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Abstract: Using in situ near-surface observations of solar-induced chlorophyll fluorescence (SIF) and
gross primary productivity (GPP) of a subtropical evergreen coniferous forest in southern China,
this study analyzed the dynamics of SIF, GPP and their environmental responses, and explored the
potential of SIF in characterizing the variation of GPP. The results showed that SIF and GPP have
similar diurnal and seasonal variation and both reach the highest value in summer, indicating that the
SIF can be applied to indicate the seasonal variation of GPP for the subtropical evergreen co-niferous.
With the increase in temporal scale, the correlation between SIF and GPP becomes more linear. The
diurnal variations of both SIF and GPP were characterized by photosynthetically active radiation
(PAR), the seasonal variations of SIF and GPP were influenced by air temperature (Ta) and PAR.
Probably due to the absent of drought stress during the study period, no significant correlation was
detected between soil water content (SWC) and either SIF or GPP. With the in-crease in Ta, PAR or
SWC, the linear correlation between the SIF and GPP gradually decreased, and when Ta or PAR
was relatively higher, the correlation between SIF and GPP become weakly. Further research is still
needed to illustrate the relationship between SIF and GPP under drought condition which occurred
frequently in this region based on longer observation.
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1. Introduction

Gross primary production (GPP) can reflect the total organic carbon fixed by vege-
tation through photosynthesis, directly driving the ecosystem carbon cycle and directly
or indirectly affecting the function, biodiversity, and sustainability of terrestrial ecosys-
tems [1,2]. Therefore, the accurate understanding and rapid assessment of GPP and its
dynamic changes are indispensable to understand the response and adaptation of ecosys-
tem to environmental changes, and to provide important support for research of global
change and ecosystem service across different time and space scales [3]. Solar-induced
fluorescence (SIF) is assumed widely related to actual plant photochemistry. When chloro-
phyll absorbs sunlight, it rises from the stable and lowest energy state to an unstable and
high-energy excited state, and then quickly turns to the low-energy state, and the emitted
energy is consumed in the form of heat and fluorescence [4]. Under natural light conditions,
chlorophyll fluorescence accounts only for 0.5–2% of sunlight energy absorbed by vegeta-
tion, and the amount of chlorophyll fluorescence emitted is directly proportional to that
of photosynthesis. Therefore, variations related to plant photosynthesis can be potentially
detected by fluorescence [5], and SIF is also considered to be an effective indicator of plant
photosynthesis [6].

In recent years, the estimation of GPP based on observed SIF has received more
attention. Some studies found that the SIF obtained via GOSAT satellite showed a strong
linear correlation with GPP [7,8]. Li et al. carried out the first global analysis of the
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relationship between SIF from OCO-2 satellite and GPP from flux observations, and they
found that SIF and GPP showed a strong linear correlation among eight ecosystems,
in which the slope of evergreen broad-leaved forests was the lowest, and the slopes of
evergreen coniferous forests and deciduous broad-leaved forests were similar [9]. Using SIF
from GOME-2 satellite, Liu et al. indicated that satellite SIF were significantly correlated
with GPP of different ecosystems in China, and the slopes were the lowest in both temperate
coniferous and broadleaved mixed forests, while higher in evergreen forests [10]. However,
the satellite SIF was utilized in most studies to examine the relationship between SIF and
GPP, the utilization of local observed SIF was still deficient.

The relationship between SIF and GPP differs greatly in different vegetation types
mainly due to the influence of canopy structure, vegetation physiological status, and the
environmental variations. Yang et al. found that the seasonal variation of SIF and GPP were
similar which yielded a linear correlation in a temperate deciduous forest [11]. Magney et al.
found that SIF can be used to characterize the variation of GPP, while the slope is relatively
low in subalpine coniferous forests [6]. Jeong et al. analyzed the phenology of high-latitude
forest vegetation in Eurasia and North America, and they found that the spring SIF was
lagged behind that of the vegetation index due to the limitation of the available radiation
on carbon assimilation, while a better consistency between GPP and SIF was exhibited
in autumn [12]. Cheng et al. found a weak correlation between daily SIF and GPP, and
such a correlation was not significant in diurnal scale and in sunny conditions [13]. In
recent studies, SIF has been widely used to estimate regional and global GPP, but some
studies have shown that GPP will be saturated under strong light, resulted in a nonlinear
relationship between GPP and SIF in short time scales, which becomes more linear with
the increase in spatial and temporal scales [14–16]. At present, most studies were limited
to middle and high latitudes, the observations in low latitude ecosystems, especially the
coniferous forest, remain relatively lack. Therefore, the capability of SIF to characterize the
variations of GPP change needs further studies across more ecosystems and regions.

