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Abstract: Plant physiological status is the interaction between the plant genome and the prevailing
growth conditions. Accurate characterization of plant physiology is, therefore, fundamental to
effective plant phenotyping studies; particularly those focused on identifying traits associated with
improved yield, lower input requirements, and climate resilience. Here, we outline the approaches
used to assess plant physiology and how these techniques of direct empirical observations of processes
such as photosynthetic CO2 assimilation, stomatal conductance, photosystem II electron transport,
or the effectiveness of protective energy dissipation mechanisms are unsuited to high-throughput
phenotyping applications. Novel optical sensors, remote/proximal sensing (multi- and hyperspectral
reflectance, infrared thermography, sun-induced fluorescence), LiDAR, and automated analyses
of below-ground development offer the possibility to infer plant physiological status and growth.
However, there are limitations to such ‘indirect’ approaches to gauging plant physiology. These
methodologies that are appropriate for the rapid high temporal screening of a number of crop varieties
over a wide spatial scale do still require ‘calibration’ or ‘validation’ with direct empirical measurement
of plant physiological status. The use of deep-learning and artificial intelligence approaches may
enable the effective synthesis of large multivariate datasets to more accurately quantify physiological
characters rapidly in high numbers of replicate plants. Advances in automated data collection and
subsequent data processing represent an opportunity for plant phenotyping efforts to fully integrate
fundamental physiological data into vital efforts to ensure food and agro-economic sustainability.

Keywords: photosynthesis; climate resilience; LiDAR; spectral reflectance; hyperspectral; deep-
learning; partial least squares regression; phenomics; plant ecophysiology

1. Introduction

Plant physiology is central to photosynthetic performance, growth, and resilience to
abiotic stress [1,2]. Physiology represents the functional link between the environment and
plant genome [3,4]. Characterization of plant physiology is fundamental to the utility of
genome-wide association studies [5–8]. Analysis of plant physiological status is, there-
fore, an essential component of plant phenotyping, where the characteristics of a specific
genotype are quantified under designated environmental conditions [9,10]. Traditional ap-
proaches to plant physiological analyses are often time-consuming and orientated towards
a leaf- or organ-level measurement, precluding rapid screening and measurements over
a wider canopy level suited to field-based phenotyping. However, given the importance
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of plant phenomics and precision digital agriculture to future food and bioenergy secu-
rity [11,12], a number of advances in phenotyping approaches and technologies may reduce
this ‘physiological bottleneck’ and facilitate wide-scale rapid analysis of plant physiological
status [13,14]. The capability to infer physiological status over wide spatial scales at high
temporal resolution is crucial for digital agriculture applications to optimize yield outputs
and minimize resource inputs [15]. The aim of this review article is to provide an intro-
duction to traditional plant physiological analyses and their importance in understanding
plant performance and stress responses. We then describe phenomic approaches to rapidly
gauge these physiological characteristics in relation to high-throughput plant phenotyping.

Concerns regarding the pressures imposed by climate change, population growth, and
the loss of productive agricultural land area has led to an expansion in plant phenomic re-
search in recent years. However, the development of plant phenotyping has been impaired
by a number of constraints at different scales: the ability to automate large numbers of
morphological measurements at high temporal resolution, processing of large volumes of
morphological/genetic data, and the capacity to perform detailed physiological analyses.
Plant phenotyping efforts are focused towards the identification and development of more
productive and climate resilient crop genotypes. Crop productivity and climate resilience
are largely determined by the potential to assimilate CO2 via photosynthesis, capability to
counteract photo-oxidative stress, and the efficient uptake/use of water. Quantification
of the photosynthetic, oxidative, and water status of plants requires detailed and time-
consuming measurements by highly trained personnel. While it may not be possible to
measure these attributes directly, many phenotyping approaches can indirectly infer or
estimate these parameters rapidly. After outlining the traditional approaches to quantify-
ing plant ecophysiology, we then describe the theoretical basis and application of rapid
screening phenomic approaches that gauge plant ecophysiological status.

2. Leaf Gas Exchange

Leaf gas exchange is a core component of plant physiological research [16,17]. The
exchange of gases between a part of the leaf, the whole leaf, or the entire plant with the
atmosphere underpins photosynthetic CO2 uptake and transpiration [18,19]. The expansion
in the availability of commercial plant photosynthetic gas exchange systems has led to their
increased use in quantifying rates of photosynthesis, biochemical/diffusive limits to CO2
uptake, and stomatal physiological behavior in regulating photosynthesis [20,21]. However,
these plant photosynthesis systems are relatively complex and prone to mechanical or user
error, e.g., [22]. This has impaired their utilization in wide-scale phenotyping studies.

Plant photosynthetic leaf gas exchange systems utilize infra-red gas analyzers to
quantify fluxes of CO2 and water vapour. A leaf, or a portion of a leaf, is placed in an
enclosed leaf cuvette where the concentrations of [CO2] and [H2O] in the air entering and
then exiting the cuvette after passing over the leaf are measured. The delta values of [CO2]
and [H2O] are then used to calculate parameters such as photosynthesis (PN), stomatal
conductance (Gs), and the internal sub-stomatal concentration of CO2 within the leaf (Ci),
as shown in [23] and the citations contained within. The external concentration of [CO2]
outside the leaf (Ca), photosynthetic photon flux density (PPFD), temperature, relative
humidity, leaf-to-air vapour pressure deficit, and velocity of air flow can be controlled
within the leaf cuvette. This enables rapid manipulation of cuvette conditions to quantify
responses to specific factors influencing photosynthesis and the exchange of gases between
the leaf and the external atmosphere. Many plant photosynthesis systems also include the
capacity to simultaneously measure chlorophyll fluorescence (ChlF) parameters alongside
leaf gas exchange.

2.1. Instantaneous Point Measurements

Instantaneous point measurements give a ‘snap shot’ of leaf photosynthetic status.
Point measurements are the simplest and most rapid type of leaf gas exchange measure-
ment to perform, and are, therefore, the most widely used in plant phenotyping studies.
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Despite the relative simplicity of instantaneous point measurements, these measurements
can be time-consuming. If set controlled conditions of PPFD, temperature, Ca, and leaf-to-
air vapour pressure deficit are utilized within the leaf cuvette, each leaf requires a period of
time to adjust to those cuvette conditions, precluding the ability to take large numbers of
measurements at the same time/conditions in phenotyping trials of multiple genotypes.
Less time-consuming instantaneous point measurements of leaf gas exchange parameters
can be performed without using controlled cuvette conditions. Such measurements where
PPFD and temperature track ‘ambient’ conditions do not require the same adjustment
period for the leaf, but variations in ambient conditions, diminishes comparability between
measurements, and may render any phenotypic or treatment effect indiscernible [24,25]. A
significant disadvantage of these instantaneous point measurements of leaf gas exchange is
that they only reflect photosynthetic status at a single point in time over a comparatively
small area of leaf (~1.75 to 6 cm2). Moreover, leaf gas exchange measurements tend to be
comparatively variable between individual plants (and sometimes between leaves of the
same plant). A more comprehensive insight into leaf physiological processes that are rele-
vant to phenotyping can be observed in the more detailed leaf gas exchange measurements
outlined below; however, these measurements are more complex and time-consuming
than instantaneous measurements, further reducing their applicability for high-throughput
phenotyping.

2.2. Biochemical Efficiency of Photosynthesis

The rate of photosynthesis is determined by biochemical and diffusive constraints on
the uptake and assimilation of CO2 [23,26]. The biochemical efficiency of photosynthesis is
a key parameter in determining plant growth rate and crop yield [27–33], and, therefore, of
primary importance to plant phenotyping applications. Leaf level rates of photosynthesis
in many staple crops such as rice are relatively low [34]. Identification of genotypes with
higher leaf level photosynthetic capacities has the potential to positively affect future
crop yields [30,35,36], and identification of genotypes that retain biochemical assimilation
during abiotic stress such as water deficit or drought can contribute to more climate-
resilient agriculture [27,37]. However, analysis of the biochemical efficiency of leaf level
photosynthesis is highly time-consuming, and it is not possible to rapidly and accurately
assess large volumes of genotypes at sufficient levels of replication [38,39].

The most commonly used method to gauge plant photosynthetic capacity in vivo
involves the use of photosynthetic leaf gas exchange systems to perform photosynthetic
response curves, where the PN is measured relative to increasing steps in the concentra-
tion of [CO2] (commonly known as A–Ci curves where, instead of PN, A stands for the
assimilation rate of CO2) (Figure 1).

Figure 1 shows a typical PN–Ci curve characteristic of a C3 plant Michaelis–Menten en-
zymatic reaction. Photosynthesis is limited by the availability of CO2 at the initial part of the
curve, and this represents the maximum rate of carboxylation of ribulose-1,5-bisphosphate
carboxylase/oxygenase (RubisCO) (Vcmax). At higher levels of [CO2], PN is no longer
limited by substrate availability, but the regeneration of ribulose-1,5-bisphosphate (RuBP)
(Jmax). The parameters Vcmax and Jmax are critical components of crop and climate mod-
els [19,40,41], and would likely be integrated into digital agriculture applications [42,43];
thus, demonstrating their importance to phenotyping of plant physiology [30]. More de-
tailed reviews of PN–Ci curves can be found in Sharkey et al. [21], Centritto et al. [44],
Ethier and Livingston [45], and Duursma [20]. The parameters derived from these PN–Ci
curves are fundamental to the characterization of the biochemical efficiency of PN, but
these measurements are time-consuming (each curve taking ~40–120 min), prone to error,
and require expensive equipment operated by staff trained in leaf gas exchange. This
makes traditional steady state photosynthetic response curves unsuited to high-throughput
phenotyping systems [38,39,46].
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rate of electron transport required for ribulose-1,5-bisphosphate (RuBP) regeneration (Jmax), the part 

of the curve limited by the carboxylation capacity of ribulose-1,5-bisphosphate carboxylase/oxygen-

ase (RubisCO) (Vcmax), and the maximum rate of photosynthesis at PARsat and high [CO2] (PNmax), 

grey circles indicate steady state measurements of photosynthetic gas exchange taken at each [CO2] 

level; (b) RACiR curves (red, yellow, and blue symbols) overlain with a traditional PN–Ci steady 

state response curve (Phragmites australis (Cav.) Trin. ex Steud.); (c) example of an error during [CO2] 

ramping that can affect post-processing of a RACiR curve, and; (d) the results of the [CO2] ramping 

error outlined in (c) on the corrected RACiR curve (red symbols) of a P. australis leaf, alongside a 

RACiR error caused by the use of an excessively fast [CO2] ramping rate (yellow symbols). 
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Figure 1. (a) PN–Ci response curve (Olea europaea L.) showing the stage of the curve limited by the rate
of electron transport required for ribulose-1,5-bisphosphate (RuBP) regeneration (Jmax), the part of
the curve limited by the carboxylation capacity of ribulose-1,5-bisphosphate carboxylase/oxygenase
(RubisCO) (Vcmax), and the maximum rate of photosynthesis at PARsat and high [CO2] (PNmax), grey
circles indicate steady state measurements of photosynthetic gas exchange taken at each [CO2] level;
(b) RACiR curves (red, yellow, and blue symbols) overlain with a traditional PN–Ci steady state
response curve (Phragmites australis (Cav.) Trin. ex Steud.); (c) example of an error during [CO2]
ramping that can affect post-processing of a RACiR curve, and; (d) the results of the [CO2] ramping
error outlined in (c) on the corrected RACiR curve (red symbols) of a P. australis leaf, alongside a
RACiR error caused by the use of an excessively fast [CO2] ramping rate (yellow symbols).

Given the importance of the biochemical efficiency of photosynthetic CO2 assimilation
to crop productivity [24,30], attempts have been made to adapt these measures for use
in phenomic applications. Newer plant photosynthetic gas exchange systems are able to
continuously ‘ramp’ [CO2] in the leaf cuvette and dynamically measure the concurrent
effect on PN. These response curves are known as RACiR curves, standing for “Rapid
A-Ci Response” [46]. The RACiR curves can be performed in ~5–15 min, significantly
increasing the capability to perform detailed physiological analysis of photosynthetic
capacity [31,46–49]. However, a number of limitations constrain the potential widespread
application of RACiR curves: (1) RACiR curve measurements require set-up time to perform
empty cuvette measurements to determine the lag in the system between the reference and
sample IRGAs [46]; (2) RACiR curves require a degree of prior knowledge of the plant
species under analysis (for example, if there is a wide range of Gs values of plant varieties
in a phenotyping study, this may require adjustment of the [CO2] ramping speed between
varieties) [50,51]; (3) preparation of the RACiR curves involves more extensive processing
of data after measurements than traditional PN–Ci curves, and this reduces the opportunity
to identify and correct any errors during measurements (Figure 1b), and; (4) variations
associated with photosystem I electron transport dynamics [52]. To minimize some of these
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limitations by eliminating data post-processing, a recent modification of the method known
as the single-step CO2 response (SSCO2R) has been proposed. This involves equalizing the
pathways (or air volume) travelled by the reference and analysis sample air flows to the
respective IRGAs during the CO2 ramping process [53].

