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Abstract: Castanea crenata (Fagaceae) is a species of chestnut tree that is endemic to the Republic of
Korea and Japan. While its kernels are consumed, chestnut by-products such as shells and burs,
which account for 10–15% of the total weight, are discarded as waste. Phytochemical and biological
studies have been carried out to eliminate this waste and develop high-value products from its
by-products. In this study, five new compounds (1–2, 6–8) along with seven known compounds
were isolated from the shell of C. crenata. This is the first study to report diterpenes from the shell
of C. crenata. Comprehensive spectroscopic data including 1D, 2D NMR, and CD spectroscopy
were used to determine the compound structures. All isolated compounds were examined for their
ability to stimulate dermal papilla cell proliferation using a CCK-8 assay. In particular, 6β,7β,16α,17-
Tetrahydroxy-ent-kauranoic acid, isopentyl-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside, and
ellagic acid exhibited the most potent proliferation activity of all.

Keywords: Castanea crenata shell; Fagaceae; seco-ent-diterpenes; phenolics; dermal papilla cell prolif-
eration

1. Introduction

Castanea crenata, commonly referred to as Republic of Korean or Japanese chestnut,
is an indigenous species of chestnut tree found in the Republic of Korea and Japan. The
Republic of Korea ranks as the world’s second-highest producer of chestnuts, but 30% of
them are processed manually as peeled chestnuts [1]. The process of peeling chestnuts
generates two waste products: the burs and the shells. In Asia, the chestnut shell is used for
its medicinal properties, including alleviating diarrhea and improving digestion [2]. Despite
being a rich source of bioactive compounds, chestnut shells are considered solid waste
and often burned as fuel in factories, leading to environmental problems caused by the
release of poisonous substances such as CO, NOx, and polychlorodibenzodioxins [3]. Our
previous studies have identified cycloartane-type triterpenoids and flavonoid glycosides
in C. crenata burs, which have contributed to the discovery of natural antiviral sources [4].
Likewise, chestnut shells contain various health-beneficial compounds such as polyphenols
and flavonoids, which have been shown to have antioxidant, anticancer, anti-inflammation,
antibacterial, diabetes control, and weight loss effects [1,3,5].

Hair loss is a result of various factors, including aging, hormonal imbalances, nutrient
deficiencies, and psychological stress. The hair follicle dermal papilla cells (DPCs) found
at the base of the hair follicle are being employed in an in vitro screening model for hair
growth, as they play a crucial role in hair follicular morphogenesis and postnatal hair
growth cycles [6]. In our preliminary study, we discovered that (3R)-5′-methoxyvestiol and
(6aR,11aR)-3,8-dihydroxy-9-methoxypterocarpan significantly impacted the proliferation
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of immortalized DPCs [7,8]. Additionally, chestnut shell extracts demonstrated minimal
internal damage with excellent color intensity and a smooth hair surface morphology [5].
Thus, combining phytochemical exploration with biological activity investigation is crucial
in discovering natural hair growth compounds from agricultural by-products. In this study,
five previously undescribed compounds (1–2, 6–8) along with seven known compounds
were purified from C. crenata shells. Despite extensive investigation into the phenolic
compounds in chestnut shells [2,9], no diterpenoid derivatives have been identified to date.

