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Abstract: The growing demand for food production has led to an increase in agricultural areas,
including many with low and irregular rainfall, stressing the importance of studies aimed at mit-
igating the harmful effects of water stress. From this perspective, the objective of this study was
to evaluate calcium pyruvate as an attenuator of water deficit on chlorophyll a fluorescence of five
sugarcane genotypes. The experiment was conducted in a plant nursery where three management
strategies (E1—full irrigation, E2—water deficit with the application of 30 mM calcium pyruvate,
and E3—water deficit without the application of calcium pyruvate) and five sugarcane genotypes
(RB863129, RB92579, RB962962, RB021754, and RB041443) were tested, distributed in randomized
blocks, in a 3 × 5 factorial design with three replications. There is dissimilarity in the fluorescence pa-
rameters and photosynthetic pigments of the RB863129 genotype in relation to those of the RB041443,
RB96262, RB021754, and RB92579 genotypes. Foliar application of calcium pyruvate alleviates the
effects of water deficit on the fluorescence parameters of chlorophyll a and photosynthetic pigments
in sugarcane, without interaction with the genotypes. However, subsequent validation tests will be
necessary to test and validate the adoption of this technology under field conditions.

Keywords: Saccharum officinarum L.; water scarcity; water deficit mitigation

1. Introduction

The growing demand for food production has led to an increase in the number of
agricultural areas, including the occupation of spaces that have never been farmed before.
Sugarcane (Saccharum officinarum L.) is a crop that has been widely cultivated in these areas
for many years, showing global importance and being used to produce sugar, biofuels, and
energy [1]. However, due to its long growth cycle, sugarcane requires an abundant rainfall
distribution (1850 to 2500 mm year−1), showing greater sensitivity to water deficit during
tillering and stem elongation [2,3].

For all crops, global warming and climate change increase the frequency and intensity
of abiotic stress factors on a worldwide level, especially water stress [4,5]. In such conditions,
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the structure of the plant chloroplast is affected by reductions in the chlorophyll content
caused by the photooxidation of photosynthetic pigments [6]. As a consequence, a smaller
proportion of the incident energy is used to produce adenosine triphosphate (ATP) and
nicotinamide adenine dinucleotide phosphate (NADPH), resulting in photoinhibition [7,8],
negatively affecting the photosynthetic capacity of plants.

The photosynthetic efficiency of plants is directly related to several factors, including
the chlorophyll and carotenoid content, whose leaf values indicate the damage that certain
stresses can cause to the photosynthetic apparatus [9]. Furthermore, the evaluation of
chlorophyll a fluorescence is essential in analyzing photochemical efficiency and damage
to the photosynthetic system, providing important information about the inhibition or
reduction in electron transfer between photosystems [10,11].

Although the negative effects of water stress on fluorescence emission and the photo-
synthetic pigment content of sugarcane plants are well reported in the literature [12–15],
there are reports that organic substances can mitigate the harmful effects of drought by
increasing the ability of plants to withstand such deleterious conditions, e.g., studies of
pyruvate application carried out with peanuts [16] and cotton [17,18]. However, research
focusing on the photosynthetic apparatus of sugarcane plants has not yet been carried out.

In the metabolism of C4 plants, pyruvate is responsible for the regeneration of phos-
phoenolpyruvate, an HCO3− acceptor in mesophyll cells [19]. Furthermore, in the Krebs
Cycle metabolism, this substance plays a vital role in converting glucose into energy, in
a process in which glucose is broken down into two pyruvic acid molecules that, in the
Krebs Cycle, are transformed into energy (ATP) [19]. In this context, it becomes relevant
to test technologies that aim to alleviate the harmful effects of water deficit on the pho-
tosynthetic apparatus of sugarcane. From this perspective, this study aimed to evaluate
calcium pyruvate as an attenuator of water deficit on chlorophyll a fluorescence in five
sugarcane genotypes.

2. Results and Discussion

According to the F-test (Table 1), the initial fluorescence (Fo), the maximum fluo-
rescence (Fm), the variable fluorescence (Fv), the maximum quantum efficiency of PSII
(Fv/Fm), the photochemical efficiency (Fv/Fo), the basal quantum efficiency of the non-
photochemical process (Fo/Fm), the initial fluorescence before the saturation pulse (F′), the
maximum fluorescence after adaptation to saturating light (Fm′), the electron transport rate
(ETR), the quantum efficiency of PSII (Y), the Stern–Volmer non-photochemical quenching
(NPQ), the complete non-photochemical quenching of chlorophyll fluorescence (QCN), the
quantum yield of non-regulated photochemical quenching (YNO), the quantum yield of
regulated photochemical quenching (YNPQ), chlorophyll a (Chl a), chlorophyll b (Chl b),
and carotenoids (Car) were significantly influenced by management strategies (E) (p < 0.01).
For the genotypes, there was a significant effect on most of the fluorescence parameters
studied, with the exception of Fv/Fm, Fv/Fo, Fo/Fm, Y, and YNPQ. The interaction
between the management strategies (E) and genotypes (G) was not significant (Table 1).