The parameters Vcmax and Jmax are highly significant to models of photosynthe-
sis [26,54], stomatal behavior [55–57], crop yield [58,59], and climate modelling [19], but
the application of Vcmax and Jmax is constrained by the length of time and the complexi-
ties outlined above in performing sufficient numbers of reliable PN–Ci curves. To speed
up data collection, Vcmax has also been calculated from single-point measurements of
light-saturated photosynthesis (PN sat) [60,61]. This ‘one-point method’ assumes that in
the light-saturated state, the leaves are limited by CO2 availability, allowing calculation
of Vcmax from the C3 photosynthesis model [26,62]. Accurate prediction of Vcmax from
a single-point measurement of leaf gas exchange requires the PN of the leaf to be limited
by CO2 availability, knowledge/estimation of respiration in the light, and for the leaf
to be fully acclimated to saturating PPFD. In cases where these conditions are not met,
estimates of Vcmax may be rendered inaccurate [63,64]. This uncertainty leaves the more
time-consuming PN–Ci curves as the benchmark methodology for the determination of
Vcmax and Jmax.

2.3. Light-Use Efficiency and Photoprotection

The conversion of light energy to sugars underpins plant growth, and is central to crop
yield [65]. However, excess light can induce photo-oxidative stress through the production
of reactive oxygen species [66]. During episodes of abiotic stress, such as drought, when
the capacity to utilize energy for photochemistry declines, a greater proportion of the
absorbed light energy must be dissipated as heat or re-emitted at a longer, less energetic
wavelength as ChlF [67,68]. It is, therefore, important for crop phenotyping efforts to en-
hance productivity and climate resilience to characterize the physiology of light harvesting
and photoprotection.

Photosynthetic light capture and use can be analyzed a number of ways using leaf
gas exchange, often in combination with ChlF [69]. The most common approach is to
measure PN at decreasing/increasing steps of PPFD using the LED lights within the plant
photosynthesis system leaf cuvette. This enables calculation of the maximum quantum
efficiency (ΦCO2), the light saturation point (PPFD above which PN no longer increases:
PN sat), identification of levels of PPFD where photoinhibition may occur [38,70], and respi-
ration in both the light (Rlight) and the dark (Rdark) [71]. These physiological parameters are
useful in identifying crop varieties with greater quantum efficiencies that are more likely to
correlate to yield [72].

Light response curves incur many of the same impediments for high-throughput
phenotyping as PN–Ci curves. Despite their utility in the accurate characterization of light
harvesting and protective physiologies, light response curves using leaf gas exchange are
likely to be unsuitable for phenotyping in comparison to the leaf-level sensor and remote-
sensing-based approaches outlined below. Nevertheless, light response curves derived
from leaf gas exchange may still be required to ‘support’ data and observations derived
from more rapid approaches suited to high-throughput phenotyping.

Photosynthetic Response to Variable Growth Conditions

Plant responses to variations in radiation are becoming increasingly important to
efforts to improve crop productivity [65,73,74]. Under normal growing conditions in
the field, the light environment experienced by leaves can be highly variable (passing
clouds, temporary shading from other leaves in the canopy, changes in leaf orientation
as the canopy moves due to wind, etc.) Small increases in the efficiency of plants to use
this heterogeneous light would translate into improved yields when scaled over whole
canopies and an entire growing season [74,75]. The mechanisms involved in the transitions
between photochemical and protective energy dissipation may be evident in canopy-level
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measurement of sun-induced fluorescence (see Section 3.1) [76]. This improved efficiency
in photosynthetic light harvesting is related to the physiological processes involved in the
transitions between light capture and energy dissipation (outlined in Section 3—ChlF), and
also physiological stomatal behavior through stomatal control of PN [77,78].

Stomatal physiological regulation plays a central role in plant carbon and water effi-
ciencies [79,80]. Analysis of Gs values over time to changes in factors such as PPFD, [CO2],
chemical signals of drought, or leaf-to air vapour pressure deficit enables quantification of
stomatal physiological responsiveness [81–84]. These ‘stomatal kinetics’ are performed by
placing a leaf within a cuvette and monitoring Gs over time while cuvette conditions are
adjusted [38]. Stomatal kinetic responses can be used to show physiological differences be-
tween varieties that may translate into enhanced productivity [85,86], resilience to stresses
such as drought [83,87], or fumigation with atmospheric pollutants [88]. However, mea-
surement of stomatal kinetics using leaf gas exchange is particularly time-consuming given
the requirement for the leaf to completely adjust to cuvette conditions prior to recording the
full extent of any response to a change in cuvette conditions and the inherent variability in
many Gs measurements requiring high numbers of replicates for statistical robustness [38].

3. Chlorophyll Fluorescence (ChlF)

The majority of plant photosynthesis systems offer the opportunity to simultaneously
measure ChlF alongside leaf gas exchange parameters by integrating pulse amplitude
modulation (PAM) fluorometers within the leaf cuvette. While the ChlF measurements
used in PAM fluorometer systems may differ somewhat to those used in high-throughput
phenotyping and precision agriculture, the underlying principles and many of the param-
eters recorded are the same. Detailed reviews of ChlF applications in plant physiology
and phenotyping can be found in Maxwell and Johnson [89], Strasser et al. [90], and Kalaji
et al. [91]. Analysis of ChlF can provide insights into plant physiological processes, and
given the nature of the measurement of ChlF, it may be more suited to high-throughput phe-
notyping applications than leaf gas exchange. Chlorophyll fluorescence measurements are
based on the principle that changes in the amounts and proportions of radiation absorbed
by chlorophyll for photochemistry, dissipated as heat, or re-emitted as ChlF can provide an
indication of the physiological status of the plant [92]. The amount of absorbed radiation
emitted as ChlF in the wavelength bands 685–690 nm (red) and 720–735 nm (far-red) ranges
from 0 to 10% depending upon the status of photosynthesis [93]. Fluorescence in the far-red
wavelengths (Ffar-red) is mainly associated with fluorescence from photosystem I (PSI).
Fluorescence derived from PSII mainly occurs in the red band (Fred), and is more sensitive
to short-term variations in photosynthetic performance than Ffar-red due to the availability
of PSII reaction centres associated with photochemical and non-photochemical quench-
ing [92,94,95]. The constraint to the widespread use of ChlF techniques in phenotyping
and digital agriculture is the comparability, quantification, and standardization of different
indices dependent upon the type/optical leaf properties of the plant and light environment
used to stimulate ChlF [96]. Measurements of ChlF are frequently categorized as active
(where a pulse of light is applied to the leaf) or passive (where ChlF is monitored under
normal light conditions) [97]. An impediment to the use of ChlF for phenotyping at high
temporal frequency over a large spatial area is the accurate determination of fluorescence
due to it constituting a small proportion of total reflectance in both of the fluorescence
wavelength bands, and confounding factors such as scattering of Fred re-absorption [97–99].

The majority of ChlF measurements used in plant physiology utilize measurement
of Fred to assess the performance of PSII due to its greater sensitivity to growth condi-
tions, [90,92]. Nevertheless, dual-PAM systems allow analysis of fluorescence associated
with both PSI and PSII [100,101]. One of the most widely used active ChlF parameters
in plant physiology is the actual quantum efficiency of photosystem II in light-adapted
conditions (ΦPSII) [102]:

ΦPSII =
Fm
′ − Fs

Fm
′
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where the steady state fluorescence (Fs) is recorded prior to a high-intensity saturating pulse
of light being applied to the leaf (or a series of sub-saturating multi-phase pulses: [103]) to
determine the maximum fluorescence under steady-state conditions in the light (Fm’). The
ΦPSII parameter is more sensitive to abiotic stress than the maximum quantum efficiency of
PSII (Fv/Fm: where Fv indicates the maximum variable fluorescence, and Fm the maximum
fluorescence after a saturating pulse of light of a dark-adapted leaf where all PSII reaction
centres are available) [104] that requires dark adaptation to fully open the PSII reaction
centres [90]. Moreover, ΦPSII often correlates closely with the rate of PN measured using
leaf gas exchange (Figure 2b). The ΦPSII determined from ChlF gives an indication of
photochemistry, specifically both PN and photorespiration (RPR) [102,105]. In contrast, the
ΦCO2 determined from gas exchange quantifies the amount of CO2 assimilated through PN
relative to the incident PPFD [70]. As plants become more drought-stressed, an increasing
proportion of energy utilized for photochemistry will drive the oxygenation of RubisCO, as
RPR serves as a sink for excess electrons [106,107]. An increase in ‘wasteful’ photorespiration
due to the loss of previously fixed carbon [108] may be indicated by a shift in the ratio of
ΦPSII to ΦCO2 [38]. In this context, the comparison of quantum efficiencies derived from
ChlF and leaf gas exchange may be useful in identifying crop species and varieties with
enhanced tolerance to abiotic stress such as drought (Figure 2d) [109]. However, under
a strong prolonged drought stress, as photochemistry declines and non-photochemical
energy dissipation increases [110], the utility of comparison of ΦPSII and ΦCO2 will become
compromised.
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Figure 2. (a) The light compensation point (PARcomp), maximum quantum efficiency of CO2 assim-
ilation (ΦCO2max ), and light-saturated rate of photosynthesis (PN sat) from a light response curve of
wheat (Triticum aestivum L.); (b) relationship between PN measured using gas exchange and ΦPSII
measured using ChlF of well-watered (white fill) and drought-stressed (grey fill) Moroccan (circle
symbol), Sicilian (triangle symbol), and Tuscan (square symbol) ecotypes of Arundo donax, black central
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line indicates the regression best-fit, the two grey lines either side indicate 95% confidence intervals
of the mean; (c) relationship between the actual quantum efficiency of PSII in the light-adapted state
(ΦPSII) determined using ChlF and quantum efficiency determined using leaf gas exchange (ΦCO2 ) of
A. donax (symbols and statistical analysis as in (b), and; (d) the ratio of ΦPSII to ΦCO2 of the A. donax
genotypes under well-watered (white fill) and drought-stressed (grey filled) conditions consistent
with an increase in the proportion of energy utilized via photorespiration in the drought-stressed
plants, letters indicate homogeneous groupings indicated by a one-way ANOVA with an LSD post-hoc
test. Recalculated from Haworth et al. [109] and Riggi et al. [72].

A new generation of comparatively low-cost handheld optical sensors (such as the
PhotosynQ MultispeQ, PhotosynQ Inc., East Lansing, MI, USA) can enable the rapid
collection of large volumes of GPS linked leaf-level ΦPSII. The use of sequential pulses
of light also allows the PhotosynQ to extrapolate Fm’ to determine NPQ [111]. Moreover,
porometer models such as the LiCor Li-600 porometer–fluorometer (LI-COR Biosciences,
Lincoln, NE, USA) also include IRGAs capable of rapid measurement of water vapour,
enabling measurement of Gs alongside ΦPSII (and other light-adapted ChlF parameters)
for fast phenotyping of large numbers of genotypes at sufficient levels of replication.
Chlorophyll fluorescence can also be assessed at wider scales over the canopy-level using
passive approaches; these are detailed in Section 3.1.

Under constant stable illumination in PPFD (a ‘steady-state’), the average emission
of fluorescence is known as ‘steady state fluorescence’ (Fs). An advantage of Fs as a ChlF
parameter is that it can be measured passively, and does not require ‘active’ stimulation with
pulses of light, facilitating its use to continuously monitor large numbers of plants [112].
Moreover, Fs is affected by water [113,114] and heat stress [115]. Steady-state fluorescence
can be measured using a handheld fluorimeter or monitored remotely using a fluorimeter
or hyperspectral sensor. Moreover, integration of Fs into ChlF indices utilized as part of sun-
induced fluorescence has direct applications in linking leaf-level physiological processes to
more rapid wider-scale phenotyping and digital agriculture applications [116,117].

3.1. Sun-Induced Chlorophyll Fluorescence

Sun-induced chlorophyll fluorescence (SiF) uses leaf reflectance spectroscopy to pas-
sively measure fluorescence under natural illumination at a range of scales from the leaf
to the canopy. As SiF is associated with plant photosynthetic performance, this can al-
low the rapid screening of large numbers of plants under representative natural growth
conditions [99,117,118]. To measure the two wavelength peaks associated with ChlF, it
is necessary to quantify the amount of light derived from fluorescence and reflectance.
This can be achieved due to the similarity in ChlF wavelengths to absorption bands of
oxygen at 687 and 760 nm [119,120]. One difficulty in accurately quantifying SiF is that it
accounts for a comparatively low percentage of total reflected radiation [98], and is affected
by the amount of oxygen (atmospheric pressure, temperature, and height of spectroscopy
measurement) [121], scattering by aerosols [122], canopy structure [123,124], accurate mea-
surement of the quantity/spectra of incoming radiation [94,125], and the reabsorption for
PN of light emitted in the Fred wavelengths [99,126].