The plantation area in China ranks among the top in the world, and plantation plays
an important role in terrestrial carbon sink capacity of China [17]. The evergreen conif-
erous plantation is widely distributed in China’s subtropical region. Recent study has
indicated that these plantations played an important role in the formation of carbon sink in
East Asian under the monsoon climate, and the annual net carbon sequestration reached
387.2 gC m−2 a−1 [18]. Apart from the abundant rainfall and heat resources in this region,
it suffered high temperature and seasonal drought in summer frequently, which resulted
in a significant effect on the ecosystem productivity [19,20]. Chen et al. also found that
the rising temperature would increase the NPQ of the leaves and lead to a decline in SIF
and GPP [18]. Therefore, the accurate understanding and rapid detection of the changes in
plantation productivity are highly significant for the assessment of regional carbon sink.

Using the collaborative observation of canopy SIF vegetation, ecosystem CO2 flux
and environmental factors, the dynamic changes of both SIF and GPP of a subtropical
coniferous plantation were analyzed. The targets of this study aimed to (1) reveal the
seasonal variations of both GPP and SIF; (2) comparison the responses of SIF and GPP to
environmental changes, and (3) examine the potential of SIF in charactering the variation
of GPP.

2. Results
2.1. Dynamic Changes of SIF and GPP
2.1.1. Diurnal Variations

Figure 1 shows the diurnal variations of SIF, GPP and local environmental variables in
different seasons during the study period of the subtropical evergreen coniferous forest
in Qianyanzhou. It can be seen that in each season, the diurnal variation of GPP showed
a single peak trend which reached the maximum value at 13:00 in winter, 12:30 in spring
and 10:00 in summer. In addition, the time span of active GPP in a day gradually increased
from winter to summer. The diurnal variation of SIF in each season was similar to that of
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GPP. The maximum value was close in spring and summer, and both were significantly
higher than that in winter. The maximum value of SIF appeared at 10:00 in winter, 12:30 in
spring and 12:30 in summer.

from winter to summer. The diurnal variation of SIF in each season was similar to that of 
GPP. The maximum value was close in spring and summer, and both were significantly 
higher than that in winter. The maximum value of SIF appeared at 10:00 in winter, 12:30 
in spring and 12:30 in summer. 

For the diurnal variation of the environmental factors, Ta also showed a single peak 
trend, while the time when Ta reached its maximum value apparently lagged behind that 
of SIF and GDP in each season. PAR also appeared a similar single peak trend with that 
of GPP and SIF. In terms of SWC, although an apparent variation was presented in each 
season due to the data standardization, the measured SWC was quite stable in a day and 
the average SWC in summer was 0.35 m3 m−3 which was slightly lower than that in spring 
(0.38 m3 m−3) and fall (0.39 m3 m−3). 

From the general diurnal variation from January to August, both SIF and GPP 
showed a trend of increasing first and then decreasing (Figure 1d). The vegetation began 
to produce SIF from the morning, and the maximum value was reached at about 12:30; 
then it began to decline, and SIF stopped being produced under low PAR in late afternoon. 
GPP began to increase at about 5:00 a.m. and reached the maximum value at about 12:30; 
then it began to decline and dropped to 0 when PAR was quite low. It can be seen that the 
daily maximum values of SIF and GPP were close to the time of decline.  

Ta also showed a single peak trend, reaching the minimum value at 6:30 and the max-
imum value at 16:00, lagging behind the time when SIF and GPP reached their maximum 
values. PAR showed a similar trend with GPP and SIF, reaching the maximum value at 
13:00, which was close to the time when GPP and SIF reached their maximum values. 