An increase in Fo was observed (Figure 1A), reaching a mean value of 296.7 elec-
trons quantum−1 in irrigated plants; this is significantly lower than the value recorded
in E2 (415.8 electrons quantum−1) and E3 (473.4 electrons quantum−1), corresponding to
an increase of 40.14% and 59.56%, respectively. As a result, there was a reduction of
178.4 quantum−1 electrons in the maximum fluorescence (−13.47%) and 355.1 electrons
quantum−1 in the variable fluorescence (−34.55%), when related to the same treatments
(Figure 1B,C). The increase in Fo and the reduction in Fv and Fm significantly affected the
Fv/Fm and Fv/Fo ratios, with reductions of 15.38% and 24.60% (Fv/Fm) and 44.03% and
59.01% (Fv/Fo), respectively, for E2 and E3 in relation to E1, indicating that the photosyn-
thetic apparatus was compromised (Figure 1D,E). Furthermore, there was an increase in the
Fo/Fm ratio of 54.54% and 86.66% when related to the same treatments (Figure 1F). How-
ever, when plants that were subjected to water deficit received pyruvate application (E2),
there was a reduction in Fo (10.05%) and the Fo/Fm ratio (17.07%) and, consequently, an
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increase in Fm (7.08%), Fv (20.63%), and the Fv/Fm ratio (10.61%), which was statistically
different to plants that did not receive calcium pyruvate (E3).

Table 1. F-test for chlorophyll a fluorescence and photosynthetic pigments in sugarcane genotypes
under management strategies, 211 days after regrowth (DAR).

Sources of Variation F-Test

Fo Fm Fv Fv/Fm Fv/Fo Fo/Fm F′ Fm′ ETR Y

Strategies (E) ** ** ** ** ** ** ** ** ** **
Genotype (G) * ** * ns ns ns * ** ** ns
G × E ns ns ns ns ns ns ns ns ns ns
Block * ** ns ns ns ns ns ns ns ns

CV (%) 9.85 4.16 6.53 4.36 16.62 9.03 15.90 12.06 9.85 17.98

NPQ QCN YNO YNPQ Chl a Chl b Car

Strategies (E) ** ** ** ** ** ** **
Genotype (G) ** ** * ns ** ** **
G × E ns ns ns ns ns ns ns
Block ns ns ns ns ns ns ns

CV (%) 14.96 2.96 18.69 19.92 18.50 17.91 13.83

*, **, significant at 1% and 5%, respectively. ns—not significant. CV (%)—coefficient of variation.

The Fo increase in plants under water deficit may be the result of damage to the PSII
reaction center or a reduced capacity to transfer the excitation energy from the antenna
to the reaction center [20,21]. According to Rosseau et al. [22], Fo represents the status
of the plant when the PSII reaction center is oxidized. An increase in this parameter
directly reflects on Fm and Fv, which affects the flow of electrons between photosystems,
thus decreasing the plant’s ability to transfer energy to the formation of NADPH and
ATP [10,21].

The maximum quantum efficiency of PSII (Fv/Fm ratio) expresses the capture effi-
ciency of the excitation energy by the open reaction centers of PSII [23,24]. Under normal
conditions, the Fv/Fm ratio can vary from 0.75 to 0.85, with drops in this ratio indicating
structural damage to the thylakoids, affecting photochemical efficiency, CO2 assimilation,
and, above all, electron transport [23,25]. Values below 0.75 quantum−1 electrons indicate
that damage is occurring to the plant’s photosynthetic system. Reductions in the Fv/Fm
ratio under water deficit conditions were recorded by Silva et al. [26] when studying
the physiological parameters of four sugarcane genotypes (RB72454, RB72910, RB92579,
and RB867515) under greenhouse conditions, with the authors finding a mean value of
0.71 electrons quantum−1 for the Fv/Fm ratio.

