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Abstract: Soil salinization is an adverse phenomenon in agriculture that severely affects crop growth
and yield. The use of natural products, such as wood distillate (WD, derived from the pyrolysis
of woody biomass), could be a sustainable approach to enhance the tolerance of plants cultivated
in the saline soils. Hence, this study aimed to evaluate the potential of WD, a foliar sprayed at
0.2% (v/v), in lettuce plants subjected to grow under both moderate and high soil sodium chloride
(NaCl) concentrations (ranging from 0 to 300 mM). The changes in the physiological and biochemical
responses of these plants to the varying salt stress conditions allowed the identification of a maximum
tolerance threshold (100 mM NaCl), specific to lettuce. Beyond this threshold, levels related to plant
defense antioxidant power (antiradical activity) were lowered, while those indicative of oxidative
stress (malondialdehyde content and electrolyte leakage) were raised, causing significant losses in
leaf fresh biomass. On the other hand, WD significantly improved plant growth, enabling plants to
survive high salt conditions >200 mM NaCl. Collectively, these observations highlight that treatments
with WD could be of paramount importance in coping with current environmental challenges to
have better yields under soil conditions of high salt concentrations.
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1. Introduction

A soil becomes saline when it contains a high amount of dissolved salts in the soil
solution, such as sodium (Na+), chlorine (Cl−), and potassium (K+) ions, showing a value
of electrical conductivity (EC) ≥ 2 dS−1 m−1 [1]. This excessive concentration of salts
can have a negative impact on plant growth and development, both physiologically and
morphologically [2]. Basically, a high salt concentration in soil is harmful to plants because
it interferes with the normal activity of leaf transpiration and root water uptake, causing
osmotic and ionic stress [3]. As a result, plants can show symptoms such as thick leaves with
the accumulation of Na+ and Cl− within the cells, wilting, discoloration, premature aging,
and leaf drop, as well as slowed or even inhibited growth [4]. High salt concentrations in
the external medium can induce the closure of leaf stomata; this is a defense mechanism
activated by plants, which, in turn, can cause oxidative stress due to the transfer of excess
energy to oxygen (O2), resulting in the formation of superoxide (O2•−), hydrogen peroxide
(H2O2), hydroxyl radical (OH•), and singlet oxygen (1O2) [5,6]. These molecules are highly
reactive O2-containing molecules (known as reactive oxygen species—ROS—) and, when
in excess, they are harmful to the life of cells [7]. As a result, plants activate a series of
antioxidant enzymes and biosynthesize different non-enzymatic antioxidant compounds
to eliminate excess ROS or convert ROS into less toxic compounds [8,9]. Furthermore,
high salt levels cause not only plant oxidative stress, but also lead to a great accumulation
of electrolytes (e.g., Na+, Cl−, K+) within plant cells; consequently, the osmotic pressure
increases, leading to the rupture of cell plasma membranes and, finally, to cell death [10].
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This can lead to severe economic losses in crop quality and yield [11]. However, the
extent of damage depends not only on the concentration of salts in the soil, but also on the
ability of plants to tolerate and adapt, which varies not only from species to species, but
also according to the plant growth stage [12,13].

Globally, more than 800 million ha of agricultural soils are affected by salinization
problems [14]. This is of concern especially in regions characterized by arid and semi-arid
climates, where water evaporation is accelerated, causing surface salts to concentrate and
form a saline crust on the soil surface [15,16]. Consequently, soils lose their physical, chemi-
cal, and biological fertility, becoming infertile for agriculture and are often abandoned [17].
In Europe, soil salinization is a remarkable phenomenon affecting a large area, between 1
and 3 million ha, mainly in countries around the Mediterranean basin [18]. This problem
is exacerbated by climate change, which leads to higher temperatures and prolonged and
intensified drought periods, along with the adoption of inappropriate irrigation farming
practices [19]. This is predicted to lead to more than 50% of agricultural soils becoming
uncultivable by the end of 2050 due to excess salts [20,21]. In addition, the United Nations
estimated that the world population will reach 9.7 billion people by 2050, significantly
increasing the demand for food, despite the decrease in usable agricultural areas [22]. This
situation makes it crucial to improve crop yield and quality to limit the problem of food
security and malnutrition [23,24].

To achieve the goal of improving crop tolerance to salinized conditions, mainly two
approaches have been adopted: agronomic techniques and genetic selection. Agronomic
techniques involve the use of specific products, such as biofertilizers, phytohormones,
potassium salts, and silicon, to modify the metabolic behavior of plants so that they
can better adapt to the salinized environment [25]. Alternatively, attempts have been
made to genetically select crops that show a greater salt tolerance [26]. However, so far,
genetic manipulation has been limited by the complexity of gene regulation, which varies
significantly during the different stages of plant development. As a result, there have been
just a few cases in which salt-tolerant plant varieties have been developed using these
methods [27].