2. Results and Discussion
2.1. Phytochemical Isolation

In the methanol extract of C. crenata shells, five new compounds with seven known
compounds were identified through column chromatography and isolation procedures
(Figure 1). By comparing 1H and 13C NMR data to published data, the following com-
pounds were characterized: prinsoside C (3) [10], mollissin (4) [11], 6β,7β,16α,17-tetrahydroxy-
ent-kauranoic acid (5) [12], 2-phenylethyl 2-phenylethyl 6-O-α-L-arabinofuranosyl-β-D-
glucopyranoside (9) [13], 2-phenylethyl β-rutinoside (10) [14], ellagic acid (11) [15], and
3,3′-di-O-methylellagic acid (12) [16] (Figure 1).
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Compound 1 was isolated from natural products for the first time and was previously
found in the enzymatic hydrolysis form of prinsoside C [10]. It was purified as a white
amorphous solid with a chemical formula of C20H30O6. The molecular ion [M–H]– was
found to be at m/z 365.1975 (calcd for C20H29O6, 365.1964, Figure S1). The 1H NMR spectra
showed two methyls at δH 0.72 and 1.44 (both s), a hemiacetal at δH 5.67 (br s), and an
aldehyde proton at δH 9.78 (s) (Figure S2). Two methyls (δC 22.6 and 30.6), eight methylenes
(δC 19.0, 20.7, 26.4 32.1, 32.2 35.0, 47.7, and 66.1), three methines (δC 46.1, 48.9, and 55.8),
one hemiacetal (δC 100.8), four quaternaries (δC 40.6, 42.4, 59.7, and 82.0), and two carbonyl
carbons (δC 184.3 and 207.2) were detected (Table 1, Figure S3 and S4). With the exception of
the sugar moiety, the NMR data of 1 indicated that it had structural similarity to prinsoside
C, which has previously been isolated from Prinsepia utilis [10]. COSY correlations C-1/C-
2/C-3, C-5/C-6, and C-11/C-12/C-13/C-14 indicated three coupling segments (Figure 2,
Figure S5). The existence of a bicyclo [3.2.1]octane system in the HMBC spectrum was
shown by the correlations between H-14 and C-9, C-12, C-15, C-16; H-11 and C-8, C-13; and
H-13 and C-11. HMBC correlations between H-1 and C-20, C-3; H-6 and C-19; H-7 and C-8,
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C-9, C-14; Me-18 and C-3, C-4, C-5; and Me-20 and C-1, C-5, C-9, C-10 revealed an unusual
B-ring seco-kaurane framework (Figure 2, Figure S6). Due to its biogenetic derivative,
compound 1 was expected to have the same configurations at C-6 and C-16 as prinsoside
C (3), which was also isolated from the present investigation. The CD spectra showed
a negative Cotton effect at 239 nm (∆ε –0.86, Figure 3), comparable to prinsoside C and
ent-kaur-16-en-19-oic acid, which also showed the negative Cotton effect at 233 nm [10,17].
Based on these results, compound 1 was confirmed to be ent-6β,16α,17-trihydroxy-7,19-
dioxo-6,19-epoxy-6,7-seco-kaurane and named prinsoside D.

Table 1. NMR spectroscopic data for compounds 1–2.

Pos
1 2

δC
a,b δH

a,c (J in Hz) δC
a,b δH

a,c (J in Hz)

1 35.0 1.59 (m), 1.75 (m) 35.1 1.55 (m)
2 19.0 1.44 (m) 19.1 1.44 (m)
3 32.1 1.32 (m), 2.07 (m) 32.2 1.27 (m), 2.07 (m)
4 42.4 - 42.2 -
5 55.8 1.94 (m) 56.2 1.86 (m)
6 100.8 5.67 (s) 100.9 5.33 (s)
7 207.2 9.78 (s) 182.3 -
8 59.6 - 54.1 -
9 48.9 2.09 (m) 48.9 2.07 (m)
10 40.5 - 39.7 -
11 20.7 1.83 (m) 20.8 1.74 (m)
12 26.4 1.70 (m) 25.6 1.57 (m), 1.68 (m)
13 46.1 2.25 (m) 46.3 2.21 (m)
14 32.2 1.70 (m), 2.42 (dd, 4.5, 12.0) 33.2 1.66 (m), 2.53 (m)
15 47.7 1.60 (m), 1.83 (m) 51.9 1.75 (m), 2.03 (m)
16 82.0 - 81.4 -
17 66.1 3.67 (d, 11.4), 3.75 (d, 11.4) 74.2 3.55 (dd, 1.7, 10.3), 4.21 (dt, 1.7, 10.3)
18 30.6 1.44 (s) 30.9 1.41 (s)
19 184.3 - 184.6 -
20 22.6 0.72 (s) 18.5 0.90 (s)
1′ 105.2 4.29 (dt, 1.6, 7.8)
2′ 78.1 3.27 *
3′ 75.3 3.22 (ddd, 1.6, 7.6, 9.3)
4′ 71.7 3.27 *
5′ 77.9 3.36 *
6′ 62.8 3.67 *, 3.88 (dd, 1.3, 11.7)

