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Abstract: Plants must adapt to the complex effects of several stressors brought on by global warming,
which may result in interaction and superposition effects between diverse stressors. Few reports are
available on how drought stress affects Xanthomonas albilineans (Xa) infection in sugarcane (Saccharum
spp. hybrids). Drought and leaf scald resistance were identified on 16 sugarcane cultivars using
Xa inoculation and soil drought treatments, respectively. Subsequently, four cultivars contrasting
to drought and leaf scald resistance were used to explore the mechanisms of drought affecting
Xa–sugarcane interaction. Drought stress significantly increased the occurrence of leaf scald and
Xa populations in susceptible cultivars but had no obvious effect on resistant cultivars. The ROS
bursting and scavenging system was significantly activated in sugarcane in the process of Xa infection,
particularly in the resistant cultivars. Compared with Xa infection alone, defense response via the ROS
generating and scavenging system was obviously weakened in sugarcane (especially in susceptible
cultivars) under Xa infection plus drought stress. Collectively, ROS might play a crucial role involving
sugarcane defense against combined effects of Xa infection and drought stress.

Keywords: Saccharum spp. hybrids; reactive oxygen species; leaf scald; drought; defense response

1. Introduction

The number and frequency of extreme weather events have increased significantly
due to global climate change and pose a serious impact on the sustainable development
of agriculture [1,2]. Recent research has shown that extreme environmental events have
a significant impact on the pathogenicity and transmissibility of pathogenic microorgan-
isms [3], which will impair plant disease resistance, alter defensive signaling pathways, and
ultimately cause a dramatic decline in plant growth and survival [4,5]. Thus, it is crucial
to comprehend how abiotic stresses affect biotic stresses in order to engineer plants for
climate adaptation and to ensure the long-term viability of agriculture [3].

Crosstalk and trade-offs exist in plants in response to abiotic and biotic stresses [3].
Drought directly weakens the fitness and survival of a wide range of root and leaf pathogens
that require moisture [6]. Furthermore, combined drought and pathogen stress alters
physio-morphological traits such as photosynthesis, stomatal conductance, and transpira-
tion rate along with plant growth and root morphology [7]. However, some cases reported
that plants which are subjected to drought stress increase plant susceptibility by destroying
the woody structure, resulting in the acceleration of some diseases, such as charcoal stalk
rot in sorghum and smut in cereals [3].
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Reactive oxygen species (ROS) burst is an effective approach for plants to fend off
stressors in the early stages of unfavorable environmental conditions. Later, ROS act as
signaling molecules that set off the organism’s defensive systems [8,9]. However, the plant
loses its ability to respond to osmotic stress when the ROS concentrations surpass the
threshold value; in extreme circumstances, this may result in wilting or even death [10,11].
ROS homeostasis in plants mainly includes enzymatic and non-enzymatic scavenging sys-
tems [12]. The enzymatic scavenging system mainly includes superoxide dismutase (SOD),
catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and so on [12]. Among
them, SOD is the first and most important line of defense in the enzymatic scavenging sys-
tem due its ability to remove superoxide (O−

2 ) and generate the disproportionation product
H2O2 [10]. In response to pathogen infection, plants trigger hypersensitivity reactions and
apoptosis through ROS burst, thereby limiting the proliferation of pathogens [13,14]. In
addition, drought confers resistance to plants against subsequent pathogen infections by
elevated levels of ROS generation and higher activity of the ROS scavenging system [7].

Sugarcane (Saccharum spp. hybrids), a classic C4 crop with the highest photosynthetic
rates among other crops, plays a crucial role in sugar and biofuel production, thereby
accounting for 80% of sugar production in the world and approximately 90% in China.
China’s sugarcane-producing areas are mainly located in the arid slope land of southern
and southwestern regions such as Guangxi and Yunnan provinces, where sugarcane yield
loss often occurs due to poor irrigation facilities and soil water retention capacity coupled
with uneven natural precipitation. Extreme drought can lead to a reduction of up to 60% in
sugarcane yields [15]. The bacterial pathogen Xanthomonas albilineans (Xa) is a causal agent
of leaf scald in sugarcane, distributed across the majority of sugarcane-planting counties
worldwide [16]. However, the mechanism of sugarcane infection by Xa under drought
stress remains unclear. This study aims to assess some newly released sugarcane cultivars
resistant to drought stress and Xa infection. Additionally, the ROS production-scavenging
system participating sugarcane response to both stressors has been illustrated.

