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Abstract: Stress-resilient and highly nutritious legume crops can alleviate the burden of malnutrition
and food security globally. Here, we focused on cowpea, a legume grain widely grown and consumed
in regions at a high risk of micronutrient deficiencies, and we discussed the past and present research
on carotenoid biosynthesis, highlighting different knowledge gaps and prospects for increasing
this micronutrient in various edible parts of the crop. The literature survey revealed that, although
carotenoids are important micronutrients for human health and nutrition, like in many other pulses,
the potential of carotenoid biofortification in cowpea is still underexploited. We found that there is, to
some extent, progress in the quantification of this micronutrient in cowpea; however, the diversity in
content in the edible parts of the crop, namely, grains, pods, sprouts, and leaves, among the existing
cowpea genetic resources was uncovered. Based on the description of the different factors that can
influence carotenoid biosynthesis and accumulation in cowpea, we anticipated that an integrated use
of omics in breeding coupled with mutagenesis and genetic engineering in a plant factory system
would help to achieve a timely and efficient increase in carotenoid content in cowpea for use in the
food systems in sub-Saharan Africa and South Asia.

Keywords: biofortification; omics; cowpea; carotenoids; plant factory; speed breeding

1. Introduction

Micronutrient deficiencies are among the major causes of poor health and reduced
economic development in the developing world [1]. The importance of stress-resilient and
highly nutritious food crops in the current food systems context cannot be overemphasized.
Legumes are a source of important secondary metabolites including carotenoids [2], and
they play a significant role in food and diet diversification and ecosystem protection [3].

Carotenoids are the second-most abundant naturally occurring pigments on earth,
synthesized by plants, which fulfill important physiological functions. Carotenoids in
higher plants are found in photosynthetic tissues and non-photosynthetic tissues [4]. The
main carotenoid pigments found in the photosystems of plants include α-Carotene and
β-carotene, which are further hydroxylated to produce xanthophylls (e.g., lutein and
zeaxanthin) [5]. The crucial roles of carotenoids and their metabolites in photooxidative
protection and photosynthesis, not to mention nutrition, vision, and cellular differentiation,
make them an important class of biological pigments [6]. In cowpea, carotenoids are mainly
present in seeds, leaves, and pods, which contribute to the antioxidant properties of this
legume [7].
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Over the past decade, biofortification has gained recognition as a cost-effective, com-
plementary, feasible means of supplying micronutrients to populations that may have
limited access to diverse diets, supplements, or commercially fortified foods [8]. Biofor-
tification uses agricultural practices and breeding as a public health intervention and, as
a result, has the potential to more effectively reach the rural poor who are often the most
affected by micronutrient deficiencies [1]. Although grain legumes are an integral part
of the food systems in sub-Saharan Africa and South Asia, only limited efforts have been
made to increase their nutrient contents [9].

The biofortification potential of grain legumes including cowpea remains underex-
ploited [10]. Cowpea is one of the most important legume grain crops, mainly grown and
consumed in sub-Saharan Africa and South Asia, regions at a high risk of vitamin-A defi-
ciency [11–14]. The profiles of carotenoid content in cowpea grains are comparatively lower
than the content in other legume grains, including lentils, red beans, and pigeonpea [15].
Most of the biofortification research in cowpea has been focused on iron and zinc [8,16,17],
with no effort for increasing carotenoids. Therefore, the objectives of this review were to
provide a critical and comprehensive update of the research on carotenoid biosynthesis
and accumulation in cowpea, to identify the knowledge gaps as well the existing resources,
and to discuss the prospects for carotenoid biofortification in cowpea for human health
and nutrition.

2. Importance of Carotenoids for Human Nutrition and Health

Carotenoids are micronutrients with essential functions and benefits to humankind
(Figure 1). They contribute to harvesting light to plant chlorophyll for photosynthesis [18],
thereby providing indirect sources of energy, nutrients, and clean air to humans. They exert
functional roles in plant hormone synthesis and photoprotection and act as scavengers
of reactive oxygen species, which enables plants to withstand stresses [19,20] and fully
express their potential to provide diverse services and functions, including foods, health,
protection, and income.
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Figure 1. Carotenoids as multifunctional and multipurpose plant metabolites.

The importance of carotenoids for humans goes beyond nutrition. Carotenoids are
health-promoting organic compounds. They contribute to the human antioxidant defense
system and reduce the risks of cancer, eye, and age-related diseases [21–23]. Among other
carotenoids, lutein is highly recognized for its anti-inflammatory properties; it helps to
prevent macular disease, to improve cognitive function, and to reduce the risk of cardiovas-
cular diseases [24]. Carotenoids, especially β-carotene, α-carotene, and β-cryptoxanthin,
contain unmodified β-ionone groups that are precursors for retinol or vitamin A in the
human body [18]. Cowpea is also a source of carotenoids [15,25]. It was reported that the
consumption of cowpea leaves improved retinol levels in serum and hemoglobin concen-
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tration among preschool children [26]. According to the United States National Institutes
of Health, the consumption of one cup (170 g) of boiled cowpea grains can provide up
to 66 µg of retinol [27]. Several studies have highlighted the importance of vitamin A in
human growth, the immune system, reproduction, and vision [22,28,29].

