties through the inhibition of the
endothelial-cell proliferation, incursion, and relocation, as well as tube formation (Figure 6).

Figure 6. Pictorial representation of action mechanism of AGS-30, an andrographolide derivative,
suppressing the tumor angiogenesis process. Reproduced with permission from Li et al. [83].

The author also stated that the AGS-30 was able to inhibit cell proliferation and the
phosphorylation of cell-survival-related proteins followed by the reduction of the VEGF
expression in the HT-29 colon cancer cells [83]. Moreover, AGS-30 also suppressed the tumor
growth and angiogenesis process in the HT-29 colon cancer cell xenografts in nude mice [83].
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5.3. Anti-Proliferative Activity

The anti-proliferative effects of andrographolide have been investigated against sev-
eral cancer cell lines (Table 1). Udomwan et al. [84] investigated the cytotoxic activity
of andrographolide by using the 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium
bromide (MTT) assay against three cervical cancer cell lines, namely CaSki, SiHa, and C33A.
The most sensitive cells after treatment with andrographolide (at 20, 40, 80, and 160 µM
concentrations) for 48 h were SiHa cells. Cell viability of SiHa cells was reduced to 50% at a
concentration of 85.59 µM followed by the value of 87.52 µM for CaSki cells, and 96.05 µM
for C33A cells.

Successively, Tohkayomatee et al. [85] assessed the andrographolide effects on the cell
viability against MCF-7 and MDAMB-231 breast cancer cell lines by MTT assay. At concen-
trations in the range 7.5–120 µM, the diterpene considerably reduced, in a concentration-
and time-dependent manner, the cell viability of both cell lines with IC50 values after 48 h
of exposure of 32.90 and 37.56 µM against MCF-7 and MDAMB-231, respectively.

Treatment with andrographolide at the concentration of 50 µM reduced the viability
of the THP-1 (human monocytic leukemia) cell line and NCI-H929 (human IgAkappa-
producing multiple myeloma) cell line to 39.2 and 13.0%, respectively, with respect to
the untreated cells in a concentration-dependent manner [86]. The IC50 values for treat-
ing were 31 and 8 µM, for THP-1 and H929 cells, respectively. Andrographolide was
demonstrated to be active also against human malignant melanoma A375 and C8161
cell lines [87]. The cell viability was assessed by MTT assay. The IC50 values after 48 h
of exposure were 12.07 and 10.92 µM for A375 and C8161, respectively, suggesting the
promising anti-proliferative activity of andrographolide against malignant melanoma cells
in a concentration- and time-dependent manner.

Previously, the anti-proliferative activity of andrographolide on HT-29 colon cancer
cells was studied by using MTT assay, colony formation assay, trypan blue exclusion assay,
and morphological analysis [55]. The diterpene reduced cell viability of HT-29 cells in a
concentration- and time-dependent manner. An interesting IC50 value of 3.7 µg/mL was
found against human ovarian teratocarcinoma (PA-1) cells [35].

Devendra et al. [43], demonstrated that a series of 3,19-O-acetal derivatives of andro-
grapholide exhibited significant anti-cancer properties and the results specified that the
protection of the 3,19-hydroxyl groups of andrographolide with the appropriate ethyli-
dene/benzylidene moiety prompted a substantial cytotoxicity effect with either the acetyla-
tion or dehydration of the 14-hydroxyl of the lead compound cyclic acetal derivative, that
could have triggered its cytotoxic effect on all the cell lines [43].