Current environmental policies globally encourage sustainable agronomic measures to
address climate change, including salt stress management for plants [28]. An eco-friendly
alternative to synthetic chemicals, such as pesticides and fertilizers, is wood distillate
(WD), also known as pyroligneous acid or wood vinegar [29]. This dark amber-brown
natural product is obtained by distillation during the pyrolysis of woody biomass [30].
Experimentation has shown that WD is both safe for the environment [31,32], human
health [33], and beneficial for plant biodiversity [34]. In Italy, it has even been approved for
use in organic farming [35].

In agriculture, promising results have been obtained in the use of WD as a plant
corroborant and a biostimulant [36,37]. Dissolved WD contains more than 200 organic
compounds including acids, alcohols, aldehydes, ketones, phenols, and minerals (mainly
calcium and iron) [38]. The composition of liquid products that are obtained from thermo-
chemical processes, such as WD in our case, obtained from pyrolysis, can be influenced
by the operating parameters (mainly, temperature, residence time, and pressure) and the
type of feedstock used in the process [39,40]. Specifically, while pressure affects the kinetics
and pathways of pyrolysis reactions, temperature, as well as the duration of the process,
have a significant impact on the characteristics of the final product; as an example, rapid
heating promotes the rapid release of volatile compounds and, as a result, the composition
of the product will be different than that of a product obtained at a slower heating rate. It
can be applied both to the soil by fertigation and to the leaves by spraying. Its applications
include improving soil quality [41], controlling weeds [42], regulating plant growth [36],
and reducing the negative effects of the presence of bioplastics in the soil [38]. However,
the efficacy of WD depends on the concentration used; if WD is applied between 0.2%
and 0.5% (v/v), it stimulates plant growth and yield [36,38,43,44], while if it is applied at
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dosages higher than 0.5% (v/v), it can have herbicidal effects [42,45,46]. To the best of our
knowledge, lettuce irrigated with saline water has not been the subject of WD studies.

In this context, this study aims to investigate whether WD can improve the ability
of lettuce plants to tolerate moderate and high soil sodium chloride concentrations. This
study provides an understanding of how lettuce plants, treated with WD as a foliar spray,
tolerate saline irrigation.

2. Results
2.1. Response of the WD-Untreated Plants to Varying Salt Concentrations

The addition of salt to the soil, irrespective of the NaCl concentration, resulted in
a significant reduction in leaf fresh weight of plants, which were not sprayed with 0.2%
(v/v) WD (indicated as “−WD”). Specifically, the reductions increased linearly with the
increasing NaCl concentration as follows: −22.1% for the 50 mM, −36.9% for the 100 mM,
−75.1% for the 200 mM, and −88.6% for the 300 mM NaCl, compared to those plants
which were neither treated with NaCl nor with WD (control) (Figure 1A). On the other
hand, leaf chlorophyll content in the control plants did not change except at the highest
NaCl concentration (300 mM), where it increased significantly (p < 0.05), reaching values
approximately +23% higher than the control (Figure 1B).
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Figure 1. Fresh weight (A) and chlorophyll content (B) presented as the median ± error. Potting
soil treatments with different NaCl concentrations [from 0 (control) to 300 mM] are displayed on the
horizontal axis. “−WD” means leaves sprayed with water, while “+WD” means leaves sprayed with
0.2% (v/v) wood distillate (WD). Lowercase letters indicate significant differences (p < 0.05) among
the different NaCl concentrations within “−WD”, whereas uppercase letters indicate significant
differences (p < 0.05) among the different NaCl concentrations within “+WD”. *: indicates significant
differences within the same salt treatments evaluated by the Kolmogorov–Smirnov test (p < 0.05).