Carotenoids as pigments also provide distinctive colors (red, orange, and yellow)
and some aromas, which make them commercially important compounds in various
industries, including health, food, cosmetics, and aesthetic industries [18]. Carotenoids are
one of the most widely used antioxidants in the cosmetics industry; they possess antiaging
properties and protect the skin against free radicals from solar radiation [30,31]. Hence, the
biofortification of carotenoids can serve different market segments and influence consumers’
choices. For instance, the biofortification, extraction, and encapsulation of β-carotene from
green sources can play a dual role as a food additive and a substitute to synthetic dies in
the food industry [32] and can be used as nutricosmetics in the cosmetics industry [30]. The
success of such technologies depends on our understanding of the carotenoid synthesis
network and the methods of optimizing and extracting them from specific plant matrices.

3. Carotenoid Biosynthesis in Cowpea

Carotenoids are made of polyene hydrocarbon chains consisting of eight isoprene
units [33]. The carotenogenesis or biosynthesis of carotenoids is a series of biological
reactions with some core sequences conserved across plant species. In cowpea, the first and
most determinant step (Figure 2) of carotenogenesis is the condensation of two molecules of
geranylgeranyl diphosphate (GGPP, C20) by phytoene synthase (PSY) to form phytoene [5].
Two major enzymes are involved in this step, geranylgeranyl pyrophosphate synthase and
phytoene synthase, which are present in all carotenogenic organisms [6]. GGPP originates
from the condensation of three molecules (C5) of isopentenyl pyrophosphate (IPP) and
dimethylallyl diphosphate (DMAPP), a reaction catalyzed by the GGPP synthase [34]. IPP
and DMAPP are derivatives of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway,
which is also involved in the biosynthesis of other important secondary metabolites, such
as chlorophylls, Gibberellins, phylloquinone, and tocopherols [35].

The second step in carotenogenesis is a series of desaturation and cyclization reac-
tions, whereby phytoene is converted into hydrocarbon carotenoids (carotenes) and their
oxygenated derivatives (xanthophylls) [6]. Phytoene undergoes four sequential desatu-
rations, reactions regulated by phytoene desaturase (PDS), z-carotene isomerase (Z-ISO),
z-carotene desaturase (ZDS), carotenoid isomerase (CRTISO), and light-mediated photoiso-
merization to form lycopene (C40H56) [36]. Lycopene is then cyclized to produce α- and
β-carotenoids through the enzymatic activity of lycopene cyclase [5,36]. This branching
point in the carotenoid biosynthesis pathway regulates the ratio of the synthesis of lutein
and β-carotene. In one branch, a single enzyme, lycopene β-cyclase (LCYB), introduces a
β-ring at both ends of lycopene to form β-carotene. In the other branch leading to lutein
formation, β-cyclase and ξ-cyclase introduce one β-ring and one ξ-ring, respectively, into
lycopene to form α-carotene [4]. α-Carotene is acted upon by a β-ring hydroxylase to
form zeinoxanthin, which is then hydroxylated by an ξ-ring hydroxylase to produce lutein,
the major carotenoid present in green tissues such as cowpea leaves [4,37]. β-carotene is
hydroxylated in a two-step reaction to zeaxanthin, with β-cryptoxanthin as an intermediate
product. Zeaxanthin is converted into violaxanthin, and vice versa, and violaxanthin into
neoxanthin, giving rise to abscisic acid [34].

This overview of the carotenoid biosynthesis pathway shows that there is an under-
standing of the basic process leading to the formation of specific carotenoids in cowpea. The
mechanisms involved in the regulation of this process vary among plant tissues [38], eluci-
dating the biochemical network and genetics architecture and controlling the biosynthesis
of these compounds in the edible parts of the cowpea.
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Figure 2. Carotenoid biosynthesis pathway in cowpea. IPP = isopentenyl pyrophosphate,
DMAPP = dimethylallyl diphosphate, GGPP = geranylgeranyl diphosphate, PDS = phytoene
desaturase (PDS), Z-ISO = z-carotene isomerase, ZDS = z-carotene desaturase, CRTISO = carotenoid
isomerase (CRTISO).

4. Identification and Quantification Methods of Carotenoids in Cowpea

The composition of carotenoids in plants is complex and varies both qualitatively
and quantitatively [33] and, thus, requires an accurate method for identification and
quantification [39]. Both destructive and non-destructive methods have been developed for
the detection and quantification of carotenoids in plants. In this section, we describe the
existing methods for carotenoid profiling, highlighting those used in cowpea, and pointed
out potential research gaps.