5.4. Induction of Autophagy

Autophagy is a process associated with several diseases, including the cancer that
destroys and processes the damaged macromolecules and organelles through lysosomal
pathways to maintain the homeostasis of cells [88]. Autophagy may play contrasting
roles in different types of cancers and in their different stages of development, including
promoting survival and inducing death [89]. For this reason, research into the molecular
mechanisms of autophagy-related signal-transduction pathways is of interest [90–93]. In
this context, Liu et al. [94] demonstrated the effects on autophagy of andrographolide in
human osteosarcoma cells by suppressing the phosphatidylinositol-3-kinase (PI3K)/Akt
and the mammalian target of rapamycin (mTOR) signaling pathways and enhancing the c-
Jun N-terminal kinase (JNK) pathway. Autophagy induced by andrographolide inhibits the
invasion and metastasis of osteosarcoma cells suggesting that the diterpene may represent a
promising targeted agent in the prevention and treatment of osteosarcoma. Yuwen et al. [42]
demonstrated that cisplatin induced autophagy that attenuated the sensitivity of both
A549 and Lewis lung cancer cells to cisplatin, whereas the clinical drug andrographolide
suppressed autophagy and enhanced cisplatin-mediated apoptosis in these cells [42].
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5.5. Oxidative Stress and Antioxidant Properties of Andrographolide in Anti-Cancer Treatment

Andrographolide exhibited promising antioxidant properties acting through differ-
ent mechanisms of action including the neutralization of free radicals, the activation of
antioxidant enzymes, the inhibition of pro-oxidant enzymes, and the protection of mito-
chondrial integrity [95]. Some studies have shown the reduction of ROS in cellular models
by andrographolide [96,97]. Treatment with andrographolide (10 and 30 M) decreased the
production of ROS in RAW264.7 macrophages motivated by the ovalbumin or lipopolysac-
charide (LPS) [95]. Previously, andrographolide has been reported to inhibit intracellular
ROS production in N-formylmethionyl-leucyl-phenylalanine-induced neutrophils [96].
Zhan et al. [98] showed a dose-dependent increase in catalase (CAT) and super oxide
dismutase (SOD) activities after topical application of andrographolide to mouse skin that
was exposed to UV radiation, as compared to the untreated mice.

Andrographolide is also considered to be a potent inhibitor of the enzyme xanthine
oxidase (XOD), that catalyzes the terminal steps of purine degradation. XOD has been
proposed as a source of oxygen radicals in epithelial, connective, and endothelial tissue cells.
In fact, the enzyme is described as playing an important role in cellular oxidative status. An
in silico study revealed strong binding interactions between the andrographolide and the
XOD enzyme [99] and a recent work showed the ability of the diterpene (30 mg/kg/day)
to reduce liver XOD activity [100].

NADPH oxidase (NOX) is a membrane enzyme complex that catalyzes the oxida-
tion reaction of NADPH by oxygen, inducing ROS production in cells. Andrographolide
has been reported to reduce the expression of NOX2 through limiting the activation of
phosphoinositide 3-kinase/protein kinase B (PI3K/AKT)-dependent nuclear factor-kappa
B (NF-B) [101]. In another work, andrographolide (10 and 20 mg/kg/day) significantly
decreased NOX2 and NOX4 expression in myocardial tissues [102]. There are reports
that andrographolide can improve mitochondrial dysfunction in some in vitro and in vivo
models. Geng et al. [103] demonstrated that andrographolide sulfonate treatment could
reduce oxidative stress and protect the mitochondria in a transgenic mouse model (amyloid
precursor protein/presenilin 1). In another model, it was found that andrographolide
supplementation could reduce the production of nitric oxide, carbonyl protein, and mal-
ondialdehyde, and enhance mitochondrial complex activities in the electron transport
chain [104]. On the other hand, increased activity of CAT, SOD, glutathione peroxidase,
glutathione reductase, and glutathione-S-transferase, and reduced concentrations of glu-
tathione and glutathione disulfite were observed [104].

Table 1. In vitro and in vivo study of andrographolide against cancer cell lines.

Cancer Cell Line Study Type Main Effects Ref.

Ovarian teratocarcinoma In vitro PA-1 cells—MTT test—IC50 3.7 µg/mL; induction of apoptosis [35]

Lung cancer In vitro Suppression of autophagy and enhanced cisplatin-mediated
apoptosis [42]

Colon cancer In vitro HT-29 cells—induction of programed cell death and cell-cycle
arrest through the increase of intracellular ROS level [55]

Leukemia In vitro HL-60 cells—cell-cycle arrest and mitochondrial-mediated
apoptosis [61]

Prostate cancer In vitro PC-3 cells—caspase 8 and caspase 3 activation [62]

Neuroblastoma In vitro Induction of p53- and caspase-independent cell death [63]

Liver cancer In vitro
HepG2 and Hep3B cells—sensitization of cancer cells to
TRAIL-induced apoptosis via p53-mediated death receptor 4
upregulation

[65]
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Table 1. Cont.