In general, the similar diurnal variation of SIF and the GPP indicated the potential of 
SIF to effectively reflect the variation in GPP. The diurnal variation in Ta also presented a 
single peak trend, but the time when it reached the maximum value obviously lagged 
behind SIF and GPP. PAR, GPP and SIF showed similar change trends, and the times when 
they reached the maximum values were similar. Therefore, the diurnal variations of both 
SIF and GPP were determined by PAR. Because SWC displayed no obvious diurnal vari-
ation characteristics, implying that SWC probably has a small impact on diurnal variation 
of both SIF and GPP at Qianyanzhou Station. 
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duction (GPP, orange line), Solar-induced fluorescence (SIF, black dot), photosynthetically active 
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Figure 1. Diurnal variations in SIF, GPP and environmental variables, including gross primary
production (GPP, orange line), Solar-induced fluorescence (SIF, black dot), photosynthetically active
radiation (PAR, green line), air temperature (Ta, purple line) and soil water content (SWC, open
circle), in (a) winter; (b) spring; (c) summer; and (d) from January to August in 2021.

For the diurnal variation of the environmental factors, Ta also showed a single peak
trend, while the time when Ta reached its maximum value apparently lagged behind that
of SIF and GDP in each season. PAR also appeared a similar single peak trend with that
of GPP and SIF. In terms of SWC, although an apparent variation was presented in each
season due to the data standardization, the measured SWC was quite stable in a day and
the average SWC in summer was 0.35 m3 m−3 which was slightly lower than that in spring
(0.38 m3 m−3) and fall (0.39 m3 m−3).

From the general diurnal variation from January to August, both SIF and GPP showed
a trend of increasing first and then decreasing (Figure 1d). The vegetation began to produce
SIF from the morning, and the maximum value was reached at about 12:30; then it began to
decline, and SIF stopped being produced under low PAR in late afternoon. GPP began to
increase at about 5:00 a.m. and reached the maximum value at about 12:30; then it began to
decline and dropped to 0 when PAR was quite low. It can be seen that the daily maximum
values of SIF and GPP were close to the time of decline.

Ta also showed a single peak trend, reaching the minimum value at 6:30 and the maxi-
mum value at 16:00, lagging behind the time when SIF and GPP reached their maximum
values. PAR showed a similar trend with GPP and SIF, reaching the maximum value at
13:00, which was close to the time when GPP and SIF reached their maximum values.

In general, the similar diurnal variation of SIF and the GPP indicated the potential of
SIF to effectively reflect the variation in GPP. The diurnal variation in Ta also presented
a single peak trend, but the time when it reached the maximum value obviously lagged
behind SIF and GPP. PAR, GPP and SIF showed similar change trends, and the times when
they reached the maximum values were similar. Therefore, the diurnal variations of both SIF
and GPP were determined by PAR. Because SWC displayed no obvious diurnal variation
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characteristics, implying that SWC probably has a small impact on diurnal variation of
both SIF and GPP at Qianyanzhou Station.

2.1.2. Seasonal Variations

Figure 2 shows the seasonal variations of SIF, GPP and environmental variables at
Qianyanzhou Station. It can be seen that the SIF value showed a gradual upward trend
from spring to summer and tended to be stable in June. It reached the minimum value
of 0.08 W m−2 µm−1 sr−1 at the end of February and attained the maximum value of
0.46 W m−2 µm−1 sr−1 by the end of June. GPP showed the same trend as that of SIF. It also
increased gradually from spring to summer and tended to be stable in June. The GPP value
was the minimum value of 2.28 gC m−2 d−1 at the end of February and the maximum
value of 8.16 gC m−2 d−1 at the beginning of June. Therefore, the consistency between
seasonal SIF and GPP indicated SIF can effectively characterize the seasonal change in GPP
in the subtropical coniferous ecosystem.

 
Figure 2. Seasonal variation in SIF, GPP and environmental variables. Rainfall (grey bar) and SWC 
(open circle) in upper panel; PAR (open triangle) and Ta (open circle) in middle panel; SIF (open 
triangle) and GPP (open circle) in lower panel. 
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tween SIF and GPP became more linear. On the 8-day scale, the correlation between SIF 
and GPP was 0.60, and the slope was 12.50. On the monthly scale, the correlation between 
SIF and GPP attained 0.76, and the slope was 18.43. 
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Figure 2. Seasonal variation in SIF, GPP and environmental variables. Rainfall (grey bar) and SWC
(open circle) in upper panel; PAR (open triangle) and Ta (open circle) in middle panel; SIF (open
triangle) and GPP (open circle) in lower panel.