4.1. Destructive Methods for Quantification of Carotenoids in Cowpea

Destructive methods are the most widely used techniques in carotenoid analysis.
They involve the sampling of the biological plant material followed by specific extraction
procedures and their analysis. The choice of extraction method is a very critical factor for
achieving a high extraction yield [31]. In cowpea, conventional extraction using an organic
solvent, acetone, or a mixture of acetone and hexane, or acetone-hexane and ethanol, at
25–80 ◦C, is commonly used [25,40,41]. Saini and Keum [31] described a Soxhlet extraction
method that uses organic solvents (hexane, ethyl acetate, ethanol, acetone, etc.) at boiling
temperature and low pressures as the best conventional method for carotenoid extrac-
tion [31,42]. In this process, saponification is sometimes carried out to remove non-targeted
compounds such as lipids and chlorophyll [43]; the addition of butylated hydroxytoluene
(BHT) helps to prevent the eventual oxidation of the carotenoid compounds.

Other carotenoid extraction methods include supercritical fluid extraction (SFE), which
uses a fluid state of carbon dioxide ‘supercritical CO2’; on the other hand, some green
extraction methods, in contrast, use friendly green solvents from renewable resources of
biomass feedstock (e.g., wood, starch, fruits, and vegetable oils) or from petrochemical
products that are non-toxic and biodegradable [31]. These methods have not been explored
in cowpea yet and merit further investigation along with the assessment of their cost-
effectiveness as they are more eco-friendly compared to Soxhlet extraction. However, a
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thorough evaluation of the different alternatives is required by the experimenter to avoid
environmental pollution while minimizing the risks of degradation, auto-oxidation, and
isomerization, which can result in bias separation and quantification of the carotenoids
from the cowpea samples.

Carotenoid analysis has benefited from advances in various fields, including chemistry,
optics, atomic physics, and magnetism, with the development and optimization of spec-
trometry and chromatography approaches to elucidate the profiles of different carotenoid
compounds from biological samples. To date, there are several reviews on the separa-
tion and quantification methods of carotenoids in plants and their by-products [44–47].
Column chromatography is the most widely used technique for carotenoid separation
in cowpea [48–50]. Column chromatography techniques include classical open-column
chromatography (OCC) and high-performance liquid chromatography (HPLC).

Thin-layer chromatography (TLC) is a low-cost and rapid OCC technique used
in carotenoid analysis [51]. TLC helps to separate the specific carotenoid compounds
(β-carotene and α-carotene; β-cryptoxanthin; and lutein and zeaxanthin) [31,52]. However,
there is very scant information on the use of TLC for carotenoid analysis in cowpea [49],
and even in that case, it was used in combination with HPLC. In fact, the low resolution of
TLC often limits its large application prospects [39,53].

In contrast to TLC, liquid chromatography (LC) helps to achieve both the separation
and quantification of specific carotenoids and their isomers. HPLC analyses using C18
and C30 columns as stationary phases have successfully been deployed for carotenoid
analysis in cowpea [25,41,54,55]. Ultra-performance liquid chromatography (UPLC) and
ultra-high-performance liquid chromatography (UHPLC) are modern LC techniques used
for the separation of carotenoids in cowpea [40]. The later techniques operate at higher
pressures (≥15,000 si) and possess high selectivity compared to HPLC (max < 6000 psi),
which increases the speed and resolution of the analysis when coupled with the C30
column [39,56]. This technique was also deployed to assess carotenoids in cowpea [40,57].

The use of multiple techniques in a single platform has become the approach of
choice for the separation and quantitative analysis of carotenoids as they are more ef-
fective. Routinely, LC is combined with spectrophotometry techniques to increase the
precision of the analytical procedure [49,51]. Most carotenoids absorb light in the range of
400–500 nm [46]; hence, ultraviolet-visible (UV-VIS) spectrophotometry is used with LC
to quantify carotenoid contents in the plant extracts [44,45,47]. LC-UV-VIS is the common
platform used for carotenoid analysis in cowpea [25,41,58]. UV-VIS may fall short to clearly
separate all carotenoids, especially the trans/cis isomer forms [44,46]. So, the use of mass
spectrophotometry (MS) helps to overcome some of these limitations in the traditional
UV-VIS technique [40,57]. MS relies on the power of ionization techniques to transform
the liquid or solid phase of the analytical sample into an ionized gas phase and the sepa-
ration of carotenoid compounds through the measurement of their mass-to-charge ratio
of ions [59,60]. Atmospheric pressure chemical ionization (APCI) is the most commonly
used ionization technique in the LC/MS analysis of carotenoids in cowpea [49,61]. Other
ionization techniques include electron impact (EI), fast atom bombardment (FAB), matrix-
assisted laser desorption/ionization (MALDI), electrospray (ESI), pressure photoionization
(APPI), and atmospheric pressure solid analysis probe (ASAP) [59,60]; however, there is no
evidence of their use in carotenoid profiling in cowpea.

4.2. Non-Destructive Analysis of Carotenoid Content in Cowpea

The development of non-destructive methods is proposed as a quick alternative to the
destructive methods for timely and on-farm/field assessments of carotenoids in plants [62].
The absorption of carotenoids in the visible range makes it possible to detect and quantify
carotenoids through microscopy and/or spectroscopy [63]. For instance, a combination of
light microscopy, UV-Vis transmission spectroscopy, and diffuse reflectance spectroscopy
is used for the characterization of carotenoids in tomato, carrot, and gac fruit [64]. Near-
infrared reflectance spectroscopy (NIRS) is the most widespread reflectance spectroscopy



Plants 2024, 13, 412 6 of 18

currently in use. NIRS was successfully deployed for assessment in maize [65], cassava [66],
and sweet potato [67]. While the non-destructive assessment of carotenoids is still a
relatively new approach, it has not been introduced in cowpea, suggesting there is an
avenue for technology development in cowpea research.