Cancer Cell Line Study Type Main Effects Ref.

Cervical cancer In vitro HeLa cells—sensitization of cancer cells to TRAIL-induced
apoptosis via p53-mediated death receptor 4 upregulation [65]

Colorectal cancer In vitro HCT116 cells—sensitization of cancer cells to TRAIL-induced
apoptosis via p53-mediated death receptor 4 upregulation [65]

Prostate cancer In vitro LNCaP, DU145, and PC-3 cells—apoptotic cell death by
reducing the mRNA and protein levels of IL6 [66]

Colorectal carcinoma In vitro LoVo cells—induction of cell-cycle arrest and inhibition of cell
proliferation [67,68]

Brest cancer In vitro MCF-7 cells—G0/G1 phase arrest [69]

Glioblastoma U251 and U87 cells—arrest of the G2/M phase cell cycle phase [71]

Leukemia K562 cells—arrest of the G2/M cell cycle phase [17]

Breast cancer Arrest of the G2/M phase [72,73]

Prostate cancer In vitro
LNCaP, C4-2b, and PC3 cells—inhibition of cell-cycle
progression at the G2/M phase; decrease of tumor-specific
angiogenesis

[75]

Osteosarcoma In vitro Inhibition of cell proliferation by arresting of the cell cycle at the
G2/M phase [76]

Osteosarcoma In vivo
Female Balb/c-nu mice with HOS-Luc cells injected
subcutaneously—induction of apoptosis via the ROS/JNK
pathway

[76]

Colon cancer In vitro HT29 cell line—anti-invasive activity against colon cancer cells
via inhibition of matrix metalloproteinase 2 (MMP2) [77]

Cervical cancer In vitro CaSki cell line—MTT test—reduction of cell viability of 50% at
87.52 µM [84]

Cervical cancer In vitro SiHa cell line—MTT test—reduction of cell viability of 50% at
85.59 µM [84]

Cervical cancer In vitro C33A cell line—MTT test—reduction of cell viability of 50% at
96.05 µM [84]

Breast cancer In vitro MCF-7 cell line—MTT test—IC50 32.90 µM [85]

Breast cancer In vitro MDAMB-231 cell line—MTT test—IC50 37.56 µM [85]

Monocytic leukemia In vitro THP-1 cell line—MTT test—IC50 31 µM [86]

IgAkappa-producing
multiple myeloma In vitro H929 cell line—MTT test—IC50 8 µM [86]

Malignant melanoma In vitro A375 cell line—MTT test—IC50 12.07 µM [87]

Malignant melanoma In vitro C8161 cell line—MTT test—IC50 10.92 µM [87]

Osteosarcoma In vitro

Suppression of phosphatidylinositol-3-kinase (PI3K)/Akt and
the mammalian target of rapamycin (mTOR) signaling
pathways; enhancement of the c-Jun N-terminal kinase (JNK)
pathway

[94]

Mice In vivo Inhibition of PI3K/AKT-dependent NOX2 and iNOS expression [101]

APP/PS1 transgenic mice In vivo Reduction of oxidative stress and protection of mitochondria [103]

Male Wistar rats In vivo

Reduction of the production of nitric oxide, carbonyl protein,
and malondialdehyde, and enhancement of mitochondrial
complex activities in the electron transport chain. Increased
activity of CAT, SOD, glutathione peroxidase, glutathione
reductase, and glutathione-S-transferase

[104]
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The transcription factor NF-E2-related factor 2 (Nrf2), takes part in regulation of the
antioxidant defense system. Thus, the involvement of andrographolide in the regulation
of Nrf2 is a topic of interest in redox-system regulation. Wong et al. [105] investigated the
mechanism through which andrographolide is able to activate the transcription of Nrf2,
finding that this compound was able to inhibit the Keap1 protein which along with the
Cul3 and RBX1 forms an E3 ubiquitin ligase that polyubiquitinates Nrf2. In particular,
andrographolide partly inhibits Keap1 and Cul3 interactions. Fu et al. [106] confirmed that
andrographolide activates the Nrf2 signaling pathway. The author also studied the mRNA
expression of NQO-1 and HO-1, which are the target genes of Nrf2, establishing that their
mRNA expression levels were significantly increased.

