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Abstract: As global food security faces challenges, enhancing crop yield and stress resistance be-
comes imperative. This study comprehensively explores the impact of nanomaterials (NMs) on
Gramineae plants, with a focus on the effects of various types of nanoparticles, such as iron-based,
titanium-containing, zinc, and copper nanoparticles, on plant photosynthesis, chlorophyll content,
and antioxidant enzyme activity. We found that the effects of nanoparticles largely depend on
their chemical properties, particle size, concentration, and the species and developmental stage
of the plant. Under appropriate conditions, specific NMs can promote the root development of
Gramineae plants, enhance photosynthesis, and increase chlorophyll content. Notably, iron-based
and titanium-containing nanoparticles show significant effects in promoting chlorophyll synthesis
and plant growth. However, the impact of nanoparticles on oxidative stress is complex. Under certain
conditions, nanoparticles can enhance plants’ antioxidant enzyme activity, improving their ability
to withstand environmental stresses; excessive or inappropriate NMs may cause oxidative stress,
affecting plant growth and development. Copper nanoparticles, in particular, exhibit this dual nature,
being beneficial at low concentrations but potentially harmful at high concentrations. This study
provides a theoretical basis for the future development of nanofertilizers aimed at precisely targeting
Gramineae plants to enhance their antioxidant stress capacity and improve photosynthesis efficiency.
We emphasize the importance of balancing the agricultural advantages of nanotechnology with envi-
ronmental safety in practical applications. Future research should focus on a deeper understanding of
the interaction mechanisms between more NMs and plants and explore strategies to reduce potential
environmental impacts to ensure the health and sustainability of the ecosystem while enhancing the
yield and quality of Gramineae crops.

Keywords: nanomaterials; Gramineae plants; photosynthesis; chlorophyll; oxidative stress

1. Introduction

In recent years, the application of nanomaterials (NMs) in agriculture has been in-
creasing, particularly in enhancing crop growth and stress resistance, improving grain
nutritional value, and increasing yield. These materials, due to their small size, large
surface area, and high reactivity, undergo a series of complex reactions in the soil, such as
migration, transformation, dissolution, precipitation, dispersion, aggregation, and redox
reactions [1]. These reactions not only affect the physicochemical properties of the soil but
also have a significant impact on plant growth and development. The behavior of NMs
in the soil primarily influences plants through their interaction with them. Studies show
that NMs can adsorb on plant roots, promoting their entry into the cell wall and absorption
by cells, thereby affecting plant growth and development [2]. The uptake process of NMs
is commonly regarded as an active transport mechanism involving numerous additional
cellular mechanisms, such as signaling, trafficking, and regulation of the plasma membrane.
As shown in Figure 1, the biological response processes of NMs in enhancing the yield
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and nutritional quality of edible plants include (1) the plant’s response to NMs through
signal transduction pathways and (2) NMs promoting the absorption and transport of
nutrients [3]. While the impact of NMs on plants can be directly observed through growth
indicators such as plant height and root length, physiological responses such as antioxidant
enzyme activity and the photosynthesis system provide deeper insights, reflecting the
complexity and depth of NMs’ interaction with plants [4].
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Photosynthesis is the cornerstone of plant growth and development, with its efficiency
directly influenced by chlorophyll content [5]. When the absorbed light energy exceeds the
plant’s conversion capacity, harmful reactive oxygen species (ROS), such as superoxide
anions and hydroxyl radicals, are produced [6]. ROS are predominantly generated in
plant cells by chloroplasts, mitochondria, peroxisomes, and endoplasmic reticula, with
chloroplasts being the principal source. These ROS significantly increase under environ-
mental stresses, such as salinity, extreme temperatures, and water scarcity, affecting plant
photosynthesis and overall health [7,8]. Therefore, there is a close relationship between
a plant’s chlorophyll content and antioxidant enzyme activity, collectively reflecting the
plant’s response to environmental stress and adaptive capacity. However, the mechanisms
by which NMs affect plant photosynthesis and antioxidative responses remain unclear.