Sun-induced fluorescence can be gauged quantitatively as amounts of radiation or
as relative indices, e.g., [95,123]. The use of indices may enable greater comparison be-
tween measurements taken at different time-periods under different light conditions (this
is outlined in more detail in Section 6). The emission of Ffar-red has been used to gauge
gross primary productivity [118,127] due to its relationship with PSI [92]. Photosystem II
fluorescence in the 687 nm red wavelength may provide more information on photosyn-
thetic performance over the short-term, but is subject to greater uncertainties associated
with re-capture of fluorescence radiation [126]. This has led to the use of the ratio of red to
far-red fluorescence (Fratio) [99] that provides an indication of the respective fluorescence
yields of PSI and PSII [128]. Heat stress, water deficit, soil nitrogen deficiency, canopy
structure, and foliar chlorophyll content all affect Fratio [117]. Sun-induced fluorescence
can also be standardized relative to the amount of incoming radiation to reduce variation
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between measurements taken at different times and under different conditions. The flu-
orescence quantum yield (Fyield) is the ratio of the emission of fluorescence to the level
of PPFD. The level of fluorescence can also be standardized relative to total vegetation
reflectance at the 687 and 760 nm wavelengths [94]. The fluorescence emission of plants
may also be affected by the physical properties of the canopy and leaf structure [123,129].
The fluorescence correction vegetation index (FCVI) is the difference between near-infrared
and visible reflectance (400–700 nm), and attempts to characterize PAR absorption and SiF
scattering processes [124]. The use of FCVI alongside Ffar-red may provide context to the
photosynthetic processes associated with fluorescence emission through characterization
of light absorption and scattering properties of the canopy [116,124].

Sun-induced fluorescence may also provide valuable information on plant photosyn-
thetic status when used in conjunction with other spectral indices. The photochemical
reflectance index (PRI) gives an indication of the performance of the xanthophyll cycle
and the dissipation of excess energy as NPQ [130]. Therefore, analysis of SiF and PRI can
provide valuable insights into the physiological status of plants, specifically the efficiency
of light harvesting and protection from excess light [95,116]. Likewise, comparison of SiF to
the widely used normalized difference vegetation index (NDVI) [131], which uses visible
and near-infrared reflectance to quantify green biomass [132,133], can be used to infer shifts
in PSII function relative to chlorophyll content [99], the absorption of PAR [124], and the
vegetated fraction of the surface [134,135]. However, SiF is more variable than NDVI due to
the dependence upon the level of PPFD [125,135], potentially impairing the comparability
of measurements over temporal and spatial scales.

Sun-induced fluorescence enables the rapid assessment of photosynthetic activity
of large numbers of plants under natural growth conditions. However, uncertainties
associated with the passive measurement of fluorescence may reduce the efficacy of SiF as
a stand-alone approach to gauging plant physiological status for phenotyping purposes.
Nevertheless, the use of absolute and relative indices of SiF alongside other spectral indices
or LiDAR analysis of canopy structure may enable the use of SiF as a component of plant
phenotyping applications.

4. Handheld Optical Sensors

An increase in the availability of handheld optical sensors capable of rapid measure-
ment of a range of plant physiological processes has significant applications for high-
throughput phenotyping. Handheld sensors have been utilized widely for analysis of the
efficiency of PSII in both dark- and light-adapted states [67,136]. The absorbance spectra of
chlorophyll has also been extensively utilized to non-destructively quantify leaf chlorophyll
content, with the Konica Minolta SPAD (Konica Minolta Inc., Tokyo, Japan) being the most
widely used instrument [137,138].

A number of phenotyping studies have selected crop varieties on the basis of the
foliar concentration of chlorophyll and RubisCO [139–141], due to the association between
leaf-level PN and yield [34]. Foliar chlorophyll concentration often correlates with direct
leaf gas exchange of photosynthesis (Figure 3a) and ΦPSII (Figure 3b). Handheld SPAD
estimates of leaf chlorophyll content also closely correlate to specific spectral reflectance
indices (e.g., NDVI) [142], allowing rapid screening of large numbers of plants for foliar
chlorophyll content [143–145]. Handheld SPAD measurements can be useful in differentiat-
ing phenotypic differences between crop genotypes in their response to factors such as heat
and water-deficit stress (Figure 3c). However, changes in leaf thickness associated with
specific stresses can influence the effectiveness of SPAD measurements of foliar chlorophyll
content on an area basis. As the effect of changes in leaf thickness that may only become
evident when chlorophyll is assessed per unit dry mass of leaf tissue (Figure 3d).
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Figure 3. The relationship between SPAD values and leaf gas exchange values of photosynthesis
(a) and chlorophyll fluorescence analysis of the actual quantum efficiency of photosystem II (ΦPSII)
(b) of ginkgo (Ginkgo biloba L.) grown at 20/25 ◦C (white fill) and 30/35 ◦C (grey fill) [146]—the
solid black lines indicate linear regression, grey lines either side of linear regression indicate 95%
confidence intervals of the regression line. The use of SPAD (c) and spectrophotometric quantification
of chlorophyll content per dry weight of leaf (d) to phenotype the effect of well-watered (WW:
open fill) and water deficit (WD: hashed fill) irrigation on drought-tolerant (white fill) and drought-
sensitive (grey fill) sunflower (Helianthus annuus L.) [67]. Error bars indicate one standard error either
side of the mean. Letters indicate significant difference between groups in SPAD (lower case) and
chlorophyll content per dry weight of leaf (upper case letters) values using a one-way ANOVA and
LSD post hoc test.

The absorbance characteristics of other plant pigments can be used to non-destructively
characterize physiological status. The Dualex (Force A, Orsay, France) and Opti-Sciences
MPM-100 multi pigment meter (Opti-Sciences Inc., Hudson, New Hampshire, USA) simul-
taneously quantify the absorbance of chlorophyll, anthocyanin, and flavonols to produce an
index for leaf nitrogen levels (nitrogen balance index or nitrogen–flavonol index) [147–149].
These indices are useful for rapid phenotyping and digital precision agriculture due to the
photo-protective roles of anthocyanins and flavonols, alongside the importance of foliar
nitrogen levels to rates of PN and growth [150].

The advances in LED technology that have driven the expansion in the availability and
applications of handheld plant physiological sensors have also enabled the development
of handheld sensors capable of assessing the spectroradiometric properties of leaves. The
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potential uses of spectroradiometric indices for plant phenotyping to gauge PN, plant water
status, and photo-protection are outlined in more detail in Section 6. Nonetheless, the
capability to measure leaf spectra rapidly using comparatively low-cost handheld sensors
is highly suited to rapid phenotyping of plant physiological status in comparison to slower,
more complex leaf gas exchange measurements.

5. Plant Water Status

The efficient uptake and use of water is a key component of crop performance and
of central importance to the tolerance of abiotic stresses such as heat, drought, and salin-
ity [2,77,151,152]. Several approaches can be used to gauge plant water content for phys-
iological analysis. Among the most frequently used [153] are weighing lysimeters that
determine evaporation from the soil–plant system (ET) through weight-based estimates of
ET and drainage [154], a parameter that is directly related to plant water status. Lysimeters
are mainly used under controlled or semi-controlled conditions where the level of irriga-
tion can be tightly regulated. When used for phenotyping, lysimeters can be combined
with other measuring tools, such as soil and atmospheric probes; nevertheless, the main
limitation associated with lysimeters is the need of controlled or semi-controlled environ-
ments, constraining their application to rapid phenotyping. Lysimeters are adaptable to
open-field conditions when provided with top covers to avoid rainwater infiltration that
would prevent accurate measurement of transpiration. Nevertheless, even if adaptable
to open field, such lysimeters systems still rely on specific portions of soil being isolated
using pots, buckets, or tanks dependent upon the volume of soil and size of plants to be
investigated [155].

Other physiological approaches can be used to gauge plant water content for physi-
ological analysis, including stomatal conductance (Gs), leaf turgor, leaf thickness, water
potential (Ψ), relative water content (RWC), and sap flow (SF) [156]. Nevertheless, the mea-
surement of such parameters can be destructive and/or time-consuming. This makes these
measurements unsuitable, when used in isolation, for wide-scale phenotyping studies or
continuous measurement for precision agriculture [157]. Leaf relative water content (RWC)
can be calculated by comparing the fresh, turgid, and dry mass of a leaf without the need
for specialized equipment [158]; however, alongside being a destructive analysis, this is a
time- and labor-consuming approach unsuited to rapid high temporal resolution screening.
The use of a Scholander pressure bomb to determine the water potential (Ψ) of different
tissues allows quantification of the turgor pressure associated with the osmotic flow of
water from the soil to the roots and upwards towards the photosynthetic organs [159,160].
The lower the water potential of the plant relative to the water potential of the soil in the
root zone, the greater the capacity of the plant tissue to osmotically draw water [161,162].
Values of leaf and stem water potential not only decline as soil water availability decreases
during drought, but also over the course of a day, with the most physiologically informative
readings of Ψ occurring at pre-dawn (when plant water potential has equalized with the
soil) and midday (the time of maximum transpirative demand) [163–166]. The cell pressure
probe technique used to measure leaf turgor is invasive and unsuitable for long-term
outdoor applications [167,168]. Leaf thickness measurements can require cutting the leaf
when using micrometers to determine a pressure–volume curve [169]. Nuclear magnetic
resonance can also be used to non-destructively gauge leaf water [170,171]. However, nu-
clear magnetic resonance requires highly trained personnel, expensive equipment, detailed
post-processing of data, and an extended period for each measurement, making it unsuited
to low-cost, fast phenotyping applications. Measurement of the rate that sap flow ascends
a plant can determine its transpiration rate, and can, thus, be used an indicator of plants
water status [156]. These measurements can be made using two main approaches: the first
calculates the sap flow rate through the heat balance method, which is destructive and
unsuited for plant phenotyping., while the second method calculates sap flux density using
the heat pulse or continuous thermal dissipation methods [172]. The heat pulse method is
described in more detail in Section 5.1 below.
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5.1. Analysis of Whole Plant Water Relations

Plant water potential can be measured on leaves (Ψleaf), with this value representing
local leaf water demand. The water potential of the xylem (Ψxylem) reflects whole plant
transpiration with soil and root/soil hydraulic conductivity. Stem water potential (Ψstem) is
measured on a non-transpiring leaf, as when leaves do not transpire, their water potential
is considered to correspond to stem water potential [156]. Several studies have shown
that Ψstem can be an effective water deficit indicator, and a more representative measure of
plant water status than Ψleaf [173–175]. Methods for water potential determination include
the Scholander pressure chamber described above, thermocouple psychrometers, and mi-
crotensiometers. The first two methods do not measure water potential continuously and
are labor- and time-consuming, whereas microtensiometers offer the option to continuously
monitor water status [176]. These devices measure water potential based on a microelec-
tromechanical pressure sensor that is embedded in the trunk and directly measures stem
water potential [156]. Microtensiometers provide accurate continuous measurements of
Ψstem in trees during the growing season across a wide range of environmental conditions
and soil water content values [176]. However, in irrigated grapevine, microtensiometers
appeared to be insensitive under high VPD and did not reflect diurnal and seasonal changes
in water potential [177].

The sap flow rate in plants is correlated to the rate of transpiration, and can be used as
an indicator of plant water status. The two main methods to determine sap flow rate are
the heat pulse and the continuous heat methods, highly accurate, and low-cost approaches
to determine sap flow in roots, stems, and branches [156]. Various types of sensors exist
that measure temperature changes in the xylem following heat application [178]. The
transpiration rate is not then directly measured from sap flow, but from the transfer and
movement of heat within the xylem [179]. These measurement techniques are consistent
with weighing lysimeters. Moreover, the use of a low-cost technology with high time-
resolution and automated data collection and storage makes heat pulse and continuous
heat approaches valuable tools for plant water status determination. Limitations have been
observed in heat pulse method sensors, which, while accurate in correlating heat velocity
with rates of transpiration, were poor in quantifying transpiration [179]. In contrast, the
thermal dissipation probe used in the continuous heat method was found to be affected by
external temperature variations and requires species-specific calibration to allow accurate
sap flow measurement.