5. Determinants of Carotenoid Biosynthesis and Accumulation in Cowpea

Profiles of different metabolites in plants, especially the secondary metabolites, are
the results of a continuous balance between intrinsic characteristics and exogenous factors
controlling plant growth and development. Hence, changes in only one single factor may
induce significant fluctuations in plant metabolites. Verma and Shukla [68] identified four
groups of factors, namely genetic, ontogenic (growth and development), morphological,
and environmental factors, which can influence the production of secondary metabolites in
plants. In this section, we described the possible effects of these groups of factors on the
profiles of carotenoids in cowpea.

5.1. Genetic, Ontogenic, and Morphological Basis of Carotenoid Variation in Cowpea

There is evidence of the natural accumulation of carotenoids in cowpea, and the nature
and concentration of these compounds vary among genotypes, organs, and growth and
developmental stages (Table 1). Previous studies on carotenoid analysis in cowpea revealed
there is a variation in total carotenoids (0 to 9.46 µg/g) in the dry grains [15,25,58,69,70].

Growth and development also influence the carotenoid content. Carotenoids and
chlorophylls are two important components of photosystem (PSI and PSII) units of protein
complexes involved in the primary photochemistry of photosynthesis [71]; hence, their
concentrations can vary with plant growth. It was observed in the wild Fabaceae species
that during germination, the total content of photosynthetic pigments increased in parallel
to changes in the relative abundance of carotenoids [72]. Similarly, germination also
induces significant changes in carotenoid content in cowpea. Total carotenoid content
varied from 16.7 µg/g [58] to 122.88 ug/g [41] in 2- and 15-day-old cowpea sprouts,
respectively. Luthria et al. [73] observed an increase in β-carotene from 0.13 ± 0.05 µg/g
in the dry cowpea grains to 0.19 ± 0.3 µg/g in 2-day-old sprouts. Elsewhere, variation
from 1.8 to 29.4 µg/g of carotenoid content was reported among fresh pods of 37 cowpea
accessions [74], suggesting that the biofortification and promotion of the consumption
of fresh cowpea pods can also be envisioned as a strategy for food diversification and
micronutrient deficiency alleviation. The highest variation in total carotenoids was found
in cowpea leaves from 0.44 to 2245 µg/g [40,54,69,70,75].

In terms of specific carotenoids, lutein is the most abundant present in cowpea [7,40,41,55].
The reported values of lutein content in cowpea range from 0 to 0.49 µg/g in the seeds [58]
to 1246 µg/g in leaves of adult plants [40]. Similar trends were observed in the variation in
β-carotene between dry grains (0–0.1 µg/g) and leaves (184.5–958 µg/g) of cowpea [40,58].
Recent studies have indicated significant variation in carotenoids among five-day-old
sprouts of a cowpea diversity panel, with up to 1824 µg/g lutein accumulated in the most
carotenoid-rich sprouts, further supporting the benefits of using sprouts in food fortification
programs [55]. In most cases, the lutein content is approximately two- to three-fold the
concentration of β-carotene in the different cowpea organs (Table 1).

Studies on carotenoid biosynthesis in soybean showed different patterns of carotene
and xanthophyll accumulation among yellow, black, and green seed-coated soybean [76].
Significant variation was also observed in seed coat color in cowpea [77], which was re-
ported to influence the variation in secondary metabolites, including phenolics, flavonoids,
and anthocyanin [78,79]. Therefore, the study of the variation in carotenoid contents among
different cowpea morphological groups, especially seed coat color groups, can guide the
selection of a germplasm to start a breeding program for biofortified cowpea varieties.
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Table 1. Methods of quantification and variation in carotenoid content in cowpea.

Plant Organs Quantification
Methods

Total
Carotenoids α Carotene β Carotene Lutein Zeaxanthin Cryptoxanthin Authors

µg/g

Seeds

Spectrophotometry - - 0.1 - - [73]

HPLC (C30 Column) 9.46 - - 4.3 5.5 - [15]

HPLC (C18 Column)

0.6 - - 0.6 0 - [25]
0.95 - 0.04 0.9 <0.01 - [69]
0.6 0 0.06 0.5 - 0.03 [58]

Leaves

Spectrophotometry 436.8 - - - - - [70]

HPLC (C18 Column) - - 806.0 - - - [26]

HPLC (C30 Column) 570 7.2 184.5 360 18.6 3.3 [54]

UHPLC (C30 Column) 2245 - 958 1246 10 - [40]

Sprouts

Spectrophotometry - - 0.2 - - - [73]

HPLC (C18 Column) 16.7 2.1 2.8 2.5 - 0.17 [58]

HPLC (C30 Column)
253.7 5.9 66 162.1 - - [41]

- - 652 1824 393 - [55]