2. Results
2.1. Identification of Sugarcane Cultivars Tolerant to Drought

The malondialdehyde (MDA) contents in the leaves of 16 sugarcane cultivars were
measured under drought stress. The MDA contents of all sugarcane cultivars increased
significantly after drought stress. Notably, the MDA contents of ROC22, GT16-1253, and
LC09-15 were significantly lower than that of other cultivars. The leaf relative water
contents and maximum quantum yield of PSII photochemistry (Fv/Fm) of all sugarcane
cultivars decreased after drought stress. The non-photochemical quenching (qN) of FN04-
3504, GT29, YG59, ZZ14, and ZZ13 cultivars was significantly decreased after drought
stress. Following drought stress, the PSII real photosynthetic efficiency (Y(II)) suffered a
significant drop in FN04-3504, GT29, YG59, YZ15-505, and ZZ13 (Figure 1).

The membership function values and comprehensive evaluation values (D values) of
16 sugarcane cultivars were calculated by using the membership function method of fuzzy
mathematics (Table 1). As shown in Table 1, the D value was positively correlated with
drought resistance. Among all the tested cultivars, LC09-15 had the highest D value, while
GT29 had the smallest. Finally, the drought resistance of the 16 sugarcane cultivars at the
seedling stage was graded from strong to weak (Table 1).

Table 1. Membership function values and ranking of comprehensive evaluation values (D values) of
16 sugarcane cultivars.

Variety Membership Function
D Value Rank

µ1 µ2 µ3
LC09-15 0.9487 0.4645 0.4755 0.7764 1

GT16-1253 1.0000 0.3525 0.3186 0.7611 2
ROC22 0.9633 0.2351 0.5164 0.7498 3
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Table 1. Cont.

Variety Membership Function
D Value Rank

µ1 µ2 µ3
GT13-334 0.6118 0.6142 0.5090 0.5945 4
LC15-39 0.5540 0.7773 0.4478 0.5775 5

FN14-1854 0.4478 0.8729 0.6594 0.5639 6
GNY14-6210 0.4030 0.6747 1.0000 0.5569 7

ZZ8 0.4036 1.0000 0.4619 0.5253 8
YZ15-505 0.4472 0.9969 0.2409 0.5145 9
ZT1501 0.5105 0.7291 0.2766 0.5110 10

LC05-136 0.3308 0.6219 0.4996 0.4144 11
YG59 0.1545 0.6518 0.5294 0.3123 12
ZZ13 0.1805 0.1863 0.4778 0.2329 13
ZZ14 0.0000 0.6090 0.5375 0.2068 14

FN04-3504 0.0847 0.4907 0.0000 0.1460 15
GT29 0.0173 0.0000 0.5373 0.1038 16
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Figure 1. Changes in different physiological and biochemical indexes of 16 sugarcane cultivar leaves 
under normal and drought condition. (A) MDA contents, (B) relative water contents, (C) maximum 
quantum yield of PSII photochemistry (Fv/Fm), (D) non-photochemical quenching (qN), (E) PSII 
actual photosynthetic efficiency (Y(II)). Vertical bar values represent means ± SE. For each variety, 
significant differences between normal and drought treatments at p < 0.05, 0.01, and 0.001 (Student’s 
t-test) are indicated by one, two, and three asterisks, respectively. ns, not significant. 
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Figure 1. Changes in different physiological and biochemical indexes of 16 sugarcane cultivar leaves
under normal and drought condition. (A) MDA contents, (B) relative water contents, (C) maximum
quantum yield of PSII photochemistry (Fv/Fm), (D) non-photochemical quenching (qN), (E) PSII
actual photosynthetic efficiency (Y(II)). Vertical bar values represent means ± SE. For each variety,
significant differences between normal and drought treatments at p < 0.05, 0.01, and 0.001 (Student’s
t-test) are indicated by one, two, and three asterisks, respectively. ns, not significant.