Andrographolide and its derivative compounds are found to exhibit reactive oxygen
species (ROS)-mediated apoptotic cell death in a number of cell lines, including mantle
cell lymphoma, diffuse large B-cell lymphoma cell line SUDHL4, Burkitt p53-mutated
Ramos, follicular lymphoma HF-1, and primary cells acquired from the patients with such
diseases [38,41]. Further, another research by Chen et al. [107], showed that carboxylic-
acid-mediated cytotoxic activity against the HCT-116 and MCF-7 cell lines was exerted by
the andro-19-oic acid derivatives [108]. Andrographolide–lipoic acid conjugate was also
reported to display anti-cancer cytotoxicity effects against the human leukemia K562 cells
through the excess production of ROS followed by DNA damage and mitochondria-
facilitated apoptosis [109]. Banerjee et al. reported on the cytotoxic effects of andro-
grapholide against breast cancer cells (MDA-MB-231 and MCF-10A) by upregulation of
Apaf-1 and Bax proteins and downregulation of Bcl-xL and Bcl-2 proteins that resulted
in an increase in ROS activity [53]. Similarly, ROS-mediated cytotoxic potential by the
andrographolide sodium bisulfate in human renal tubular epithelial cells was also reported.
This activated the c-Jun N-terminal kinase signaling pathway [110].

5.6. Enhanced Radio-Sensitivity

Different in vitro and in vivo studies have suggested that andrographolide was also able
to enhance the sensitization of cancer cells to radiotherapy [107,111–114]. Zhang et al. [115]
examined the radio-sensitizing activity of andrographolide in human ovarian SKOV3
xenografts analyzing the effects of the diterpene administration on apoptosis, cancer growth,
autophagy, and radiosensitivity. Andrographolide strongly sensitized ovarian SKOV3
xenografts to radiation. Moreover, the authors demonstrated that autophagy and apoptosis
in radiation, combined with drug treatment, was considerably increased compared with
radiation treatment or drug administration alone. An increase in the p-p53 expression and
the Bax/Bcl-2 protein ratio after the combination radiation–andrographolide treatment
was observed. The radio-sensitizing activity of andrographolide on ECA109 esophageal
cancer cells was also found by using the clonogenic survival assay [111]. Andrographolide
could markedly enhance radio-sensitivity with a sensitizing enhancement ratio of 1.28.
This effect may be associated with the induced apoptosis of ECA109 cells and the decrease
in the levels of nuclear factor kappa B (NF κb).

Previously, Hung et al. [112] measured the radio-sensitizing effects of andrographolide
in H-ras-transformed rat kidney epithelial (RK3E) cells. Ras is one of the well-characterized
proto-oncogenes that control multiple intracellular signaling networks including NF- κb,
mitogen-activated protein (MAP) kinase, and phosphoinositide-3-kinase (PI3K)/protein
kinase B (Akt) pathways. Ras-regulated signal pathways control proliferation, differentia-
tion, apoptosis, actin cytoskeletal integrity, cell adhesion, and cell migration. Moreover, Ras
activation has been shown to increase the radio-resistance of cancer cells. Andrographolide
sensitized Ras-transformed cells to radiation in both in vitro and in vivo models. This
radio-sensitization was associated with downregulation of Akt and NF-kB activity. Andro-
grapholide combined with radiation exhibited synergistic effects, suppressing tumorige-
nesis in oral cancer stem cells (OCSCs) and cells characterized by high tumorigenic and
metastatic properties as well as chemo-resistance and radio-resistance [113]. More recently,
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the diterpene plus radiation increased apoptosis and decreased survival and invasion of
HCT116 colorectal cancer cells compared with the effects of radiation alone [114].