5.2. Exogenous Factors Influencing Carotenoid Biosynthesis in Cowpea

• Light exposure and intensity

Carotenoids absorb light in a broader range of wavelengths in the blue region of the
visible-light spectrum and subsequently transfer the energy to chlorophyll [18]. Light and
circadian oscillations during plant growth can alter the expression profiles of different
genes involved in carotenoid biosynthesis [36]. Light and circadian oscillations were
reported to influence the availability of isoprenoid isomers (IPP and DMAPP), which are
upstream precursors of carotenoids in cowpea [18,36]. The exposition of cowpea seedlings
to different light-emitting diodes influenced seedlings’ growth, with significant changes
in the patterns of carotenoid compounds [41,80]. The duration and intensity of light
exposure are important determinants of fluctuations in carotenoid contents. However, high
light intensity could be a limiting factor in carotenoid biosynthesis. An increase of about
0.4-fold of carotenoid content was observed in the leaves of cowpea grown under low-light
conditions, as compared to sunlight-grown cowpea [81].

• Temperature

Temperature is an important environmental factor that influences plant growth and
development. An increase in ambient temperature affects the physiology, biochemistry,
and regulation pathways [82]. The effect of an increase in temperature on carotenoids may
vary among plant genotypes and species. Lefsrud et al. [83] reported a contrasting effect of
ambient temperature increases on lutein and β-carotene content in kale and spinach. In
cowpea, an increase in ambient temperature (38/30 ◦C; day /night) showed a positive effect
on carotenoid content in the leaves [84]. Cowpea is more tolerant to temperature and may
thrive under a large range of heat waves, as compared to other grain legume crops, such
as Phaseolus vulgaris, Vicia faba, and Pisum sativum [85]. However, temperatures beyond
40 ◦C may cause significant damage to the plants, especially during the reproductive
stage [86,87]. A significant decrease of ~40% in photosynthetic pigments was observed in
the wild relative of cowpea (Vigna radiata L.) as a result of an increased (>40/25 ◦C) day
and night temperature [88]. Hence, the assessment of the critical temperature that specific
genotypes may withstand will help to act upon this factor efficiently for the optimum
accumulation of carotenoids in cowpea.

• Plant nutrition and carotenoid biosynthesis

Nutrients are indispensable for biochemical reactions and the production of photo-
synthates in plants [89]. Plant nutrients are grouped into major nutrients (e.g., nitrogen,
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carbon, phosphorus, potassium) and minor nutrients (e.g., copper, zinc, iron, manganese);
the balance between them supports plant growth as well as resistance to diverse stresses.
Hence, the choice of nutrition type or plant growth media can induce changes in carotenoid
biosynthesis in plants. For instance, the treatment of cowpea plants with elevated atmo-
spheric CO2 (360 and 720 Umol·mol−1) increased the carotenoid content in the leaves [84].
It was reported that the application of inorganic fertilizer (100 kg urea+300 kg single super-
phosphate ha−1) resulted in 0.36 mg·g−1 increase in carotenoid content in cowpea pods, as
compared to organic manure-treated plants [90].

Minor plant nutrients, on the other hand, are required in small quantities. They are
often supplied to the plant in the form of salt; hence, a surplus may be detrimental. In fact,
salt stress can decrease the expression level of genes involved in the carotenoid biosynthesis
pathway, resulting in a low carotenoid content in the plant [91,92], (Table 2). Salt stress,
especially a high concentration of salt (50–200 mM), has been reported to delay the growth
of cowpea seedlings, reducing both the carotenoid content and net photosynthetic rate [93].
Furthermore, the elicitation of broad bean sprouts with a high concentration (240 and
300 mM) of salt (NaCl) reduced the carotenoid content [92,94]. Similarly, the treatments
of mungbean seedlings (Vigna radiata) with different concentrations of sodium chloride
(200 and 250 mM) [95] or manganese sulphate (0.1 to 5 mM) considerably decreased the
carotenoid content, as compared to the untreated seedlings [96]. Therefore, plant nutrients,
especially salt as a stress factor, greatly influence the build-up of carotenoid in plants, and
this is dose and species dependent. Such changes in the content of carotenoids in cowpea
due to nutrient uptake may be the result of changes in the expression profiles of the genes
involved in the biosynthesis pathway. For instance, it was reported that the treatment
of the watermelon plant with salt solution significantly reduces the carotenoid content
through the downregulation of the expression level of i phytoene synthase (PSY), phytoene
desaturase (PDS), zeta carotene desaturase (ZDS), and lycopene beta cyclase (LCY-β) [91].
Such studies are scant in cowpea, meaning there is a need to deploy research efforts to
uncover the effects of salt treatment on the genes involved in carotenoid biosynthesis and
to establish the optimal nutrition system for inducing a positive change in carotenoid
content in cowpea, concurrently with efforts to improve all other physiological and
biological functions.

• Plant hormones and carotenoids

Plant hormones are key components of biological and physiological processes in
plants [97]. They regulate the biosynthesis of metabolites including carotenoids in response
to the intrinsic factors and/or exogenous factors influencing plants’ growth and develop-
ment [98,99]. For instance, in cowpea, an increase in carotenoid content was observed in
plants treated with an exogenous application of salicylic acid as evidence of systematic
acquired resistance against diseases [100].