a Measured in CD3OD, b 150 MHz, c 600 MHz, * overlapped, assignments were done by HSQC, HMBC, COSY,
and ROESY experiments.
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The pseudo ion peak at m/z 543.2422 [M–H]– revealed the molecular formula of 2 to
be C26H40O12 (calcd for C26H39O12, 543.2442, Figure S7). The 1H NMR spectrum showed
signals similar to those of prinsoside D (1): two methyl groups at δH 0.90 and 1.41 (both
s) and a hemiacetal proton at δH 5.33 (br s) (Figure S8). The 13C NMR resonances were
comparable to those of compound 1, with the exception of a distinct signal set assignable to
a sugar moiety carbon (δC 105.2, 78.1, 77.9, 75.3, 71.7, and 62.8) (Table 1, Figures S9 and S10).
Except for the substitution of an aldehydic group for a carboxylic group at C-8, the NMR
data of 2 were equivalent to those of prinsoside C [10]. The HMBC correlation between
H-14, H-15, and C-7 verified the carboxylic group. Furthermore, the correlation between
the anomeric proton at δH 4.29 and the methylene signal at δC 74.2 proved that the sugar
moiety was located at C-17 (Figure 2, Figure S11). Compound 2 also exhibited the negative
Cotton effect at 240 nm as with compound 1 (Figure 3). These results indicated that the
structure of 2 could be determined as ent-6β,7,16α,17-tetrahydroxy-7,19-dioxo-6,19-epoxy-
6,7-seco-kaurane 17-O-β-D-glucopyranoside (prinsoside E).

The ion peak at m/z 381.1939 [M–H]– corresponded to the molecular formula of
C16H30O10 (calcd for C16H29O10, 381.1761) of compound 6 (Figure S12). The existence of
two sugar moieties and an aliphatic backbone was shown by the 1H and 13C NMR spectra.
The 1H signals exhibited two methyls at δH 0.94 (6H, dd, J = 1.0, 6.6 Hz); two methylenes
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at δH 1.53 (2H), 3.59 (1H), and 3.93 (1H); and a methane at δH 1.77, suggesting the pres-
ence of isopentyl alcohol. Two anomeric protons at 4.27 (1H, d, J = 7.9 Hz) and 4.98 (1H,
d, J = 1.5 Hz) were assigned to two sugar moieties with β- and α-linkages, respectively
(Table 2, Figures S13 and S14). The 1→6 interglycoside linkage was confirmed by the
glycosylation shift observed on C-6 of the first glucose unit and the HMBC correlation
between H-1′′ (δH 4.98) and C-6′ (δC 68.1) (Figure S15). The sugar moieties were identi-
fied as α-L-arabinofuranosyl and β-D-glucopyranoside by matching their NMR data to
those of sugar moieties in 2-(4-hydroxyphenyl)ethyl-O-α-L-arabinofuranosyl-(1→6)-O-β-
D-glucopyranoside [18]. Furthermore, HMBC correlations between H-1′ (δH 4.27) and C-1
(δC 69.4) confirmed the position of this sugar linkage at C-1 (Figure 2). Based on the data
presented above, compound 6 was elucidated to be isopentyl-α-L-arabinofuranosyl-(1→6)-
β-D-glucopyranoside.

Table 2. NMR spectroscopic data for compounds 6–8.