2.2. Identification of Sugarcane Cultivars Resistant to Leaf Scald

The disease index was calculated according to the severity classification scale of leaf
scald among 16 sugarcane cultivars. After Xa-FJ1 inoculation, the disease index varied
for each variety of sugarcane but rose as the inoculation period was extended cultivars.
Among them, ZZ13 had the lowest disease index (11.8%) after inoculation with the Xa-FJ1
strain, while ZZ14 had the highest disease index (58.8%). These findings demonstrated
that the levels of resistance to the leaf scald varied significantly in these tested cultivars
(Figure 2).
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Figure 2. Disease index of 16 sugarcane cultivars under the infection by X. albilineans strain Xa-FJ1 at
7–28 days post-inoculation (dpi).

Based on the disease index 28 days post-inoculation (dpi) with the Xa-FJ1 strain, the
resistance of 16 sugarcane cultivars to leaf scald disease was divided into four grades,
as shown in Table 2. The disease index of the resistant group, which comprised ROC22
and ZZ13, varied between 11.8% and 12.6%. The disease index of the medium resistant
group, including FN14-1854, LC05-136, and YZ15-505, ranged from 15.1% to 26.3%. The
susceptible group consisted of seven cultivars (i.e., YG59, ZZ8, etc.), and the disease index
ranged from 29.4% to 48.4%. There were four cultivars (GT29, ZZ14, LC09-15, and ZT1501)
in the high susceptible group, and the disease index ranged from 52.8% to 58.8%.

Table 2. Different resistance grades of 16 sugarcane cultivars against X. albilineans strain Xa-FJ1
infection.

Grade Variety (Line)
Name

Number of
Variety

Range of Disease
Index (%)

Mean of Disease
Index (%) a

Resistant ROC22, ZZ13 2 11.8–12.6 12.2 A

Medium
resistant

FN14-1854,
LC05-136,
YZ15-505

3 18.1–26.3 21.7 B

Susceptible

YG59, ZZ8,
FN04-3504,

LC15-39,
GNY14-6210,

GT13-334,
GT16-1253

7 29.4–48.4 38.9 C

High
susceptible

GT29, ZZ14,
LC09-15, ZT1501 4 52.8–58.8 55.8 D

a Different letter between means indicates significant differences at p < 0.05 by Duncan’s test.
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Based on the results of the identification of the drought and leaf scald resistance of
16 sugarcane cultivars, 4 cultivars were selected for follow-up experiments: ROC22 (disease-
resistant and drought-tolerant), ZZ13 (disease-resistant and non-drought-tolerant), GT29
(susceptible and non-drought-tolerant), and LC09-15 (susceptible and drought-tolerant).

2.3. Effect of Drought Stress on the Occurrence of Leaf Scald in Sugarcane

To explore the effect of drought stress on the infection of sugarcane by Xa, four sug-
arcane cultivars, ROC22, ZZ13, GT29, and LC09-15, were treated with Xa-FJ1 infection
alone and combined stress (Xa-FJ1 infection plus PEG6000 osmotic stress, Xa + PEG6000).
The bacterial contents of all the sugarcane cultivars increased significantly after two treat-
ments (Figure 3). At 24 h post-treatment (hpt), the pathogenic bacterium populations in
two cultivars (GT29 and LC09-15) susceptible to leaf scald were significantly increased by
143.1% and 39.5% in combined stress compared with Xa-FJ1 infection alone, respectively.
Namely, the bacterial populations of GT29 and LC09-15 reached 8507.89 copies/L and
7885.44 copies/L under combined stress, respectively. By contrast, the bacterial populations
of both cultivars were 3499.70 copies/L and 5651.30 copies/L under Xa-FJ1 infection alone,
respectively. On the other hand, the bacterial populations of two cultivars (ROC22 and
ZZ13) resistant to leaf scald did not have significant differences between both treatments at
24 pht. Overall, the proliferation rate of Xa-FJ1 in susceptible cultivars increased signifi-
cantly under drought stress, but there was no significant difference in the proliferation rate
of this pathogenic bacterium in resistant cultivars.
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24h: 0 and 24 h post-inoculation by Xa-FJ1, respectively; Xa/PEG6000-0h and Xa/PEG6000-24h: 0 and 
24 h post-treatment with combined stress, respectively. ns, not significant; **, significant difference 
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2.4. Changes in ROS Contents and ScRBOHD Gene Expression under Xa Infection Plus 
Drought Stress 