Carotenoids, particularly β-carotene, are precursors for two important hormones
in plants, namely strigolactones and abscisic acid [5]. Strigolactones and abscisic acid
regulate plant development and interaction with the environment [101]. An increase in
ABA biosynthesis was found in 8-day-old cowpea seedlings under drought stress as a
result of an increase in the expression level of NCED (9-cisepoxycarotenoid dioxygenase), a
gene that increases the accumulation of lycopene and β-carotene, the upstream compounds
in the ABA biosynthetic pathway [102,103].
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Table 2. Effects of elicitation on carotenoid accumulation in cowpea and other related legume grains.

Elicitors Crops Growth Stage Treatments Treatment
Duration Effects Authors

NaCl
Cowpea 1-week-old seedlings 60–200 mM 14 Days Reduce total carotenoids [93]

Broad Bean 6-week-old seedlings 60–240 mM 10 Days Reduce total carotenoids [94]
Common bean 3-week-old seedlings 50–200 mM 7 Days Reduce total carotenoids [104]

Mungbean 1-week-old seedlings 200–250 mM 14 Days Reduce total carotenoids [95]

UVB Cowpea Germinated seeds 470 nm 14 Days Increase profiles of
all carotenoids [41]

Fluorescence Mungbean Germinated seeds 400–700 nm 5 Days Increase total
carotenoid content [105]

Dark Mungbean
Soybean Germinated seeds Dark conditions 5 Days

No positive effect on
carotenoids compared to

light treatment
[105,106]

6. Integrated Approach for Carotenoid Biofortification in Cowpea
6.1. Breeding for Increased Carotenoid Content in Cowpea

In recent decades, biofortification has gained importance as one of the most sustainable
ways to supply micronutrient-rich foods for alleviating hidden hunger and malnutrition
worldwide [107,108]. In regard to carotenoids, most of the research efforts have focused
on increasing the carotenoid precursors of vitamin A (provitamin-A carotenoids), such as
β-carotene, α-carotene, and β-cryptoxanthin. Consequently, there have been significant
advances in breeding for provitamin-A carotenoid varieties in some major crops, including
maize, cassava, and sweet potato [8,109]; however, the potential of the legume grain
crops including cowpea is still untapped. It is, thus, important to leverage the lessons
and progress in other crops, in other to define an effective approach (Figure 3) for the
biofortification of carotenoids in cowpea.

The extent of genetic gain in breeding cowpea for enhanced carotenoid content de-
pends on the knowledge of the genetic diversity for the trait. The screening and evaluation
of crop diversity is the first and most important step in breeding for carotenoid-biofortified
varieties [110]. The literature survey showed that information on the diversity of carotenoid
content in cowpea is still very scant. Nonetheless, there have been extensive efforts on
the collection and conservation of cowpea genetic resources, with large germplasm col-
lections maintained at different genes banks, which can be used as working materials:
IITA (15,003 accessions), the United States Department of Agriculture (USDA)–Genetic Re-
sources Information Network (7737 accessions), and the University of California, Riverside
(UCR), collections of 6000 accessions [111,112]. To save time and resources, the screening
and evaluation can be narrowed down to the established mini-core collections from these
various gene banks, which capture most of the existing diversity in the crop. The mini-core
collections include 298 accessions from the IITA collections [112]; 368 accessions from the
UCR collections [113]; and 369 accessions from the USDA cowpea germplasm [114].

The assessment of the genetic diversity for carotenoid content should integrate both
biochemical profiling and molecular analyses. There are known genes, such as the phytoene
synthase (PSY1), β-carotene hydroxylase (CHYB), lycopene β, and ξ cyclase (LYCB and
LYCE), that play significant roles in the biosynthesis of carotenoids in plants [115,116].
Hence, the screening of the cowpea diversity panels targeting these genes can reduce the
cost and time needed for profiling and help to precisely identify accessions with the trait
of interest.

Genomics interventions for important and quantitative traits such as carotenoid con-
tent can begin at the early stage of the breeding scheme by tapping into the genetic and
genomics resources of the crop [11,110]. The advances in cowpea genomics enabled the
development of a reference genome [117], genetic linkage maps [118–121], and diverse
molecular markers and marker systems (RFLP, SNPs, SSRs, KAPs, etc.) [122–124] to support
the development of improved cowpea varieties. The assessment of genetic diversity for
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carotenoid content in cowpea can, therefore, be conducted along with screening and valida-
tion of the existing markers and their possible association with those known genes involved
in carotenoid biosynthesis to identify quantitative trait loci amenable to the smooth imple-
mentation of marker-assisted selection (MAS) for enhanced carotenoid content in cowpea.

Plants 2024, 13, x FOR PEER REVIEW  10  of  19 
 

 

 

Figure 3. Road map for biofortification of carotenoids in cowpea. 

