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Abstract: Alkalinity stress is a major hindrance to enhancing rice production globally due to its
damaging effect on plants’ growth and development compared with salinity stress. However, under-
standing of the physiological and molecular mechanisms of alkalinity tolerance is limited. Therefore,
a panel of indica and japonica rice genotypes was evaluated for alkalinity tolerance at the seedling stage
in a genome-wide association study to identify tolerant genotypes and candidate genes. Principal
component analysis revealed that traits such as alkalinity tolerance score, shoot dry weight, and shoot
fresh weight had the highest contribution to variations in tolerance, while shoot Na+ concentration,
shoot Na+:K+ ratio, and root-to-shoot ratio had moderate contributions. Phenotypic clustering and
population structure analysis grouped the genotypes into five subgroups. Several salt-susceptible
genotypes such as IR29, Cocodrie, and Cheniere placed in the highly tolerant cluster suggesting
different underlying tolerance mechanisms for salinity and alkalinity tolerance. Twenty-nine sig-
nificant SNPs associated with alkalinity tolerance were identified. In addition to three alkalinity
tolerance QTLs, qSNK4, qSNC9, and qSKC10, which co-localized with the earlier reported QTLs, a
novel QTL, qSNC7, was identified. Six candidate genes that were differentially expressed between
tolerant and susceptible genotypes were selected: LOC_Os04g50090 (Helix-loop-helix DNA-binding
protein), LOC_Os08g23440 (amino acid permease family protein), LOC_Os09g32972 (MYB protein),
LOC_Os08g25480 (Cytochrome P450), LOC_Os08g25390 (Bifunctional homoserine dehydrogenase),
and LOC_Os09g38340 (C2H2 zinc finger protein). The genomic and genetic resources such as tol-
erant genotypes and candidate genes would be valuable for investigating the alkalinity tolerance
mechanisms and for marker-assisted pyramiding of the favorable alleles for improving alkalinity
tolerance at the seedling stage in rice.

Keywords: abiotic stress; alkalinity tolerance; candidate genes; genome-wide association study;
Oryza sativa; seedling stage; single nucleotide polymorphism

1. Introduction

Alkalinity stress drastically reduces rice yield. About 850 million hectares of land
are affected by salinization–alkalization and 434 million ha of this land are exposed to
alkaline stress [1]. Alkalization of land is increasing every year due to poor irrigation
management and climate change [2]. Rice is a staple food for more than 3.5 billion people
all over the globe [3]. Due to the exponential population growth in developing countries,
rice production in abiotic-stress-affected areas needs to be enhanced for regional and global
food security. However, progress in developing alkaline-tolerant varieties is very slow due
to the genetic complexity of the alkalinity stress tolerance mechanisms. Therefore, research
on rice’s alkalinity tolerance has great relevance for increasing global rice production.

Plants possess various physiological and molecular mechanisms for adaptation to an
alkaline environment, and these mechanisms are controlled by the expression of specific
stress-related genes [4,5]. Alkaline stress is more harmful to plants than saline stress,
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but there is a wide range of variations for alkalinity tolerance [6,7]. Alkaline stress is
primarily caused by HCO3

− and CO3
2−, as well as high pH [8]. These anions, alongside

high pH, might be responsible for different plant adaptation strategies under alkaline
stress. Alkali soils have pH values of 8.5–10.0, exchangeable sodium > 15, and electrical
conductivity < 4000 micromhos per cm at 25 ◦C. Soil alkalinity restricts the growth of rice
at all stages by decreasing nutrient availability, disrupting ionic balance, and increasing
osmotic pressure, especially under high pH [9,10]. Plants need to cope with the high
pH of soil or water under alkaline stress in addition to ionic and osmotic stresses [11].
High concentrations of Na+ in alkaline soils disrupt the homeostasis of minerals such
as K+ and consequently, affect cellular metabolism by altering cytoplasmic strength [12].
Water and potassium uptake decrease due to Na+ accretion in the roots under excessive
Na2CO3 around the rhizosphere. The precipitation of iron and phosphorus under a high pH
environment causes deficiencies in these nutrients resulting in the wilting of plants [13,14].
Alkalinity-tolerant plants can sequestrate Na+ in vacuoles to enhance their tolerance to
high concentrations of ions [15,16]. The Na+/H+ antiporter in the plasma membrane and
HKT family of transporters help to prevent sodium from entering the shoots resulting in a
lower sodium/potassium ratio [11,17].

High pH under alkaline stress negatively impacts the root system leading to reduced
root surface area and impaired function [18]. To cope with these challenges, rice plants
promote the accumulation of osmolytes and organic acids, which act as buffers and help
maintain intracellular pH stability and ionic balance [19,20]. Ionic balance and nutrient
uptake are associated with root structure as plants with vigorous root systems can maintain
their growth under a stressful environment [21]. Alkalinity-stress-induced damage to root
cells was reported to be influenced by the accumulation of reactive oxygen species and
regulation of cell-death-related and cell-death-suppressor genes [22]. Similarly, plants
with larger and deeper root systems can accumulate more Fe under alkaline stress [23].
The over-expression of genes such as OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL15, and
OsYSL2 also allows plants to efficiently take up iron and improve alkalinity tolerance [23].

Alkalinity tolerance in rice is a complex trait and multiple quantitative trait loci (QTL)
control this attribute [24]. Most of the research related to alkaline stress tolerance in rice is
in the primary stage of QTL mapping. Several major QTLs and identified candidate genes
(LOC_Os03g59730; LOC_Os09g32860; LOC_Os10g35170) within these QTLs were identified
using whole genome sequencing on chromosomes 3, 9, and 10 [2,7]. A major QTL, qSNC3,
with two candidate genes (LOC_Os03g62500; LOC_Os03g62620), was detected [15]. A few
other alkalinity-tolerance QTL studies were conducted at the seedling and germination
stage of rice [24–27]. A few valuable genes associated with alkalinity tolerance have been
identified. The role of LSD1-like zinc finger protein (OsLOL5), a nucleus thylakoid protein
(OsY3P1), a potassium channel protein (OsAKT1), a snf2 family gene (OsALT1), a calcium-
dependent protein kinase (OsDM13), and a gene encoding an inorganic phosphatase
(OsPPa6) have been shown to improve alkalinity tolerance in rice [28–33]. Conducting a
genome-wide association study (GWAS) is the widely used approach for providing insights
into the molecular genetic basis of complex traits and identifying genes or molecular
markers associated with target traits for crop improvement [34–36]. Compared to traditional
QTL mapping, which involves examining the inheritance patterns of a single genetic trait,
GWAS looks at the occurrence of variants in natural populations with high resolution [37].
Li et al. (2020) [38] identified a major QTL, qAKT11, for alkalinity tolerance in a GWAS
study. A major QTL, qSNC3, and a candidate gene, OsIRO3, were detected for alkalinity
tolerance [12]. Eight candidate genes conferring alkalinity tolerance at the germination
stage were identified in another rice GWAS study [39].