5.2. Analysis of Canopy-Level Water Relations—Infrared Thermography

As a complement to the leaf, stem, and whole plant measurements outlined above, the
analysis of canopy-level images can also provide information on the water status of large
numbers of plants. The use of infrared thermography to measure canopy temperature can
provide insights into the water status of large numbers of plants under field conditions or
protected cultivation [180]. Leaf temperature correlates to Gs due to the cooling effect of
transpiration, making infrared thermography a useful tool for irrigation scheduling [181].
Infrared thermography is a relatively low-cost approach to monitor the onset of stomatal
closure in large numbers of plants subject to water deficit [182] that could be useful in iden-
tifying crop varieties with more sensitive physiological stomatal behavior and signalling
(Figure 4). Spectral reflectance techniques outlined below in Section 6 also provide insights
into canopy water relations that can be correlated to direct measurement of Ψplant, Gs, and
sap flow.

5.3. Leaf-Based Sensors

In light of the fundamental role of plant water relations to PN, rapid, wide-scale, and
high-frequency analysis of plant water status is vital to effective phenotyping of crops
in terms of productivity and climate resilience. To overcome the previously described
constraints associated with traditional methods, a number of non-invasive leaf- or plant-
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based sensors and remote sensing approaches have been developed to continuously gauge
the water content of vegetation.
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Figure 4. (a) UAV-mounted infrared thermography of cannabis (Cannabis sativa L.) receiving full
(100% white fill) and water deficit (50% grey fill) irrigation. (b) Temperature measurement of the
plots shown in panel a (one-way ANOVA: F1,22 = 35.4; p = 5.4 × 10−6). (c) Stomatal conductance (Gs)
of the plants measured using a LiCor Li600 porometer–fluorometer (Li-Cor, Inc., Lincoln, NE, USA)
(one-way ANOVA: F1,22 = 18.0; p = 0.0003).

Small interconnected data-logging leaf-based sensors can be used to non-destructively
indirectly gauge leaf water levels, either through changes in pressure sensors [183,184],
variation in spectral reflectance [185], or the attenuation of a known quantity of light passing
through a leaf [186]. Pressure sensors such as the ZIM-probe (ZIM Plant Technology GmbH,
Hennigsdorf, Germany) function by applying inward physical pressure to both leaf surfaces
(in the case of the ZIM-probe, this is achieved using magnets). The counter resistance to
this inward pressure against the leaf is related to plant water status: i.e., the more turgid
the leaf, the greater the outward counter pressure acting against the probe [183,184,187].
The effectiveness of these pressure probes has been demonstrated through comparison to
classical measurement of leaf water potential and stomatal conductance in plants subject
to soil drying [188–192]. However, the area of the leaf in direct contact with the pressure
probe does not receive light and can become chlorotic, impairing the effective use of the
probes over extended durations in crops with low structural investment in leaves [188].

As outlined in the Section 6, the spectral and reflectance properties of leaves can be
used to gauge foliar water content by exploiting developments in LED technologies that
enable the constant emission of specific wavelengths of light. Novel leaf-based sensors such
as the Leaf Water Meter (LWM, PaStella Factory SRLS, Verona, Italy) utilize the absorption
of light through the leaf emitted by two LEDs at wavelengths of 1450 and 890 nm to
estimate foliar water and dry matter content, respectively. Calibration of these optical
leaf absorbance parameters to traditional leaf water potential measurements through soil
drying and re-watering cycles demonstrates the efficacy of the sensors [186]. A low-cost
hyperspectral sensor has also been used to monitor leaf water content using reflectance of
light in the wavelength range 1550–1950 nm that corresponds to the absorption properties
of water [185]. Microwave-based sensors might also offer similar possibilities for non-
destructive continuous measurement of the volume of foliar water [193].

6. Spectral Reflectance

Photosynthesis is powered by the capture of photosynthetically active radiation (PAR)
within the 400–700 nm wavelength range for conversion to chemical energy in the form of
sugars [194]. Light energy that hits a leaf can either be absorbed, reflected, or transmitted
through the leaf (see Section 3 for the fate of absorbed energy) [195,196]. The amounts
and proportions of each potential outcome depend upon the intensity and spectrum of
the incoming solar radiation alongside the reflective properties of the vegetation [197,198].
The reflective characteristics of a leaf are determined by its biochemical properties and
structural attributes [133,199] (Figure 5). To minimize the effect of variation in illumination,



Plants 2023, 12, 4015 14 of 35

the vegetation reflectance is compared to values from a calibrated reflectance panel. The
analysis of spectral reflectance usually utilises indices based on wavelengths associated with
specific characteristics. These indices are often calculated as the difference between two
specific wavelengths or wavelength bands normalized against their sum [200]. Analysis
of visible (400–700 nm), near-infrared (700–1300 nm), and mid-infrared (1300–3000 nm)
reflectance wavelengths can provide information regarding different aspects of the status
of vegetation [196]. Below, we outline the most commonly used spectral indices, their
physiological/physical basis, and how these indices could be used to rapidly infer plant
physiological, water, and biomass attributes (a more exhaustive list of spectral indices can
be found in [200]).
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mostly corresponds to visible and photosynthetically active radiation in the 400–700 nm band.
Absorption spectra of chlorophyll a and b (data from [201]). Horizontal dashed lines mark the
wavelengths utilized for the photochemical reflectance index (PRI—Section 6.1) and PSII chlorophyll
fluorescence (Section 3.1). (b) Spectral reflectance of the leaf over the wavelengths 300–2500 nm:
writing in orange indicates the main factors affecting specific parts of the spectra; key wavelengths
and parts of the spectra used to estimate specific parameters such as the water index (WI) or red-edge
are marked on the figure [15,196,202,203].

6.1. Light Energy Usage and Dissipation

Comparatively little radiation is reflected in the 400–700 visible part of the spectrum
that corresponds to the wavelengths used to drive photosynthesis, termed PAR (Figure 5a).
Nevertheless, spectral techniques have been widely used to assess the composition of pho-
tosynthetic pigments. The concentration of chlorophyll can be estimated from reflectance
at ~550 and ~675 nm [204]. Analysis of spectral reflectance in the 680–750 nm wavelength
range known as the ‘Red-Edge’ is widely used to gauge canopy chlorophyll content (com-
monly as the wavelength position of the red-edge, or as the ratio of reflectance at 750 and
700 nm: R750/R700) and leaf area index [205–207]. As outlined earlier in Section 4, the
foliar amount of chlorophyll often correlates to leaf-level nitrogen, allowing the use of
spectral assessment of chlorophyll content to determine nitrogen levels [208]. Spectral
assessment of chlorophyll has also been shown to correlate strongly with handheld optical
SPAD estimates [142,209].

The proportion of carotenoids to chlorophyll is indicative of the effect of, and resilience
to, photo-oxidative stress [210–212]. An increase in the proportion of carotenoids (that
preferentially absorb in the shorter more energetic blue wavelength part of the spectrum)
relative to chlorophyll a (that preferentially absorbs in the less energetic red part of the PAR
spectrum) can protect the photosynthetic apparatus through an increase in the capacity
of the xanthophyll cycle to dissipate potentially harmful excess energy [213]. This is
evident in a shift in the reflectance of wavelengths in the blue (corresponding to the
absorption of carotenoids and chlorophyll b) and red (corresponding to the absorption of
chlorophyll a), and can be gauged using spectral reflectance indices such as the normalized
difference pigment index (NDPI = [R680 − R430]/[R680 + R430]), structural insensitive
pigment index (SIPI = [R800 − R445]/[R800 − R680]), or simple pigment ratio index (SRPI =
R430/R680) [214,215].

The dissipation of excess light energy as heat via the xanthophyll cycle correlates to
reflectance at 531 nm [213]. The photochemical reflectance index (PRI = [R531 − R570]/[R531
+ R570]) also gauges carotenoid–chlorophyll ratios, and the short-term de-epoxidation state
of the xanthophyll cycle [130,202]. This short-term sensitivity to the status of photosyn-
thetic radiation energy harvesting has enabled correlation of PRI with other measures of
photosynthetic efficiency such as leaf gas exchange and ChlF (Sections 2 and 3) [15,157,216].

6.2. Plant Water Status

As outlined in Sections 5 and 7, plant water status and the efficiency of water us-
age/uptake are of central importance to plant physiological processes. A reduction in
leaf water content generally induces an increase in leaf spectral reflectance in visible
light [217,218] and changes in reflectance wavelengths related to shifts in the proportions
of photosynthetic/protective pigments [15,212]. Spectral reflectance shows the greatest
sensitivity to foliar water content at wavelength bands corresponding to the absorbance
of infrared radiation by water [217]. The water index (WI = R900/R970) [219,220] and wa-
ter content reflectance index (WCRI = R1455/[R1272/R1455]) [218] correlate to plant water
content. The sensitivity of the WI is also enhanced by normalization against NDVI, as an
indicator of plant green biomass [219].

Foliar water content is important in plant responses to salinity and monitoring the
vegetation fire risk. The WI is sensitive to salinity stress in barley [221]. A number of
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normalized difference spectral indices from near-infrared wavelengths were observed to
correlate to the leaf moisture content, equivalent water thickness, and relative water content
(RWC) of cotton at different salinity levels [222]. This indicates that spectral reflectance may
be a valuable tool in monitoring plant response to salt stress when phenotyping varieties
capable of cultivation on salt-affected land or irrigated with low-quality saline water.

6.3. Biomass and Productivity

Accurate determination of plant biomass is important for monitoring the growth of
biomass crops [223] and determination of the optimal timing of harvesting for grain and
fruiting crops [224]. Soil and foliage can be differentiated using spectral reflectance through
comparison of visible red (RRED) and near-infrared (RNIR) wavelength bands [132]. The
proportion of soil to vegetation cover can also be calculated using visual wavelengths based
on the ratio of red to green light with the ratio of blue to green [225]. The normalized
difference vegetation index (NDVI = [RNIR/RRED]/[RNIR + RRED]) quantifies the difference
between visible and near-infrared reflectance to gauge the amount of green vegetation cover
over an area of land [132,133]. The NDVI has been used to assess the proportion of the
land surface covered by vegetation [134,135], biomass, nutrient status [226–228], vegetation
canopy structure [132,229,230], and gross primary productivity [231]. The ‘greenness’ of
vegetation expressed by NDVI has also been shown to linearly scale with photosynthetic
light capture and rates of CO2 assimilation [132,157]. The normalized difference red edge
(NDRE) and green vegetation index (GVI) were also used to gauge biomass, but were less
effective than NDVI [232,233]. Spectral reflectance may also be utilized alongside LiDAR
(Section 7) to produce multi-variate proxy measures of plant biomass and/or canopy
architecture [234,235].

6.4. Linking Spectral Reflectance to Plant Physiological Status

The spectral reflectance properties of leaves offer an indirect insight into the physio-
logical processes that determine plant productivity and resilience to abiotic stress. As such,
spectral indices cannot replace a direct measurement of CO2 assimilation or photosynthetic
electron transport in terms of an empirical observation. However, as outlined earlier, these
direct physiological measurements are highly time-consuming and prone to measurement
error. Spectral reflectance measurements can be performed over a wide spatial scale at high
temporal resolution, and, thus, are highly suited for phenotyping applications, such as the
assessment of large numbers of replicates under field conditions [36,236]. This raises the
question of the most suitable approach to gauge plant physiological status from spectral
reflectance data.

Linear regression between individual spectral indices and physiological parameters
offers a relatively simple method to enable the rapid screening of plant physiological
status using spectral reflectance. For example, the spectral reflectance indices of olive
trees grown under full and water deficit irrigation correlate with physiological parameters
such as photosynthesis, sap flux density, and Ψleaf (Figure 6) [15,157]. This may enable the
use of these calibration training datasets to infer physiological parameters using spectral
reflectance. However, these correlations are often spatially and temporally variable de-
pending upon growth conditions [132]. The use of techniques such as partial least squares
regression [237,238] or deep learning [239] may offer alternative approaches to the use of
spectral reflectance to assess plant physiological status through the integration of a wider
multivariate range of reflectance characters including other proxies. This is outlined in
more detail in Section 9 below.
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Figure 6. Example of linear regression correlations between spectral reflectance indices and phys-
iological parameters of Olea europea grown under full (white fill) and deficit (grey fill) irrigation:
(a) photosynthesis (PN) versus photochemical reflectance index (PRI); (b) photosynthesis versus
normalized difference vegetation index (NDVI); (c) leaf water potential (Ψleaf) versus the water index
(WI), and; (d) sap flux density versus the water index. Linear regression and confidence interval lines
as in Figure 3. Re-drawn from Marino, et al. [157].

7. LiDAR

Light detection and ranging (LiDAR) operates by emitting laser pulses (generally in
the range of short infrared light: 830–1350 nm) toward a target, then measuring the time it
takes for the light to bounce back and using these data to generate highly detailed 3D maps
or models of the surroundings [240]. LiDAR can be operated on mobile, terrestrial, or aerial
platforms, known as mobile laser scanning (MLS), terrestrial laser scanning (TLS), and
airborne laser scanning (ALS), respectively (Figure 7). LiDAR appeared shortly after the
invention of the laser in 1960 [241]. Airborne laser scanning with manned aircraft preceded
terrestrial laser scanning, but swiftly gained ground because of its exceptional accuracy and
versatility. The autonomous vehicles industry and topographic surveying predominantly
dominate the demand for LiDAR technology. However, the demand also extended rapidly
to other sectors such as urban planning, archaeology, environmental monitoring, forestry,
and agriculture.
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Figure 7. LiDAR systems mounted on: (a) a mobile phenotyping station (Geoslam Zeb Horizon),
and; (b) an unmanned aerial vehicle (Riegel mini Vux).