The 50 mM NaCl treatment significantly (p < 0.05) lowered the EL by −30%, which is
an indicator of osmotic stress. Concentrations higher than 50 mM but less than 300 mM
did not change this parameter, but above 300 mM NaCl, a great increase (+308.7%) in
EL was observed compared to the control plants (Figure 2A). Amongst the electrolytes,
however, Na accumulated abundantly in the leaves of −WD plants, increasing linearly
with increasing NaCl concentrations in the following order: +453.4% (at 50 mM) < +613.5%
(at 100 mM) < +1128.5% (at 200 mM) < +1269.0% (at 300 mM), with respect to the control.
As an example, at 300 mM, the Na content was about 100 g kgDW

−1 (Figure 2B). Similarly
to EL, the content of MDA, a cytotoxic target indicative of the oxidative damage of cell
membrane lipids, decreased significantly (p < 0.05) (−24.2%) at 50 mM. NaCl remained
stable at 100 mM and then increased strongly above this concentration. Particularly, the
increases were +55.3% and +65.2% for 200 and 300 mM NaCl, respectively, in comparison to
the control (Figure 2C). For carbohydrates, no variation was observed between the contents
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of the three sugars (such as fructose, glucose, and sucrose) and the respective controls in
the various treatments; instead, the starch content varied with an almost opposite trend
to those of EL and MDA. In fact, the accumulation of starch increased at the lowest NaCl
concentrations (at 50 mM by +71.6%; at 100 mM by +69.3%; and at 200 mM by +77.4%),
whereas at the highest NaCl concentration, no change was evident when compared to the
control (Figure 2D).
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Figure 2. Electrolyte leakage (EL) (A), Na concentration (B), malondialdehyde (MDA) content (C),
and carbohydrate content (i.e., glucose, fructose, sucrose, and starch) (D) presented as the
median ± error. Potting soil treatments with different NaCl concentrations [from 0 (control) to
300 mM] are displayed on the horizontal axis. “−WD” means leaves sprayed with water, while
“+WD” means leaves sprayed with 0.2% (v/v) wood distillate (WD). Lowercase letters indicate
significant differences (p < 0.05) among the different NaCl concentrations within “−WD”, whereas
uppercase letters indicate significant differences (p < 0.05) among the different NaCl concentrations
within “+WD”. *: indicates significant differences within the same salt treatments evaluated by the
Kolmogorov–Smirnov test (p < 0.05).

The ARA, expressing the total antioxidant power of −WD-leaves for NaCl concentra-
tions of 50 and 100 mM was higher than the control by +37.4% and +28.6%, respectively,
while for NaCl concentrations of 200 and 300 mM, it was less than the control by −22.3%
and −40.3%, respectively (Figure 3A). Differently, the antioxidant compounds, in terms of
TPC, decreased progressively as the NaCl concentration increased, ranging from values of
2 mg gFW

−1 (control) to approximately 0.1 mg gFW
−1 for the highest NaCl concentration

(Figure 3B).
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Figure 3. Antiradical activity (ARA) (A) and total phenol content (TPC) (B) presented as the median
± error. Potting soil treatments with different NaCl concentrations [from 0 (control) to 300 mM] are
displayed on the horizontal axis. “−WD” means leaves sprayed with water, while “+WD” means
leaves sprayed with 0.2% (v/v) wood distillate (WD). Lowercase letters indicate significant differences
(p < 0.05) among the different NaCl concentrations within “−WD”, whereas uppercase letters indicate
significant differences (p < 0.05) among the different NaCl concentrations within “+WD”. *: indicates
significant differences within the same salt treatments evaluated by the Kolmogorov–Smirnov test
(p < 0.05).

2.2. Response of the WD-Treated Plants to Varying Salt Concentrations

The effect of NaCl on the leaves of lettuce plants sprayed with 0.2% (v/v) WD (in-
dicated as “+WD”) was evident in terms of reducing the fresh weight of the aerial part
of these plants. These reductions were around lighter losses of approximately −25% on
average for the 50 mM and 100 mM NaCl concentrations and heavier losses of −58.9%
and −86.2% for the respective 200 mM and 300 mM NaCl concentrations, compared to
those plants which were not treated with NaCl but with WD (control) (Figure 1A). On the
other hand, in the WD-treated plants, the chlorophyll content only varied in the leaves of
those plants treated with NaCl at the two highest concentrations (200 and 300 mM), with
increases of +11.0% and +14.6%, respectively, when compared to the control (Figure 1B).

The osmotic stress index, i.e., EL, remained stable in the WD-plants treated with NaCl
concentrations between 50 and 200 mM, while above 200 mM NaCl a significant increase
(p < 0.05) was observed, which was about twofold higher than that of the control (Figure 2A).
Sodium was abundantly accumulated in the WD-treated leaves, reaching approximately
95 g at the highest NaCl concentration. As expected, the Na content increased linearly with
increasing NaCl concentrations as follows: +527.0% (at 50 mM) < +633.5% (at 100 mM)
< +1223.1% (at 200 mM) < +1555.8% (at 300 mM), compared to the control (Figure 2B).
In the WD plants, the index of cellular oxidative damage, i.e., MDA content, exhibited a
similar trend as EL. Specifically, the MDA content showed a significant increase (p < 0.05)
at 200 mM and 300 mM (+75.8% and +63.2%, respectively), while EL showed a significant
increase at 300 mM (+109.0%) (Figure 2C). The content of the analyzed carbohydrates
(both simple and complex) was not affected by the combined treatment of WD and NaCl,
regardless of the NaCl concentration in comparison to the respective controls (Figure 2D).