In this study, we evaluated a diverse panel of 184 indica and japonica rice genotypes for
alkalinity tolerance at the seedling stage to evaluate the genetic variation and population
structure. To overcome the narrow genetic diversity, rice cultivars released in the United
States during the 20th century and cultivars from IRRI were included in this study. The
specific objectives of this study were to: (i) screen the japonica and indica rice genotypes for
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seedling-stage alkalinity tolerance, (ii) investigate the genetic variability, and population
structure of the diversity panel, and (iii) identify QTLs and candidate genes for traits
associated with seedling-stage alkalinity tolerance.

2. Results
2.1. Phenotypic Evaluation under Alkaline Stress

There was a wide variation in the alkalinity tolerance scores (AKT) in the diversity
panel. The highly tolerant, tolerant, moderately tolerant, susceptible, and highly susceptible
genotypes constituted 4%, 24%, 33%, 26%, and 13% of the panel, respectively (Figure 1). The
performance of some of the lines with known tolerance levels to salt stress under alkaline
stress is shown in Figure 2. All morphological and physiological traits varied widely after
exposure to alkalinity stress at the seedling stage (Table 1). All traits except shoot fresh
weight (FW) and shoot dry weight (DW) were normally distributed (Figure 3). Analysis
of variance showed significant differences among genotypes for AKT, shoot length (SHL),
root length (RTL), root-to-shoot ratio (RSR), inverse shoot fresh weight (inv_FW), log shoot
dry weight (log_DW), shoot Na+ concentration (SNC), shoot K+ concentration (SKC), and
shoot Na+: K+ ratio (SNK). AKT, SKC, and SNK showed high heritability (>80%), while
medium heritability (50–80%) was observed for the rest of the traits (Table 1).
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Table 1. Phenotypic performance of rice genotypes under alkalinity stress at the seedling stage.

Trait a Min Max Mean Standard Deviation RIL Pr > Fc b Heritability

AKT 1.0 9.0 4.75 2.05 0.002 ** 0.87
SHL 21.3 63.0 37.7 6.6 0.047 * 0.64
RTL 7.0 22.7 16.4 3.2 0.029 * 0.52
RSR 0.16 0.76 0.46 0.21 0.029 * 0.69

Inv_FW 0.01 0.30 0.16 0.07 0.0003 ** 0.61
log_DW −2.84 −0.60 −1.50 0.43 0.029 * 0.53

SNC 661.6 3508.1 1730.1 440.3 0.032 * 0.77
SKC 326.3 1077.9 657.7 138.3 0.048 * 0.84
SNK 0.88 5.95 2.79 1.11 0.041 * 0.81

a AKT, alkalinity tolerance score; SHL, shoot length; RTL, root length; RSR, root-to-shoot ratio; inv_FW, inverse
fresh weight; log_DW, log dry weight; SNC, shoot Na+ concentration; SKC, shoot K+ concentration; SNK, shoot
Na+:K+ ratio. b Genotypic difference among lines; *, ** significant differences between the means of genotypes at
0.05 and 0.01 level of probability, respectively; Fc—Analysis of variance test.
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concentration; SNK, shoot Na+:K+ concentration.

No significant difference was observed among genotypes in the control experiment
(Tables S1 and 1). The mean AKT score was lower in the control compared to the stress
environment. There were reductions in shoot and root length under alkalinity stress. The
mean value of SNC and SNK was lower while the mean SKC value was higher under
control than the stress environment. Similarly, heritability values were low for all traits
under alkalinity stress.
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2.2. Correlation Analysis

Significant correlations were observed among different traits (Table 2). AKT was nega-
tively correlated with SHL, RTL, RSR, inv_FW, log_DW, and SKC, while it was positively
correlated with SNC and SNK. SHL and RTL had a positive association with inv_FW,
log_DW, and SKC; however, both traits were negatively correlated with RSR, SNC, and
SNK. SKC had a significant positive correlation with all the morphological traits except
AKT. There was a significant positive correlation between SNC and SNK. Inv_FW showed
a positive correlation with log_DW and SKC but it was negatively correlated with SNC
and SNK.

Table 2. Pearson correlation coefficients between morphological and physiological traits in rice
genotypes under alkalinity stress.

Trait a AKT SHL RTL RSR Inv_FW log_DW SNC SKC SNK

AKT 1.000

SHL −0.123 * 1.000

RTL −0.147 * 0.02 1.000

RSR −0.154 * −0.757 ** −0.533 ** 1.000

Inv_FW −0.909 ** 0.127 * 0.174 * −0.173 * 1.000

log_DW −0.954 ** 0.139 * 0.170 * −0.181 * 0.961 ** 1.000

SNC 0.467 ** −0.028 −0.074 −0.027 −0.36 ** −0.423 ** 1.000

SKC −0.053 * 0.004 0.009 0.002 0.155 * 0.094 −0.87 ** 1.000

SNK 0.321 ** −0.028 −0.002 −0.015 −0.18 ** −0.258 ** 0.742 ** −0.674 ** 1.000
a KT, alkalinity tolerance score; CHL, chlorophyll content; SHL, shoot length; RTL, root length; RSR, root-to-shoot
ratio; inv_FW, inverse shoot fresh weight; log_DW, log shoot dry weight; SNC, shoot Na+ concentration; SKC,
shoot K+ concentration; SNK, shoot Na+:K+ ratio. * Significant at 0.05 level of probability; ** Significant at 0.01
level of probability.

2.3. Principal Component Analysis (PCA)

Nine morphological and physiological traits were used to separate the genotypes of
the panel into different groups reflecting the level of tolerance to alkalinity stress. The first
two principal components, PC1 and PC2, accounted for 38% and 22% of the total variation,
respectively (Table S2, Figure 4a). The first four principal components with eigenvalues
greater than 1 explained 90% of the total variation. Based on a cutoff value of 0.50, four
variables contributed to PC1 and PC2 and one variable contributed to PC3 (Table S3).
Different principal components might be responsible for explaining the variability for
different sets of variables as there was no correlation among principal components. It was
evident from the PCA plot that positively correlated traits were grouped together. PC1
accounted for the variability among rice genotypes for Inv_FW, log_DW, and SNC with
their positive coefficients, and AKT with its negative coefficient (Table S3). Similarly, PC2
represented the variation for RSR and SKC with their positive coefficients and STL and
SNK with their negative coefficients. PC3 explained the variation among genotypes for
RTL. PCA did not separate the indica and japonica genotypes based on phenotypic traits
(Figure 4b).
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2.4. Phenotypic Clustering