The latest technological advancement in sensor manufacturing led to a new generation
of high-resolution, small-in-size, lightweight, and cost-effective LiDARs. At the same time,
unmanned aerial vehicle (UAV) technology went through remarkable advancement in
flight stability, autonomous capabilities, loading capacity, and battery life. Combining
those two rapidly evolving technologies unleashed the race for unmanned aerial LiDAR for
expedited, high-resolution, and cost-effective surveys. Today, both terrestrial laser scanning
and airborne laser scanning offer precision and accessibility across various industries. As
technology evolves and costs decrease, the demand for LiDAR for data collection and
analysis will grow even further.

7.1. Application

An accurate and fast method for determining phenotyping traits is essential to select
promising genotypes for crop breeding. The rapid, non-invasive, and high-resolution
capabilities of LiDAR has revolutionized the field of phenotyping, enabling researchers
to capture intricate information about plant height, canopy structure, leaf area, internode
distance, and even the volume of individual plant organs, such as leaves and fruits [242].
These precise measurements enable scientists to gain deep insights into plant growth, stress
responses, and overall health, contributing to advancements in crop breeding, precision
agriculture, and ecosystem monitoring. Underwood et al. [243] used mobile laser scanning
to map flower and fruit distributions to estimate and predict yield for individual almond
trees. Estornell et al. [244] used airborne laser scanning to extract walnut structure parame-
ters. They reported coefficient of determination values (R2) equal to 0.95, 0.87, and 0.83 for
crown diameter, stem diameter, and stem volume, respectively. Li et al. [245] demonstrated
the potential of airborne LiDAR in estimating canopy height, leaf area index, and biomass
components of maize during the peak growing season. Sanz et al. [246] reported a strong
correlation between tree row LiDAR volume and leaf area for apple, pear, and vine trees
with R2 of 0.85, 0.84, and 0.86, respectively. Kang et al. [247] used LiDAR–camera fusion
techniques to perform accurate fruit localization in the apple orchards. The reported stan-
dard deviations of fruit localization at 0.5, 1.2, and 1.8 m were 0.253, 0.230, and 0.285 cm,
respectively. Tsoulias et al. [248] used two terrestrial laser scanning measuring tools at
660 and 905 nm to capture fruit number (R2 = 0.99), fruit size (R2 = 0.98), and chlorophyll
content (R2 = 0.78) in the apple fruit skin as an indicator of ripeness. The authors in [249]
developed an ensemble learning model for apple tree yield prediction using a combination
of LiDAR and multispectral imagery from unmanned aerial vehicles (UAV). They found
three features (crown volume, ratio vegetation index, and crown projection area) that
contribute most to apple yield prediction. Wang et al. [250] used canopy features extracted
from UAV LiDAR, hyperspectral, and thermal infrared sensors as a proxy to estimate sugar
content in sugar beetroot.
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7.2. Photogrammetry versus LiDAR

Digital photogrammetry and LiDAR are used to create 3D models to evaluate static
and dynamic changes in structural and functional phenotypes. Photogrammetry generates
a point cloud using alignment and overlapping techniques of digital optical images [251].
LiDAR instead reconstructs 3D models by measuring the rebounding light points emitted
by the sensor itself (active sensor). Compared to photogrammetry, this characteristic makes
the LiDAR unaffected by light conditions [252] or background reflectance [253]. In the
case of aerial system, point cloud accuracy depends on the precision of the LIDAR (or the
resolution of the camera) itself and the quality of the inertial navigation system (INS) (IMU
and GNSS) system. Other important factors affecting accuracy are flight planning and
execution (flight altitude, overlapping distance, and UAV speed), weather conditions (light,
wind), and the techniques used in the pre- and post-processing.

Another advantage of LiDAR is the large laser point density (it can easily exceed
200 points/m2) compared to the limited tie points generated from photogrammetry. Also,
laser beams can infiltrate through dense canopy, reach the soil, and bounce back up,
allowing direct measurement of the ground soil and the top canopy. Photogrammetry
penetration capability is limited by the resolution of the camera and by the darkness
and shadows created by the dense canopy. LiDAR can also record multiple returns from
different layers of vegetation, thus providing accurate information related to canopy density,
structure, and plant height.

8. Root Zone Phenotyping

In addition to helping plants absorb water and nutrients from the soil, root appa-
ratus also serves as a sensor of soil environmental stresses including heat, drought, and
salt that influence plant adaptation to their environment [254]. Plants modify their root
systems to maximize the availability of nutrients and water, which affects plant resilience
and productivity [255]. An effective root system, adapted to respond effectively to soil
and environmental changes, is crucial to maintain growth and yield under stress condi-
tions [256–258]. Nevertheless, there are still several factors that need to be fully elucidated
on how soil environmental stress conditions affect root morphology and architecture as well
as root functional traits, such as nutrient and water uptake, root exudation, and interactions
with soil microorganisms [259].

Root plasticity is the capacity of a given genotype to change phenotype under different
environmental conditions [260], and is critical to the ability of a plant to withstand abiotic
stresses. However, root plasticity is often overlooked by breeders due to the challenges asso-
ciated with monitoring root development in soil [261]. Breeders can now take advantage of
sophisticated systems and sensors to observe the growth of the root system and assess root
uptake of water and nutrients from soil [262–264]. Genotype variation in root traits consists
of several features, such as total biomass, root length, root angle, number of lateral roots,
and nodal roots [254,261]. Additionally, resistance to soil pathogens/pests, nutrient/water
uptake, and yield of root crops are agronomically important root traits that should be
introduced into breeding programs. These breeding programs should also consider that
root trait responses may vary between different environmental conditions [265].

Root phenotyping is important in terms of enhancing plant growth and quality ([264]
and papers cited within). The emergence of plant phenomics has boosted the development
of high-throughput phenotyping imaging technologies to study plant roots grown in
soil [263,264,266]. The ability of plants to efficiently gather immobile and mobile soil
nutrients, such as phosphate and nitrate, can be significantly impacted by architecture-scale
features such as root branching and angle [267,268]. Moreover, anatomical traits such as
root hair length and xylem size also provide abiotic stress tolerance [269,270]. Root system
architecture (RSA), composed of structural features such as root length, spread, number,
and length of lateral roots, is highly plastic in response to abiotic stress conditions that
affect the growth and development of above-ground biomass [271]. Despite the importance
of roots in supplying water and nutrients for photosynthesis and growth, and the critical
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role of root plasticity in helping plants to cope with abiotic stress [272], root traits have
been often neglected by breeders because of the challenges associated with following root
developing throughout an experiment [261]. Root angle in crops represents a key trait for
the efficient capture of soil resources. A root angle regulatory gene called ENHANCED
GRAVITROPISM1 (EGT1), encoding a putative anti-gravitropic component, has been
recently characterized, with loss-of-function enhancing root gravitropism in cereals [273].

In spite of the challenges that plant roots intrinsically harbor for measurement through
phenotyping, efforts to incorporate root traits into breeding programs have been mainly
performed in cereals [254,274,275]. Analysis of roots through phenotyping is pivotal for the
identification of root traits that are beneficial to crops, their integration into new cultivars
during the pre-breeding process, and their management using precision agriculture [255].
Since soil is a biologically, chemically, and physically heterogeneous environment, moni-
toring the whole root system in a field is challenging. There are difficulties in identifying
the ideal root systems for optimal crop growth due to variability in root development
under diverse environmental conditions; nonetheless, several procedures and methods
have been developed for root phenotyping. The increasing interest in root phenotyping is
demonstrated by several reviews that have been published on this topic in recent years, con-
sidering both high-throughput phenotyping platforms and in the field [255,262,263,276,277].
Non-destructive techniques under controlled conditions are gaining interest due to the de-
velopment of imaging and sensor technologies integrated within high-throughput root phe-
notyping platforms that enable RSA development to be tracked [262,263,278]. Conversely,
the characterization of RSA in the field requires the application of laborious methods. Shov-
elomics, or root crown phenotyping, is one of the most widely adopted high-throughput
methods to follow root architecture in plants grown in the field [279,280]. This protocol
is based on the excavation of mature root crowns from the field followed by manual phe-
notyping, and was originally designed for maize before being applied to legumes and
wheat [279–281]. Root crown phenotyping includes several steps: excavation, transport,
soil removal, and measurement [281]. This process allows measurement of several param-
eters characterizing the upper portion of crop root systems, and may be combined with
genome-wide association studies, QTL analysis, physiological measurements, and -omics
techniques. More recently, novel sampling methods combined with digital imaging and
novel software have been proposed for next-generation Shovelomics [282]. Mini-rhizotrons
require the installation of a transparent tube into the soil, with a camera inserted to record
root development [283,284]. This system allows the monitoring of root growth over time
and tracing of single roots during their development [285]. The acquired images are an-
alyzed using software that provides information on the root length and diameter. It is
worth noting that this phenotyping system has been also used to follow the formation of
root nodules in soybean [286]. Future developments in root system capacitance, ground-
penetrating radar, and thermoacoustic imaging may enable non-invasive measurement of
root architecture under field conditions [287].

Phenotyping the Interaction of Roots and Soil Microorganisms

Roots host soil microorganisms that can enhance plant growth and resource efficiency,
as well as modulate the supply of resources, root-to-shoot signalling, plant growth, flow-
ering, and productivity. These root-associated microorganisms play a fundamental role
in plant adaptation to adverse environmental conditions [259]. Root traits influence the
composition of root-associated microbes, which, in turn, can interact with the plant, sub-
sequently modifying those root traits associated with the ability to explore and exploit
resources present in the soil. Root features that influence the interactions with soil microor-
ganisms, including beneficial ones, are architectural and morphological traits as well as the
biochemical fingerprint profile the root exudates that contribute to the recruitment, coloniza-
tion ability, and functional outline of the associated microbial communities [259,288]. How
root architecture and exudates, which can change according to plant age, genotype, and
environmental conditions, influence rhizosphere and root environments, and consequently
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the microbial recruitment, represents a hotspot in research into root–soil microorganism
interactions. It is, therefore, important to phenotype roots for their capacity to interact with
beneficial soil microorganisms, which positively affect nutrition, growth, stress tolerance,
and disease resistance, with the aim of identifying crop genotypes that are able to take
advantage of these interactions most effectively.

9. Data Processing—Machine Learning Applied to Plant Phenotyping

Machine learning is a field of artificial intelligence that attempts to solve a learning
problem from previously collected data. During the training phase, a prediction model
is progressively tuned based on a part of the dataset while the other part of the dataset is
usually kept to later assess the model performance (e.g., holdout method, cross-validation).
In previous sections, we presented various physiological indicators and how to quantify
these parameters. Machine learning can provide data-based indicators of plant status
using high-throughput phenotyping data [289]. In particular, such indicators may gauge
physiological values that would otherwise require expert observation or complicated
ground truth measurements [196,290].

As for any data-driven model, the quantity, quality, and specificity of the data lead to
different learning perspectives. We may distinguish raw input data in which part of the
information needs to be extracted, such as RGB images, from more specific input data such
as spectral reflectance indexes that provide a predefined abstraction of the data, which may
be difficult to adapt further. In the meantime, the complexity of the model determines its
capacity to learn relevant latent features and make up any required abstraction. Broadly
speaking, a simple learning model requires more elaborate input data, whereas more
elaborate learning models are more suitable to process raw data.

After general considerations on the input data and their implications, we consider
the principal machine learning methods that can be applied to plant phenotyping. We
decided to separate the methods according to the complexity of the learning model between
“shallow” and “deep” learning. This part does not pretend to provide an exhaustive
discussion on machine learning methods, but rather present the most relevant approaches
along with some insights on standard machine learning issues.

9.1. Data Considerations

The feature learned by the model differ according to the input sensor and how the
information is encoded. For instance, a rasterized image is more suitable to identify local
spatial patterns, since it is the organization of the pixels rather than their designated values
that is determinant. Therefore, such data are ideal for visual stress recognition [291], while
LiDAR measurements provide the third dimension and help to implicitly discriminate
the shrubs from trees in UAV sensing [292]. Though they are intuitively understood,
the implications of the selection of data sources and how to combine these datasets is
demonstrated only a posteriori, once the model has learned. Though studies in plant
phenotyping have spontaneously learnt on several input sources, as in Ewald et al. [292],
the reader may further explore the issues associated in extensive data fusion surveys [293],
especially for complex learning models [294].