The lowest Fv/Fo ratio value in the E3 management strategy occurred due to a
reduction in the variable fluorescence (Fv) or an increase in the initial fluorescence (Fo),
indicating a change in the rate of electron transport from PSII to the primary electron
acceptors [27]. Furthermore, the increase in the Fo/Fm ratio and Fo associated with
the reduction in the Fv/Fm and Fv/Fo ratios suggests the occurrence of photoinhibition
in plants cultivated under the E3 management strategy. According to Silva et al. [24],
photoinhibition causes a slow reduction in photosynthesis, indicating that the plant was
subjected to a stressful environment.

Therefore, maintaining high Fv/Fm and Fv/Fo ratios and a low Fo/Fm ratio improves
the efficiency of radiation use and facilitates CO2 assimilation [28]. In this context, although
the plants that received pyruvate application obtained only 0.66 electrons quantum−1, not
reaching the ideal values of Fv/Fm (0.75 to 0.84 electrons quantum−1), the supplementation
of this compound improved the light absorption system of PSII compared with plants
that did not receive this product (0.59 electrons quantum−1), suggesting that pyruvate
alleviated the deleterious effects of water deficit.
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Figure 1. Mean values for initial fluorescence (Fo) (A), maximum fluorescence (Fm) (B), variable
fluorescence (Fv) (C), maximum quantum efficiency of PSII (Fv/Fm) (D), photochemical efficiency
(Fv/Fo) (E), and basal quantum efficiency of the non-photochemical process (Fo/Fm) (F) of sugarcane
as a function of the three management strategies (E), 211 days after regrowth. Different lowercase
letters indicate a statistical difference using the Tukey test (p ≤ 0.05). Vertical bars represent the
standard error of the mean (n = 3). E1—full irrigation, E2—water deficit plus 30 mM of calcium
pyruvate, E3—water deficit without calcium pyruvate.

When studying the fluorescence parameters, an increase of 42.48% was observed in
the F′ parameter in sugarcane plants under water deficit and without pyruvate application
(E3) in relation to treatment E1, and 14.86% in relation to treatment E2 (Figure 2A). In
the Fm′, ETR, and Y parameters in plants subjected to treatment E3, the reductions were
30.44%, 69.15%, and 46.97%, respectively, in relation to treatment E1, and 20.26%, 46.23%,
and 32.69%, respectively, in relation to treatment E2 (Figure 2B–D).

These results indicate that, without the application of calcium pyruvate (E3), water
deficit stress negatively influenced all the chlorophyll fluorescence parameters. These
results corroborate those obtained by Souza et al. [13], Leanasawat et al. [15], and Verma
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et al. [29] in sugarcane under drought conditions, which recorded reductions in fluorescence
emission levels.
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Figure 2. Mean values of initial fluorescence before the saturation pulse (F′) (A), maximum fluores-
cence after adaptation to saturating light (Fm′) (B), electron transport rate (ETR) (C), and quantum
efficiency of PSII (Y) (D) of sugarcane as a function of the three management strategies (E), 211 days
after regrowth. Different lowercase letters indicate statistical difference using the Tukey test (p ≤ 0.05).
Vertical bars represent the standard error of the mean (n = 3). E1—full irrigation, E2—water deficit
plus 30 mM of calcium pyruvate, E3—water deficit without calcium pyruvate.

In addition to the Fv/Fm ratio, the ETR is also considered an important parameter to
determine the efficiency of the photosynthetic apparatus [20]. In this research, a negative
effect of water deficit on the electron transport rate was observed (Figure 2C), notably in
plants that did not receive the foliar application of calcium pyruvate, indicating a reduced
capacity for electron transport and compromised production of ATP and NADPH during
the continuity of the photosynthetic process.

Through the analysis of the quenching coefficients, it was observed that water deficit
during tillering and stalk elongation in sugarcane affected the photosynthetic system, with a
significant increase in the NPQ (39.48%), QCN (5.06%), YNO (67.65%), and YNPQ (118.51%)
parameters compared with management strategy E1 (Figure 3A–D). However, plants
subjected to strategy E2 showed significant reductions (p ≤ 0.05) in the NPQ (19.74%), QCN
(2.41%), YNO (18.42%), and YNPQ (33.89%) parameters compared with plants subjected to
water deficit without calcium pyruvate (Figure 3A–D).