The genotypes of the panel were organized into five clusters based on the phenotypic
response under alkaline stress (Table 3, Figure 5). The alkalinity tolerance level of each
cluster was assessed by the mean AKT scores and mean SNC and SKC values. The
genotypes grouped in cluster 1 were highly susceptible to alkalinity stress. The mean AKT,
SNC, and SKC of the genotypes in cluster 1 were 8.1, 2056 mmol/kg, and 602 mmol/kg,
respectively (Table S4). This cluster included alkalinity-stress-susceptible genotypes N22
and Dular [2,7] and many genotypes from Arkansas, Texas, and Louisiana. The genotypes
in cluster 2 were considered as tolerant to alkali stress. The alkalinity-tolerant genotypes
Cocodrie [2,7], Jupiter, FL478, Bengal, and IR64 were placed in this group. The average AKT,
SNC, and SKC for this cluster were 3.6, 1626 mmol/kg, and 629 mmol/kg, respectively.
Most of the genotypes in this cluster were from Louisiana, California, India, and the
Philippines. Cluster 3 was a highly tolerant group that included genotypes from Louisiana
(JN100, JN349, W149) and genotypes from other countries (IR29, Vandana, Nipponbare).
The mean AKT, SNC, and SKC were 1.8, 1487 mmol/kg, and 635 mmol/kg, respectively.
Cluster 4 was moderately tolerant with mean AKT, SNC, and SKC of 5.6, 1793 mmol/kg,
and 710 mmol/kg, respectively. Salt-tolerant genotypes Pokkali and TCCP were included
in this group. Genotypes in cluster 5 were alkali-susceptible with mean AKT, SNC, and
SKC of 7.0, 1956 mmol/kg, and 731 mmol/kg, respectively.
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Table 3. Classification of rice genotypes based on various morphological and physiological traits
under alkalinity stress.

Clusters Genotypes

Cluster 1
(Highly Susceptible)

Hasawi, Roy J, Djogolan, Dular, Cypress, Vegold, ChN1264, Toro-2,
Belle Patna, N22, Magnolia, Glutinous Zenith, Jazzman-2, Toro,

Chengri, Azucena, Chambal, Bluebonnet, Orion, Adair, Pratao Tipo
Guedes, Dholamon 560, Hill medium, KN-1-B-361-1-8-67

Cluster 2
(Tolerant)

PSBRC-50, CL111, Caloro, Cheriviruppu, CL131, Trenasse, Pirogue,
LA0802140, Jupiter, LA0702085, Rexona, FL478, Geumgangbyeo,
Neptune, CL261, FL318, Caffey, Lacassine, CLPK873, Cocodrie,
Lacrosse, Sunbonnet, Lafitte, Dellmati, Carolina Gold, Bengal,

Century Patna, CL152, Nato, MS-1996-9, Glutinous Selection, Saturn
Rogue, Langmanbi, Milagrosa, Zhenshan 97, R-50, Mars, Kasalath,

Sarioo50, IR 8, M202, Zenith, IR 64, Arkansas Fortuna, Texmont,
Kranti, TP 49, Millie, Kirak, Chung yuen, IRGC1244, Newrex, RD,

IRGC32567, Kitaake, Brazos, M-204, Delitus, Italica Livorno, CT-329

Cluster 3
(Highly Tolerant)

Saturn, Della, JN100, Moroberekan, JN349, Nipponbare, Mercury,
BHA1115, IR 29, Dellrose, Lotus, Agami, Neches, Epagri, Cheniere,

CSR11, Vandana, Gu Ze, IR 50, Panidhan II, Koshihikari, Teqing,
Taichung 65, Daido, Lemont, Quilloa 66304, Dellmont, Kanchan,

Swarna, W149, Perum karuppan, Taipe 309, Hayamasari

Cluster 4
(Moderately Tolerant)

LA110, CL142, Century Rogue, Pokkali, Pecos, Nona Bokra, Wells,
Gold Zenith, Skybonnet, Tebonnet, Nira, Vista, TCCP, Templeton,
Nova 66, IRRI147, Taggert, Bluebelle, Arang, Ecrevisse, Smooth

Zenith, Damodar, Kalia, MS-1995-15, SLO16, Rexark, V20B, Ning
Yang Keng, Stormproof, Starbonnet, B573-A4-20-6, R-27, Gold Nato,
Naylamp, Azaurel, Melrose, Jinheung, Arkrose, Dixiebelle, Nerretto,

PSRR-1, Bala, Co39, San Tou Thou, IR4432-52-6-4, Hill LongGrain,
Bharathy, H4, IARI 5823, Early Prolific, Fatehpur 3, Prelude, WC10380

Cluster 5
(Susceptible)

Pinkaeo, LAH10, Mermentau, Evangeline, CR5272, R609, Jes, Della-2,
CL162, R-54, Radin Ebos 33, Kokubelle, LaGrue, Jackson
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Kitaake, Brazos, M-204, Delitus, Italica Livorno, CT-329 

Cluster 3 
(Highly Tolerant) 

Saturn, Della, JN100, Moroberekan, JN349, Nipponbare, Mercury, BHA1115, IR 29, Dellrose, 
Lotus, Agami, Neches, Epagri, Cheniere, CSR11, Vandana, Gu Ze, IR 50, Panidhan II, 

Koshihikari, Teqing, Taichung 65, Daido, Lemont, Quilloa 66304, Dellmont, Kanchan, Swarna, 
W149, Perum karuppan, Taipe 309, Hayamasari 

Cluster 4 
(Moderately Tolerant) 

LA110, CL142, Century Rogue, Pokkali, Pecos, Nona Bokra, Wells, Gold Zenith, Skybonnet, 
Tebonnet, Nira, Vista, TCCP, Templeton, Nova 66, IRRI147, Taggert, Bluebelle, Arang, 

Ecrevisse, Smooth Zenith, Damodar, Kalia, MS-1995-15, SLO16, Rexark, V20B, Ning Yang 
Keng, Stormproof, Starbonnet, B573-A4-20-6, R-27, Gold Nato, Naylamp, Azaurel, Melrose, 

Jinheung, Arkrose, Dixiebelle, Nerretto, PSRR-1, Bala, Co39, San Tou Thou, IR4432-52-6-4, Hill 
LongGrain, Bharathy, H4, IARI 5823, Early Prolific, Fatehpur 3, Prelude, WC10380 

Cluster 5 
(Susceptible) 

Pinkaeo, LAH10, Mermentau, Evangeline, CR5272, R609, Jes, Della-2, CL162, R-54, Radin Ebos 
33, Kokubelle, LaGrue, Jackson 

2.5. Population Structure 
The population structure was determined using the Bayesian clustering method in 

the ‘STRUCTURE’ software. Five distinct groups (K = 5) were identified using the log-

Figure 5. Phenotypic clustering of rice genotypes by UPGMA based on Euclidean distance computed
from nine morphological and physiological traits under alkalinity stress at the seedling stage.
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2.5. Population Structure

The population structure was determined using the Bayesian clustering method in the
‘STRUCTURE’ software. Five distinct groups (K = 5) were identified using the log-likelihood
LnP (D) and Evanno’s deltaK (Figure 6). The list of genotypes, their geographic origin, and
the subgroups are listed in Table S5. Subgroup 1 (SG1) contained 40 genotypes belonging to
the japonica subspecies. This subgroup contained genotypes from Louisiana, Arkansas, and
Texas. The subgroups 2, 3, and 5 (SG2, SG3, and SG5) contained an admixture of indica and
japonica subspecies. There was no distinction between US genotypes and those obtained
from other countries in these subgroups. Nine genotypes were clustered in SG4, and all
belonged to the indica subspecies. Furthermore, all genotypes in SG4 were genotypes from
other countries except BHA1115, a black-hulled weedy rice genotype. The analysis of
molecular variance (AMOVA) of the five subgroups showed that there were significant
differences between and among these subgroups. The total variation among and within
the subgroups was 61% and 39%, respectively (Table 4).
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Figure 6. Population structure analysis of rice genotypes. (a) identification of the optimum number
of subpopulations using LnP(D) derived ∆K. The maximum value of ∆K was found to be at K = 5,
suggesting a division of the entire population into five subpopulations. The X-axis shows the number
of subgroups (K) and Y-axis shows rate change of log probability values (∆K) with change in K
(b) Assignment of rice genotypes into five subpopulations, with the X-axis and Y-axis representing
genotypes and the proportion of genetic ancestry in the subgroup membership, respectively. The
genotypes present in each subgroup are listed in Table S5.