On top of the intrinsic information provided by the input data sources, all sensed data
aggregate a great deal of other information that is linked to external factors that are not
explicitly considered by the model, such as the weather, the growing stage of the plant, or
the species. All these confounding variables restrict the features learned by the model for
this specific context, and preclude the transfer of these learned features to other situations.
An approach to overcome such situations is to make the model learn from wide and diverse
datasets [295]; however, the complexity of the model should remain sufficiently accurate
for each of these contexts.
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9.2. Shallow Learning Approach

Linear regression is a straightforward method that proportionally maps a set of sensed
variables with the target variable that the study wishes to retrieve. As the model is relatively
simple, the input data only need to provide the relevant abstraction to linearly link to the
target variable. As an example, using higher level information it is possible to linearly
correlate spectral reflectance indices to physiological indicators of water stress in olive trees
(Figure 6) [157]. As a first approach, this method may highlight immediate correlations
between sets of variables, but it is sensitive to sample noise and the selection of the input
variables.

Partial least square regression [296] is currently the main regression method employed
in physiological experiments [223]. Partial least square regression is a composition between
a principal component analysis and a linear regression. Prior to fitting the sampled variables
on a line, the sampled variables are statistically recombined, so that the variance between
samples is emphasized. This method is particularly suitable for multiple input variables
that provide similar information, which is usually the case for hyperspectral reflectance
(Figure 5). Thus, it has been possible to establish several strong correlations between
reflectance and physiological values as Vcmax Jmax, chlorophyll content, and nitrogen
concentration for several species of plant from maize [297] to tropical trees [298]. For a
more detail description please see the reviews of Gill et al. [299] and Grzybowski et al. [196].

The variables combined during partial least square regression represent a latent feature
that acts as intermediary input data to a successive linear regression. An interesting feature
of the partial least square regression approach relies on the capacity to interpret directly
the feature learnt through the computed weight, also called ‘loading values’ in this case.
These values may identify a direct link between the reflectance combination and the specific
indicator of plant physiological status [297].

Other standard machine learning methods such as support vector machine, artificial
neural networks, or random forest have, to a lesser degree, been employed for plant
phenotyping, but mainly in the classification of plant biotic stress (for a more detailed
review see [300]).

9.3. Deep Learning Approach

Deep learning is a machine learning technique that attempts to tackle the problem
of the transferability of the features learned to different contexts such as crop species,
climate, or agricultural treatments. As in partial least square regression, these models
learn internal features but the number of layers is significantly larger. We may visualize
a deep learning model as a stack of multiple layers of single machine learning models,
where each succeeding layer uses the output from the previous layer as input. As the
number of stacked layers increase, the features learned can then be generalized to more
diverse contexts [301]. Such methods require a large amount of data, which make them
more interesting from the perspective of elucidating physiological information from high-
throughput phenotyping data.

In particular, a deep convolutional neural network (DCNN) is an appropriate method
to deal with image data, since the connection between the layers is structured to extract
spatially local features [301]. Hence, in plant phenotyping, deep convolutional neural
networks have been applied to automatize recognition tasks that are difficult to solve
with image processing solutions, but easy for a skilled human operator. The immediate
application in plant phenotyping is to monitor crop productions by counting the fruits
from UAV or terrestrial ground-based images [302] or plant stress [300]. In the context of
plant genotype characterization, a deep convolutional neural network has been successfully
inserted into the overall process to count the root tips from photographic images [303]. In
plant physiology specifically, deep convolutional neural networks have been applied to
non-destructively identify nutrient deficiency based on images of leaves [291] or assess
plant water status using plant images combined with other sensors [304]. To the best of
our knowledge, these methods have been mainly applied to RGB images, but interesting
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results could also be obtained considering spectral reflectance values as observed in the
study of Rehman et al. [239].

The abstractions reached by deep learning models expand their applications over
the class or value estimation. For instance, generative adversarial networks have also
been used in plant phenotyping for data augmentation [305]. Instead of regressions, such
models generate realistic images to increase the number of samples in the original dataset,
and, therefore, enhance any successive machine learning process. Another promising
perspective is to provide further insights on the latent features learned inside the deep
learning model. The explainable AI framework applied to stress phenotyping allows the
identification of the type of stress suffered by a leaf, but also the area of the leaf where
this stress occurs [291]. This complementary approach may help us to understand the
physiological process and build dedicated sensors to gauge plant physiological status
for more effective phenotyping of traits associated with high productivity and climate
resilience in crop varieties.

10. Summary

Plant physiological function forms the basis of productivity and resilience to abiotic
stress. Traits such as the rate of photosynthesis, the capacity to dissipate excess energy,
protective antioxidants, stomatal control, and the uptake of water/nutrients are central to
plant growth rate, tolerance to abiotic stress, and water/nutrient usage. The characteri-
zation of physiological attributes associated with desirable traits is essential to successful
plant phenotyping, to identify and then develop crop varieties with higher yields, lower
input requirements (water, nutrients, pesticides etc.), and improved climate resilience.
However, phenotyping efforts are constrained by the difficulties associated with accurate
direct measurement of plant physiological processes, specifically those related to photo-
synthetic leaf gas exchange, ChlF, plant water relations, and below-ground processes. The
use of low-cost optical sensors, remote/proximal sensing of spectral reflectance, SiF, and
LiDAR offers the potential to rapidly assess plant physiological status at high temporal
resolution over wide spatial scales. However, given the indirect nature of many of these
measurements, empirical physiological data are still a necessity. Developments in leaf gas
exchange technologies such as the integration of carbon isotopic analysis of CO2 may en-
able more rapid assessment of photosynthetic, photorespiratory, and metabolic respiratory
fluxes of carbon. Future technological developments in LED and sensor technologies will
improve the availability, expand the application, and reduce the costs of plant phenotyp-
ing and digital agriculture technologies. Partial least squares regression, deep-learning,
and artificial intelligence technologies may enable the use of multi-variate data sources
to accurately infer plant physiological performance. The rapidly developing nature of
these technologies may alleviate the ‘physiological bottleneck’ that has constrained the
application of phenotyping efforts to enhance future food security in a hotter drier world.

Author Contributions: Conceptualization: M.H. and M.C. Writing—original draft preparation: M.H.
Writing—review and editing: all authors. All authors have read and agreed to the published version
of the manuscript.

Funding: This study was funded by the European Union Next-GenerationEU—Piano Nazionale
di Ripresa e Resilienza (PNRR): projects Agritech National Research Center (PNRR—Missione 4
Componente 2, Investimento 1.4—D.D. 1032 17 June 2022, CN00000022), and Italian Integrated
Environmental Research Infrastructures System (PNRR—Missione 4, Componente 2, investimento
3.1—D.D. 130 21 June 2022, IR0000032). This manuscript reflects only the authors’ views and opinions,
neither the European Union nor the European Commission can be considered responsible.

Conflicts of Interest: The authors declare no conflict of interest.



Plants 2023, 12, 4015 24 of 35

References
1. Xue, Y.; Bai, X.; Zhao, C.; Tan, Q.; Li, Y.; Luo, G.; Wu, L.; Chen, F.; Li, C.; Ran, C.; et al. Spring photosynthetic phenology of

Chinese vegetation in response to climate change and its impact on net primary productivity. Agric. For. Meteorol. 2023, 342,
109734. [CrossRef]

2. Pinheiro, C.; Chaves, M.M. Photosynthesis and drought: Can we make metabolic connections from available data? J. Exp. Bot.
2011, 62, 869–882. [CrossRef] [PubMed]

3. Kumar, A.; Pathak, R.K.; Gupta, S.M.; Gaur, V.S.; Pandey, D. Systems biology for smart crops and agricultural innovation: Filling
the gaps between genotype and phenotype for complex traits linked with robust agricultural productivity and sustainability.
OMICS J. Integr. Biol. 2015, 19, 581–601. [CrossRef] [PubMed]

4. York, L.M. Functional phenomics: An emerging field integrating high-throughput phenotyping, physiology, and bioinformatics.
J. Exp. Bot. 2018, 70, 379–386. [CrossRef]

5. Chen, W.; Wang, W.; Peng, M.; Gong, L.; Gao, Y.; Wan, J.; Wang, S.; Shi, L.; Zhou, B.; Li, Z. Comparative and parallel genome-wide
association studies for metabolic and agronomic traits in cereals. Nat. Commun. 2016, 7, 12767. [CrossRef] [PubMed]

6. Zhu, F.; Ahchige, M.W.; Brotman, Y.; Alseekh, S.; Zsögön, A.; Fernie, A.R. Bringing more players into play: Leveraging stress in
genome wide association studies. J. Plant Physiol. 2022, 271, 153657. [CrossRef] [PubMed]

7. Ro, N.; Haile, M.; Ko, H.-C.; Cho, G.-T.; Lee, J.; Kim, B.; Lee, S.; Kim, S.-H. Genome-wide association study of phenolic content
and antioxidant properties in eggplant germplasm. Genes 2023, 14, 1315. [CrossRef] [PubMed]

8. Alvarez-Morezuelas, A.; Barandalla, L.; Ritter, E.; Ruiz de Galarreta, J.I. Genome-wide association study of agronomic and
physiological traits related to drought tolerance in potato. Plants 2023, 12, 734. [CrossRef]

9. Baslam, M.; Mitsui, T.; Hodges, M.; Priesack, E.; Herritt, M.T.; Aranjuelo, I.; Sanz-Sáez, Á. Photosynthesis in a changing global
climate: Scaling up and scaling down in crops. Front. Plant Sci. 2020, 11, 882. [CrossRef]

10. Prado, S.A.; Cabrera-Bosquet, L.; Grau, A.; Coupel-Ledru, A.; Millet, E.J.; Welcker, C.; Tardieu, F. Phenomics allows identification
of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand. Plant
Cell Environ. 2018, 41, 314–326. [CrossRef]

11. Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE
2013, 8, e66428. [CrossRef] [PubMed]

12. Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [CrossRef] [PubMed]
13. Tardieu, F.; Cabrera-Bosquet, L.; Pridmore, T.; Bennett, M. Plant phenomics, from sensors to knowledge. Curr. Biol. 2017, 27,

R770–R783. [CrossRef] [PubMed]
14. Furbank, R.T.; Tester, M. Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011, 16, 635–644.

[CrossRef] [PubMed]
15. Sun, P.; Wahbi, S.; Tsonev, T.; Haworth, M.; Liu, S.; Centritto, M. On the use of leaf spectral indices to assess water status and

photosynthetic limitations in Olea europaea L. during water-stress and recovery. PLoS ONE 2014, 9, e105165. [CrossRef] [PubMed]
16. Long, S.P. Leaf Gas Exchange. In Photosynthetic Mechanisms and the Environment; Barber, J., Baker, N.R., Eds.; Elsevier Science

Publishers: Amsterdam, The Netherlands, 1985; pp. 453–499.
17. Heath, O.V.S. Studies in stomatal behaviour. V. The role of carbon dioxide in the light response of stomata. J. Exp. Bot. 1950, 1,

29–62. [CrossRef]
18. Lammertsma, E.I.; Boer, H.J.D.; Dekker, S.C.; Dilcher, D.L.; Lotter, A.F.; Wagner-Cremer, F. Global CO2 rise leads to reduced

maximum stomatal conductance in Florida vegetation. Proc. Natl. Acad. Sci. USA 2011, 108, 4035–4040. [CrossRef]
19. Rogers, A. The use and misuse of Vcmax in Earth System Models. Photosynth. Res. 2014, 119, 15–29. [CrossRef]
20. Duursma, R.A. Plantecophys—An R Package for Analysing and Modelling Leaf Gas Exchange Data. PLoS ONE 2015, 10, e0143346.

[CrossRef]
21. Sharkey, T.D.; Bernacchi, C.J.; Farquhar, G.D.; Singsaas, E.L. Fitting photosynthetic carbon dioxide response curves for C-3 leaves.