Chlorophylls are excited when plants receive sunlight, making these pigments highly
reactive. If there is no attenuation, they will become an element that generates oxidative
stress [30]. This occurs because chlorophylls do not stop absorbing light; therefore, all
excess light received must be dissipated. If this dissipation is carried out in the form of heat
(NPQ), there is an increase in the QCN and YNO parameters, consequently increasing the
YNPQ parameter, which corroborates the results found in this study, as the plants subjected
to irrigation strategy E3 had reduced Fv/Fm ratio, Y, and ETR parameters.
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Figure 3. Mean values for Stern–Volmer non-photochemical quenching (NPQ) (A), complete non-
photochemical quenching of chlorophyll fluorescence (QCN) (B), quantum yield of non-regulated
photochemical quenching (YNO) (C), and quantum yield of regulated photochemical quenching
(YNPQ) (D) in sugarcane as a function of the three management strategies (E), 211 days after regrowth.
Different lowercase letters indicate a statistical difference using the Tukey test (p ≤ 0.05). Vertical bars
represent the standard error of the mean (n = 3). E1—full irrigation, E2—water deficit plus 30 mM of
calcium pyruvate, E3—water deficit without calcium pyruvate.

Such reductions resulted in increased values of the Stern–Volmer non-photochemical
quenching (NPQ), complete non-photochemical quenching of chlorophyll fluorescence
(QCN), and quantum yield of non-regulated photochemical quenching (YNO) parameters,
possibly triggering oxidative processes in the PSII of plants. In this situation, plants need
to dissipate the excess absorbed light energy as heat since it exceeds their normal use
for driving photosynthesis and electron transfer, thus increasing the quantum yield of
regulated photochemical quenching (YNPQ) parameter. However, it appears that foliar
supplementation with calcium pyruvate in plants under water deficit (E2) significantly
improved all the studied chlorophyll fluorescence parameters.

Photosynthetic pigments play a fundamental role in the growth and development
of plants, being responsible for the transmission of light energy for the production of
photoassimilates [31]. In the present study, the levels of chlorophyll a (Chl a), chlorophyll
b (Chl b), and carotenoids in sugarcane leaves were significantly reduced when plants
were cultivated under water deficit in the tillering and stalk elongation phases (E2 and E3)
compared with plants under full irrigation (E1) (Figure 4). However, the plants that received
calcium pyruvate had increased levels of chlorophyll a (Figure 4A), b (Figure 4B), and
carotenoids (Figure 4C), by 55.40%, 43.80%, and 55.70%, respectively, compared with the
treatment without calcium pyruvate under water deficit (E3), expressing greater tolerance
to this stress condition through the maintenance of photosynthetic pigments.
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Figure 4. Mean values for chlorophyll a (A), chlorophyll b (B), and carotenoids (C) of sugarcane
according to the three management strategies (E), 211 days after regrowth. Different lowercase letters
indicate statistical difference using the Tukey test (p ≤ 0.05). Vertical bars represent the standard error
of the mean (n = 3). E1—full irrigation, E2—water deficit plus 30 mM of calcium pyruvate, E3—water
deficit without calcium pyruvate.

The degradation in the levels of chlorophyll a, chlorophyll b, and carotenoids may be
due to the reduced biosynthesis of chlorophyll resulting from photochemical disturbances
caused by excess light in the PSII reaction centers [32]. Carotenoids are non-enzymatic
antioxidants that target the excessive accumulation of reactive oxygen species [33]. Possibly,
the low carotenoid content contributed to reducing the photosynthetic activity during
the period of water deficit and increasing photodegradation, which resulted in a low
Fv/Fm ratio. Souza et al. [13] also found reductions in fluorescence emission levels and
photosynthetic pigment content in genotypes RB855536 and RB93509 that were subjected
to water restriction during early growth.

In addition to sugarcane, there are also reports in the literature about the degradation of
photosynthetic pigments in several crops under water deficit, e.g., wheat [34], sorghum [35],
and maize [36]. Furthermore, although research focuses only on the harmful effects of
water deficit, there are reports that organic substances can reduce the harmful effects of
drought on plants. For example, Verma et al. [29] found that the foliar application of silicon,
in addition to reducing the harmful effects of water deficit in sugarcane, also improves the
plant’s antioxidant defense system, by favoring the synthesis of photosynthetic pigments
and the maximum quantum efficiency of photosystem II. In another study, Maia Júnior
et al. [37] observed that, in sugarcane plants, the foliar application of glycine betaine
mitigates the harmful effects of water deficit on the PSII photochemical apparatus.

In addition to these studies, Dias et al. [38] found that the effects of water deficit on
the tillering and stalk elongation phases in sugarcane are alleviated by the exogenous
application of 30 mM calcium pyruvate.
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2.1. Multivariate Data Analysis

To corroborate the results presented in the univariate analysis, a multivariate analysis
of the data was carried out using a cluster analysis and a principal component analysis.