Current agricultural practices primarily rely on chemical fertilizers, which presents
issues such as low nutrient efficiency in crops and negative environmental impacts. As
an advanced nano-biotechnology, nanofertilizers exhibit superior transport characteristics
in plant tissues/cells compared to traditional water-soluble fertilizers, demonstrating
controllable migration rates [9]. Against this backdrop, studying the impact of NMs on
Gramineae plants becomes particularly important. Gramineae plants, such as wheat, rice,
and maize, are key to global food security. The unique properties of NMs, such as their small
size and high reactivity, may have significant effects on the photosynthetic and antioxidant
systems of these plants. Existing research suggests that certain NMs can enhance the
activity of antioxidant enzymes within plants, thereby protecting chlorophyll and plant
cells and mitigating ROS-induced oxidative stress [4]. This discovery reveals the potential
role of NMs in enhancing plant stress resistance and growth efficiency. Furthermore, the
impact of NMs is not limited to plants alone; their application also influences soil and soil
microorganisms. Pawlet and others have suggested that the inhibitory effects of NMs are
significantly influenced by soil properties [10]. Nevertheless, the excessive use of various
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NMs in agriculture and industry has led to their accumulation in soil, making it crucial to
understand the relationship between their actual exposure concentrations and the biological
effects on crops and symbiotic organisms [11].

Therefore, systematically studying and summarizing the impact of NMs on the pho-
tosynthesis and antioxidant systems of Gramineae plants holds significant scientific and
practical value. This not only aids in understanding the mechanisms of NMs in plant physi-
ological processes but may also offer new strategies for agricultural production to optimize
growing conditions and improve yields, thereby contributing to global food security.

2. The Impact of Carbon-Based Nanomaterials on Gramineae Plants

Carbon, the most abundant element in the atmosphere, land, and oceans, is a funda-
mental constituent of life. The allotropy of carbon allows for a wide range of forms and
structures in NMs, such as carbon nanotubes, graphene, and fullerenes (CNMs), all of
which have been demonstrated to impact plant health [12]. CNMs can act as traditional
fertilizers to promote seed germination and growth. However, activities like waste incinera-
tion and landfilling lead to the enrichment of CNMs in soil, inhibiting plant epigenetics and
exhibiting cytotoxicity and genotoxicity [13–15]. Moreover, CNMs exhibit direct toxicity to
plant-associated soil microorganisms, potentially altering the bioavailability of nutrients or
modifying the toxicity of organic compounds and/or toxins. Whether this contributes to
the impact of CNMs on plant photosynthesis requires further discussion. Current research
indicates that the effects of CNMs on plants depend on the type, concentration, particle
size, and environmental context of the NMs. Figure 2 shows that CNMs can enhance seed
germination and seedling growth. Still, their presence inhibits root elongation and auxin
activity, leading to reduced chlorophyll content and significantly increased antioxidant
enzyme activity. The question of whether CNMs directly enter and are absorbed by plants
or whether their interaction with soil and soil microorganisms affects plant growth and
development has not been addressed or verified.
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2.1. Graphene

Graphene and its derivatives, particularly oxidized graphene (GO), have garnered
widespread attention in biological and environmental sciences. The complex, dual na-
ture of GO’s impact on Gramineae plants has become a significant area of interest. GO has
been found to promote seed germination and root growth, increasing antioxidant activity and
chlorophyll content, possibly due to the enhanced permeability of seed coats, facilitating oxygen
and water uptake and thus promoting seed metabolism and germination [16,17]. Observa-
tions under transmission electron microscopy and confocal fluorescence microscopy have
shown that GO can spontaneously permeate membranes, leading to cell wall elongation
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and significantly aiding root elongation. Additionally, GO, with its abundance of polar
hydrophilic groups, forms hydrogen bonds with water molecules, thereby enhancing soil
water retention. Therefore, plants are generally treated through hydroponic methods to
observe the transformation and impact of GO in plants. Utilizing the frictionless nature
of GO surfaces facilitates water transfer to plant roots, promoting plant germination and
growth [17]. However, this promotion is not without cost. For instance, He et al. showed
that GO might cause oxidative damage in rice [16]. This effect may be attributed to GO
partially covering the root surface, preventing the entry of mineral elements. GO internal-
ization and deposition between the cell wall and plasma membrane inhibit the synthesis of
chlorophylls a and b, damage chloroplast structure, and reduce photosynthetic efficiency
in plants. Moreover, GO induces an imbalance in most nutrient elements in plants. The
reduction in leaf contents of N, K, Ca, Mg, Fe, Zn, and Cu may be due to GO altering the
root surface chemistry, affecting root–environment interactions. Additionally, Gabriela et al.
found that the presence of GO inhibits the growth and photosynthesis of wheat, possibly
due to GO accumulation in the roots, hindering nutrient uptake [18]. On the other hand, the
impact of GO is significantly concentration-dependent. Zhang et al.’s study showed that
different concentrations of GO treatment reduced chlorophyll content and photosystem II
activity in wheat, suggesting that high concentrations of GO might inhibit plant growth and
photosynthesis [19]. Similarly, Zhao et al. found that with increasing GO concentrations,
chlorophyll content in maize seedlings initially increased and then decreased. In contrast,
peroxidase activity and malondialdehyde content increased, indicating oxidative stress
induced by GO at certain levels [20]. Unlike metal nanoparticles (MNPs), GO is highly
stable, and its mechanism of inhibiting the growth of Gramineae plants is complex. At low
concentrations, GO can enhance the synthesis of chlorophyll and even increase the activity
of antioxidative enzymes secreted by the roots. At high concentrations, GO covering the
root surface impedes the entry of mineral elements, leading to inhibited stem height and
root length, reduced diameter of root cortical cells, cellular contraction and deformation,
and induced oxidative stress in plants. Research by Ali et al. highlighted that the biological
functions of NMs depend on their physicochemical properties, application methods, and
concentrations. This study further confirmed the impact of nanomaterial concentrations
on plant growth and adaptability [21]. Additionally, Hu et al. confirmed the potential
toxicity of GO, indicating a reduction in chlorophyll content, damaged chloroplast structure,
and increased ROS production despite enhanced antioxidant enzyme activity [22]. The
enhancement of root elongation by GO does not reflect a positive effect on root growth,
as increased GO concentrations result in shorter and sparser root hairs. These findings
indicate that GO induces oxidative stress in plant roots. However, the effects of GO are not
entirely negative. Yin et al. found that GO could mitigate the inhibitory effects of the heavy
metal Cd2+ on the growth of rice roots and shoots [23]. In summary, the impact of GO on
Gramineae plants is multifaceted, including inhibition of root growth and photosynthesis
reduction, as well as enhanced antioxidant enzyme activity, thereby alleviating oxidative
damage to some extent. GO induced responses thus inhibit nutrient absorption. However,
current understanding of the impact of GO on plant nutrient components is still in its
nascent stages, and the verification of whether GO accumulates internally and integrates
into the seeds of plants remains unverified. These findings emphasize the importance of
in-depth research on GO’s physiological impact on plants to better understand and utilize
these NMs in agriculture and environmental protection.