Also, in the case of the ARA of the lettuce leaves, no statistical difference was detected
between the WD, treated at any NaCl concentration, and the control (Figure 3A). Looking at
the TPC, all of the NaCl concentrations, except for the 50 mM, which showed no significant
difference to the control, resulted in a severe decline in these antioxidant compounds:
−85.3% for the 100 mM and −96.5 for both 200 and 300 mM NaCl (Figure 3B).



Plants 2024, 13, 1335 6 of 14

2.3. Differences in the Response between WD-Untreated and WD-Treated Plants at Various
Salt Concentrations

The leaf fresh weight varied between plants without WD and with WD (indicated
as “−WD” and “+WD”, respectively) for concentrations 100 and 200 mM NaCl. In the
presence of WD, an increase, albeit significant (p < 0.05), of only +11.1% was found for the
100 mM NaCl concentration, whereas it was more pronounced (+64.0%) for the 200 mM
NaCl concentration (Figure 1A). In contrast, chlorophyll content was unaffected by the
presence or absence of WD spraying, under any of the specific salt stress conditions tested
(Figure 1B).

A significant slowdown of EL was markedly evident with WD solely at the two highest
NaCl concentrations. Precisely, at 200 mM NaCl, the reduction was −66.9% and at 300 mM
NaCl, it was −50.4% (+WD vs. −WD) (Figure 2A). For the specific electrolyte, namely Na,
its accumulation at the leaf level was reduced by about −17.1% with the addition of WD,
exclusively at the 100 mM NaCl concentration (Figure 2B). Similar to EL, a reduction in
the MDA content was observed, though to a lesser extent, upon the addition of WD to the
two highest NaCl concentrations. Specifically, the reduction was −18.5% at 200 mM NaCl,
and −28.9% at 300 mM NaCl, when comparing +WD to −WD (Figure 2C). While foliar
spraying with WD induced no change in the content of simple carbohydrates (i.e., fructose,
glucose, and sucrose) in this plant tissue, WD did allow these plants to accumulate a higher
starch content in their leaves, but only when either salt stress was not imposed (+122.8)
(Figure 2D).

The ARA was also enhanced by WD treatment if no NaCl was present in the medium.
However, this parameter also increased if the NaCl concentration was 100 and 300 mM,
showing more modest increases at 0 and 100 mM (around 30% on average for both), and
more accentuated increases (of almost 70%) at 300 mM (Figure 3A). In contrast, TPC showed
no significant variation between the leaves of −WD and +WD lettuce plants at any NaCl
concentration considered (Figure 3B).

3. Discussion

Several studies have shown the important role of natural products in improving nutri-
tional quality, growth and the yield of crop plants under several abiotic stresses, including
salt stress [47–54]. Among these products, WD has proved to be very effective [36,55],
although its efficacy in mitigating the damage caused by salt stress is not yet well explored
and understood.

To the best of our knowledge, only the recent study by Ma et al. [48] evaluated the
oxidative damage in rapeseed (Brassica napus L.) plants when grown hydroponically in the
presence of 70 and 150 mM NaCl, and the effect of WD on the protection of photosystem II
in this crop plant. The results obtained by Ma et al. [48] suggest that WD would have the
potential to efficiently reduce Na accumulation in the leaves of plants grown in the presence
of 150 mM NaCl. Nevertheless, this is the first study investigating the effectiveness of WD
in plants cultivated in soils with extreme salt stress concentrations above 150 mM NaCl. It
is generally known that, beyond a concentration of 100 mM NaCl, the phytotoxic effects of
salt are increasingly detrimental to the functioning of the biochemical and physiological
processes of the lettuce plant [56], initially showing stunted growth, and leaf symptoms
such as thickening, wilting, yellowing, discoloration, and dropping, ultimately leading, in
the most severe cases, to plant death.

In this context, we aimed to investigate whether WD could be an effective ally in
enhancing the resistance of lettuce plants to high salt stress conditions, (i.e., 200 mM and
300 mM NaCl), since up to date, this research topic has not yet been explored.