Table 4. Analysis of molecular variance (AMOVA) among the five subpopulations identified by
‘STRUCTURE’ software.

Source of Variation DF a Sum of Squares Mean Sum of Squares Variance (%) p-Value b

Among population 4 495.8 123.9 61 <0.0001

Within population 163 1129.8 6.9 39 <0.001

Total 167 1625.6 100
a Degrees of freedom; b Level of significance.
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2.6. Linkage Disequilibrium (LD)

A final set of 830 SNP markers was used for the GWAS analysis. The number of SNPs
within a 1Mb window size is shown in Figure S1. The average SNP density ranged from
367 kb/marker for chromosome 6 to 537 kb/marker for chromosome 4, with an average
of 450 kb/marker (Table 5). The mean LD decay over the physical distance, computed as
r2, was 10,691 kb with a range of 7334 kb for chromosome 10 to 15,193 kb for chromosome
1. In the whole panel, the r2 estimate was 0.47 (Figure 7). The LD decay was faster for
chromosomes 1, 2, 3, 4, 6, and 7 and was greater than its average value. The LD decay was
slower for chromosomes 5, 8, 9, 10, 11, and 12.

Table 5. Analysis of genome-wide linkage disequilibrium (LD) decay used for GWAS in this study.

Chr. No. of SNPs Chr. Size (bp) † SNP Density (bp/SNP) LD $ Distance (bp)

1 93 43,270,923 465,279 15,193,454
2 81 35,937,250 443,670 13,604,743
3 78 36,413,819 466,844 12,513,847
4 66 35,502,694 537,920 11,534,383
5 64 29,958,434 468,101 10,451,492
6 85 31,248,787 367,633 11,193,100
7 59 29,697,621 503,350 11,473,349
8 72 28,443,022 395,042 9,654,739
9 58 23,012,720 396,772 7,434,300
10 54 23,207,287 429,765 7,334,850
11 59 29,021,106 491,884 9,261,105
12 62 27,531,856 444,063 8,644,012

Total 830 373,245,519 Mean 450,861 10,691,115
† According to Kawahara et al., 2013; $ LD, Linkage disequilibrium.
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2.7. GWAS Analysis

GWAS was conducted via the FarmCPU model on all alkalinity-stress-related traits
for 184 indica and japonica genotypes considering kinship (K) and population structure (Q)
using the rMVP package in R. 31. Significant SNPs (p < 0.011) associated with AKT, SHL,
RTL, RSR, Inv_FW, log_DW, SKC, SNC, and SNK were identified (Figure 8). There were
18 significant SNPs for morphological traits (AKT, SHL, RTL, RSR, log_DW, inv_FW) and
10 for physiological traits (SNC, SKC, SNK) (Table 6).

Table 6. Significant SNPs, associated genes, and co-localized QTLs or genes for alkalinity tolerance in
this genome-wide association study.

Trait a SNP Locus Annotation QTLs/Genes in Previous Studies

AKT
S04_29881066 Os04g50090 Helix–loop–helix DNA-binding protein qSNK4-2 [12]
S08_14184612 Os08g23440 amino acid permease family protein LOC_Os08g23440 [16]

SHL

S04_22808095 Os04g38340 ER-Golgi intermediate-compartment
protein 3 qDLR4 [26]

S12_23066809 Os12g37570 protein kinase family protein
S12_23108164 Os12g37640 xaa-Pro aminopeptidase

RTL

S02_35216781 Os02g58139 OsSigP1-Type I Signal
Peptidase homolog

S04_29715617 Os04g49850 Expressed protein qSNK4-2 [12]

S04_34925111 Os04g58730 AT-hook-motif-domain-
containing protein qSNK4-2 [12]

S05_1487229 Os05g03510 Expressed protein

S07_28409912 Os07g47500 Histone-arginine methyltransferase
CARM1 qRGR7 [25]

RSR

S01_23656773 Os01g41790 Expressed protein

S01_37680628 Os01g64910 Anthocyanidin
5,3-O-glucosyltransferase

S05_24090514 Os05g41130 OsFBX168-F-box-domain-
containing protein qRRN5 [25]

S10_18098744 Os10g35570 Expressed protein qSKC10.18 [2,7]
S12_3544726 Os12g07210 Expressed protein

log_DW
S01_36150523 Os01g62450 Expressed protein
S05_7195992 Os05g12510 Expressed protein qDLRa5-3 [24]

inv_FW S01_3236648 Os01g06820 hcr2-0B, putative

SKC
S09_19322095 Os09g32350 Expressed protein qSNC9.19 [2]
S09_19683788 Os09g32972 MYB protein qSNC9.19 [2]
S10_18834021 Os10g35230 Rf1, mitochondrial precursor qSKC10.18 [2,7]

SNC

S02_3477202 Os02g06890 OTU-like cysteine protease
family protein

S03_14554651 Os03g25480 Cytochrome P450 Os03g25480 [16]
S06_15335573 Os06g39580 Hypothetical protein qARL6 [38]

S07_29627590 Os07g49470 Protein kinase APK1B,
chloroplast precursor

S08_15439243 Os08g25390 Bifunctional homoserine dehydrogenase Os08g25390 [16]
S09_22076185 Os09g38340 ZOS9-17-C2H2 zinc finger protein

SNK S04_34643455 Os04g58160 Fiber protein Fb34, putative qSNK4-2 [12]
a AKT, alkalinity tolerance score; SHL, shoot length; RTL, root length; RSR, root-to-shoot ratio; inv_FW, inverse
fresh weight; log_DW, log dry weight; SNC, shoot Na+ concentration; SKC, shoot K+ concentration; SNK, shoot
Na+:K+ ratio.
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Figure 8. Manhattan plots of the markers associated with alkalinity tolerance in rice. The X-axis
shows markers along the 12 rice chromosomes and the Y-axis shows the negative log10- transformed
p-values for each association. Red dotted lines indicate the significance threshold. AKT, alkalinity
tolerance score; SHL, shoot length; RTL, root length; RSR, root-to-shoot ratio; inv_FW, inverse fresh
weight; log_DW, log dry weight; SNC, shoot Na+ concentration; SKC, shoot K+ concentration; SNK,
shoot Na+:K+ ratio.
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2.8. Candidate Genes/QTLs for Alkalinity Tolerance

The significant SNPs were used to identify candidate genes present within the genes
or present within 10 kb flanking genomic regions of the respective SNPs. A total of 28
candidate genes were detected (Table 6). These genes were compared with the earlier
QTLs and differential gene expression studies [2,7,16]. Six genes were present within the
intervals of earlier identified QTLs [2,7], while three genes were differentially expressed
under alkaline stress in an earlier study [16].