2.2. Carbon Nanotubes

Apart from graphene and its derivatives, other CNMs, such as carbon nanotubes
(CNTs), have also significantly impacted plants. CNTs are mainly classified into single-
walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), each
with differing roles in plant physiological processes. Due to the insolubility of CNTs in
water, they are typically prepared as suspensions for use in hydroponic cultivation, and
their translocation is often achieved by adding them to the growth medium. Early studies
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found that CNTs could penetrate chloroplast membranes and stimulate light absorption,
thus affecting plant photosynthesis [24]. Conversely, at low concentrations, CNTs enhance
plant growth and development by facilitating the efficient absorption of water and es-
sential nutrients (Ca and Fe). In particular, low concentrations of SWCNTs have been
found to internalize and localize within the lipid bilayers of chloroplasts, significantly
improving the photosynthetic performance of plants while reducing the formation of ROS,
suggesting their crucial role in improving plant photosynthetic efficiency [25]. The effects
of multi-walled carbon nanotubes (MWCNTs) are more complex. They can penetrate cell
walls, forming artificial stomata and acting as additional nutrient transport channels [26].
Additionally, MWCNTs cause changes in the composition, stiffness, and permeability of
root lipid membranes, increasing the transduction of plant water channel proteins, thus
enhancing plant water absorption, seed germination, and seedling development [27,28].
However, high concentrations of MWCNTs severely inhibit root elongation and leaf de-
velopment. Transcriptome data reveal that MWCNTs suppress plant auxin signaling and
photosynthesis, while enhancing ROS, toxin metabolism, and plant responses to pathogens
to combat the oxidative stress induced by MWCNTs [29]. Anjali et al.’s study found that
rice treated with MWCNTs exhibited denser stomata and longer roots, which are beneficial
for water and mineral absorption, accelerating plant growth [30]. However, the impact of
MWCNTs on plants is concentration-dependent. At low concentrations, MWCNTs improve
seedling growth indices and water content, especially in roots; at high concentrations, their
effectiveness diminishes, possibly due to increased toxicity from nanotube aggregation [31].
Tan et al. investigated the toxicity of MWCNTs on rice cells, finding that the application of
MWCNTs led to chromatin condensation, cell membrane detachment, decreased cell viabil-
ity, and cell death [32]. Additionally, another study by Tan showed that with increasing
concentrations of MWCNTs, cell density decreased [33].