2.1.1. Cluster Analysis

In order to verify the relationship between the genotypes studied, a cluster analysis
was carried out by applying the Euclidean Distance (ED) as a measure of dissimilarity. As a
subjective criterion for visual inspection, a cutoff was established between 4.0 and 5.0. For
this analysis, only the variables with a significant difference between the genotypes were
used, as observed in the F-test (Table 1). Three groups were formed: group 1 was formed
by genotypes RB041443 and RB962962, group 2 by RB021754 and RB92579, and group 3 by
RB863129 (Figure 5). These groups were characterized by greater homogeneity between
the genotypes of each group and greater heterogeneity between the groups in relation to
the parameters analyzed.
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2.1.2. Principal Component Analysis

The first two principal components explained 91.66% of the variance contained in
the original variables. Furthermore, factor loadings with an absolute value greater than
0.60 were considered relevant. The first principal component (PC1) contributed 79.65% of
the total variance, and the second component (PC2) contributed 12.01% of the remaining
variance (Table 2).

The two-dimensional projections of the combinations of the sugarcane genotypes and
irrigation management strategies on the first two PCs are illustrated in Figure 6A,B. The
first principal component was formed from the combination of 15 physiological parameters,
which was divided into two groups: group 1, formed by the parameters Fo, Fo/Fm ratio,
F′, YNPQ, and YNO; and group 2, formed by the parameters Fm, Fv, Fv/Fm ratio, Fv/Fo
ratio, Fm′, Y, ETR, Chl a, Chl b, and carotenoids. The groups formed in this component
presented variations in opposite directions, i.e., as the parameters of group 1 increased,
the parameters of group 2 decreased the physiological activity of the sugarcane genotypes.
These changes were more significant in plants subjected to the E3 irrigation management
strategy. However, when receiving calcium pyruvate application (E2), reductions were
observed in the Fo, Fo/Fm ratio, F′, YNPQ, and YNO parameters and increases in were
observed in the Fm, Fv, Fv/Fm ratio, Fv/Fo ratio, Fm′ Y, ETR, Chl a, Chl b, and carotenoids
parameters in all genotypes in relation to the pyruvate-free strategy (E3). The second
component is represented by the non-photochemical parameters, QCN and NPQ, which
correlated proportionally.
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Table 2. Eigenvalues, percentage of total variance explained, and correlation coefficients (r) between
the original variables and the principal components.

Principal Components

PC1 PC2

Eigenvalues (λ) 13.54 2.02
Percentage of Total Variance (S2%) 79.65 12.01

PCs
Correlation coefficient (r)

Fo Fm Fv Fv/Fm Fv/Fo Fo/Fm F′ Fm′ Y

PC1 0.94 * −0.80 * −0.96 * −0.97 * −0.96 * 0.97 * 0.76 * −0.88 * −0.97 *
PC2 −0.11 −0.40 −0.18 −0.04 −0.10 −0.04 0.50 0.44 0.10

ETR QCN NPQ YNPQ YNO Chl a Chl b Car

PC1 −0.98 * 0.68 0.69 0.95 * 0.81 * −0.94 * −0.90 * −0.93 *
PC2 −0.03 −0.72 * −0.71 * −0.18 0.54 −0.11 −0.01 −0.11

* Variables considered in PCA: r = 0.10–0.39 (weak), 0.40–0.69 (moderate), and 0.70–1.00 (strong).
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Figure 6. Two-dimensional projection of the principal component scores for the genotypes and treat-
ments (A) and the sugarcane variables analyzed (B) in the first two principal components (PC1 and
PC2). Initial fluorescence (Fo), maximum fluorescence (Fm), variable fluorescence (Fv), maximum
quantum efficiency of photosystem II (Fv/Fm), maximum primary efficiency of the photochem-
ical process in PSII (Fv/Fo), basal quantum efficiency of the non-photochemical process in PSII
(Fo/Fm), initial fluorescence before the saturation pulse (F′), maximum fluorescence after adaptation
to saturating light (Fm′), quantum efficiency of photosystem II (Y), electron transport rate (ETR),
complete non-photochemical quenching of chlorophyll fluorescence (QCN), quantum yield of regu-
lated photochemical quenching (YNPQ), quantum yield of non-regulated photochemical quenching
(YNO), and content of chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids (Car) in sugarcane
plants grown under water deficit and calcium pyruvate application at 211 DAR. G1—RB863129,
G2—RB92579, G3—RB962962, G4—RB021754, and G5—RB041443). E1—full irrigation, E2—water
deficit plus 30 mM of calcium pyruvate, E3—water deficit without calcium pyruvate.