For the seasonal trends of environmental variables, including Ta, PAR, SWC and
rainfall, it can be seen that Ta gradually increased from spring to summer and tended to
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stabilize in June. Ta reached the minimum value of 11.07 ◦C at the end of January and
the maximum value of 31.54 ◦C at the beginning of July. We found that PAR showed a
relatively stable trend from January to April, increased slightly in May, and tended to
be stable in June. PAR reached the minimum value of 77.00 µmol m−2 s−1 at the end of
February, reaching the maximum value of 433.75 µmol m−2 s−1 at the beginning of July.
SWC was mainly affected by precipitation and generally showed a slight increase after the
beginning of April and a gradual decrease after the beginning of June. SWC reached the
maximum value of 0.40 m3 m−3 at the end of May, and the value gradually decreased from
June to the minimum value of 0.22 m3 m−3 at the beginning of September.

In general, the seasonal trend of Ta was similar to that of GPP, which both increased
from spring to summer and tended to be stable in June, while the increasing trend of
Ta was relatively more obvious. PAR showed a relatively stable change from January to
April, rose in May, and tended to be stable in June, which was slightly different from the
change trend of GPP. SWC was relatively stable from January to March and began to rise in
April, reached its maximum value in May, and gradually declined after June, which was
apparently different from the change trend of GPP.

2.2. Correlation between SIF and GPP

In the subtropical evergreen coniferous forest, the correlation between the SIF of
vegetation and GPP became more significant with the increase in temporal scales (Figure 3).
On the daily scale, SIF and GPP showed a nonlinear correlation, and SIF only explained 23%
of the changes to GPP. On the 8-day scale and the monthly scale, the correlation between
SIF and GPP became more linear. On the 8-day scale, the correlation between SIF and GPP
was 0.60, and the slope was 12.50. On the monthly scale, the correlation between SIF and
GPP attained 0.76, and the slope was 18.43.
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Figure 3. Correlation of SIF-GPP at different time scales: (a) daily; (b) 8-day; (c) monthly.

2.3. Environmental Responses of SIF and GPP

Figure 4 shows the correlation between daily SIF, GPP and environmental variables.
The regression analysis showed that the influence of Ta on SIF reached 20%, while the
influence of PAR on SIF was 15%, which was slightly lower than that of Ta. Both Ta and
PAR had strong correlations with GPP. Ta had an impact on GPP of 67%, while the influence
of PAR on GPP increased to 79%. However, GPP appeared to be saturated when PAR was
much higher. In addition, SWC had no significant impact on either SIF and GPP.
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2.3. Environmental Responses of SIF and GPP 
Figure 4 shows the correlation between daily SIF, GPP and environmental variables. 

The regression analysis showed that the influence of Ta on SIF reached 20%, while the 
influence of PAR on SIF was 15%, which was slightly lower than that of Ta. Both Ta and 
PAR had strong correlations with GPP. Ta had an impact on GPP of 67%, while the influ-
ence of PAR on GPP increased to 79%. However, GPP appeared to be saturated when PAR 
was much higher. In addition, SWC had no significant impact on either SIF and GPP. 

In order to explore the impact of different environmental changes on the relationship 
between SIF and GPP, in this study, we obtained the changes in the relationship between 
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was between 8.8 and 13.6 °C, the performance was the strongest. After that, the relation-
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significant linear correlation was detected. 

The impact of PAR on the correlation between SIF and GPP also showed a trend of 
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GPP, while SWC did not have a significant impact on either. Regarding the correlation 
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linear correlation with GPP, and the linear correlation between SIF and GPP gradually 
decreased with the increase in Ta, PAR or SWC. When Ta or PAR was much higher, no 
significant linear correlation appeared between SIF and GPP. 
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Figure 4. Correlation between SIF, GPP, and environmental variables on daily scale: Each point
represents the daily average value.

In order to explore the impact of different environmental changes on the relationship
between SIF and GPP, in this study, we obtained the changes in the relationship between
SIF and GPP under different environmental which were divided into groups with 30 data.
Figure 5 shows that when Ta was low, SIF had a strong relationship with GPP. When Ta was
between 8.8 and 13.6 ◦C, the performance was the strongest. After that, the relationship
between SIF on GPP decreased. When Ta attained 22.1–28.2 ◦C and 29.7–32.5 ◦C, no
significant linear correlation was detected.