5.7. Different Signalling Pathways

Different signaling pathways in which andrographolide inhibited tumor growth are
discussed in a few more studies. In one study, the author reported the effects of andro-
grapholide on TNF-α-induced IL-8 expression and its principal mode of action. The author
concluded that andrographolide inhibited TNF-α-induced IL-8 mRNA, and reduced IL-8
transcriptional activity and protein expression in a concentration dependent manner [116].

The possible mechanism of action of andrographolides is presented in Figure 7. They
demonstrated that andrographolide efficiently suppressed IL-8 expression and angiogenesis
in the tumor microenvironment by inhibition of NFκB, Erk1/2, NADPH oxidase, ROS, and
P38 MAPK, and activation of AP-1 [116].

Figure 7. Pictorial representation of mechanism of action of inhibition of tumor-derived IL-8-induced
angiogenesis by andrographolide in the tumor microenvironment. (A) Andrographolide mediates
inhibition of TNF-α-induced IL-8 through the inhibition of NADPH oxidase/ROS/NF-κB and
Src/MAPKs/AP-1signaling pathways in the HCT116 colorectal cancer cells. (B) Secretion of the IL-8
from cancer cells increases the multiplication of endothelial cells to endorse the angiogenesis process
in the tumor microenvironment. Andrographolide obstructs the countenance of tumor-derived IL-8,
thus preventing angiogenesis in the tumor microenvironment. Reproduced with permission from
Yuan et al. [116]. Copyright © 2023, American Chemical Society.

The capability of andrographolide to control the signal transducer and activator of
transcription (STAT) proteins in cancers was also investigated (Figure 8) [67,117–119].
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Figure 8. (A,B) Regulation of JAK-STAT signaling by andrographolide. Andrographolide effectively
inhibited JAK1, JAK2, and STAT3. (C) Andrographolide inhibited phosphorylation of STAT3 on the
705th tyrosine and 727th serine. Adopted from Farooqi et al. [120], under the terms and conditions of
the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/),
2020. Licensee MDPI, Basel, Switzerland.

Chun et al. [67], stated that, in a dose-dependent manner, andrographolide was able to
inhibit the interleukin-6 (IL-6) at mRNA and protein levels. Andrographolide was able to sup-
press the IL-6 autocrine- and paracrine-loop-mediated signaling pathways primarily through
the process of disturbing the phosphorylation of STAT3 and extracellular signal regulated
kinase. It was shown that andrographolide encouraged apoptosis in the androgen-stimulated
and castration-resistant prostate cancer cells [67]. In addition, andrographolide was reported
to have inhibited the tyrosine phosphorylation of JAK1 and JAK2 [118]. Andrographolide
was also found to be effective against pancreatic cancer cells [119].

6. Pharmacokinetics Properties

Currently, studies related to andrographolide are still in their primary stages and
there are a number of challenges in the optimization of therapeutic applications and the
bioavailability of this compound. Its poor pharmacokinetic effects, such as the metabolism,
fast absorption, and elimination, have resulted in its low availability [21]. The low bioavail-
ability of andrographolide, has led to the development of its derivatives and other modern
techniques such as nanotechnology and nanoencapsulation [115,120,121].

Many factors, including pharmacokinetics, can influence the efficacy of a drug. Phar-
macokinetics relates to the passage of drugs through the body (absorption, distribution,
and elimination). Several studies have been carried out on the pharmacokinetic parameters
of andrographolide. After oral administration of andrographolide at 100 mg/kg/day,
for 4 weeks in Wistar rats, Bera et al. [122] identified the highest concentration of andro-
grapholide was in kidney (156.12 ng/g) followed by the spleen, liver, and brain while
almost the same concentration was found in the heart and lungs. An apparent Cmax value
of 115.81 ng/mL and an elimination half-life (t1/2) of 0.75 h were found. Reduction of the
concentration of orally administered andrographolide to 60 mg/kg/day in the same model
caused a reduction in the apparent Cmax value to11.52 µg/mL and a Tmax of 2.01 with a
clearance value of 0.19 L/h/kg [123].