Based on the physiological parameters of sugarcane, the highest values of the Fo,
Fo/Fm ratio, and F′ parameters were observed when plants were subjected to strategy E3,
influencing the increase of the photochemical quenching parameters QCN, NPQ, YNPQ,
and YNO. This increase suggests that there was damage to the plant’s photosynthetic
apparatus, since the high initial fluorescence indicates the dissipation of energy lost by
the plant. The damage caused to the plant’s photosynthetic apparatus contributed to the
reduction in the Fm, Fv, Fv/Fm ratio, Fm′, Y, Chl a, Chl b, and carotenoids parameters.
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3. Materials and Methods
3.1. Location of This Experiment

This experiment was conducted in a plant nursery belonging to the Agricultural
Engineering Academic Unit of the Federal University of Campina Grande (UAEA-UFCG),
located in the city of Campina Grande, PB, at the geographic coordinates 7◦15′18′′ S,
35 ◦52′28′′ W, at a mean elevation of 550 m a.s.l (meters above sea level).

3.2. Treatments and Experimental Design

The treatments were obtained from three management strategies (E1—full irrigation
throughout the crop cycle, E2—water deficit with the application of 30 mM calcium pyru-
vate, and E3—water deficit without the application of calcium pyruvate) and five commer-
cial sugarcane genotypes (G1—RB863129, G2—RB92579, G3—RB962962, G4—RB021754,
and G5—RB041443), distributed in randomized blocks in a 3 × 5 factorial design with
three replications.

The pyruvate concentration (30 mM) was established based on a study developed
by Shen et al. [39] with Arabidopsis thaliana, in which the authors used the exogenous
application of pyruvate. Adjustments were made to the pyruvate concentration since the
original research was carried out with a sample of incubated leaves from an uncultivated
species (Arabidopsis). The adjustment was also based on the study developed by Barbosa
et al. [16], who used 50 mM pyruvate in peanut plants under drought stress. The calcium
pyruvate used in this research was chosen because it is considered a low-cost product and
is easily found commercially, when compared with the other sources of pyruvate.

3.3. Description of the Experiment

Plastic containers with a capacity of 45 L adapted as drainage lysimeters were used
in the experiment, receiving a 2.0 cm layer of crushed stone and a non-woven geotextile
fabric (Bidim OP 30) at the bottom, and distributed in a 1.0 × 1.5 m spatial arrangement.
Two 10.0-mm wide hoses were connected to each lysimeter, which were coupled to two
containers with a volumetric capacity of 2.0 L to collect the drained water (Figure 7).
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The pots were filled with soil that was classified as Regolithic Neosol (Entisol) with a
sandy loam texture. The soil came from the municipality of Lagoa Seca, Paraíba, Brazil,
and its physical and chemical attributes were determined according to the methodology
described by Teixeira et al. [40] (Table 3).
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Table 3. Chemical and physical attributes of the soil used in the experiment.

Chemical Attributes Physical Attributes

Sand 63.48%
pH 6.50 - Silt 25.14%
P 79.0 mg dm−3 Clay 11.38%
K+ 0.24 cmolc dm−3 Soil density 1.13 g cm−3

Ca2+ 9.50 cmolc dm−3 Particle density 2.72 g cm−3

Na+ 0.51 cmolc dm−3 Porosity 58.45%
Mg2+ 5.40 cmolc dm−3 Sandy loam

Al3+ 0.00 cmolc dm−3 Matric potential (kPa) Moisture (%)

H+ 0.90 cmolc dm−3 Natural 0.55
SB 15.65 cmolc dm−3 −10 24.86
CEC 16.55 cmolc dm−3 −33 17.05
V 94.56 % −100 12.57
M 0.00 % −500 9.01
OM 8.10 g dm−3 −1000 8.91

−1500 8.84
pH (H2O)—potential of hydrogen; SB—sum of bases; CEC—cation exchange capacity at pH 7.0; Mehlich (P, K,
Na); Potassium chloride (KCl) 1N (Ca, Mg, and Al); Calcium acetate at pH 7.0 (H + Al); OM—organic matter;
V—base saturation, and M—aluminum saturation.