Our results showed that as the NaCl concentration increased, the leaf fresh biomass de-
creased significantly. This is known to be a sign of stress by the plants since the leaf biomass
accumulation is crucial for the survival of the plants [57]. In contrast, the +WD plants
were stimulated to produce leaf fresh biomass, except at the highest NaCl concentration
(i.e., 300 mM). Wood distillate is to be recognized for its biostimulating action on plant
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growth, thanks to the presence of various compounds (such as acids, alcohols, aldehydes,
ketones, phenols, and nutrients, specifically calcium and iron), that help plants to grow
healthily and respond to various environmental stresses [58]. Our results are consistent
with those of Ma et al. [48], showing a significant increase in the leaf fresh biomass of
rapeseed plants when these plants were foliarly sprayed with 0.2% (v/v) WD and grown
with 150 mM NaCl.

As mentioned above, and also in our case, lettuce plants grown at NaCl concentrations
above 200 mM exhibited visible symptoms of leaf thickening, yellowing, and finally leaf
loss. The fact that chlorophyll content increased upon exceeding certain salt conditions
is not evidence of improved photosynthetic performance by the plants, but a result that
corroborates the positive correlation between the increase in measured chlorophyll content
and the increase in leaf thickness resulting from exposure to salt stress.

The uncontrolled uptake of Na ion in salt-enriched soils during plant growth has
been identified as a primary factor contributing to the occurrence of Na phytotoxicity
phenomenon, causing nutrient imbalances as well as disruptions in plant biochemical and
physiological processes [59,60]. Consistent with the results obtained by Ma et al. [48], which
a decrease in Na in the leaves of rapeseed plants subjected to growth under NaCl of 70 and
150 mM, we observed a significant reduction in Na by WD only in lettuce leaves exposed
to 100 mM NaCl. Therefore, these results might indicate that when the external conditions
are no longer favorable for plant growth due to high salt levels, the use of WD could be
beneficial because it would seem to help salt-stressed plants to reduce Na accumulation,
and thus increase plant tolerance to salt by surviving despite such stressful conditions.

Plants are able to increase the level of carbohydrates to balance the salt-induced
osmotic disorders [61]. One of the most common adaptive responses involves a reduction
in soluble sugars and, simultaneously, an increase in starch synthesis [62–64] to modulate
the osmotic potential and cellular turgor [65]. Indeed, our results also revealed that all −WD
plants exposed to NaCl, except those grown at the highest NaCl concentration, significantly
accumulated starch in the leaves. However, the effect of WD on leaf starch accumulation
remains relatively unexplored, as only a few studies have reported a substantial (>100%)
increase in starch content in lettuce leaves when sprayed with WD [66].

In this study, we assessed the leaf oxidative stress level through the evaluation of:
(i) EL, whose value is linked to the estimation of the integrity of cell plasma membrane;
(ii) MDA content, which is correlated to the cell plasma membrane lipid peroxidation
level; (iii) ARA, which provides an estimation of the total antioxidant power, and thus of
the overall plant capability to scavenge ROS; (iv) TPC, a specific group of powerful plant
antioxidants. In particular, we have assisted an increase in EL and MDA for -WD plants as
the exposure to NaCl increased, and a decrease in both these parameters for +WD plants
only at the two highest NaCl concentrations (i.e., 200 and 300 mM). When these parameters
increase, it means that the cell plasma membrane is damaged due to osmotic and ionic
stresses (high EL content) or oxidative stress (high MDA content) [67]. For MDA content,
our findings are in line with those published by Ma et al. [48], who found a substantial
drop in the MDA content of rapeseed plants treated with 0.2% (v/v) WD at 70 and 150 mM
NaCl compared to untreated plants. On the plant antioxidant response capacity, it can be
emphasized that salt, in general, induced the activation of the plant response by increasing
ARA. However, salt had a great impact in lowering the production and the accumulation
of phenolic compounds in lettuce leaves, already noticeable at very low salt concentrations.
The actions of WD can be useful in enhancing the non-enzymatic antioxidant compounds
to resist not only high salt levels, but also in increasing the levels of phenols in the edible
parts of plants grown under non-stressful conditions [68,69]. The use of natural products
that induce stress in plants, known as eustress, by activating defense mechanisms and
stimulating the increased production of antioxidants [70] is a commonly adopted practice in
horticulture to improve the quality of horticultural plants [71]. Wood distillate would also
appear to act as an eustressor, strengthening plant defenses and increasing their antioxidant
power and the content of antioxidant compounds.
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4. Materials and Methods
4.1. Plant Growth and Treatments