Separately, a region was considered a QTL if more than two significant SNPs were
present within the LD interval. Six large-impact QTLs were detected on chromosomes 1,
4, 7, 9, 10, and 12 (Table 7). Three QTLs (qlog_DW1.37, qSKC9.19, and qSKC10.18) were
congruent to the QTLs identified previously [2,7]. The qSNK4.34 co-localized with the
qSNK4-2 identified under alkalinity stress [12]. Two novel QTLs, qSNC7.29 and qSHL12.23,
were also identified on chromosomes 7 and 12, respectively.

Table 7. The mapped QTLs associated with alkalinity tolerance at the seedling stage in this genome-
wide association study.

Trait a QTLs Lead SNP Position p-Value R2 (%) QTLs in a Previous Study

SHL qSHL12 S12_23108164 23,108,164 0.00058 11 -
log_DW qlog_DW1 S01_36150523 36,150,523 0.00008 14 qSHL1.38 [2,7]

SNC qSNC7 S07_29627590 29,627,590 0.00027 11 -
SKC qSKC9 S09_19322095 19,322,095 0.00037 22 qSNC9.19 [2]
SKC qSKC10 S10_18834021 18,834,021 0.00021 18 qSKC10.18 [2,7]
SNK qSNK4 S04_34643455 34,643,455 0.00002 16 qSNK4-2 [12]

a SHL, shoot length; log_DW, log dry weight; SNC, shoot Na+ concentration; SKC, shoot K+ concentration; SNK,
shoot Na+:K+ ratio.

2.9. Expression Profiling of Selected Candidate Genes under Alkalinity Stress

Eight genotypes were selected from the tolerant (JN100, Cheniere, Cocodrie, Nippon-
bare) and susceptible (N22, Dular, Cypress, Hasawi) genotypes for expression analysis
under alkalinity stress (Figure 9). The genes and primers used in the qRT-PCR analysis are
listed in Table S6. LOC_Os04g50090 (Helix–loop–helix DNA-binding protein) was down-
regulated in all the genotypes in the tolerant group compared with those in the susceptible
group. The LOC_Os08g25390 (Bifunctional homoserine dehydrogenase) showed the same
expression pattern in both groups except alkalinity-tolerant Cheniere. In contrast, the
expression level of LOC_Os09g32972 (MYB protein), LOC_Os09g38340 (ZOS9-17—C2H2
zinc finger protein), and LOC_Os08g25480 (Cytochrome P450) increased 6 h after exposure
to alkalinity stress in the tolerant group, whereas it decreased in all the genotypes in the sus-
ceptible group. A similar trend was observed for LOC_Os08g23440 (amino acid permease
family protein) except for Cheniere, in which it was downregulated. There was downreg-
ulation in LOC_Os04g58160 (Fiber protein Fb34) in both groups with the exceptions of
JN100 (tolerant) and Cypress (susceptible). Similarly, the expression of LOC_Os10g35230
(Rf1, mitochondrial precursor) decreased sharply after 6 h exposure to stress in both groups
except Dular.
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Figure 9. Expression profiles of selected genes present under alkalinity stress (6 h after imposi-
tion of stress) in the tolerant and susceptible groups. Red and blue in the bars represent toler-
ant and susceptible groups, respectively. Genotypes included in the experiment were: 1—JN100;
2—Cheniere, 3—Cocodrie; 4—Nipponbare; 5—N22; 6—Dular; 7—Cypress; 8—Hasawi. EF1α was
used as the reference gene and gene expressions were calculated as log2-fold changes under al-
kaline stress compared with control in all genotypes. LOC_Os04g50090—Helix–loop–helix DNA-
binding protein; LOC_Os08g23440—amino acid permease family protein; LOC_Os09g32972—MYB
protein; LOC_Os10g35230—Rf1, mitochondrial precursor; LOC_Os03g25480—cytochrome P450;
LOC_Os08g25390—Bifunctional homoserine dehydrogenase; LOC_Os09g38340—ZOS9-17—C2H2
zinc finger protein, LOC_Os04g58160—Fiber protein Fb34, putative.

3. Discussion

Salinity–alkalinity stress is a major hindrance to enhancing food production in many
rice-growing areas around the globe [40]. Alkalinity stress can have harmful effects on plant
growth and development. In addition to causing toxicity, it can also affect the stability and
functioning of plant cells due to high pH [9]. While several studies reported the identification
of QTLs and candidate genes for alkalinity-tolerance traits in rice [2,7,12,15,27,38], more
research is needed to understand the molecular mechanisms.

Alkaline tolerance evaluation in rice has been largely based on the uptake of sodium
and potassium ions and the morpho-physiological response to alkalinity stress [2,12].
The alkalinity-tolerant plants sequester the Na+ outside the shoots and roots to tolerate
high concentrations of Na+ around the rhizosphere [11]. This view was supported by
our observation of a significant positive correlation between AKT and SNC (Table 2). In
addition, an excess of sodium in the shoots indirectly affecting the upward movement
of potassium in the plant was corroborated by a significant negative correlation between
SNC and SKC (Table 2). The tolerant lines accumulate more K+ than the susceptible lines.
The detrimental effects of alkalinity stress were clearly reflected in the negative correlation
between AKT and morphological traits. The negative association between RTL and AKT,
SNC, and SNK indicated that plants with deeper root systems could maintain a desirable
Na:K ratio and uptake of essential nutrients such as Fe under a stress environment, as
reported earlier [23]. The range of AKT and other traits was wide under alkaline stress
(Figures 1–3) and both indica and japonica genotypes included both tolerant and susceptible
genotypes. IR29 (indica) and Cocodrie (japonica) were tolerant to alkaline stress, which
led us to conclude that indica and japonica genotypes could not be distinguished based on
alkalinity tolerance (Figure 2, Table 3). Increased mean AKT score and reduced heritability
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values for all traits under a stress environment compared to control (Tables 1 and S1)
suggested the influence of alkaline stress on the expression of morpho-physiological traits.