The soil moisture values at the tensions of −10, −33, −100, −500, −1000, and
−1500 kPa were used to adjust the soil water retention curve (Figure 8). In order to
obtain the adjustment parameters, the volumetric moisture values (θ) corresponding to
the applied matrix potentials (Ψm) were modeled using the RETC v.6 software and the
non-linear model proposed by Van Genuchten [41].
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After harvest (the first production of culms after planting), the second cultivation cycle
began. From this point, the pots were irrigated regularly, close to the level corresponding
to field capacity, until the moment of implementation of the treatments.

Fertilization with nitrogen, potassium, and phosphorus was applied weekly via irriga-
tion water, with a total of 47.67 g of urea (45% N), 36.28 g of monoammonium phosphate
(51% P2O5, 11% N), and 71.25 g of potassium chloride (60% K2O). The micronutrients
were applied at 15-day intervals to avoid nutritional deficiency by applying 1.0 g L−1 of
Quimifol® (composition: Mg (5.0%); S (11.0%); B (3.5%); Cu (0.10%); Fe (0.20%); Mn (1.0%);
Mo (0.10%); and Zn (6.0%)) with the aid of a knapsack sprayer.

Calcium pyruvate was purchased from Natusvita®. The solution was obtained by
dissolving calcium pyruvate in distilled water minutes before spraying and applied with the
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aid of a Jacto XP knapsack sprayer with a capacity of 12 L, a working pressure (maximum)
of 88 psi (6 bar), and a JD 12P Nozzle. Spraying was carried out at 5:00 p.m. on all the
leaves of the plant. Between 100 and 200 mL of the solution was applied per experimental
unit. Table 4 describes the period of the application of treatments.

Table 4. Application of treatments in sugarcane plants.

Water Deficit Applications

Period (DAR) Total (Days)
Calcium Pyruvate Water

Total
Period (DAR)

E1 - - - - -
E2 24 to 64 and 182 to 211 71 39 to 63 and 192 to 210 - 23
E3 24 to 64 and 182 to 211 71 - 39 to 63 and 192 to 210 * 23

* Plants under water deficit that did not receive calcium pyruvate (E3) were sprayed with distilled water plus an
adhesive spreader. DAR—days after regrowth. Applications were carried out at two-day intervals between each
application. E1—full irrigation, E2—water deficit plus 30 mM of calcium pyruvate, E3—water deficit without
calcium pyruvate.

For better adhesion and absorption, an adhesive spreader was added to the solutions
during spraying. Furthermore, to avoid drift caused by the wind during spraying, the plants
in each pot were protected with plastic, and the soil was covered with an impermeable
mantle to prevent runoff to the soil surface (Figure 9).
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surface during spraying.

Irrigation was carried out daily, at 5:00 p.m., by applying the water volume correspond-
ing to the demand of the plant undergoing each treatment. The volume applied to each
pot, per irrigation event, was estimated individually using the water balance, according to
Equation (1). A 20% leaching fraction was used monthly to remove excess salts from the
ground [42].

VI = Va − Vd (1)

where:

VI—the water volume to be used in the irrigation event (mL);
Va—the volume applied in the previous irrigation event (mL); and
Vd—the volume drained, quantified on the next morning (mL).

At 64 and 211 days after regrowth (DAR), soil samples were taken using a mini-auger,
and the soil moisture content was determined using the standard oven method. Then, the
soil samples were put in aluminum cans and weighed to obtain the wet mass. After this
step, they were oven-dried at 105 ◦C for 72 h to obtain the dry mass, from which the soil
moisture content was determined on a gravimetric basis [40], which is related to the soil
matric potential (Table 5).
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Table 5. Soil water moisture and matric potential (Ψm) recorded at the end of the water-deficit period
in each treatment.

Genotypes

64 DAR

E1 E2 E3

Moisture
(cm3 cm−3) Ψm (kPa) Moisture

(cm3 cm−3) Ψm (kPa) Moisture
(cm3 cm−3) Ψm (kPa)

RB863129 0.259 −18.6 0.149 −207.9 0.138 −305.8
RB92579 0.240 −25.9 0.143 −254.6 0.145 −237.5
RB962962 0.240 −25.9 0.142 −263.7 0.141 −273.3
RB021754 0.266 −16.5 0.145 −237.5 0.139 −294.1
RB041443 0.244 −24.1 0.149 −207.9 0.148 −214.8

211 DAR

E1 E2 E3

Moisture
(cm3 cm−3) Ψm (kPa) Moisture

(cm3 cm−3) Ψm (kPa) Moisture
(cm3 cm−3) Ψm (kPa)

RB863129 0.242 −25.0 0.126 −504.4 0.135 −342.9
RB92579 0.257 −19.2 0.133 −371.6 0.131 −403.9
RB962962 0.240 −25.9 0.133 −371.6 0.133 −371.6
RB021754 0.234 −28.8 0.127 −481.6 0.129 −440.9
RB041443 0.256 −19.6 0.130 −421.6 0.131 −403.9

Ψm—matric potential. DAR—days after regrowth. E1—full irrigation, E2—water deficit plus 30 mM of calcium
pyruvate, E3—water deficit without calcium pyruvate.