High concentrations of MWCNTs might excessively absorb iron in plants, hindering
chlorophyll production and increasing SOD and POD activity [34]. High concentrations
of MWCNTs accumulate extensively at the radicle tips, demonstrating strong adsorption
affinity towards Zn and Cu, impeding the translocation of Zn from cotyledons to seedlings
and ultimately inducing oxidative stress in plants. Additionally, the excessive absorption
of iron by these nanomaterials hinders chlorophyll production. To overcome the low
solubility issues of SWCNTs and MWCNTs in water, researchers have developed water-
soluble carbon nanotubes (wsCNTs). WsCNTs promote the growth of plant roots, branches,
and offshoots with non-toxic properties, potentially aiding water resource optimization
in arid regions [35]. Irina and colleagues explored the accumulation of MWCNTs from
green algae through the food chain to consumers, indicating an increased risk of CNT
accumulation in the food chain.

When discussing the impact of carbon-based nanomaterials, such as CNTs and
graphene, on plants, it is essential to consider their potential risks thoroughly. These
nanomaterials have shown tremendous potential in various applications due to their
unique physicochemical properties, including promoting plant growth and protecting
plants from diseases in the agricultural sector. However, as the use of these nanomaterials
increases, their potential negative impacts on the environment have also drawn scientific
attention. Firstly, carbon-based nanomaterials may adversely affect soil health. These
nanomaterials can alter the physicochemical properties of soil, impacting the structure
and function of soil microbial communities. For instance, carbon nanotubes have been
found to affect the growth and metabolism of soil bacteria, potentially leading to changes
in nutrient cycling [36]. Additionally, the introduction of graphene has been observed
to affect soil moisture retention capacity and soil aeration, thereby impacting the plant
growth environment. Secondly, the potential impact of carbon-based nanomaterials on
water quality cannot be ignored. These nanomaterials may enter water bodies through
agricultural runoff, affecting the health of aquatic ecosystems. Studies have shown that
carbon nanotubes and graphene can exhibit high stability and the potential for long-term
presence in aquatic environments, thereby potentially exerting toxic effects on aquatic
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organisms [37]. Lastly, the accumulation of carbon-based nanomaterials in the food chain
is an important consideration. These nanomaterials can be absorbed and accumulated
by plants, ultimately affecting the health of humans and other organisms. Research has
indicated that plants can absorb and accumulate carbon nanotubes through their roots,
which may lead to the transfer and biomagnification of nanomaterials in the food chain [38].

2.3. Nano-Biochar

Biochar (BC), a carbon-rich solid produced through thermochemical pyrolysis, is
commonly used as a soil amendment. Nano-biochar (Nano-BC) consists of nanoparticles
synthesized during the carbonization process [39]. Nano-BC effectively regulates the
mobilization and adsorption of micro- and macronutrients, including potentially toxic
metals and hazardous pollutants like pesticides [40]. By attaching or depositing on the
root surface and forming shell-like structures, they utilize their high adsorption affinity
for heavy metals to significantly inhibit the influx of heavy metals into root cells, thereby
reducing the negative impact of heavy metals on plants. Additionally, nano-BC regulates
the chemical functional groups on the surface of organic compounds, enhancing root
nutrient absorption [41,42]. Nano-BC not only reduces plant uptake of heavy metals but
also alleviates the harm caused by invasive plants. Under treatment with root exudates
from invasive species, applying nano-BC increases chlorophyll concentration, reduces
oxidative stress and lipid peroxidation, and decreases negative gene expression at the
molecular level [43,44]. Our review of the existing literature shows that most research
on CNMs focuses on direct assessments of their physiological and biochemical effects on
plants. However, the interactions between growth media in the environment, the duration
of CNM exposure, species differences among receptors, and factors related to CNMs, such
as type, synthesis conditions, concentration, and particle size, are complex. Progress in
understanding the potential toxicity mechanisms at the molecular-genetic level is minimal,
making it challenging to determine the consistency of CNMs’ effects on plants.