Plant Cell Environ. 2007, 30, 1035–1040. [CrossRef]
22. Rodeghiero, M.; Niinemets, Ü.; Cescatti, A. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: How erroneous are

the estimates of Farquhar et al. model parameters? Plant Cell Environ. 2007, 30, 1006–1022. [CrossRef] [PubMed]
23. Von Caemmerer, S. Biochemical Models of Leaf Photosynthesis; Csiro Publishing: Collingwood, Australia, 2000; p. 152.
24. Haworth, M.; Moser, G.; Raschi, A.; Kammann, C.; Grünhage, L.; Müller, C. Carbon dioxide fertilisation and supressed respiration

induce enhanced spring biomass production in a mixed species temperate meadow exposed to moderate carbon dioxide
enrichment. Funct. Plant Biol. 2016, 43, 26–39. [CrossRef] [PubMed]

25. Haworth, M.; Gallagher, A.; Elliott-Kingston, C.; Raschi, A.; Marandola, D.; McElwain, J.C. Stomatal index responses of Agrostis
canina to carbon dioxide and sulphur dioxide: Implications for palaeo-[CO2] using the stomatal proxy. New Phytol. 2010, 188,
845–855. [CrossRef] [PubMed]

26. Farquhar, G.D.; Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta
1980, 149, 78–90. [CrossRef] [PubMed]

27. Killi, D.; Bussotti, F.; Raschi, A.; Haworth, M. Adaptation to high temperature mitigates the impact of water deficit during
combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiol. Plant.
2017, 159, 130–147. [CrossRef] [PubMed]

https://doi.org/10.1016/j.agrformet.2023.109734
https://doi.org/10.1093/jxb/erq340
https://www.ncbi.nlm.nih.gov/pubmed/21172816
https://doi.org/10.1089/omi.2015.0106
https://www.ncbi.nlm.nih.gov/pubmed/26484978
https://doi.org/10.1093/jxb/ery379
https://doi.org/10.1038/ncomms12767
https://www.ncbi.nlm.nih.gov/pubmed/27698483
https://doi.org/10.1016/j.jplph.2022.153657
https://www.ncbi.nlm.nih.gov/pubmed/35231821
https://doi.org/10.3390/genes14071315
https://www.ncbi.nlm.nih.gov/pubmed/37510220
https://doi.org/10.3390/plants12040734
https://doi.org/10.3389/fpls.2020.00882
https://doi.org/10.1111/pce.13083
https://doi.org/10.1371/journal.pone.0066428
https://www.ncbi.nlm.nih.gov/pubmed/23840465
https://doi.org/10.1126/science.1183899
https://www.ncbi.nlm.nih.gov/pubmed/20150492
https://doi.org/10.1016/j.cub.2017.05.055
https://www.ncbi.nlm.nih.gov/pubmed/28787611
https://doi.org/10.1016/j.tplants.2011.09.005
https://www.ncbi.nlm.nih.gov/pubmed/22074787
https://doi.org/10.1371/journal.pone.0105165
https://www.ncbi.nlm.nih.gov/pubmed/25136798
https://doi.org/10.1093/jxb/1.1.29
https://doi.org/10.1073/pnas.1100371108
https://doi.org/10.1007/s11120-013-9818-1
https://doi.org/10.1371/journal.pone.0143346
https://doi.org/10.1111/j.1365-3040.2007.01710.x
https://doi.org/10.1111/j.1365-3040.2007.001689.x
https://www.ncbi.nlm.nih.gov/pubmed/17617828
https://doi.org/10.1071/FP15232
https://www.ncbi.nlm.nih.gov/pubmed/32480439
https://doi.org/10.1111/j.1469-8137.2010.03403.x
https://www.ncbi.nlm.nih.gov/pubmed/20704659
https://doi.org/10.1007/BF00386231
https://www.ncbi.nlm.nih.gov/pubmed/24306196
https://doi.org/10.1111/ppl.12490
https://www.ncbi.nlm.nih.gov/pubmed/27535211


Plants 2023, 12, 4015 25 of 35

28. Sun, D.; Robbins, K.; Morales, N.; Shu, Q.; Cen, H. Advances in optical phenotyping of cereal crops. Trends Plant Sci. 2022, 27,
191–208. [CrossRef] [PubMed]

29. McAusland, L.; Atkinson, J.A.; Lawson, T.; Murchie, E.H. High throughput procedure utilising chlorophyll fluorescence imaging
to phenotype dynamic photosynthesis and photoprotection in leaves under controlled gaseous conditions. Plant Methods 2019, 15,
109. [CrossRef]

30. Silva-Pérez, V.; De Faveri, J.; Molero, G.; Deery, D.M.; Condon, A.G.; Reynolds, M.P.; Evans, J.R.; Furbank, R.T. Genetic variation
for photosynthetic capacity and efficiency in spring wheat. J. Exp. Bot. 2020, 71, 2299–2311. [CrossRef]

31. Pilon, C.; Snider, J.L.; Sobolev, V.; Chastain, D.R.; Sorensen, R.B.; Meeks, C.D.; Massa, A.N.; Walk, T.; Singh, B.; Earl, H.J. Assessing
stomatal and non-stomatal limitations to carbon assimilation under progressive drought in peanut (Arachis hypogaea L.). J. Plant
Physiol. 2018, 231, 124–134. [CrossRef]

32. De Souza, A.P.; Long, S.P. Toward improving photosynthesis in cassava: Characterizing photosynthetic limitations in four current
African cultivars. Food Energy Secur. 2018, 7, e00130. [CrossRef]

33. Pinheiro, C.; Emiliani, G.; Marino, G.; Fortunato, A.S.; Haworth, M.; De Carlo, A.; Chaves, M.M.; Loreto, F.; Centritto, M. Metabolic
background, not photosynthetic physiology, determines drought and drought recovery responses in C3 and C2 Moricandias. Int. J.
Mol. Sci. 2023, 24, 4094. [CrossRef] [PubMed]

34. Lauteri, M.; Haworth, M.; Serraj, R.; Monteverdi, M.C.; Centritto, M. Photosynthetic diffusional constraints affect yield in drought
stressed rice cultivars during flowering. PLoS ONE 2014, 9, e109054. [CrossRef] [PubMed]

35. Sudhakar, P.; Latha, P.; Reddy, P. Phenotyping Crop Plants for Physiological and Biochemical Traits; Academic Press: Cambridge, MA,
USA, 2016.

36. Costa, J.M.; Marques da Silva, J.; Pinheiro, C.; Barón, M.; Mylona, P.; Centritto, M.; Haworth, M.; Loreto, F.; Uzilday, B.; Turkan,
I.; et al. Opportunities and limitations of crop phenotyping in southern European countries. Front. Plant Sci. 2019, 10, 1125.
[CrossRef] [PubMed]

37. Killi, D.; Haworth, M. Diffusive and metabolic constraints to photosynthesis in quinoa during drought and salt stress. Plants
2017, 6, 49–64. [CrossRef] [PubMed]

38. Haworth, M.; Marino, G.; Centritto, M. An introductory guide to gas exchange analysis of photosynthesis and its application to
plant phenotyping and precision irrigation to enhance water use efficiency. J. Water Clim. Chang. 2018, 9, 786–808. [CrossRef]

39. van Bezouw, R.F.; Keurentjes, J.J.; Harbinson, J.; Aarts, M.G. Converging phenomics and genomics to study natural variation in
plant photosynthetic efficiency. Plant J. 2019, 97, 112–133. [CrossRef]

40. Thompson, A.L.; Thorp, K.R.; Conley, M.; Andrade-Sanchez, P.; Heun, J.T.; Dyer, J.M.; White, J.W. Deploying a proximal
sensing cart to identify drought-adaptive traits in upland cotton for high-throughput phenotyping. Front. Plant Sci. 2018, 9, 507.
[CrossRef]

41. Williams, K.; Gornall, J.; Harper, A.; Wiltshire, A.; Hemming, D.; Quaife, T.; Arkebauer, T.; Scoby, D. Evaluation of JULES-crop
performance against site observations of irrigated maize from Mead, Nebraska. Geosci. Model Dev. 2017, 10, 1291–1320. [CrossRef]

42. Barnes, M.L.; Breshears, D.D.; Law, D.J.; Van Leeuwen, W.J.; Monson, R.K.; Fojtik, A.C.; Barron-Gafford, G.A.; Moore, D.J. Beyond
greenness: Detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data. PLoS ONE 2017, 12,
e0189539. [CrossRef]

43. Yu, Y.; Yang, X.; Fan, W. Remote sensing inversion of leaf maximum carboxylation rate based on a mechanistic photosynthetic
model. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [CrossRef]

44. Centritto, M.; Loreto, F.; Chartzoulakis, K. The use of low [CO2] to estimate diffusional and non-diffusional limitations of
photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ. 2003, 26, 585–594. [CrossRef]

45. Ethier, G.J.; Livingston, N.J. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar–von Caemmerer–
Berry leaf photosynthesis model. Plant Cell Environ. 2004, 27, 137–153. [CrossRef]

46. Stinziano, J.R.; Morgan, P.B.; Lynch, D.J.; Saathoff, A.J.; McDermitt, D.K.; Hanson, D.T. The rapid A–Ci response: Photosynthesis
in the phenomic era. Plant Cell Environ. 2017, 40, 1256–1262. [CrossRef]

47. Coursolle, C.; Prud’homme, G.O.; Lamothe, M.; Isabel, N. Measuring rapid A–Ci curves in boreal conifers: Black spruce and
balsam fir. Front. Plant Sci. 2019, 10, 1276. [CrossRef] [PubMed]

48. Lawrence, E.H.; Stinziano, J.R.; Hanson, D.T. Using the rapid A-Ci response (RACiR) in the Li-Cor 6400 to measure developmental
gradients of photosynthetic capacity in poplar. Plant Cell Environ. 2019, 42, 740–750. [CrossRef]

49. Bunce, J. Three methods of estimating mesophyll conductance agree regarding its CO2 sensitivity in the RubisCO-limited Ci
range. Plants 2018, 7, 62. [CrossRef] [PubMed]

50. Stinziano, J.R.; Adamson, R.K.; Hanson, D.T. Using multirate rapid A/Ci curves as a tool to explore new questions in the
photosynthetic physiology of plants. New Phytol. 2019, 222, 785–792. [CrossRef] [PubMed]

51. Taylor, S.H.; Long, S.P. Phenotyping photosynthesis on the limit–a critical examination of RACiR. New Phytol. 2019, 221, 621–624.
[CrossRef]

52. McClain, A.M.; Sharkey, T.D. Rapid CO2 changes cause oscillations in photosynthesis that implicate PSI acceptor-side limitations.
J. Exp. Bot. 2023, 74, erad084. [CrossRef]

53. PP-Systems. The Single-Step CO2 Response (SSCO2R™) Method—Rapid A/Ci Curves in Real Time Without Post Processing.
Available online: https://ppsystems.com/wp-content/uploads/AN_CIRAS-4_SSCO2R-Method.pdf (accessed on 25 November
2023).

https://doi.org/10.1016/j.tplants.2021.07.015
https://www.ncbi.nlm.nih.gov/pubmed/34417079
https://doi.org/10.1186/s13007-019-0485-x
https://doi.org/10.1093/jxb/erz439
https://doi.org/10.1016/j.jplph.2018.09.007
https://doi.org/10.1002/fes3.130
https://doi.org/10.3390/ijms24044094
https://www.ncbi.nlm.nih.gov/pubmed/36835502
https://doi.org/10.1371/journal.pone.0109054
https://www.ncbi.nlm.nih.gov/pubmed/25275452
https://doi.org/10.3389/fpls.2019.01125
https://www.ncbi.nlm.nih.gov/pubmed/31608085
https://doi.org/10.3390/plants6040049
https://www.ncbi.nlm.nih.gov/pubmed/29039809
https://doi.org/10.2166/wcc.2018.152
https://doi.org/10.1111/tpj.14190
https://doi.org/10.3389/fpls.2018.00507
https://doi.org/10.5194/gmd-10-1291-2017
https://doi.org/10.1371/journal.pone.0189539
https://doi.org/10.1109/TGRS.2020.3040273
https://doi.org/10.1046/j.1365-3040.2003.00993.x
https://doi.org/10.1111/j.1365-3040.2004.01140.x
https://doi.org/10.1111/pce.12911
https://doi.org/10.3389/fpls.2019.01276
https://www.ncbi.nlm.nih.gov/pubmed/31708940
https://doi.org/10.1111/pce.13436
https://doi.org/10.3390/plants7030062
https://www.ncbi.nlm.nih.gov/pubmed/30081586
https://doi.org/10.1111/nph.15657
https://www.ncbi.nlm.nih.gov/pubmed/30582175
https://doi.org/10.1111/nph.15382
https://doi.org/10.1093/jxb/erad084
https://ppsystems.com/wp-content/uploads/AN_CIRAS-4_SSCO2R-Method.pdf


Plants 2023, 12, 4015 26 of 35

54. Walker, A.P.; Beckerman, A.P.; Gu, L.; Kattge, J.; Cernusak, L.A.; Domingues, T.F.; Scales, J.C.; Wohlfahrt, G.; Wullschleger, S.D.;
Woodward, F.I. The relationship of leaf photosynthetic traits–Vcmax and Jmax–to leaf nitrogen, leaf phosphorus, and specific leaf
area: A meta-analysis and modeling study. Ecol. Evol. 2014, 4, 3218–3235. [CrossRef]

55. Konrad, W.; Roth-Nebelsick, A.; Grein, M. Modelling of stomatal density response to atmospheric CO2. J. Theor. Biol. 2008, 253,
638–658. [CrossRef] [PubMed]