The impact of PAR on the correlation between SIF and GPP also showed a trend of
decreasing linear correlation between SIF and GPP with the increase of PAR. When PAR
was at 21.29–79.78 µmol m−2 s−1, SIF appeared the strongest indication of GPP. When PAR
was greater than 362.84 µmol m−2 s−1, there was no significant linear correlation between
SIF and GPP.

When SWC was 0.20–0.30 m3 m−3, SIF had no significant linear correlation with GPP.
When SWC was 0.30–0.35 m3 m−3, SIF had the strongest indication effect on GPP, and
then, with the increase in SWC, such effect decreased dramatically. This reduction may
have been related to the increase in precipitation during this period, which led to the lower
radiation and affected GPP.

It can be seen that Ta and PAR had a significant impact on the changes in SIF and
GPP, while SWC did not have a significant impact on either. Regarding the correlation
between SIF and GPP, except when SWC was 0.20–0.30 m3 m−3, SIF had no significant
linear correlation with GPP, and the linear correlation between SIF and GPP gradually
decreased with the increase in Ta, PAR or SWC. When Ta or PAR was much higher, no
significant linear correlation appeared between SIF and GPP.
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Figure 5. The influence of different environmental variables on SIF–GPP correlation. 
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Figure 5. The influence of different environmental variables on SIF–GPP correlation.

3. Discussion
3.1. Dynamic Changes in SIF and GPP

Previous studies have revealed the dynamic characteristics of SIF and GPP of canopy at
different temporal scales, which showed that SIF and GPP of a coniferous forest ecosystem
had obvious diurnal and seasonal changes, and both were the highest in summer and
the lowest in winter [11]. In this study, we also found that the SIF and GPP a subtropical
coniferous plantation appeared the similar diurnal and seasonal variation, and both reached
their highest in summer.

The strongest solar radiation in a day occurs at around 12:00, but the atmosphere is
not directly heated from the solar radiation, because the solar radiation warms the ground
first, absorbs the heat, reflects back to the atmosphere, and then warms up; therefore, the
strongest solar radiation appeared at noon, and the highest atmospheric temperature occurs
in the afternoon. In this study, we found that the times when PAR, SIF and GPP reach their
maximum values are similar, while Ta lags behind these changes. This shows that SIF and
GPP mainly respond to changes in PAR, which is the same conclusion as those drawn in
previous studies [18].

3.2. Relationship between SIF and GPP

Under natural light, the chlorophyll fluorescence emitted by vegetation is significantly
correlated with the photosynthetic rate; therefore, SIF is assumed to has the potential to
characterize GPP [5,6]. Previous studies showed that there is a significant correlation be-
tween SIF and GPP at different temporal and spatial scales [8,9,21,22], but with the decrease
in temporal scales, the linear correlation between SIF and GPP gradually weakens [14–16].
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The nonlinear relationship between daily SIF and GPP can be probably explained
in the following reasons. First, there is the basic difference between the light response of
SIF and GPP [14]. Photosynthetic effective radiation absorbed by leaves can be used to
drive photochemical reactions, which represent the key driving factor of SIF and GPP [4].
When the light intensity is too high and the light energy received by a plant’s leaves
exceeds its utilization capacity, photoinhibition may occur, making GPP saturated or even
decreased. While SIF will maintain an increasing trend, meaning that SIF-GPP presents a
nonlinear relationship on the daily scale [14–16]. In this study, we also found that the linear
correlation between SIF-GPP gradually decreased until it was not significant when PAR
increased continuously. With the increase in temporal scale, the saturation effect of GPP
with the increase in PAR decreases (Figure 6), which results in a more linear correlation
between SIF and GPP [16,22,23].
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Figure 6. The influence of PAR on GPP on 8-day and monthly scales.

Second, the vegetation canopy structure has a potential impact on the SIF-GPP relation-
ship. The positive correlation between the fluorescence yield (SIFyield) and the light energy
utilization efficiency (LUE) affected by the vegetation canopy structure has been verified
in different ecosystems, partially explaining the internal reason for the linear relationship
between SIF and GPP [24–26].