Figure 3. Quantitative PCR (qPCR) detection of bacterial pathogen population in four sugarcane
cultivars under X. albilineans strain Xa-FJ1 infection or combing with PEG6000 stress. Xa-0h and Xa-
24h: 0 and 24 h post-inoculation by Xa-FJ1, respectively; Xa/PEG6000-0h and Xa/PEG6000-24h: 0 and
24 h post-treatment with combined stress, respectively. ns, not significant; **, significant difference at
p < 0.01; ***, significant difference at p < 0.001. Student’s t-test was used to determine mean differences.
The red arrows indicate the bacterial pathogen populations in four sugarcane cultivars at 24 h after
X. albilineans strain Xa-FJ1 infection alone (Xa-24h) or combined stress (Xa/PEG6000-24h).

2.4. Changes in ROS Contents and ScRBOHD Gene Expression under Xa Infection Plus
Drought Stress

The changes in the ROS contents in leaves and the transcriptional expression of
ScRBOHD (a key gene for ROS synthesis) in four sugarcane cultivars under different
treatments are shown in Figure 4. After Xa-FJ1 inoculation alone, the ROS contents in
the leaves of ROC22, ZZ13, GT29, and LC09-15 were increased by 1.7-, 1.9-, 1.3-, and
1.4-fold, respectively, compared to the control (0 hpi). Correspondingly, the expression
levels of the ScRBOHD gene rose by 7.5-, 5.0-, 3.1-, and 2.4-fold at 24 hpt compared to
those of the control (0 hpi), respectively. Under combined stress, the ROS contents and
ScRBOHD expression levels in four sugarcane cultivars were significantly increased, i.e.,
compared with 0 hpt, the ROS contents and ScRBOHD expression levels were enhanced,
with increases of 1.2–1.8-fold and 1.6–8.0-fold in four cultivars at 24 hpt, respectively. On
the other hand, the ROS contents and ScRBOHD expression levels in the two GT29 and
LC09-15 cultivars were significantly lower at 24 hpt under combined stress than those under
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Xa-FJ1 inoculation alone. Namely, the ROS contents and ScRBOHD expression levels in
the two GT29 and LC09-15 cultivars were decreased by 9–13% and 27–33% at 24 hpt under
combined stress, respectively, compared to Xa inoculation alone. Meanwhile, no significant
differences in the ROS contents and ScRBOHD expression levels were found at 24 hpt
between Xa-FJ1 inoculation alone and combined stress in two ROC22 and ZZ13 cultivars.
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Figure 4. Changes in the ROS contents and transcriptional expression of ScRBOHD in sugarcane
leaves under X. albilineans strain Xa-FJ1 infection along with PEG6000 stress. (A) ROS contents
determined by an ELISA assay; (B) transcriptional expression of ScRBOHD determined by real-time
quantitative reverse transcription PCR (qRT-PCR). Xa-0h and Xa-24h: 0 and 24 h post-inoculation by
Xa-FJ1, respectively; Xa/PEG6000-0h and Xa/PEG6000-24h: 0 and 24 h post-treatment with Xa-FJ1
infection plus PEG6000 stress, respectively. Different letter between means indicates significant
differences at p < 0.05 by Duncan’s test.

2.5. Changes in Antioxidant Enzyme Activity and Gene-Related Expression under Xa Infection
Plus Drought Stress

The activities of two key antioxidant enzymes (SOD and CAT) and the transcriptional
expression of their related genes were measured in four sugarcane cultivars under different
treatments (Figure 5). Under Xa-FJ1 inoculation alone, the SOD activities in four tested
cultivars were increased by 9–12% at 24 hpi, while the expression levels of the ScSOD
gene were enhanced 0.6–1.9-fold at 24 hpt compared with 0 hpi. Under combined stress,
the SOD activities and expression levels of ScSOD in the four cultivars were increased.
Namely, SOD activities were increased 8–9% and ScSOD expression levels were increased
1.4–2.0-fold in both cultivars ROC22 and ZZ13 at 24 hpt compared with 0 hpt. Meanwhile,
the SOD activities and ScSOD expression levels in GT29 and LC09-15 cultivars at 24 hpt
were significantly lower than those of Xa-FJ1 inoculation alone. However, no significant
difference in the SOD activity and ScSOD expression was observed between combined
stress and Xa-FJ1 infection alone in the two cultivars ROC22 and ZZ13.