56. Roth-Nebelsick, A.; Oehm, C.; Grein, M.; Utescher, T.; Kunzmann, L.; Friedrich, J.-P.; Konrad, W. Stomatal density and index
data of Platanus neptuni leaf fossils and their evaluation as a CO2 proxy for the Oligocene. Rev. Palaeobot. Palynol. 2014, 206, 1–9.
[CrossRef]

57. Haworth, M.; Killi, D.; Materassi, A.; Raschi, A.; Centritto, M. Impaired stomatal control is associated with reduced photosynthetic
physiology in crop species grown at elevated [CO2]. Front. Plant Sci. 2016, 7, 1568. [CrossRef] [PubMed]

58. Evers, J.B.; Vos, J.; Yin, X.; Romero, P.; van der Putten, P.E.L.; Struik, P.C. Simulation of wheat growth and development based on
organ-level photosynthesis and assimilate allocation. J. Exp. Bot. 2010, 61, 2203–2216. [CrossRef] [PubMed]

59. Peng, B.; Guan, K.; Chen, M.; Lawrence, D.M.; Pokhrel, Y.; Suyker, A.; Arkebauer, T.; Lu, Y. Improving maize growth processes in
the community land model: Implementation and evaluation. Agric. For. Meteorol. 2018, 250–251, 64–89. [CrossRef]

60. Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for
global-scale terrestrial biosphere models. Glob. Chang. Biol. 2009, 15, 976–991. [CrossRef]

61. Niinemets, Ü. Research review. Components of leaf dry mass per area–thickness and density–alter leaf photosynthetic capacity in
reverse directions in woody plants. New Phytol. 1999, 144, 35–47. [CrossRef]

62. Laisk, A. Kinetics of Photosynthesis and Photorespiration in C3 Plants; Science Research: Moscow, Russia, 1977. (In Russian)
63. Burnett, A.C.; Davidson, K.; Serbin, S.P.; Rogers, A. The ‘one-point method’for estimating maximum carboxylation capacity of

photosynthesis: A cautionary tale. Plant Cell Environ. 2019, 42, 2472–2481. [CrossRef]
64. De Kauwe, M.G.; Lin, Y.S.; Wright, I.J.; Medlyn, B.E.; Crous, K.Y.; Ellsworth, D.S.; Maire, V.; Prentice, I.C.; Atkin, O.K.; Rogers, A. A

test of the ‘one-point method’for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis.
New Phytol. 2016, 210, 1130–1144. [CrossRef]

65. Slattery, R.A.; Ort, D.R. Perspectives on improving light distribution and light use efficiency in crop canopies. Plant Physiol. 2021,
185, 34–48. [CrossRef]

66. Foyer, C.H.; Lelandais, M.; Kunert, K.J. Photooxidative stress in plants. Physiol. Plant. 1994, 92, 696–717. [CrossRef]
67. Killi, D.; Raschi, A.; Bussotti, F. Lipid peroxidation and chlorophyll fluorescence of Photosystem II performance during drought

and heat stress is associated with the antioxidant capacities of C3 sunflower and C4 maize varieties. Int. J. Mol. Sci. 2020, 21, 4846.
[CrossRef]

68. Dias, M.C.; Correia, S.; Serôdio, J.; Silva, A.M.S.; Freitas, H.; Santos, C. Chlorophyll fluorescence and oxidative stress endpoints to
discriminate olive cultivars tolerance to drought and heat episodes. Sci. Hortic. 2018, 231, 31–35. [CrossRef]

69. Yin, X.; Sun, Z.; Struik, P.C.; Gu, J. Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of
combined gas exchange and chlorophyll fluorescence measurements. J. Exp. Bot. 2011, 62, 3489–3499. [CrossRef]

70. Lobo, F.D.A.; De Barros, M.; Dalmagro, H.; Dalmolin, Â.; Pereira, W.; de Souza, É.; Vourlitis, G.; Ortíz, C.R. Fitting net
photosynthetic light-response curves with Microsoft Excel—A critical look at the models. Photosynthetica 2013, 51, 445–456.
[CrossRef]

71. Kok, B. A critical consideration of the quantum yield of Chlorella photosynthesis. Enzymologia 1948, 13, 1–56.
72. Riggi, E.; Avola, G.; Marino, G.; Haworth, M.; Cosentino, S.L.; Centritto, M. Open field experiment for the evaluation of Arundo

donax ecotypes ecophysiology and yield as affected by soil water content. Ind. Crops Prod. 2019, 140, 111630. [CrossRef]
73. De Souza, A.P.; Burgess, S.J.; Doran, L.; Hansen, J.; Manukyan, L.; Maryn, N.; Gotarkar, D.; Leonelli, L.; Niyogi, K.K.; Long, S.P.

Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. Science 2022, 377, 851–854.
[CrossRef]

74. Kromdijk, J.; Głowacka, K.; Leonelli, L.; Gabilly, S.T.; Iwai, M.; Niyogi, K.K.; Long, S.P. Improving photosynthesis and crop
productivity by accelerating recovery from photoprotection. Science 2016, 354, 857–861. [CrossRef]

75. Sakowska, K.; Alberti, G.; Genesio, L.; Peressotti, A.; Vedove, G.D.; Gianelle, D.; Colombo, R.; Rodeghiero, M.; Panigada, C.;
Juszczak, R.; et al. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant. Plant Cell Environ. 2018, 41,
1427–1437. [CrossRef]

76. Acebron, K.; Matsubara, S.; Jedmowski, C.; Emin, D.; Muller, O.; Rascher, U. Diurnal dynamics of nonphotochemical quenching
in Arabidopsis npq mutants assessed by solar-induced fluorescence and reflectance measurements in the field. New Phytol. 2021,
229, 2104–2119. [CrossRef]

77. Haworth, M.; Cosentino, S.L.; Marino, G.; Brunetti, C.; Riggi, E.; Avola, G.; Loreto, F.; Centritto, M. Increased free abscisic acid
during drought enhances stomatal sensitivity and modifies stomatal behaviour in fast growing giant reed (Arundo donax L.).
Environ. Exp. Bot. 2018, 147, 116–124. [CrossRef]

78. Gerardin, T.; Douthe, C.; Flexas, J.; Brendel, O. Shade and drought growth conditions strongly impact dynamic responses of
stomata to variations in irradiance in Nicotiana tabacum. Environ. Exp. Bot. 2018, 153, 188–197. [CrossRef]

79. Cowan, I.R. Stomatal behaviour and environment. Adv. Bot. Res. 1978, 4, 117–228.
80. Raschke, K. How stomata resolve the dilemma of opposing priorities. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1976, 273,

551–560.

https://doi.org/10.1002/ece3.1173
https://doi.org/10.1016/j.jtbi.2008.03.032
https://www.ncbi.nlm.nih.gov/pubmed/18538792
https://doi.org/10.1016/j.revpalbo.2014.03.001
https://doi.org/10.3389/fpls.2016.01568
https://www.ncbi.nlm.nih.gov/pubmed/27826305
https://doi.org/10.1093/jxb/erq025
https://www.ncbi.nlm.nih.gov/pubmed/20231326
https://doi.org/10.1016/j.agrformet.2017.11.012
https://doi.org/10.1111/j.1365-2486.2008.01744.x
https://doi.org/10.1046/j.1469-8137.1999.00466.x
https://doi.org/10.1111/pce.13574
https://doi.org/10.1111/nph.13815
https://doi.org/10.1093/plphys/kiaa006
https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
https://doi.org/10.3390/ijms21144846
https://doi.org/10.1016/j.scienta.2017.12.007
https://doi.org/10.1093/jxb/err038
https://doi.org/10.1007/s11099-013-0045-y
https://doi.org/10.1016/j.indcrop.2019.111630
https://doi.org/10.1126/science.adc9831
https://doi.org/10.1126/science.aai8878
https://doi.org/10.1111/pce.13180
https://doi.org/10.1111/nph.16984
https://doi.org/10.1016/j.envexpbot.2017.11.002
https://doi.org/10.1016/j.envexpbot.2018.05.019


Plants 2023, 12, 4015 27 of 35

81. Haworth, M.; Killi, D.; Materassi, A.; Raschi, A. Co-ordination of stomatal physiological behavior and morphology with carbon
dioxide determines stomatal control. Am. J. Bot. 2015, 102, 677–688. [CrossRef]

82. Elliott-Kingston, C.; Haworth, M.; Yearsley, J.M.; Batke, S.P.; Lawson, T.; McElwain, J.C. Does size matter? Atmospheric CO2 may
be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO2. Front. Plant Sci. 2016, 7,
1253. [CrossRef]

83. Durand, M.; Brendel, O.; Buré, C.; Le Thiec, D. Altered stomatal dynamics induced by changes in irradiance and vapour-pressure
deficit under drought: Impacts on the whole-plant transpiration efficiency of poplar genotypes. New Phytol. 2019, 222, 1789–1802.
[CrossRef]

84. Doi, M.; Kitagawa, Y.; Shimazaki, K.-i. Stomatal blue light response is present in early vascular plants. Plant Physiol. 2015, 169,
1205–1213. [CrossRef]

85. Haworth, M.; Marino, G.; Loreto, F.; Centritto, M. Integrating stomatal physiology and morphology: Evolution of stomatal control
and development of future crops. Oecologia 2021, 197, 867–883. [CrossRef]

86. Sillo, F.; Marino, G.; Franchi, E.; Haworth, M.; Zampieri, E.; Pietrini, I.; Fusini, D.; Mennone, C.; Centritto, M.; Balestrini, R. Impact
of irrigation water deficit on two tomato genotypes grown under open field conditions: From the root-associated microbiota to
the stress responses. Ital. J. Agron. 2022, 17, 3. [CrossRef]

87. McAusland, L.; Vialet-Chabrand, S.; Davey, P.; Baker, N.R.; Brendel, O.; Lawson, T. Effects of kinetics of light-induced stomatal
responses on photosynthesis and water-use efficiency. New Phytol. 2016, 211, 1209–1220. [CrossRef]

88. Agathokleous, E.; Kitao, M.; Hoshika, Y.; Haworth, M.; Tang, Y.; Koike, T. Ethylenediurea protects against ozone phytotoxicity
not by adding nitrogen or controlling stomata in a stomata-unresponsive hybrid poplar. Sci. Total Environ. 2023, 875, 162672.
[CrossRef]

89. Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence-A practical guide. J. Exp. Bot. 2000, 51, 659–668. [CrossRef]
90. Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence;

Papageorgiou, G., Govindjee, Foyer, C., Gantt, E., Golbeck, J., Golden, S., Junge, W., Michel, H., Satoh, K., Siedow, J.N., Eds.;
Springer: Amsterdam, The Netherlands, 2004; Volume 19, pp. 321–362.

91. Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J.
Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant.
2016, 38, 1–11. [CrossRef]

92. Lichtenthaler, H.K.; Rinderle, U. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit. Rev.
Anal. Chem. 1988, 19, S29–S85. [CrossRef]

93. Pedrós, R.; Moya, I.; Goulas, Y.; Jacquemoud, S. Chlorophyll fluorescence emission spectrum inside a leaf. Photochem. Photobiol.
Sci. 2008, 7, 498–502. [CrossRef]

94. Aasen, H.; Van Wittenberghe, S.; Sabater Medina, N.; Damm, A.; Goulas, Y.; Wieneke, S.; Hueni, A.; Malenovský, Z.; Alonso, L.;
Pacheco-Labrador, J.; et al. Sun-induced chlorophyll fluorescence II: Review of passive measurement setups, protocols, and their
application at the leaf to canopy level. Remote Sens. Environ. 2019, 11, 927. [CrossRef]

95. Wieneke, S.; Burkart, A.; Cendrero-Mateo, M.; Julitta, T.; Rossini, M.; Schickling, A.; Schmidt, M.; Rascher, U. Linking photosyn-
thesis and sun-induced fluorescence at sub-daily to seasonal scales. Remote Sens. Environ. 2018, 219, 247–258. [CrossRef]

96. Flexas, J.; Escalona, J.M.; Evain, S.; Gulías, J.; Moya, I.; Osmond, C.B.; Medrano, H. Steady-state chlorophyll fluorescence (Fs)
measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants.
Physiol. Plant. 2002, 114, 231–240. [CrossRef]

97. Cendrero-Mateo, M.P.; Moran, M.S.; Papuga, S.A.; Thorp, K.; Alonso, L.; Moreno, J.; Ponce-Campos, G.; Rascher, U.; Wang, G.
Plant chlorophyll fluorescence: Active and passive measurements at canopy and leaf scales with different nitrogen treatments. J.
Exp. Bot. 2016, 67, 275–286. [CrossRef] [PubMed]

98. Zarco-Tejada, P.J.; Pushnik, J.C.; Dobrowski, S.; Ustin, S.L. Steady-state chlorophyll a fluorescence detection from canopy
derivative reflectance and double-peak red-edge effects. Remote Sens. Environ. 2003, 84, 283–294. [CrossRef]
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