Pos
6 7 8

δC
a,b δH

a,c (J in Hz) δC
a,b δH

a,c (J in Hz) δC
a,b δH

a,c (J in Hz)

1 69.4 3.59 (m), 3.93 (m) 69.4 3.56 (dt, 6.9, 9.6),
3.92 (dt, 6.9, 9.6) 131.9 -

2 39.6 1.53 (q, 6.9) 39.6 1.51 (dt, 6.9, 8.2), 130.9 7.19 (d, 8.3)
3 26.0 1.77 (dt, 6.7, 13.4) 26.0 1.75 (dt, 6.8, 13.4) 114.8 6.82 (d, 8.3)
4 23.0 0.94 (dd, 1.0, 6.6) 23.0 0.92 (d, 6.8) 159.6 -
5 23.1 0.94 (dd, 1.0, 6.6) 23.1 0.92 (d, 6.8) 114.8 6.82 (d, 8.3)
6 130.9 7.19 (d, 8.3)
7 36.4 2.87 (td, 4.7, 7.3)

8 72.1 3.71 (dd, 7.7, 9.8),
3.98 (dd, 7.7, 9.8)

OMe 55.6 3.45 (s)
1′ 104.4 4.27 (d, 7.9) 104.4 4.24 (d, 7.9) 104.5 4.28 (d, 7.7)
2′ 75.1 3.18 (dd, 7.9, 9.3) 75.1 3.17 (m) 75.1 3.16 (m)
3′ 78.0 3.36 * 78.0 3.34 (m) 78.0 3.33 *
4′ 72.0 3.30 * 72.0 3.32 (m) 71.6 3.27 *
5′ 76.6 3.45 * 76.6 3.43 (m) 77.1 3.38 *

6′ 68.1 3.61 *,
3.96 (dd, 2.4, 11.2) 69.7 3.74 (dd, 6.0, 11.5),

4.08 (dd, 2.2, 11.5) 68.1 3.61 (dd, 6.2, 11.3),
3.96 *

1” 109.9 4.98 (d, 1.5) 105.5 4.32 (d, 7.5) 102.4 4.74 (d, 1.6)
2” 83.2 4.01 (dd, 1.5, 3.3) 74.8 3.21 (dd, 7.5, 9.0) 72.2 3.82 *
3” 78.9 3.84 (dd, 3.2, 11.9) 77.6 3.31 (m) 72.4 3.65 *
4” 85.9 3.99 (m) 71.1 3.48 (m) 74.0 3.36 *

5” 63.1 3.66 *,
3.76 (dd, 3.2, 11.9) 66.9 3.19 (dd, 3.2, 11.9),

3.87 (dd, 3.2, 11.9) 69.7 3.66 *

6” 18.1 1.25 (d, 6.2)
a Measured in CD3OD, b 150 MHz, c 600 MHz, * overlapped, assignments were done by HSQC, HMBC, COSY,
and ROESY experiments.

The molecular formula of 7 was determined as C16H30O10 by the HR-ESI-MS ion at m/z
381.1899 [M−H]− (calcd for C16H29O10, 381.1761, Figure S16). 13C NMR exhibited 11 sig-
nals assignable to primeverose [O-β-D-xylopyranosyl-(1→6)-O-β-D-glucopyranose] [19],
two methyls, two methylenes, and one methine carbon signal. Its 1H and 13C NMR spectra
revealed that it was similar to 6 (Figures S17 and S18), with the exception of the replace-
ment of the arabinofuranosyl moiety with a xylopyranosyl moiety at C-6′. Consequently,
structure 7 was determined as isopentyl β-D-primeverose.