Genomics interventions for important and quantitative traits such as carotenoid con-

tent can begin at the early stage of the breeding scheme by tapping into the genetic and 

genomics resources of the crop [11,110]. The advances in cowpea genomics enabled the 

development of a reference genome  [117], genetic  linkage maps  [118–121], and diverse 

molecular markers and marker systems (RFLP, SNPs, SSRs, KAPs, etc.) [122–124] to sup-

port the development of improved cowpea varieties. The assessment of genetic diversity 

for carotenoid content in cowpea can, therefore, be conducted along with screening and 

validation of the existing markers and their possible association with those known genes 

involved  in  carotenoid  biosynthesis  to  identify  quantitative  trait  loci  amenable  to  the 

smooth implementation of marker-assisted selection (MAS) for enhanced carotenoid con-

tent in cowpea. 

Genomics
Transcriptomics
Proteomics
Genetic Engeneering

STORAGE/EDIBLE PARTS 
FACTORS INFLUENCING (TO CONSIDER) CAROTENOIDS 

BIOSYNTHESIS 

C
o

w
p

ea
 p

la
n

t

Temperature

Lights

K+ Na+ CO2 

Ca2+ Cl- Mg2+ 

NO3-

Genetic 

 Phenomics 

S
p

ee
d

 b
re

ed
in

g
 

Optimized 
Plant nutrition

V
er

ti
ca

l f
ar

m
in

g
 

18≤ °C ≤  30

Grains 

Leaves

Pods

Ontogeny 

 Plant Nutrition

APPROACH TO CAROTENOID BIOFORTIFICATION 

Diversity

Profiling 

Breeding

Field Testing
G X E

Plant Factory System 

POTENTIAL DIVERS FOR 
BIOFORTIFICATION 

BENEFITS  OF CAROTENOID 
BIOFORTIFICATION iN COWPEA 

o Awareness

o Increased Private Public 

Investment

o Conducive environment for GM 

cowpea adoption 

Biofortified cowpea varieties 

Functional Foods (sprouts, leafy 

vegetables)

Food Systems diversification

Improved health and nutrition

Income generation

1

2

3

n

Time (s)
0

ChromatogrammAU

Figure 3. Road map for biofortification of carotenoids in cowpea.

To anticipate the low genetic diversity reported in cowpea [112], deploying mutagene-
sis [125] will help to broaden the diversity in the crop. For this purpose, the use of TILLING
(Targeting Induced Local Lesions In Genomes), a technique that combines chemical muta-
genesis and high-throughput screening of SNPs by mismatch detection [126], will help to
achieve fast progress in broadening the genetic basis and improving the carotenoid content
in cowpea.

Once the working germplasm with the elite or potential genotypes is identified, the
next step involves embracing hybridization between accessions. Notably, at this stage, the
objective consists of conducting smart combinations among genotypes using appropriate
mating design (Diallel, North Carolina Mating Design) and population development
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techniques (Single Seed descent and Backcross) [127,128], which will help to estimate
the variance components, gene actions as well as heritability [127] in order to dissect the
genetic architecture of carotenoid biosynthesis in cowpea to support the breeding scheme.
Previous research indicated the predominance of additive gene effects over the effects of
non-additive genes in the inheritance of carotenoid content in plants [129,130], suggesting
that the use of the proposed designs can also facilitate introgression of the trait into elite
and farmers’ preferred cowpea cultivars. Finally, the evaluation of the different genotypes
and crosses developed across environments will enable us to account for the effect of
the interaction of genotype and environment on the profiles of the different carotenoids,
enabling the preliminary and advanced yield trials along with participatory evaluations of
the superior genotypes to increase their adoption for different end-users.

6.2. Harnessing the Power of Plant Factory System, Speed Breeding, and Omics

Facing the increasing demand for quantity and quality foods to feed an ever-growing
population, there has been a steady shift from traditional rain-fed agriculture to indoor
growing systems/vertical farming. The evolution of this approach has given rise to the
plant factory system, which is referred to as a closed plant production system in which
ventilation is kept at a minimum, and artificial light is used as the sole light source for plant
growth [131]. The adoption of this production practice has been very fast in horticultural
crops. Nowadays, vegetables, such as spinach, tomato, and kale, are produced in factory
systems [132–134], which have been customized to meet specific market demands including
high-phytochemical and nutrient-dense products. This system can now be extended to
agricultural crops with the recent development of the speed breeding method [135].

Speed breeding is a customized plant factory system for field crops in fully enclosed,
controlled-environment growth chambers, which enables the production of many genera-
tions, up to six generations of crops per year [135]. Speed breeding shortens the growth
cycle and the time needed for developing new crop varieties. The technology was first
implemented for long-day crops such as wheat and canola [135] and has recently been
extended to short-day crops [136], suggesting that the system can be optimized for cowpea.

As highlighted earlier, light is one of the factors influencing carotenoid biosynthesis
in cowpea. The manipulation of light signaling can help to alter the color and nutritional
value in plants, resulting in the production of novel functional foods [20]. Therefore, the
optimization of the speed breeding technology for cowpea can help to control the lighting
characteristics (intensity and duration) for increased carotenoid contents in the edible
part of the plants, including sprouts, leaves. and green pods, to be used as functional
foods (Figure 3). This growth system also offers the flexibility of a choice of plant-growing
substrate (e.g., rockwool, top soil) to monitor the nutrition of the plants and to apply appro-
priate chemical elicitors (Figure 3) that have a positive impact on carotenoid biosynthesis
in plants [100,137].