Lettuce (Lactuca sativa L., cv. Salanova) seedlings were purchased from a local nursery
(Cerretani, Siena, Italy). In our laboratory, seedlings were transplanted into plastic pots
(10 × 10 × 10 cm), containing 120 g of a commercial growing medium (VigorPlant Italia srl;
the characteristics are as follows: moisture content = 43%; porosity = 92%; pH = 5.30 ± 0.03;
EC = 1.12 ± 0.01 mS cm−1; and cation exchange capacity = 56.9 ± 2.7 meq100 g DW−1).
Seedlings were grown for 5 weeks in a climate chamber with a day/night cycle of 16/8 h
and 23/20 ◦C, 60% relative humidity, and 220 µmol s−1 m−2 PAR (photosynthetically
active radiation). Immediately after transplantation, plants were irrigated using different
sodium chloride (NaCl) solutions (JT Baker—Fisher Scientific, Milan, Italy) dissolved in
water [0 mM (pH: 7.19; EC: 0.61 mS cm−1), 50 mM (pH: 7.25; EC: 5.78 mS cm−1), 100 mM
(pH: 7.34; EC: 11.16 mS cm−1), 200 mM (pH: 7.38; EC: 20.60 mS cm−1), and 300 mM
(pH: 7.42; EC: 29.61 mS cm−1)]. These salt concentrations were chosen based on our
previous published work [72]. For each of the five treatments, five replicates were prepared.
During the experimental growth period, the plants were irrigated with these solutions,
when necessary, by maintaining the soil at 70% water holding capacity. Half of the plants
from each condition were foliarly sprayed with 0.2% (v/v) wood distillate (WD), while
the remaining half was foliarly sprayed with water once a week for 5 weeks. The WD
used (BioDea®, BioEsperia, Arezzo, Italy) was obtained from the pyrolysis process using
sweet chestnut (Castanea sativa Mill.) pruning as the feedstock. The wood distillate had the
physics-chemical characteristics reported in Table 1, already showed in Celletti et al. [38].

Table 1. Main physico-chemical characteristics of the wood distillate (Celletti et al. [38]).

Parameter Value Method

TOC (% DW) 58.03 CHNS Elemental Analysis
TN (% DW) 1.06 CHNS Elemental Analysis
H (% DW) 7.27 CHNS Elemental Analysis
S (% DW) 0.07 CHNS Elemental Analysis
pH 4 UNI EN ISO 10523:2012
Density (g mL−1) 1.05
Flash point (◦C) >60 ASTM D6450-16a
Total organic compounds (g L−1) 33.8
Acidity (mg L−1) 1289 APAT CNR IRSA 2010 B Man 29 2003
Organic acids (mg L−1) 32.3
Acetic acid (mg L−1) 21.5
Polyphenols (g L−1) 24.5
Phenols (g L−1) 3
PCBs (mg L−1) <0.2 CNR IRSA 24b Q 64 Vol 3 1988
Hydrocarbons C < 12 (mg L−1) <0.1 EPA 5021A 2014 + EPA 8015D 2003
Hydrocarbons C10–C40 (mg L−1) <0.1 UNI EN ISO 9377-2:2002

16 US-EPA PAHs (mg L−1) EPA 3550C 2007 + EPA 8310 1986

Acenaphthene <0.05
Acenaphthylene <0.05
Anthracene <0.05
Benzo[a]anthracene <0.05
Benzo[a]pyrene <0.05
Benzo[b]fluoranthene <0.05
Benzo[g,h,i]perylene <0.05
Benzo[k]fluoranthene <0.05
Chrysene <0.05
Dibenz[a,h]anthracene <0.05
Fluoranthene <0.05
Fluorene <0.05
Indeno[1,2,3-cd]pyrene <0.05
Naphthalene <0.05
Phenanthrene <0.05
Pyrene <0.05
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Table 1. Cont.

Parameter Value Method

Macronutrients (mg L−1) Alkaline melting + ICP-MS analysis

Ca 325.50
K 23.49
Mg 6.79
P 7.28

Micronutrients (mg L−1) Alkaline melting + ICP-MS analysis

Cu 0.18
Fe 21.16
Mn 0.58
Mo 0.0007
Zn 3.22

Other nutrients Alkaline melting + ICP-MS analysis

Al 1.96
Ba 0.06
Cr 0.03
Na 103.59

TOC: total organic carbon. TN: total nitrogen. PCBs: polychlorinated biphenyls. 16 US-EPA PAHs: list of
16 priority polycyclic aromatic hydrocarbons as classified by the United State Environmental Protection Agency.
Al: aluminum; Ba: barium; C: carbon; Ca: calcium; Cr: chromium; Cu: copper; Fe: iron; K: potassium;
Mg: magnesium; Mn: manganese; Mo: molybdenum; N: nitrogen; Na: sodium; Zn: zinc.