The molecular formula of 8 was determined as C21H32O11 by the HR-ESI-MS ion at m/z
505.1928 [M+FA−H]− (calcd for C22H33O13, 505.1921, Figure S19) Signals corresponding
to two methylene groups at δH 2.87 (td, J = 4.7, 7.3 Hz, 2H) and δH 3.71 (dd, J = 7.7,
9.8 Hz, 1H) and 3.98 (dd, J = 7.7, 9.8 Hz, 1H) and aromatic protons at δH 6.82 (d, J = 8.3 Hz,
2H) and δH 7.16 (d, J = 8.3 Hz, 2H), as well as a methoxy proton at δH 3.45 (s, 3H),
suggested a 2-(4-methoxyphenyl)ethanol backbone (Table 2, Figure S20). Two anomeric
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protons at δH 4.28 (1H, d, J = 7.7 Hz) and 4.74 (1H, d, J = 1.6 Hz) suggested β- and α-
linkages of sugar moieties, respectively. The 13C-NMR spectrum revealed 20 carbon signals,
including two quaternaries, fourteen methines, three methylenes, and one methyl carbon
(Figure S21). The NMR data were comparable to those of tazettoside D [20], except for the
substitution of glucopyranoside for rhamnopyranoside. The sugar moieties were identified
to be a rutinoside (α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside) by matching their
NMR data with those of sugar moieties in isorhamnetin 3-O-rutinoside [21]. The HMBC
correlations between H-1” (δH 4.74) and C-6′ (δc 68.1) and between H-1′ (δH 4.28) and
C-8 (δc 72.1) confirmed the presence of the sugar linkage to be 1→6 and the position of
sugar moieties at C-8, respectively (Figure 2, Figure S22). Compound 8 was identified as
2-(4-methoxyphenyl)ethyl β-rutinoside as a result of the data presented above.

Among the known compounds, mollissin (4) was identified through the enzymatic
hydrolysis of mollioside, a diterpene glycoside with a 6,7-secokauran-type carbon skeleton
derived from the kernels of C. mollissima [11]. Ellagic acid (11) is abundant in various
parts of Castanea species [9,22–24]. To the best of our knowledge, the remaining known
compounds (3, 5, 9–10, 12) are being reported for the first time in this species.

2.2. Dermal Papilla Cell Proliferation

Phytochemicals have been explored as potential hair growth stimulants due to their
low toxicity, accessibility, affordability, and diverse modes of biochemical action [6–8].
Despite substantial studies on natural products for hair growth, the findings of compound-
based research still require a more in-depth understanding, since the majority of these
studies have used natural product extracts. In this investigation, the effects of all isolated
compounds on dermal papilla cell proliferation were evaluated using a CCK-8 assay and
the findings are summarized in Table 3.

Table 3. Dermal papilla cell proliferation effect of isolated compounds.

Isolated Compounds Proliferation (%)

Prinsoside D (1) 90 ± 3.15
Prinsoside E (2) 133 ± 1.99 b

Prinsoside C (3) 105 ± 2.53
Mollissin (4) 87 ± 2.40

6β,7β,16α,17-Tetrahydroxy-ent-kauranoic acid (5) 138 ± 2.54 c

Isopentyl-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside (6) 138 ± 4.41 c

Isopentyl β-D-primeverose (7) 117 ± 5.08 a

2-(4-Methoxyphenyl)ethyl β-rutinoside (8) 123 ± 5.27 a

2-Phenylethyl 6-O-α-L-arabinofuranosyl-β-D-glucopyranoside (9) 118 ± 2.10 a

2-Phenylethyl β-rutinoside (10) 99 ± 2.68
Ellagic acid (11) 137 ± 2.29 c

3,3′-Di-O-methylellagic acid (12) 60 ± 1.50
Minoxidil * 121 ± 5.85 a

The absorbance at 450 nm was measured using a microplate reader. Mean ± S.E.M. * Positive control. The
percentage of proliferation was calculated by setting the control group without compound (blank) as 100%.
a p < 0.05; b p < 0.01; c p < 0.001 indicate statistically significant differences compared to the control group.

Several compounds isolated from chestnut shells showed statistically significant ef-
fects on hair follicle proliferation, including prinsoside E (2), 6β,7β,16α,17-tetrahydroxy-ent-
kauranoic acid, isopentyl-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside, isopentyl β-D-
primeverose, 2-(4-methoxyphenyl)ethylβ-rutinoside, 2-phenylethyl 6-O-α-L-arabinofuranosyl-
β-D-glucopyranoside (5–9), and ellagic acid (11). Some of these compounds exhibited
comparable proliferative activity to the positive control, minoxidil. The ent-kaurane-type
diterpenoids, prinsoside E and 6β,7β,16α,17-tetrahydroxy-ent-kauranoic acid (2 and 5),
exhibited the most promising activity, with proliferation of 133 ± 1.99 and 138 ± 2.54,
respectively, which was better than that of the positive control, minoxidil (121 ± 5.85).
These findings are supported by previous studies that found a substantial proliferative
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impact on human hair follicle dermal papilla cells from ent-kaurane-type diterpenoids
isolated from Isodonis Herba [25].