At last, tower-based spectrometers mainly receive SIF signals emitted from the top
canopy leaves and from the internal canopy, which is different from the GPP from flux
observation. As a result, the relationship between SIF and GPP might be influenced by the
observation approaches, and results in the low correlation at shorter temporal scales. As
the temporal scale increases, this influence becomes weaker, thereby the linear correlation
between the GPP and SIF is also improved [27].

3.3. Impact of Environmental Factors on the Relationship between SIF and GPP

Previous studies showed that the relationship between SIF and GPP is affected by
environmental factors [28,29]. Some studies have indicated that under drought or high-
temperature conditions, vegetation photosynthesis is affected by climate, and SIF shows
a significant decline, reflecting the high sensitivity of SIF to climate change. Therefore,
climate change also affects the correlation between SIF and GPP [30,31].

The light energy absorbed by plants is mainly used for three parts: photochemical
reactions, heat dissipation, and chlorophyll fluorescence [4]. Research has shown that
vegetation SIF mainly responds to changes in PAR, rather than actual changes in photo-
synthetic efficiency, and the key driving factor for SIF and GPP is photosynthetic effective
radiation [27]. This study also shows that PAR has a significant impact on both SIF and
GPP. In addition, the radiant intensity of the sun will also cause the change of ground
temperature, so Ta also has a significant impact on SIF and GPP.

SWC is usually treated as an important indicator that reflects the variations of GPP
when the vegetation is under drought stress. Previous research shows that plant photosyn-
thesis efficiency decreases due to the reduction of transpiration rate of leaves when drought
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occurs [32,33]. However, the influence of SWC on SIF or GPP was not detected in this study.
Probably, under the subtropical monsoon climate with abundant precipitation during the
study period, no apparent drought occurred and the relative sufficient soil moisture content,
the photosynthetic rate and chlorophyll fluorescence production of vegetation were not
significantly affected by the variations of SWC. At the same time, there are still many
deficiencies in this study, such as how SIF characterizes the changes in GPP under extreme
drought and high temperature stress which occurs frequently. Further research is needed
based on longer observation in the future.

There are also some factors that can affect the SIF-GPP relationship, such as vegetation
physiological status, chlorophyll content, canopy structure, water and dry matter [11,24,34,35].
When the time resolution of data is reduced to a low resolution, i.e., the increase in temporal
scale, the influence of these factors is reduced to some extent, and the linear correlation
could be enhanced.

4. Materials and Methods
4.1. Study Area

Qianyanzhou Ecological Research Station is located in Taihe County, Jiangxi Province
(26◦44′29” N, 115◦3′29” E), which is located in the southern hilly area in China. It is a
typical red soil area with subtropical monsoon climate characteristics. The region is rich
in solar energy resources, with annual average sunshine of 1306 h. The annual average
temperature is 17.9 ◦C. The annual average rainfall can reach 1490.5 mm. Apart from the
abundant rainfall and heat resources in this region, due to the uneven seasonal distribution
and the incomplete synchronization between rainfall and temperature, the influences of
high temperature and seasonal drought in summer occurred frequently [20]. The vegetation
in this area is evergreen coniferous plantation in the middle subtropical zone in China,
which is mainly composed of secondary vegetation of artificial forest or grass and shrub,
including Pinus massoniana, Pinus elliottii, Cunninghamia lanceolata, etc. [19]. The forest in
this area was planted in the 1980s, with a forest age of approximately 40 years (Figure 7).
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4.2. Flux Observation

This study directly utilized the shared data of ChinaFLUX (http://www.chinaflux.org/
(accessed on 1 March 2023)). Eddy covariance technique (EC) is generally utilized to
measure the Net Ecosystem Exchange (NEE) between vegetation and the atmosphere [36].
In this study, the open-path Eddy covariance (OPEC) is adopted for flux observation. The
system is composed of a three-dimensional ultrasonic anemometer (CAST3, Campbell
Scientific Ltd., Logan, UT, USA) and a fast-response infrared CO2/H2O analyzer (Li-7500A,
LiCor Inc., Lincoln, NE, USA). The data collector (CR5000, Campbell Scientific Ltd., Logan,
UT, USA) collects data at a frequency of 10 Hz and the half-hourly average flux was
computed and stored in real time. The net ecosystem carbon flux is calculated as:

Fc = w′ρc ′ (1)

http://www.chinaflux.org/
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where Fc is CO2 flux derived from EC; w′ is the instantaneous vertical wind velocity
fluctuation, and ρc

′ is the CO2 density fluctuation in the air. The upper horizontal line
represents the covariance between the instantaneous fluctuation of vertical wind speed and
the CO2 density during a certain period (30 min).