3.4. Variables Analyzed

At the end of the water-deficit period (211 DAR), the initial fluorescence (Fo), the
maximum fluorescence (Fm), and the variable fluorescence (Fv) were measured using
a modulated pulse fluorometer: model OS5p from Opti-Science ((Hudson, NH, USA)
Saturation flash intensity: 11,250 µmol and saturating pulse width: 0.8 s). From these
results, the maximum quantum efficiency of photosystem II (Fv/Fm), the photochemical
efficiency (Fv/Fo), and the basal quantum efficiency of the non-photochemical process
(Fo/Fm) were determined. The evaluations were carried out on leaves with blades that
were adapted to the dark for 30 min, using a clip to ensure that all the primary acceptors
were fully oxidized [43].

After the fluorescence evaluations with adaptation to the dark, the evaluations were
carried out under lighting conditions using the ‘Yield’ protocol (Saturation flash inten-
sity: 11,250 µmol, saturating pulse width: 0.8 s, and default PAR: 120 µE) to determine
the initial fluorescence before the saturation pulse (F′), the maximum fluorescence after
adaptation to saturating light (Fm′), the electron transport rate (ETR), and the quantum
efficiency of photosystem II (Y). From these results, the Stern–Volmer non-photochemical
quenching coefficient (NPQ), the complete non-photochemical quenching coefficient of
chlorophyll fluorescence (QCN), the quantum yield of regulated photochemical quenching
(YNPQ), and the quantum yield of non-regulated photochemical quenching (YNO) were
determined [44,45].

The content of the photosynthetic pigments (chlorophyll a, chlorophyll b, and carotenoids)
was determined at 211 DAR, according to Arnon [46] and Lichtenthäler [47], by removing a
6-mm disc from the +2 leaf of each treatment. Each sample received 6.0 mL of 80% acetone
P.A. Subsequently, the supernatants containing the extracted pigments were collected,
and absorbance readings were taken on a spectrophotometer (model UV/VIS-UV1720,
AKSON®, São Leopoldo, RS, Brazil) at the absorbance wavelengths (ABS) of 470, 645, and
663 nm, calculated using Equations (2)–(4), with the values expressed in micrograms of
pigment per gram of fresh mass (µg g−1 FW).
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Clh a =
((12.7 × ABS663)− (2.79 × ABS647))× V

FW
(2)

Clh b =
((22.9 × ABS647)− (5.10 × ABS663))× V

FW
(3)

Car =
(((1000 × ABS470)− (1.82 × Clh a)− (85.02 × Clh b))/198)× V

FW
(4)

where:

ABS470, ABS663, and ABS647—the absorbances at 480, 663, and 645 nm, respectively;
V—the volume of 80% acetone used in extraction (mL); and
FW—the fresh matter (g).

At the end of the analyses in all treatments, soil moisture was restored to close to the
level corresponding to field capacity.

3.5. Statistical Analysis

Prior to the analysis of variance, the data were subjected to the normality test
(Shapiro–Wilk). The analysis of variance and the F-test were carried out with the pos-
itive results obtained from the previous tests. Then, the test of means was applied using
the Tukey test (p ≤ 0.05), using the software Sisvar 5.8 [48]. A multivariate analysis using
a principal component analysis (PCA) was also employed; to this end, the data were nor-
malized to a zero mean (= 0.0), unit variance (σ2) = 1.0, eigenvalues (λ) > 1.0, and a total
variance (σ2) > 10% [49]. Only variables with a Pearson correlation coefficient above 0.6
were kept in the composition of each principal component (PC) [50]. The analyses were
processed using the software Statistica 7.0 [51].

4. Conclusions

There is a dissimilarity in the fluorescence parameters and photosynthetic pigments
of genotype RB863129 in relation to those of genotypes RB041443, RB96262, RB021754,
and RB92579.

Foliar application of calcium pyruvate alleviates the deleterious effects of water deficit
in sugarcane on the fluorescence parameters of chlorophyll a and photosynthetic pigments,
without interaction with the genotypes. However, subsequent validation tests will be
necessary to test and validate the adoption of this technology under field conditions.
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