There was a wide range of variability for alkalinity tolerance among the rice genotypes
(Figure 4). Principle component analysis revealed that AKT, log_DW, and inv_FW had the
highest contribution for the variation among the genotypes, while SNC, SNK, and RSR
had a moderate contribution (Figure 4, Table S3). These three traits could be used to assess
the level of alkalinity tolerance in rice genotypes. De Leon et al. (2015) [41] used cluster
analysis and multivariate test statistics to differentiate salt-tolerant rice genotypes from
salt-sensitive genotypes based on morphological traits. Chunthaburee et al. (2016) [42]
reported a strong correlation between Na+/K+ and salinity tolerance in rice and used this
ratio to group genotypes into tolerant and sensitive groups. The strong positive correlation
of AKT with SNC and SNK, and negative correlation between SKC and AKT, in our study
confirmed that regulation of the uptake of Na+ and K+ is critical for plants’ survival under
alkalinity stress.

The rice genotypes were classified based on their level of tolerance to alkalinity stress.
The salt-susceptible IR 29 [43] and Cheniere [44] were placed in the highly tolerant category
(Table 3, Figure 5). The other genotypes in the tolerant group included both japonica (Jupiter,
Bengal) and indica (FL478, Geumgangbyeo) genotypes. In an earlier study [41], Jupiter and
Bengal were classified as susceptible and FL478 and Geumgangbyeo as tolerant to saline
stress. The classification of Cocodrie as tolerant and N22 and Dular as highly susceptible
in this study was consistent with earlier studies [2,7]. The inclusion of saline-tolerant
Hasawi [45] and salt-susceptible Cypress [41] in the highly susceptible group suggested
different mechanisms underlying tolerance to alkaline and saline stresses. In contrast, the
grouping of some of the saline-tolerant genotypes (Pokkali, Nona Bokra, TCCP, Nipponbare,
Geumgangbyeo, and Damodar) in the highly tolerant, moderately tolerant, and tolerant
groups suggested that there might be some common physiological responses and the
co-expression of genes under both types of stress.

Population structure analysis identified five subgroups within the indica and japonica
rice genotypes (Figure 6b). Three subgroups were earlier detected within the japonica
subgroup under alkaline stress [12]. This inconsistency could be due to the inclusion
of the indica subgroup in our study. There was some clustering of indica and japonica
genotypes, with subgroup 1 (SG1) containing all japonica genotypes and SG4 containing
all the indica genotypes (Table S5). However, population structure analysis did not show
an extreme differentiation among US genotypes or between indica and japonica genotypes.
This observation was in disagreement with an earlier study [46], which showed the distinct
separation of US and Asian rice genotypes.

Alkaline stress results in osmotic stress, ionic imbalance, and nutritional deficiency
due to high pH [47–49], and, therefore, is difficult to mitigate. Studies have demonstrated
that the expression of stress-responsive genes under stress can enhance the tolerance of
plants to various abiotic stresses [50–52]. Multiple strategies have been utilized to identify
genes related to alkaline tolerance in rice, and several genes have been identified [30,31,33].

Twenty-eight SNPs significantly associated with alkalinity tolerance suggested the
involvement of 28 different loci (Table 6). Among these significant SNPs, at least two
were associated with all traits except inv_FW. The SNPs identified in this study were
compared with the QTLs and candidate genes for alkalinity tolerance in rice. Seventeen
SNPs overlapped with QTLs and genes from earlier studies (Table 6). Based on LD decay,
we identified a QTL, qSNK4, in the same region with a 5 Mb interval and R2 value of 16%
(Table 7). Some known Na+ and K+ transporters such as OsHKT1;1 [53], OsHKT1;4 [54],
and OsHAK15 [55] were present within this interval. The role of Na+ and K+ transporters
in improving abiotic stress tolerance is well known [56–58]. It is possible that these pro-
teins enhance alkalinity tolerance by regulating the uptake of Na+ ions and maintaining
the Na+:K+ ratio [53]. Two significant SNPs (S04_29715617 and S04_34925111) for RTL
and one SNP each for SNK (S04_34643455) and AKT (S04_29881066) on chromosome 4
tagged to LOC_Os04g4950, LOC_Os04g58730, LOC_Os04g58160, and LOC_Os04g50090,
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respectively, were located in the same region as qSNK4-2 [12]. The role of HKT and HAK
genes in the regulation of Na+ and K+ under high pH conditions has remained elusive to
date warranting investigation of this genomic region on chromosome 4 in the future to
provide some insights into alkalinity tolerance mechanisms in rice. We included two genes,
LOC_Os04g58160 (Fiber protein Fb34, putative) and LOC_Os04g50090 (Helix–loop–helix
DNA-binding protein) from this genomic region in the qRT-PCR analysis. There was no
clear contrast in the expression pattern of LOC_Os04g58160 between the tolerant and sus-
ceptible groups (Figure 9), but LOC_Os04g50090 was downregulated in all genotypes in the
tolerant group compared to the susceptible group. These findings suggest the involvement
of the novel gene LOC_Os04g50090, which played a negative role in regulating alkalinity
tolerance in rice. Several members of the bHLH family were reported to be responsive to
abiotic stresses in multiple species [59–62].

Similarly, two significant SNPs each on chromosomes 9 and 10 led to the detection
of qSNC9 and qSKC10, which co-localized with the qSNC9.19 and qSKC10.18 from earlier
studies (Table 7) [2,7]. Based on LD decay, qSKC10 and qSKC9 spanned over 735 and
361 kb region, respectively. Six candidate genes were differentially expressed between
alkalinity-tolerant and -susceptible genotypes in our previous study [2]. Furthermore, these
genes were involved in the abiotic stress tolerance response in rice [29,63–70]. The genes
harboring significant SNPs identified in this study were LOC_Os09g32350 (Expressed
protein), LOC_Os09g32972 (MYB protein), and LOC_Os10g35230 (Rf1, mitochondrial
precursor). These genomic regions can provide a deeper understanding of the molecular
basis of alkalinity stress tolerance. Finally, creating mutations using CRISPR-mediated
genome editing followed by analyzing the phenotypic changes can help validate the
functional role of these genes in response to alkalinity stress. A genome-wide comparative
analysis of the MYB gene family in rice and Arabidopsis implicated several MYB proteins in
abiotic stress responses [71]. The upregulation of LOC_Os09g32972 in tolerant genotypes
suggests a crucial role for the MYB transcription factor in alkalinity tolerance in rice
(Figure 9). However, there was no clear trend in the expression of LOC_Os01g35230 (Rf1,
mitochondrial precursor), which was downregulated in both tolerant and susceptible
genotypes in this study.