The standard procedure developed by ChinaFLUX was applied to the measured flux
to carry out a series of correction and quality control and generate the half-hourly averaged
flux data including coordinate rotation, WPL correction, frequency response correction
and night data correction [37]. Consider the effect of the canopy, the storage flux was also
estimated from the variation of CO2 concentration, and net ecosystem exchange (NEE) was
the sum of the measured Fc and the storage flux. After that, the spurious half-hourly CO2
flux data were also detected and eliminated using both a flux threshold (|NEE| > 3.0 mg
CO2 m−2 s−1) and the algorithms proposed by Papale et al. [38]. The data under stable
conditions was also excluded with a reasonable u∗ threshold which was helpful to reduce
the effect of insufficient fetch and turbulence.

For missing flux and meteorological observation data in a short period of time (less
than 2 h), linear interpolation is used; For meteorological data that has been missing for
a long time, use meteorological station observation data (excluding SWC and Rain) for
interpolation; If the interpolation cannot be completed, use the average daily variation
method to complete the data interpolation. For CO2 flux data missing for a long time,
non-linear regression method is used for interpolation, the Lloyd and Taylor equation is
used for nighttime data interpolation, and rectangular hyperbola equation is used to fill
the daytime missing data [39].

The marginal distribution sampling method was applied for flux partitioning. Firstly,
using the same regression equation as when imputing missing data, the coefficients in the
ecosystem respiration equation are determined for nighttime observation data; Then, use
this equation to calculate the ecosystem respiration (Reco) at night and during the day;
Finally, complete and continuous ecosystem GPP observation data were obtained using
daytime CO2 flux data and calculated ecosystem respiration [39]. Consider the sign of NEE,
negative NEE which indicating carbon absorption by ecosystem, GPP was calculated as,

GPP = Reco − NEE (2)

Further details for flux processing in this station were described in Han et al. [40].

4.3. SIF Observation

Using the flux tower of the subtropical evergreen coniferous forest in Qianyanzhou
station, an automatic observation system for the solar-induced chlorophyll fluorescence of
vegetation was installed at a distance of 30 m from the canopy. The front ends of two optical
fibers were installed on the optical fiber fixing device to ensure that the top and bottom
were as vertical as possible. The upward optical fiber was connected to a cosine corrector
(CC-3) to accurately measure the solar incident spectrum, and the other downward optical
fiber was used to observe the vegetation canopy reflection spectrum, and the approximate
area of the ground measured by the downward optical fiber of the equipment is 100 m2.
The spectrometer recorded two downward solar illumination spectral signals and one
upward ground reflection spectral signal in the order of solar incidence, ground reflection
and solar incidence. The equipment installation is shown in Figure 8.

The vegetation SIF observation data from 27 January to 15 September 2021, including
the solar incident radiation at 730 nm to 782 nm and the vegetation-canopy-reflected
radiation were obtained. In order to reduce the large deviation in downward radiation
and fluorescence due to the limitation of the view angle when the solar altitude angle
was low, SIF observation started at 9:00 and then continued to record until 17:30, and the
time interval was 7 min in each day. As the 3FLD (3-Fraunhofer Line Depth) algorithm
effectively reduces the error caused by the assumption that the fluorescence and reflectivity
remain constant in the spectral absorption band, and its operation is relatively simple [41],
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3FLD method was also applied in this study to determine SIF. After that, the daily, 8 days
and monthly average SIF were calculated for further analysis.

represents the covariance between the instantaneous fluctuation of vertical wind speed 
and the CO2 density during a certain period (30 min). 

The standard procedure developed by ChinaFLUX was applied to the measured flux 
to carry out a series of correction and quality control and generate the half-hourly aver-
aged flux data including coordinate rotation, WPL correction, frequency response correc-
tion and night data correction [37]. Consider the effect of the canopy, the storage flux was 
also estimated from the variation of CO2 concentration, and net ecosystem exchange (NEE) 
was the sum of the measured Fc and the storage flux. After that, the spurious half-hourly 
CO2 flux data were also detected and eliminated using both a flux threshold (|NEE| > 3.0 
mg CO2 m−2 s−1) and the algorithms proposed by Papale et al. [38]. The data under stable 
conditions was also excluded with a reasonable u∗ threshold which was helpful to reduce 
the effect of insufficient fetch and turbulence. 