Under Xa infection alone, CAT activities decreased, ranging from 11% to 31%, and
the expression levels of ScCAT decreased from 20% to 44% in the four tested cultivars at
24 hpt compared with 0 hpt. Under combined stress, CAT activities were decreased by
12–32% in three cultivars (ROC22, ZZ13, and GT29), while the expression levels of ScCAT
in ROC22 and ZZ13 were decreased by 30–50% at 24 hpt compared with 0 hpt. Overall,
the CAT activity and expression level of ScCAT in the four cultivars were decreased or
not significantly changed under Xa infection alone or combined stress. No significant
difference in CAT activity or ScCAT expression level was found between Xa infection alone
and combined stress in the four cultivars.

The frequency of extreme weather events has increased due to global warming, which
has had a significant effect on sugarcane yield and quality [1,14]. Drought has emerged as a
predominant factor restricting sugarcane production in China [17]. Numerous studies have
highlighted the importance of relative water content, MDA, and chlorophyll fluorescence
as pivotal indicators for assessing plant drought resistance [18,19]. Additionally, some
parameters such as gauge hydration status, oxidative damage, and photosynthetic efficiency
provide comprehensive insights into plant responses to drought stress [7]. In this study,
a diverse array of indicators and statistic methods for assessing drought resistance were
measured, including these key parameters, to comprehensively evaluate plant responses
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to drought stress. Some drought-tolerant cultivars such as LC09-15 and GT16-1253 were
proposed. In addition, exploring and utilizing disease-resistant germplasm resources
has become the most cost-effective and efficient approach for preventing and controlling
sugarcane diseases [20,21]. Thus, some cultivars such as ROC22 and ZZ13 resistant to
leaf scald were identified. These findings suggested that some sugarcane cultivars like
ROC22 are tolerate to drought and leaf scald. To our knowledge, the cultivar ROC22 has
even occupied 85% of sugarcane plant areas during the years of 2005–2021, and now it is
becoming the main hybrid parent for sugarcane genetic improvement in China.
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Figure 5. Changes in antioxidant enzyme activity and relative gene expression in sugarcane leaves X.
albilineans infection along with PEG6000 stress. (A,C) Enzyme activities of SOD and CAT, respectively;
(B,D) transcript levels of ScSOD and ScCAT determined by qRT-PCR, respectively. Xa-0h and Xa-24h:
0 and 24 h post-inoculation by Xa-FJ1, respectively; Xa/PEG6000-0h and Xa/PEG6000-24h: 0 and
24 h post-treatment with Xa-FJ1 infection plus PEG6000 stress, respectively. Different letter between
means indicates significant differences at p < 0.05 by Duncan’s test. Same letters above bars indicates
no significant difference between treatments.3. Discussion.

Abiotic and biotic stressors have together been demonstrated to alter plant defense
signaling pathways, as well as the pathogenicity of pathogens, which in turn has a more
detrimental effect on agricultural productivity [22,23]. Drought can affect the severity of
plant diseases [7]. For instance, drought stress reduces the severity of diseases in Nicotiana
benthamiana infected by Sclerotinia sclerotiorum and Pseudomonas syringae pv. tabaci [24]. Fur-
thermore, drought-induced stomatal closure restricts the pathogens of Pseudomonas syringae
and Melampsora apocyni infecting Arabidopsis thaliana and Apocynum venetum, respectively,
consequently diminishing disease incidence [25,26]. On the contrary, certain diseases such
as charcoal stalk rot in sorghum, smut in cereals, and dry root rot in chickpeas exhibited
rapid escalation under drought conditions, which might be caused by the fact that drought
exacerbates plant vulnerability by compromising the structural integrity of plant tissues,
especially the woody components [6,27,28]. In addition to impacting plants, drought di-
rectly hampers the growth and spread of pathogenic bacteria, thereby influencing their
pathogenesis. For instance, drought stress significantly restricts the movement of Verticil-
lium dahliae conidia, leading to a notable reduction in wilt severity [29]. Plants subjected
to severe drought stress are not of benefit to pathogens with a biotrophic phase [7]. Our
investigations showed that sugarcane exposed to PEG6000 stress had considerably higher
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populations of Xa in vulnerable cultivars, indicating that drought stress may enhance the
incidence of sugarcane leaf scald.