The low oral bioavailability is probably caused by the rapid metabolism to 14-deoxy-12-
suloandrographolide in the duodenum and jejunum and probably in the last part of the ileum or
colon. Another factor that negatively influenced andrographolide bioavailability is the efflux of
P-glycoproteins [124]. The same research group also tested andrographolide at the same dosage

http://creativecommons.org/licenses/by/4.0/
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in Sprague Dawley (SD) rats and found an apparent Cmax value of 9.73 µg/mL and a t1/2 of
7.30 with a clearance value of 0.03 L/h/Kg and an AUC0-t of 67.19 h/µg/mL [125]. Intravenous
injection in SD of andrographolide at dosage of 80 mg/kg resulted in an elimination half-life
(t1/2) of 0.4 h with a clearance value of 0.7 L/h/kg [126].

Using a beagle dog model, andrographolide administered by intravenous injection at
the dosage of 50 mg/kg showed a t1/2 of 0.828 h with a clearance value of 1.02 L/h/kg [127].
Regarding the distribution pattern, Godugu et al. [128] demonstrated that andrographolide
interacted with human serum albumin amino acid residues by forming hydrogen bonds
with Agr218, Trp214, and Lys444. Moreover, Zhao et al. [129] identified eight phase I and
five phase II metabolites resulting from dehydration, deoxygenation, hydrogenation, and
glucuronidation reactions.

Recently, Yu et al. [130] clarified that the α-β-unsaturated lactone moiety was me-
tabolized mainly by CYP3A4 whereas conjugation reactions were mediated by uridine
diphosphate glucuronyltransferase (UGT) (UGT1A3, UGT1A4, UGT2B4, and UGT2B7).
Preclinical pharmacokinetic studies revealed that andrographolide was excreted via the
urine only at a lower amount of 7–9%, and the remaining aliquot was eliminated through
different routes [131]. The following creatinine adducts were identified in human urine:
14-deoxy-12-(creatinine-5-yl)-andrographolide-19-O-βd-glucuronide A and 14-deoxy-12-
(creatinine-5-yl)-andrographolide-19-O-β-d-glucuronide B [132]. Several studies have
proved the interaction between andrographolide and other drugs. For instance, Zhang
et al. [133] investigated the effect of andrographolide and warfarin co-administration and
found an increase in the systemic exposure of warfarin in rats from 60.58 to 118.92 µg h/mL
and a t1/2 from 14.27 to 22.73 h. The authors demonstrated the ability of andrographolide
to inhibit CYP3A4 and CYP2C9, which are responsible for warfarin metabolism. Another
important interaction was observed in a hepatocellular carcinoma (HepG2) model in which
andrographolide reduced the expression of CYP2D6 and influenced the pharmacokinetic
parameters of 5-fluorouracile [134].

Clinical pharmacokinetics data are consistent with findings derived from animal
studies. For example, a study carried out by Pholphana et al. [135] in volunteers who
received an equivalent dose of 97.92 mg/day of andrographolide for three consecutive
days, showed a Tmax value of 0.78 h. This study has also showed that the metabolites of
andrographolide 14-deoxy-11, 12-didehydroandrographolide had an AUC value and a
Cmax greater than that of andrographolide. These results could suggest that the metabolites
of andrographolide contribute to the biological activity of this diterpene. Moreover, data
on apparent clearance demonstrated that there are no significant differences between males
and females.

7. Adverse Effects

One of the main adverse effects registered for andrographolide, independently of
the route of administration, was the nephrotoxicity. In fact, andrographolide was able to
inhibit human renal tubular epithelial (HK-2) cell proliferation and to induce apoptosis,
as well as increase the content of malondialdehyde (MDA) and decrease the expression
of SOD. Moreover, andrographolide increased C/EBP homologous protein (CHOP) and
caspase-4 by inducing damage at the endoplasmic reticulum level [136]. Successively, Liang
et al. [137] have demonstrated that andrographolide reduced the reproductive capacity
of female rodents and caused the apoptosis of most oocytes. In addition, mild adverse
events, including rash and taste disturbance, emerged from a clinical study in which
andrographolide was orally administered twice daily at a dose of 140 mg [138].