The qlog_DW1.38 detected in this study was the same QTL identified previously [72,73].
The sd1 locus (LOC_Os01g66100) [74] was located within this interval. De Leon et al.
(2016) [72] showed that the sd1 gene was responsible for increasing SRR in plants under
saline stress. The same region was associated with various morphological traits under
alkalinity stress [2,7], suggesting the role of this region in alkalinity tolerance. Two QTLs,
qSNC7 and qSHL12, were considered to be novel QTLs. The candidate genes linked to sig-
nificant SNPs detected within the qSNC7 were histone-arginine methyl transferase CARM1
(LOC_Os07g47500) and protein kinase APK1B (LOC_Os07g49470) (Tables 6 and 7). Simi-
larly, a protein kinase-like family protein (LOC_Os12g37570) and xaa-pro aminopeptidase
(LOC_Os12g37640) were present within the qSHL12. A calcium-dependent protein kinase
OsDMI3 was earlier shown to enhance the ability of rice roots to tolerate saline–alkaline
conditions by regulating the intake of Na+ and H+ ions [32]. Similarly, histone posttransla-
tional modifications (PTMs) and interactions between them play a key role in mediating salt
tolerance in plants [75,76]. Our results identified potential genetic targets for improving the
growth of rice in environments with high alkalinity levels. Three significant SNPs tagged
with candidate genes, amino acid permease family protein (LOC_Os08g23440), Cytochrome
P450 (LOC_Os03g25480), and bifunctional homoserine dehydrogenase (LOC_Os08g25390),
co-localized with the three earlier reported differentially expressed genes under alkaline
stress [16] (Table 6). Among these genes, LOC_Os08g23440 and LOC_Os03g25480 were
upregulated in the tolerant group, whereas LOC_Os08g25390 was downregulated in the
tolerant group (Figure 9). The amino acid permease1, which is induced by salt stress, medi-
ated the uptake of proline, and increased salt susceptibility was observed in an Arabidopsis
mutant due to reduced accumulation of proline compared with the wild type [77]. The
upregulation of this gene in tolerant genotypes suggested its role in imparting alkalinity
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tolerance in rice. Cytochrome P450 was known to confer abiotic stress tolerance [78,79].
Since the role of bifunctional homoserine dehydrogenase under abiotic stresses is unclear, it
warrants future investigation for its potential in improving alkaline stress tolerance in rice.

The other candidate genes tagged with the significant SNPs were ER-Golgi intermedi-
ate compartment protein 3 (LOC_Os04g38340), OsSIGP1 (LOC_Os02g58139), anthocyanidin
5,3-O-glucosyltransferase (LOC_Os01g64910), OsFBX168 (LOC_Os05g41130), Cysteine pro-
tease family protein (LOC_Os02g06890), C2H2 zinc finger protein (LOC_Os09g38340),
and fiber protein Fb34 (LOC_Os04g58160) (Table 6). LOC_Os04g38340, LOC_Os02g58139,
LOC_Os01g64910, and LOC_Os04g58160 were not reported in previous alkalinity tolerance
studies. However, fiber protein Fb34 did not show a contrasting expression pattern between
the tolerant and susceptible groups in our study (Figure 9). The expression of C2H2 zinc
finger protein sharply increased in all tolerant genotypes compared with the susceptible
group (Figure 9). The F-box protein, cysteine protease family protein, and C2H2 zinc finger
protein were involved in abiotic stress tolerance [2,7,80]. The C2H2 zinc finger protein is a
novel candidate gene for alkalinity tolerance identified in this study.

Several studies identified the same candidate genes and QTLs for highly correlated
traits [81,82]. However, this study revealed different results and was in agreement with
earlier studies [83,84]. Although a high correlation was observed between Fe and Zn
content, different QTLs controlled these traits [83]. Similarly, different candidate genes were
identified for the highly correlated traits, grain width and grain weight [84]. Our results
could be due to the complexity of alkalinity tolerance mechanisms in which associated
phenotypic traits are controlled by many genes and environmental conditions. Another
reason could be the low SNP density, which resulted in a failure to detect more SNPs
significantly associated with alkalinity tolerance traits.

Given the importance of rice as a staple food and the challenges due to climate-change-
related environmental stresses, and geographical limitations, it is crucial to characterize
the response of different rice genotypes to alkalinity stress. This study revealed signif-
icant variations in the physiological responses of different rice genotypes to alkalinity
stress. Specifically, we observed that increased alkalinity led to increased uptake of Na+

in shoots, which in turn resulted in decreased uptake of K+. The study identified several
alkalinity-tolerant rice genotypes such as Saturn, Della, JN100, JN349, Nipponbare, Mercury,
BHA1115, IR 29, Cheniere, IR 50, Panidhan II, Koshihikari, Teqing, Dellmont, Kanchan,
Swarna, W149, Perum karuppan, Taipe 309, and Hayamasari which could be used as po-
tential donors to improve alkalinity tolerance. The high-yielding tolerant genotypes could
be also recommended for cultivation in saline–alkaline areas. Most of these top-performing
genotypes had relatively low-to-moderate Na+ uptake while maintaining a high K+ uptake
indicating a higher degree of tissue tolerance. In addition to the QTLs qSNC9 and qSKC10,
which co-localized with previously reported QTLs, a novel QTL and several candidate
genes were identified.

4. Conclusions

Alkalinity tolerance exhibited by salt-susceptible rice genotypes, or vice versa, in-
dicated that different mechanisms underly tolerance to salinity and alkalinity stresses.
Twenty-eight significant SNPs and six QTL regions were detected via GWAS analysis.
Two QTLs, qSNC9 and qSKC10, were congruent with the QTLs detected in previous al-
kaline studies, while qSNC7 was a novel QTL. Six candidate genes, LOC_Os04g50090,
LOC_Os08g23440, LOC_Os09g32972, LOC_Os08g25480, LOC_Os08g25390, and
LOC_Os09g38340, showed contrasting expression between tolerant and susceptible geno-
types, suggesting their potential role in imparting alkalinity tolerance. Since the under-
standing of alkalinity tolerance in rice is limited, the alkaline-tolerant genotypes, SNPs,
QTLs, and candidate genes identified in this study will be valuable resources for gaining
further insights into the tolerance mechanism, as well as for breeding alkaline-tolerant
rice varieties.
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5. Materials and Methods
5.1. Plant Materials

A total of 185 rice genotypes from the USA and the International Rice Research
Institute (IRRI) including some saline-alkaline tolerant genotypes were evaluated under
alkalinity stress at the seedling stage. The experiment was conducted in a randomized
complete block design (RCBD) at the LSU AgCenter greenhouse with three replications.
Seeds were exposed to 50 ◦C for 3 days to break dormancy and sown in 4-inch sand-filled
pots. The seedlings at the two-leaf stage were then exposed to alkalinity stress for two
weeks with 0.20% Na2CO3, followed by one week of exposure to 0.40% Na2CO3 in the
stress experiment. The pH of the solution was adjusted to 10.0 in the stress experiment
to imitate alkaline stress. The seedlings in the control experiment were allowed to grow
under normal conditions. After three weeks of stress, the seedlings were evaluated for
various morphological and physiological traits. The mean performance of each genotype
was recorded for alkalinity tolerance score (AKT), root length (RTL), shoot length (SHL),
root-to-shoot ratio (RSR), shoot dry weight (DW), shoot fresh weight (FW), shoot Na+

concentration (SNC), shoot K+ concentration (SKC), and shoot sodium-to-potassium ratio
(SNK). Alkalinity tolerance scoring was done on a scale of 1–9 depending on the percentage
of dry and yellow leaves [2]. The shoot length and root length of the seedlings were
recorded. The fresh weight of the shoots was recorded and the dry weight of the shoots
was recorded after drying the seedlings at 50 ◦C for one week. The shoot samples were
harvested and oven-dried at 60 ◦C for 10 days and 0.1 g of homogenized sample from
each genotype was digested with nitric acid: hydrogen peroxide (5:3 mL) at 152–155 ◦C for
3 h [85]. The Na+ and K+ content of the samples was measured using a flame photometer
(Jenway model PFP7, Bibby Scientific Ltd., Staffordshire, UK). The final concentrations
of Na+ and K+ were calculated from the standard curve derived from standard solutions
of Na+ and K+. The ratio of shoot Na+ to K+ (SNK) was obtained by dividing shoot Na+

concentration by shoot K+ concentration.