At the end of the growth period (corresponding to 5 weeks of growth under the 5 different
conditions), the above-ground part of lettuce plants was harvested, weighed for leaf fresh
biomass, and stored at −20 ◦C for subsequent physiological and biochemical analyses.

4.2. Leaf Analysis
4.2.1. Chlorophyll

The chlorophyll content was measured using the portable non-destructive device
(CCM-300, Opti-Science Inc., Hudson, NH, USA). The measurements were taken, avoiding
the nerves of the leaves, on the three youngest and fully expanded leaves [66]. The results
were reported as the quantity of chlorophyll on a surface basis (mg m−2) [73].

4.2.2. Electrolyte Leakage

Uniform circular sections (Ø 5 mm) of the youngest and fully expanded leaf were
obtained by means of a circular stainless-steel tip, and were carefully rinsed three times
with deionized water (dH2O). Subsequently, the leaf samples were transferred to 50-mL
plastic tubes containing 20 mL of dH2O and, after 2 h at room temperature, the EC1 of the
solutions was measured using a conductivity meter (Crison Basic 30, Crison Instruments,
S.A., Barcelona, Spain). Then, the sample tubes were placed in an oven at 90 ◦C for 25 min.
Next, in the cooled solutions, the EC2 was measured for the second time. The following
formula was used to calculate the electrolyte leakage (EL) [72]:

EL (%) = (EC1/EC2)× 100

4.2.3. Sodium

Lettuce leaves were oven-dried at 60 ◦C and pulverized. Approximately 150 mg
DW of this material were microwave-digested (Milestone Ethos 900, Gladeville, Metrohm,
Australia) with 3 mL of 70% (v/v) HNO3, 0.2 mL of 50% (v/v) HF, and 0.5 mL of 30% (v/v)
H2O2. Inductively coupled plasma-mass spectrometry (ICP-MS, Perkin Elmer NexION 350,
Hopkiton, MA, USA) was used to determine the leaf concentration of Na. The analytical
quality was assessed using the NCS DC 73350 certified standard reference material, “Poplar
leaves”, with recoveries ranging from 96 to 111%. The precision of the analysis was
calculated using the coefficient of variation of 5 repetitions and was always >97%. The
results are presented on a dry weight basis (g kg DW

−1).
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4.2.4. Malondialdehyde

The method proposed by Celletti et al. [74] was used to assess the level of lipid
peroxidation, expressed as malondialdehyde (MDA) content, as MDA is considered to be a
biomarker of oxidative stress. An amount of 0.5 g FW of lettuce leaves were homogenized
in 5 mL of a pre-chilled reagent prepared by dissolving 0.25 g of 2-thiobarbituric acid
(TBA) (Merck KGaA, Darmstadt, Germany) in 100 mL of 10% (w/v) trichloroacetic acid
(Panreac, Castellar del Vallès, Barcelona, Spain). The samples were first incubated at 95 ◦C
for 30 min and then ice-cooled to stop the reaction. After centrifugation at 5000 rpm for
20 min, the absorbance of the supernatants was measured at 532 nm and 600 nm using a
UV-Vis spectrophotometer (8453, Agilent, Santa Clara, CA, USA). The non-specific turbidity
adjustment was derived by subtracting the absorbance value observed at 600 nm. The lipid
peroxidation level was estimated using the molar extinction coefficient (155 mM−1 cm−1)
of the MDA–TBA complex.

4.2.5. Carbohydrates

The content of three soluble sugars (fructose, glucose, and sucrose) was determined
according to Fedeli et al. [66]. In total, 1 g of the leaf sample was homogenized in 2 mL
dH2O before a centrifugation step at 15000 rpm for 5 min. The supernatant was filtered at
0.45 µm (LLG-Syringe filters SPHEROS, Petaluma, CA, USA) with a syringe before being
analyzed with HPLC (Waters 600 system, Milford, MA, USA), equipped with a Waters
2410 refractive index detector. Sugars were partitioned with dH2O as the mobile phase,
eluted at 0.5 mL min−1, with a Waters Sugar-Pak I ion-exchange column (6.5 × 300 mm)
kept at 90 ◦C using an external temperature controller (Waters Column Heater Module,
Milford, MA, USA). Sugar contents were determined using calibration curves prepared by
dissolving analytical sugars (Merck KGaA, Darmstadt, Germany) in dH2O at a concentra-
tion ranging from 0.1 to 20 mg mL−1. The results were expressed on a dry weight basis
(mg gDW