Plants respond to stress by producing a wide range of intricate and sophisticated
defense signals [30,31]. Notably, one of the key defense mechanisms of plants is ROS
burst [8,10]. The respiratory burst oxidase homolog encoded by the RBOH gene is a key
enzyme that produces ROS in response to stress signaling [32]. In this study, the levels
of ROS production and ScRBOHD expression in sugarcane plants, especially in resistant
cultivars, showed a significant increase after Xa infection. These results suggest that ROS
is involved in the process of Xa infection, and the intensity of ROS burst is potentially
correlated with the tolerance to leaf scald in sugarcane. Previous studies also illustrated
that ROS production and ScRBOHD expression were involved in sugarcane in response
to Xa stimuli [33] in rice cultivars resistant to Magnaporthe oryzae [34] and in Gossypium
barbadense resistant to Verticillium dahliae [35]. On the other hand, the SOD and CAT are
important protective enzymes in the enzymatic scavenging system of ROS, participating in
plant defense responses under adverse environmental conditions [8,10]. Our study showed
that SOD activity and ScSOD gene expression were markedly increased, while CAT activity
and ScCAT gene expression were decreased in sugarcane, particularly in resistant cultivars,
following Xa infection. This phenomenon could be attributed to the excessive accumulation
of ROS in plants to induce sugarcane possessing stronger defense responses under the
infection of this pathogen. Another obversion suggested that this phenomenon could be
attributed to the excessive accumulation of salicylic acid in plants under pathogen stress,
leading to a reduction in CAT activity [36].

Numerous investigations have demonstrated that a crucial node in the interplay between
biotic and abiotic stressors is the ROS burst and scavenging mechanism [22,37]. ROS usually
resists a combination of biotic and abiotic stresses by modulating ABA signaling and
enhancing disease resistance [3,23]. Some cases revealed that drought imparts tolerance
to plants against subsequent pathogen infections by enhanced levels of ROS and higher
activity of key antioxidant enzymes [7,24]. For example, the plant of N. benthamiana
exposure to moderate drought stress resulted in higher ROS production and the induction
of some defense genes, decreasing the severity of subsequent infection by P. syringae
pv. tabaci [24]. On the contrary, the rice plant subjected to drought stress increased the
susceptibility to M. oryzae through downregulating the expression of multiple resistance
genes and a reduction in ROS production [38]. Notably, our results showed that the levels
of ROS and SOD activity in susceptible cultivars exposed to PEG6000 stress combined with
Xa infection were markedly higher than those under Xa infection alone. A possible reason
for increased ROS production might be drought stress. There are many studies that report
increased ROS accumulation and oxidative stress under drought stress [39–41].

3. Materials and Methods
3.1. Plant Growth of Sugarcane

Healthy stalks of 16 sugarcane cultivars were collected from a sugarcane nursery
(Fuzhou, China), and the single cuttings were immersed in flowing tap water overnight.
These cuttings were then immersed in hot water (52 ◦C) for 3 h. The treated buds were
transplanted into a 6 cm3 planting pot filled with nutrient soil and subsequently placed
in an intelligent artificial climate chamber (PLT-RGS-15PF, Ningbo Prandt Instrument
Co., Ltd., Ningbo, China) with the following culture conditions: 28 ◦C, 65% humidity, a
light/dark cycle of 16/8 h, and a light intensity of 30,000 Lux. Soil moisture was consis-
tently maintained at 80% through artificial management. After 25 days, sugarcane plants
grown until they reached the stage of 3–5 leaves (15–20 cm tall) were used for drought
treatment and/or Xa inoculation. The soil moisture contents in pots were controlled at 80%
before treatment.
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3.2. Soil Drought Treatment