Vanillic acid and hydroxytyrosol, simple phenolic acids found in wheat bran and
olive oil, enhance DPCs’ proliferation. Vanillic acid stimulates anagen and reduces hair
loss in DPCs, whereas hydroxytyrosol increases the release of hair growth factors during
the anti-inflammatory process [26,27]. Research into the effects of phenolic glycosides on
hair growth has not been extensively conducted. Nevertheless, all the phenolic glycosides
isolated from the chestnut shells, except 2-phenylethyl β-rutinoside (10), in the present
study displayed significant activity, with proliferation ranging from 117 to 138.

In accordance with the results from the present investigation, previous research has
demonstrated that ellagic acid (11) has a significant effect in stimulating hair growth by ex-
tending the follicular size and prolonging the growing phase [28]. Additionally, ellagic acid
protected irradiated hair follicle dermal papilla cells from UVA-induced damage by exhibit-
ing an ROS scavenging capacity and modulating antioxidant gene expression [29]. These
findings support the potential use of chestnut by-products as a source of high-value com-
pounds and the possibility that diterpenoids and phenolic glycosides derived from chestnut
shells might be promising candidates for hair-growth-enhancing agents. Further research
is being undertaken to understand the mechanism behind their proliferation effects.

3. Materials and Methods
3.1. Plant Material

Castanea crenata shells from Gongju-si, Chungcheongnam-do, Republic of Korea, were
obtained from the Kyung-dong herbal market in Seoul, Republic of Korea, in 2019. The
Okkwang cultivar, widely cultivated in the Republic of Korea, was used for this study [2]. A
voucher specimen (CC201901) was deposited in the Herbarium of the College of Pharmacy,
Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.

3.2. Extraction and Isolation

C. crenata dried shells (10.0 kg) were extracted with MeOH (5 L × 3 times) and
sonicated for 4 h at 30 ◦C, yielding a 200.0 g extract. The extract was then partitioned
with CHCl3 and EtOAc, resulting in CHCl3 (CCS1), EtOAc (CCS2), and H2O (CCS3)
fractions. The CHCl3 fraction (CCS1) was further fractionated using a silica gel CC with a
gradient of n-hexane:acetone (20:1→1:1, v/v) to give five sub-fractions (CCS1A–CCS1E).
The CCS1C fraction was again applied to a silica gel column with CHCl3:MeOH (4:1, v/v)
to produce five additional fractions (CCS1C1–CCS1C5). The CCS1C2 fraction yielded 1
(26.4 mg) and 12 (12.8 mg) using preparative HPLC with a J’sphere ODS H-80 column
(250 mm × 20 mm), eluted with 20% MeCN in H2O at a flow rate of 3 mL/min. Under the
same HPLC conditions, the CCS1C3 fraction purified 6 (16.0 mg), 7 (10.6 mg), 8 (13.0 mg),
9 (17.2 mg), and 10 (13.0 mg), while the CCS1C4 fraction purified 2 (9.1 mg), 3 (9.4 mg),
5 (2.8 mg), and 11 (2.7 mg). The EtOAc fraction (CCS2) was fractionated on a silica
gel column with a gradient of CHCl3:MeOH (20:1→1:1, v/v), yielding five sub-fractions
(CCS2A–CCS2E). The CCS2C fraction was further processed on a YMC RP-18 column
with MeOH:H2O (2:1, v/v) to produce two smaller fractions (CCS2C1 and CCS2C2). The
CCS2C1 fraction yielded 4 (3.1 mg) using the HPLC procedure described above, with 15%
MeCN in water as the solvent.