Furthermore, the implementation of this approach in cowpea can also take advantage
of the advances in the field of phenomics to deploy non-destructive tools for carotenoid
detection and quantification [64,138,139] in cowpea. This will help to minimize the cost
of extensive profiling and also generate quality phenotypic data [140] to guide our un-
derstanding of the physiological and genetic basis of carotenoid biosynthesis in cowpea.
Notably, the metabolomics regulation network of carotenoid biosynthesis in cowpea is still
not fully documented. The development of the metabolomic database of carotenoids in
cowpea and its combination with genomics, transcriptomics, and proteomics [39,140,141],
coupled with the plant factory system, can help shorten the breeding cycle and broaden our
understanding of the biology of carotenoid accumulation and its optimization in cowpea
sprouts, microgreens, leaves, and grains.
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6.3. Genetic Engineering for Increasing Carotenoid Content in Cowpea

Genetic engineering has emerged as a technology to overcome the slow process
of conventional breeding and the lack of diversity for carotenoid traits among plant
germplasm [142]. A recent report [25] on the side effects of domestication on the nu-
tritional quality of legume crops in the Fabaceae family highlighted the decline in the
contents of carotenoids following the domestication process. According to these authors,
there was a decrease in carotenoid content (0.6 ± 0.1 µg/g) in the cultivated cowpea, about
three-fold of the content in the wild cowpea (2.3 ± 0.5 µg/g) due to domestication. The wild
cowpea gene pool may, therefore, be a source of favorable genes for increased carotenoid
content in cowpea

To date, there is no evidence of genetically modified (GM) biofortified legume grains
or pulses [143]. A comparative study of the mechanisms controlling the biosynthesis in the
wild and cultivated cowpea plant will provide an avenue to perform guided mutations in
the cultivated cowpea genome. The CRISPR/Cas9 (Clustered Regularly Interspaced Short
Palindromic Repeats/Cas9 protein) gene-editing technology can assist in precisely conduct-
ing the target mutation [142,144,145]. A similar approach was adopted in sweet potato with
an increase of 4- to 130-fold of zeaxanthin content in the transgenic potato [146]. On the
other hand, interspecific genes transfer between the wild cowpea and the cultivated cowpea
genome through genetic transformation [147–149]. In addition, the donor organisms could
be from closely related species in the Fabaceae family and plant or animal species with
the genes of interest. For instance, metabolic engineering of the phytoene synthase gene
(crtB) from bacteria (Erwinia uredovora) helped to achieve a 150-fold increase in β-carotene
in transgenic eggplant callus [148]. The duplication of these approaches in cowpea can also
help increase the carotenoid content. However, the environmental and health concerns
about genetic engineering and its products globally, and especially in many regions where
cowpea is a staple food crop, seem to portray genetic engineering as an avenue of last
resort. Nonetheless, some tangible progress has been made with the adoption of Bt cowpea
in Nigeria [150], the leading cowpea producer in the world, indicating a promising future
to escalate this technique for increasing carotenoids in cowpea. Hence, continuous public
awareness raising and increasing advocates in the private and public partnerships to scale
up the research technologies in developing countries will be a strong levier in the successful
deployment of genetic engineering for micronutrients including carotenoid contents in
cowpea (Figure 3).

7. Conclusions

This review emphasized that carotenoids are important micronutrients for human
health and nutrition. Increasing these micronutrients in cowpea will have a range of appli-
cations in the health and food industries. Though the pathway of carotenoid biosynthesis
in cowpea encompasses some core steps conserved across higher plants, there is still a need
to elucidate the biochemical network and genetic architecture controlling its biosynthesis
and accumulation in cowpea. There was evidence of variation in the carotenoid profiles
among genotypes, organs, and growth and developmental stages in cowpea; however,
the data on the genetic diversity of the trait in cowpea are very scant. This suggests the
extensive investigation of the natural variation in carotenoids and the deployment of strate-
gies (mutagenesis and genetic engineering) to increase the genetic basis of this trait in
cowpea. Furthermore, the variation in the profiles of carotenoids in cowpea is influenced
by exogenous physical and chemical factors, such as light intensity and duration, plant
nutrition, and temperature, which induce physiological changes, resulting in fluctuations in
the carotenoid content in edible storage organs. It was established that the manipulation of
these factors in an integrated system can lead to a significant increase in carotenoids in cow-
pea. The proposed system is set to harness the power of omics coupled with speed breeding
and genetic engineering, drawing from the lessons in other crops to achieve significant
genetic gains and increases in the carotenoid content in cowpea. The approach described
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herein is transferable to other pulses crops, the potential of which is still underexploited for
a food-secure planet.

The information presented in this review did not cover factors such as bioavailability
(bioaccesibility and bioactivity) and losses of carotenoids during processing and cooking,
which are equally important to assess along with the research on biofortification to make
them fully accessible for human health and nutrition.
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