A total of 30 buds of sugarcane were used, of which 15 buds were used for soil drought
treatment, and the other 15 buds within a controlled environment (80% soil moisture) were
used as the control. Three independent repeats were carried out for each experiment. Each
experiment was conducted using the Randomized Complete Block Design (RCBD) for
allocation. This experiment was carried out in an intelligent artificial climate chamber with
the abovementioned conditions. Leaf samples were collected at 0 and 3 days after drought
treatment for the subsequent determination of drought resistance indicators.

3.3. Determination of the Drought Indexes

The following formula for calculating the leaf relative water contents (RWCs) of
sugarcane was used:

RWC = (fresh weight − dry weight)÷ (turgid weight − dry weight)× 100

The maximum quantum yield of PSII photochemistry (Fv/Fm), non-photochemical
quenching (qN), and PSII actual photosynthetic efficiency (Y(II)) was measured by the
Imaging-PAM Chlorophyll Fluorometer (Shanghai Zealquest Scientific Technology Co.,
Ltd., China). Sugarcane plants were kept for 30 min in the dark before measurement.

The MDA content of the leaves from treated plants was analyzed using the kit of the
biological company, and the specific experimental process was performed according to the
manufacturer’s manual (Beijing Solarbio Science & Technology Co., Ltd., China). Briefly,
we weighed about 0.1 g of leaves and added 1 mL of extract buffer, and then they were
ground for homogenization under an ice bath condition. They were centrifuged at 8000× g
at 4 ◦C for 10 min, and then the supernatant was taken. We added reagents according to
the instructions and kept the mixture in a 100 ◦C water bath for 60 min, and subsequently it
was placed in an ice bath to cool. Then it was centrifuged at 10,000× g at room temperature
for 10 min. The absorbance of the supernatant was measured at 532 nm and 600 nm
wavelength using a Synergy H1 Multi-Mode Reader (BioTek, Winooski, VT, USA).

3.4. Analysis of Drought-Resistance Grades of Sugarcane Cultivars

The drought-resistance grades of sugarcane cultivars were calculated based on the
physiological indicators determined after drought stress using the membership function
method in fuzzy mathematics. The calculation method used is as follows.

If the measured index is positively correlated with drought resistance,

(Xi) = (Xi − Xmin)÷ (Xmax − Xmin)

if the measured index is negatively correlated with drought resistance,

R(Xi) = 1 − (Xi − Xmin)÷ (Xmax − Xmin)

The letters in the formula indicate that Xi = the ratio of the drought resistance index
between treatment and control groups; Xmin and Xmax stand for minimum and maximum
values of Xi in the measured indexes among all the tested cultivars, respectively.

3.5. X. albilineans Inoculation

To assess the disease resistance of the tested sugarcane cultivars, the decapitation
method was used following the method of Zhao et al. [33]. The Xa-FJ1 strain of X. albilineans
was used for inoculation [42]. A set of 35 buds of each sugarcane cultivar were tested,
and another set of 35 buds were used as the control. The grown plants were randomly
distributed in an intelligent artificial climate chamber with the abovementioned conditions.
Three independent experiments were conducted. The disease severity and incidence of the
leaf scald was recorded at 0-, 7-, 14-, 21-, and 28 dpi.
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3.6. Resistance Assessment of Sugarcane Cultivars against Leaf Scald

The disease index of sugarcane leaf scald disease was identified according to Rott
et al. [43] and Zhao et al. [33]. At 28 dpi, the disease index (%) of all the tested sugarcane
cultivars was calculated, and resistance grades were grouped according to the criteria of Fu
et al. [44].