3.2.1. Prinsoside D (1)

White amorphous solid; CD (c = 2 × 10−4, MeOH) ∆ε (nm) –0.86 (239); C20H30O6, HR-
ESI-MS m/z: 365.1975 [M–H]– (calcd for C20H29O6, 365.1964); for 1H (CD3OD, 600 MHz)
and 13C NMR (CD3OD, 150 MHz); spectroscopic data, see Table 1.
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3.2.2. Prinsoside E (2)

White amorphous solid; CD (c = 2× 10−4, MeOH) ∆ε (nm) –0.80 (240); C26H40O12, HR-
ESI-MS m/z: 543.2422 [M–H]– (calcd for C26H39O12, 543.2442); for 1H (CD3OD, 600 MHz)
and 13C NMR (CD3OD, 150 MHz); spectroscopic data, see Table 1.

3.2.3. Isopentyl-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside (6)

White amorphous powder; C16H30O10, HR-ESI-MS m/z: 381.1939 [M–H]− (calcd
for C16H29O10, 381.1761); for 1H (CD3OD, 600 MHz) and 13C NMR (CD3OD, 150 MHz);
spectroscopic data, see Table 2.

3.2.4. Isopentyl β-D-primeverose (7)

White amorphous powder; C16H30O10, HR-ESI-MS m/z: 381.1899 [M−H]− (calcd
for C16H29O10, 381.1761); for 1H (CD3OD, 600 MHz) and 13C NMR (CD3OD, 150 MHz);
spectroscopic data, see Table 2.

3.2.5. 2-(4-Methoxyphenyl)ethyl β-Rutinoside (8)

White amorphous powder; C21H32O11, HR-ESI-MS m/z: 505.1928 [M+FA−H]− (calcd
for C22H33O13, 505.1921); for 1H (CD3OD, 600 MHz) and 13C NMR (CD3OD, 150 MHz);
spectroscopic data, see Table 2.

3.3. Cell Culture and Cell Proliferation Assay

Immortalized dermal papilla cells (iDPCs) were obtained from Dr. Sung’s Lab at
Kyungpook National University and cultured in DMEM containing 10% FBS (Gibco,
Rockville, MD, USA) and 1% penicillin/streptomycin (Gibco, CA, USA) at 37 ◦C in a
humidified atmosphere of 95% air/5% CO2. A total of 1000 iDPCs cells per well were
plated in 96-well microplates and treated with 30 µM of isolated compounds in DMSO
as well as minoxidil, the positive control, for 24 h. The cell proliferation was measured
using the CCK-8 solution (Dojindo Molecular Technologies, Inc., Rockville, MD, USA). The
absorbance was measured at 450 nm using a microplate reader (Tecan, AG, Switzerland).
The percentage of cell proliferation was calculated by setting the control group without
compound (blank) as 100%.

3.4. Statistical Analysis

The statistical software package GraphPad Prism (ver. 5, GraphPad, San Diego, CA,
USA) was used to examine the data. All data are presented as means ± standard error of
the mean (SEM). The statistical significance of the differences between the compounds and
the control group (blank) was determined using a paired t-test. p-values were considered
statistically significant when <0.05 (*), <0.01 (**), and <0.001 (***).

4. Conclusions

The phytochemical investigation of the shells of C. crenata resulted in the identifi-
cation of five new compounds (1–2, 6–8) and seven previously described compounds
(3–5, 9–12). To the best of our knowledge, this is the first work on diterpene separation
from C. crenata shells. Twelve compounds obtained from C. crenata shells were investi-
gated for iDPC proliferation. In particular, prinsoside E (2), 6β,7β,16α,17-tetrahydroxy-
ent-kauranoic acid, isopentyl-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside (5–6), 2-
(4-methoxyphenyl)ethyl β-rutinoside (8), and ellagic acid (11) demonstrated significant
proliferative effects on iDPC. These effects were comparable to those of the positive control,
minoxidil. These findings suggest that chestnut shells might be utilized in the treatment of
hair loss and further studies on the target mechanism of these constituents are currently in
progress.
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