For missing flux and meteorological observation data in a short period of time (less 
than 2 h), linear interpolation is used; For meteorological data that has been missing for a 
long time, use meteorological station observation data (excluding SWC and Rain) for in-
terpolation; If the interpolation cannot be completed, use the average daily variation 
method to complete the data interpolation. For CO2 flux data missing for a long time, non-
linear regression method is used for interpolation, the Lloyd and Taylor equation is used 
for nighttime data interpolation, and rectangular hyperbola equation is used to fill the 
daytime missing data [39]. 

The marginal distribution sampling method was applied for flux partitioning. Firstly, 
using the same regression equation as when imputing missing data, the coefficients in the 
ecosystem respiration equation are determined for nighttime observation data; Then, use 
this equation to calculate the ecosystem respiration (Reco) at night and during the day; 
Finally, complete and continuous ecosystem GPP observation data were obtained using 
daytime CO2 flux data and calculated ecosystem respiration[39].Consider the sign of NEE, 
negative NEE which indicating carbon absorption by ecosystem, GPP was calculated as, 

GPP = Reco − NEE (2)

Further details for flux processing in this station were described in Han et al. [40]. 

4.3. SIF Observation 
Using the flux tower of the subtropical evergreen coniferous forest in Qianyanzhou 

station, an automatic observation system for the solar-induced chlorophyll fluorescence 
of vegetation was installed at a distance of 30 m from the canopy. The front ends of two 
optical fibers were installed on the optical fiber fixing device to ensure that the top and 
bottom were as vertical as possible. The upward optical fiber was connected to a cosine 
corrector (CC-3) to accurately measure the solar incident spectrum, and the other down-
ward optical fiber was used to observe the vegetation canopy reflection spectrum，and 
the approximate area of the ground measured by the downward optical fiber of the equip-
ment is 100 m2. The spectrometer recorded two downward solar illumination spectral sig-
nals and one upward ground reflection spectral signal in the order of solar incidence, 
ground reflection and solar incidence. The equipment installation is shown in Figure 8. 

 

Figure 8. Fluorescent equipment installation.

4.4. Environmental Observation

Routine meteorological factors, including photosynthetically active radiation (Model
LI-190SB, Li-Cor Inc., Lincoln, NE, USA), air temperature (Model HMP45C, Vaisala,
Helsinki, Finland), precipitation (Model 52203, Young Co., Traverse City, MI, USA), and
soil water content (Model CS616, Campbell Scientific, Logan, UT, USA). The depth of
measuring surface soil temperature was 5 cm. The daily, 8 days and monthly average SIF
were also calculated. Due to the malfunction of sensor, soil water content during January
to March was abnormal and was excluded in the analysis.

4.5. Data Processing

In this study, January to February was defined as winter, March to May was defined
as spring, and June to August was defined as summer. In order to present the diurnal
variations of different variables, we normalized data according to Equation (3) to analyze
the diurnal variation of the variables in different seasons.

X =
Xi − Xmin

Xmax − Xmin
(3)

where X is the normalized value, Xi is the original value and Xmax and Xmin are the
maximum and minimum values of the data, respectively.

5. Conclusions

Based on the in-situ observation of canopy SIF, GPP and meteorological factors of a
subtropical evergreen coniferous forest at Qianyanzhou Station, the relationship between
the SIF and GPP, and their responses to environmental changes were analyzed. The
following conclusions were drawn:

(1) Both SIF and GPP of the subtropical evergreen coniferous forest presented similar
diurnal and seasonal variations, and both reach their highest values in summer, indicating
that the potential of SIF in characterizing the variations of GPP.

(2) Along with the increase in time scales, the correlation between the SIF and GPP
became more linear.

(3) Ta and PAR significantly affect the changes in the SIF and GPP at different time
scales, while SWC has no significant impact on them. With the increase in Ta, PAR or SWC,
the linear correlation between SIF and GPP decreases gradually. When Ta or PAR is high,
there is no significant linear correlation between SIF and GPP.
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