3.7. Combined Stress Treatments

Four sugarcane cultivars (ROC22, GT29, ZZ13, and LC09-15) were used for combined
stress treatment. The buds were placed in a 32 ◦C incubator for germination for 3 days,
and then cuttings with good bud germination were cultivated with clean water under
the following conditions: temperature 30 ◦C, humidity 65%, and a light/dark cycle of
16/8 h. After the plants grew to the 3–5 leaf stage, they were cultured with Hoagland’s
nutrient solution for 1 week, and then all the plants were divided into two groups for
stress treatments. The first group was used for Xa-FJ1 inoculation without PEG6000 stress,
while the second group was used for Xa-FJ1 inoculation plus 25% PEG6000 added in the
Hoagland nutrient solution. Xa-FJ1 was inoculated using the leaf cutting method [45].
The treated plants were randomly distributed in an intelligent artificial climate chamber
with the abovementioned conditions. Plant leaves were collected at 0 h and 24 hpt for the
determination of subsequent bacterial contents, physiological and biochemical indexes,
and gene expression.

3.8. Determination of Pathogenic Bacterial Contents

Total DNA was extracted from sugarcane leaves with CTAB reagent for quantitative
real-time PCR (qPCR) detection according to the specific protocol by Shi et al. [20]. At 0
and 24 hpt, population density determination was performed on three leaf subsamples
collected for each treatment. Three technical replicates for each subsample were performed.

3.9. ROS Production and Antioxidant Enzyme Assays

The ROS contents and activities of two antioxidant enzymes (SOD and CAT) were
analyzed using the kit from Solarbio Science & Technology Co., Ltd. (Beijing, China)
following the manufacturer’s manual. Briefly, 0.1 g of leaf samples was weighed and then
ground with 1 mL of 10 mM PBS buffer (pH = 7.4), followed by centrifugation at 25 ◦C at
1200× g for 20 min, and then the supernatant was used for the subsequent determination
of ROS contents by a sandwich ELISA, and the optical density at 450 nm was determined
by spectrophotometry. Another set of leaf samples (0.1 g) were ground, followed by
centrifugation (16,770× g) at 4 ◦C for 10 min. The supernatant was determined for CAT
and SOD activity at visible wavelengths of 240 nm and 560 nm, respectively.

3.10. RNA Extraction and qRT-PCR Analysis

The transcriptional expression of the genes was detected by a real-time quantitative
reverse transcription PCR (qRT-PCR) assay with specific primer pairs (Table S1). These
genes include the respiratory burst oxidase homologs gene (ScRBOHD), which is critical
in encoding ROS production in plants, and two genes encoding antioxidant enzymes,
the superoxide dismutase gene (ScSOD) and the catalase gene (ScCAT). Total RNA was
extracted from leaf subsamples, and they were reverse-transcribed into cDNA according to
the method of Chu et al. [46]. For each treatment, three leaf subsamples were analyzed at
each time point. Three technical replicates were carried out for each subsample.

3.11. Statistical Analysis

Variance analysis (ANOVA) was utilized to compare the datasets. Duncan’s test
(comparison among more than two groups of data) and Student’s t-test (comparison
between two groups of data) were employed to determine mean differences at p < 0.05 or
0.01. Software from IBM (China), called SPSS version 18.0, was used for all the analyses.



Plants 2024, 13, 862 11 of 13

4. Conclusions

This study identified drought and leaf scald resistance in 16 recently released sugarcane
cultivars, which offers a crucial hint for variety extension. Subsequently, four cultivars
contrasting to drought and leaf scald resistance were treated with a combination of PEG6000
stress and Xa infection. Drought promoted the incidence of leaf scald disease and Xa
contents in susceptible cultivars, while there was no significant change in resistant cultivars.
The ROS burst and scavenging system was involved in four tested sugarcane cultivars
against Xa infection. A stronger response of this pathway was observed in resistant cultivars
than in susceptible cultivars. However, the response of the ROS production and scavenging
system was weakened in sugarcane cultivars under combined stress (Xa infection along
with PEG6000 stress) compared with Xa infection only. Notably, a higher weakening degree
existed in susceptible cultivars than in resistant cultivars. Our findings suggest that ROS is
a key defense node in sugarcane against Xa infection combined with drought stress. This
work will lay the foundation for further research on the mechanism altering the prevalence
and virulence of Xa in sugarcane under drought stress.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13060862/s1, Table S1. Primer pairs used to analyze
ScRBOHD, ScSOD, and ScCAT gene expressions by qRT-PCR assay.
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