Calabrese et al. [139] demonstrated that andrographolide administered orally for
3 weeks at a dose of 5 mg/kg body weight, escalating to 10 mg/kg bodyweight for 3 weeks,
and to 20 mg/kg bodyweight for a final 3 weeks caused mild to moderate headache,
soreness, rash, taste symptoms, diarrhea, or itching anaphylactic reaction. The acute and
subacute toxicity of AG-2-HyP-β-CYD complex on SD rats following oral and inhalation
routes of administration was recently tested [140]. The lethal dose (LD50) was found to be
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> 2000 mg/kg in addition to NOAEL (no observed adverse effect level) of 666 mg/kg. In
general, knowledge of the toxicity of andrographolide is still rather limited as studies have
focused only on the single molecule and not on its metabolites or on its co-administration
of other drugs. However, the major interest in this molecule is linked to its promising
antitumor activity [61,141,142].

8. Clinical Trial on Andrographolide

A number of clinical research investigations and trials on the application of andro-
grapholide and its derivatives in the treatment of several diseases such as multiple sclerosis,
tonsillitis, bronchitis, migraine, COVID-19, osteoarthritis, arthritis, rheumatoid, and cancers
are on-going (https://clinicaltrials.gov/ct2/results?cond=&term=Andrographolide&cntry=
&state=&city=&dist=, accessed on 4 May 2023). However, we found that only 20 clinical
trials on andrographolides have been reported (https://clinicaltrials.gov/ct2/results?cond=
&term=Andrographolide&cntry=&state=&city=&dist=, accessed on 4 May 2023), and among
them, only two were cancer-related clinical research. In one clinical trial the authors studied
the effectiveness and protection effects of andrographolides mixed with capecitabine in the
treatment of elderly patients with locally progressive, recurring, or metastasis-inoperable
colorectal cancers. However, the trial was terminated after the phase 2 trials due to the low
accuracy rate of the results (ClinicalTrials.gov Identifier: NCT01993472), (https://clinicaltrials.
gov/ct2/show/NCT01993472?term=Andrographolide&draw=3&rank=2, accessed on 4 May
2023). In another study, the authors investigated the effect of Andrographis paniculata on the
palliative organization of patients with progressive or metastatic esophageal cancer. In this
study, around 30 patients with locally advanced or metastatic squamous esophageal cancer
were taken into consideration and the study was completed after a successful phase 3 trial
(ClinicalTrials.gov Identifier: NCT04196075) (https://clinicaltrials.gov/ct2/show/NCT04196
075?term=Andrographolide&draw=3&rank=6, accessed on 4 May 2023).

9. Conclusions and Future Perspectives

Among the numerous natural compounds investigated as potential anti-cancer drugs,
the diterpene lactone andrographolide has shown promising activity through different
mechanisms of action, mainly including induction of apoptosis. Moreover, some studies
have examined the combination of andrographolide with other chemotherapeutic drugs
and radiation in the treatment of malignant cancers.

Currently, some projects related to clinical research on andrographolide for the treat-
ment of colorectal cancer and esophageal carcinoma, as well as the evaluation of its po-
tential role in the treatment of primary progressive multiple sclerosis, acute tonsillitis,
and bronchitis, are in progress. In addition, several research studies have proposed an-
drographolide derivatives characterized by a reduced toxicity and increased therapeutic
efficacy. However, it is necessary to carry out large-scale trials to verify the exact efficacy
of andrographolide and its pharmacokinetic parameters, and this could be an obstacle
in the clinical product transformation. Indeed, one of the challenges in the field of the
bioactivity of andrographolide is that it exhibits low bioavailability and poor solubility. Ex-
tensive chemical modifications have been carried out in order to develop andrographolide
derivatives that have improved bioavailability and solubility. Moreover, in recent years,
mesoporous silicon, liposomes, and nanoparticles have represented a strategy to ameliorate
the pharmacokinetics of andrographolide.

Overall, a number of studies and some clinical trials on andrographolide could bring a
robust sureness to the use andrographolide in the inhibition and cure of associated diseases,
and this will endorse and hasten clinical studies of andrographolide and its derivatives in
the formulation of modern drugs.
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