−1).
The content of the complex carbohydrate, i.e., starch, in the leaf samples was deter-

mined using the method described by Loppi et al. [75]. About 50 mg of dried sample was
homogenized in 2 mL of dimethyl sulfoxide (DMSO) (≥99.9%, Carlo Erba, Cornaredo, MI,
Italy), and then 0.5 mL of 8 M HCl was added. The sample tubes were placed at 60 ◦C
for 30 min and then on ice to stop the reaction. In total, 0.5 mL of 8 M NaOH and 7 mL
of dH2O was added to the samples. Subsequently, they were centrifuged at 4000 rpm for
5 min. A total of 0.5 mL of supernatant was added to 2.5 mL of Lugol’s solution (previously
prepared by mixing 0.05 M HCl, 0.03% (w/v) I2, and 0.06% (w/v) KI). After 15 min, samples
were read at 605 nm using a UV-Vis spectrophotometer (8453, Agilent, Santa Clara, CA,
USA). A calibration curve of pure starch (Merck KGaA, Darmstadt, Germany) (in the range
of 10–400 g mL−1) was used for the quantification of starch in the samples. The results are
expressed on a dry weight basis (mg gDW

−1).

4.2.6. Antioxidants

The total antioxidant power was assessed using the method described by Fedeli
et al. [76]. After homogenizing 0.5 g FW of lettuce leaves in 2 mL of 80% (v/v) ethanol, the
mixture was centrifuged at 15,000 rpm for 5 min. An aliquot of 200 µL of supernatant was
taken and added to 1 mL of 2,2-diphenyl-1-picrylhydrazyl (DPPH) solution (Merck KGaA,
Darmstadt, Germany), which was prepared by dissolving 3.9 mg of DPPH in 100 mL of
80% (v/v) methanol. To quantify the antioxidant capacity of the samples, a blank and a
control were prepared. After an incubation of 1 h in the dark, the absorbance of the samples
was measured at 517 nm using a UV-Vis spectrophotometer (Agilent 8453, Santa Clara,
CA, USA). The total antioxidant power was expressed as the antiradical activity (ARA, %),
using the following formula:

ARA (%) = 100 × [1 − (sample absorbance)/(control absorbance)]
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The total phenol content (TPC) was determined using the method described by Lamaro
et al. [77]. Briefly, 0.5 mg FW of lettuce leaves were homogenized in 4 mL of 70% (v/v) ace-
tone (Merck KGaA, Darmstadt, Germany). The homogenate was centrifuged at 4000 rpm
for 5 min. Afterwards, 0.5 mL of the collected supernatant was added to 3.95 mL dH2O,
0.125 mL Folin–Ciocalteu reagent (Merck KGaA, Darmstadt, Germany), 0.75 mL saturated
Na2CO3. After incubation at 37 ◦C for 30 min, the samples were again centrifuged at
4000 rpm for 5 min and the absorbance of the supernatant was measured at 765 nm using a
UV-Vis spectrophotometer (Agilent 8453; Santa Clara, CA, USA). A calibration curve of
gallic acid (GA, >98%, Merck KGaA, Darmstadt, Germany) (in the range of 5–20 g mL−1)
was used for the quantification of TPC in the samples. The results are expressed as mg of
the GA equivalent on a dry weight basis (mg GAE gDW

−1).

4.3. Statistical Analysis

Due to the non-normality of the data (Shapiro–Wilk test, p < 0.05), a non-parametric
approach was followed [78]. The parameters analyzed were expressed as their median
value and the associated error was expressed as the interquartile range divided by the
square root of the number of observations from five biological replicates (n = 5). The
significance of differences (p < 0.05) between treatments was assessed using the Kruskal–
Wallis test and pairwise differences within the same salt treatments were assessed using
the Kolmogorov–Smirnov test. All calculations were performed with the R software
(v 4.4.0) [79].

5. Conclusions

This study revealed the varying thresholds of salt tolerance in lettuce plants, delineat-
ing their resilience up to 100 mM NaCl and their subsequent decline in defense mechanisms
beyond this threshold. The observed reductions in leaf fresh weight and antioxidant re-
sponses, coupled with increased oxidative stress, underscore the critical importance of
understanding plant responses to environmental stressors.

In addition, the application of 0.2% (w/w) WD via foliar spraying emerges as a
promising agronomic practice, effectively supporting plant growth and enabling tolerance
to extreme NaCl conditions, even from high NaCl concentrations such as 200 mM.

Thus, in the face of worsening environmental challenges, the use of WD is a novel ap-
proach that offers a feasible solution for cultivating plants in soils contaminated by high salt
levels, traditionally deemed unsuitable, and contributes to sustainable agricultural practices.
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