5.2. Statistical Analysis

SAS version 9.4 [86] and R version 2.2.1 [87] were used for statistical analysis of
phenotypic data. The Shapiro–Wilk test was performed to test the hypothesis of normality
and the normality assumption was violated in the case of DW and FW. Log and inverse
transformations were performed for the data on DW and FW, respectively. Histograms
and descriptive statistics were obtained. For each trait, an analysis of variance (ANOVA)
was performed. Pearson correlation coefficients were computed to better understand the
association among traits for alkalinity tolerance. The mean value of each trait was used for
clustering and PCA. Principal component analysis was done to investigate the relationship
among indica and japonica genotypes and the contribution of variables to the phenotype.
The clustering of the genotypes was done using Euclidean distance. Broad sense heritability
was calculated in SAS following the method of Holland et al. [88].

5.3. SNP Genotyping and Quality Control

Leaf samples of each genotype were collected from 21-day-old seedlings. The leaf sam-
ples were sent to the AgriPlex Genomics (https://www.agriplexgenomics.com/ Accessed
on 15 August 2022) sequencing facility for genotyping with the IRRI rice amplicon SNP
panel. SNP calling was done by Agriplex Genomics. SNPs with minor allele frequency
(MAF) < 0.05 and SNPs with >5% missing values were filtered out. The k-nearest neighbor
(KNN) method was used for the imputation of the missing values [89]. After filtering, a
total of 832 SNPs were used for the analysis.

5.4. Structure Analysis and Linkage Disequilibrium

To assess the population structure and assign individuals to populations, STRUCTURE
2.3.4 [90] was used. The structure with varying numbers of groups (K) from 1 to 10 was run

https://www.agriplexgenomics.com/
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with 10,000 burn-in-periods and 50,000 Markov chain Monte Carlo (MCMC) replications.
The ad hoc ∆K statistic was used to determine the true value of K [91].

Pairwise linkage disequilibrium was computed in Tassel 5.0 software using squared
correlation coefficients (r2) of alleles [92]. LD decay was estimated in R using non-linear
curves [93]. The rate of LD decay was computed as the physical distance between markers.

5.5. Association Mapping

Population stratification often results in false positives in the GWAS analysis. To
effectively control these false positives using population structure and kinship matrix,
several GLM [94,95] and MLM [94,96] methods can be used. These methods compromise
true positives in order to control false positives. The fixed and random model circulating
probability unification (FarmCPU) method can reduce overfitting and effectively control
false positives without compromising true positives [97]. Given those advantages, genome-
wide association mapping was conducted via the FarmCPU method in the R package. The
fixed effect model (FEM) and the random effect model (REM), which are used iteratively, are
the two components of the multiple loci linear mixed model in FarmCPU. For the prevention
of overfitting, REM estimates the several associated markers to calculate kinship, while FEM
controls false positives and negatives by testing markers one at a time and kinship from
REM as covariates [97]. The p-values of testing markers and various associated markers
were unified at each iteration. The mean values of nine physiological and morphological
traits were used for genome-wide association analysis. After GWAS, a threshold value
(−log10 (p) ≥ 1.95) equivalent to 0.011 was used for declaring significant SNPs.

5.6. Candidate Gene Analysis

Candidate genes associated with significant SNPs (p ≤ 0.001) were selected if the genes
were present within ±10 kb of the significant SNPs in the reference rice genome sequence.
The functional annotation of candidate genes was evaluated. The list of candidate genes
from GWAS analysis was compared with the QTLs and differential expression genes under
alkalinity stress in rice from previous studies.

5.7. Expression Profiling of Selected Genes by Real-Time Quantitative Reverse Transcription
PCR (qRT-PCR)

Four genotypes each from the tolerant and susceptible groups were selected for gene
expression profiling. These genotypes were JN100, Cheniere, Cocodrie, and Nipponbare
from the tolerant group and N22, Dular, Cypress, and Hasawi from the susceptible group.
A hydroponic setup containing 1 g/L of Jack’s professional fertilizer (20-20-20) (JR Peters
Inc., Allentown, PA, USA) was used to grow seedlings of these genotypes. The experiment
was conducted in a randomized complete block design (RCBD) at an LSU greenhouse.
There were three replications each for the control and alkalinity stress experiments. Twenty
to thirty seedlings of each genotype were grown in each replication. Seedlings in the stress
experiment were exposed to alkaline stress at the two-leaf stage with a solution of 0.5%
Na2CO3 and pH 10.0. Leaf samples were collected from the control and stress experiments
at 0 and 6 h of stress exposure and were stored at −80 ◦C. Total RNA was isolated from
leaf tissues using Trizol reagent ((Thermofisher Scientific, Waltham, MA, USA). The quality
of the RNA was assessed using a 1.2% agarose gel and the quantity was determined using
an ND-1000 spectrophotometer (Thermofisher Scientific, Waltham, MA, USA). The RNA
samples were treated with PerfeCTa DNase1 (Quantabio, Beverly, MA, USA) to remove
any contaminating genomic DNA, and cDNA was synthesized using iScript™ first strand
cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA, USA). Primers were designed
using the PrimerQuest Tool (Integrated DNA Technologies, Inc., Coralville, IA, USA) and
EF1α was used as an internal control. The qRT-PCR reaction was performed in triplicate
using pooled cDNA from the biological replicates [98]. The expression level of genes was
determined using the 2–∆∆CT method [99], which involves normalization to the internal
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control gene EF1α and calculation of the fold change in expression under alkalinity stress
compared to the control for each genotype.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12112206/s1, Table S1: Phenotypic performance of rice
genotypes in the control environment at the seedling stage. Table S2: Eigenvalue, variance, and
cumulative variance (%) of principal components for nine morphological and physiological traits
in the rice genotypes under alkaline stress. Table S3: Eigenvectors and eigenvalues of the principal
components for nine morpho-physiological traits of rice genotypes evaluated for alkalinity tolerance
at the seedling stage. Table S4: Mean value of each group identified by cluster analysis for nine
morphological and physiological traits in the rice genotypes under alkaline stress at the seedling
stage. Table S5: List of rice genotypes, source, subspecies category, and the subgroup classification
by the software ‘STRUCTURE’. Table S6: List of primers used in the gene expression profiling by
qRT-PCR. Figure S1: Linkage map of rice showing the number of SNPs within a 1Mb window size on
each chromosome.
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