The transport and accumulation mechanisms of these carbon-based nanomaterials
(CNMs) in cereal crops are crucial for understanding their impact on the plants’ photo-
synthetic systems. As illustrated in Figure 3, NMs make contact with plant root systems,
entering the plant cell walls and root epidermal cells. Once NMs penetrate the plant,
they can move through tissues via two pathways: the apoplast and symplast pathways.
The apoplastic pathway is crucial for the radial movement within plant tissues, allowing
NMs to reach the central cylinder and vascular tissues of roots and ultimately transfer
to the plant leaves. Another significant symbiotic transport involves the phloem’s sieve
elements, enabling distribution to non-photosynthetic tissues and organs. In the case of
foliar application, NMs must bypass the barrier provided by the cuticle and enter along
lipophilic or hydrophilic pathways. The movement of NMs within plants is crucial, as it
indicates which parts of the plant they can reach and where they may end up and accumu-
late. For example, if nanoparticles are primarily transported through the xylem rather than
the phloem, they will predominantly move from the roots to the stem and leaves rather
than downward, suggesting that their application should be on the plant’s roots for good
distribution within the plant. Conversely, if nanoparticles exhibit good mobility through
the phloem, they should be applied via foliar spray. Moreover, NMs moving along the
phloem may accumulate in plant tissues acting as sinks, such as fruits and grains [45].
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Figure 3. Factors influencing absorption, uptake, transport, and penetration of nanoparticles in plants.
(A) Nanoparticle traits affect how they are taken up and translocated in the plant, as well as the
application method. (B) In the soil, nanoparticles can interact with microorganisms and compounds,
which might facilitate or hamper their absorption. Several tissues (epidermis, endodermis, etc.)
and barriers (Casparian strip, cuticle, etc.) must be crossed before reaching the vascular tissues,
depending on the entry point (roots or leaves). (C) NMs can follow the apoplastic and/or the
symplastic pathways for moving up and down the plant and adradial movement for changing from
one pathway to the other. (D) Several mechanisms have been proposed for the internalization of
nanoparticles inside cells, such as endocytosis and pore formation, mediated by carrier proteins and
plasmodesmata [45].

In conclusion, CNMs typically penetrate root cells or adhere to roots, stimulating
plant metabolism and biochemical reactions in plant cells. These materials significantly
stimulate the photosynthesis process, affecting chlorophyll A, chlorophyll B, and carotenoid
content, altering the rate of photosynthesis and plant metabolites through the Calvin
cycle [46]. CNMs also stimulate water channel proteins, regulating root water absorption,
acquiring more nutrients for photosynthetic synthesis, enhancing chlorophyll content and
photosynthetic activity in vegetation, and significantly increasing antioxidant enzyme
activity, thereby enhancing plant stress resistance and adapt ability. Plants treated with
CNMs have higher elemental contents in their seeds. However, high concentrations of
CNMs may interact with amino acids in biological cells, leading to CNM wrapping or
adsorption around cells, slowing plant growth, and causing electrolyte leakage and protein
and lipid oxidation. These materials may also disrupt the expression of genes related to
chlorophyll synthesis, inhibiting plant photosynthesis.

3. The Impact of Metal Nanoparticles on Gramineae Plants

MNPs, with dimensions less than 100 nm in one axis, exhibit exceptional physicochem-
ical properties, such as large surface areas, making them widely used in nanofertilizers,
nanopesticides, etc. However, their easy absorption, transformation, and accumulation in
plants and continuous release into the environment can lead to metal particle aggregation
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in certain tissues, impacting both plants and the environment. Earlier studies suggest that
the harmful effects of MNPs on plants, primarily oxidative stress and damage, ultimately
hinder growth [47]. More recent research indicates a positive role of metallic NMs in plant
growth; for instance, Figure 4 shows MNPs enhancing stomatal density, chlorophyll, and
enzyme activity, thus promoting plant growth [48]. NMs can enter leaf cells through the
leaf epidermis or stomata, moving via the apoplastic or symplastic pathways.
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3.1. Effect of Nanocerium on Gramineae Plants

Cerium, one of the rare earth elements, is not essential for plants, but cerium oxide
nanoparticles (CeO2 NPs) positively affect photosynthesis and stomatal conductance at
low concentrations [48]. Many studies on plant absorption of NMs have been conducted
using aqueous suspensions or hydroponic media, with CeO2 NPs often being used in
such research as they are considered to be stable and insoluble. Plants usually absorb and
internalize CeO2 NPs by incorporating them into the soil. CeO2 NPs penetrate leaf surfaces
through stomata, passing through mesophyll cell walls and plasma membranes to chloro-
plasts via a non-endocytic pathway influenced by mesophyll membrane potential [49].
CeO2 NPs can enter plant roots and even be transported to stems, indicating that they
undergo biotransformation and are to some extent soluble. However, almost all available
plant studies on CeO2 NPs have not considered the biotransformation and solubility of
these NMs. CeO2 NPs have the capacity to absorb and release oxygen in surface-catalyzed
redox reactions. At low concentrations, CeO2 NPs dissolve in their oxidized state, such
that further Ce4+ can be reduced to Ce3+ and then be released, promoting the content of
chlorophylls a and b and total chlorophyll, enhancing the plant’s capacity to scavenge ROS
and boosting photosynthesis. The plasma effect can enhance the activity of the photosys-
tem, thereby enhancing the photosynthesis of chlorophyll biomass. Simultaneously, CeO2
NPs form free radicals within the photosynthetic mechanism by altering the molecular
structure of chlorophyll. However, high concentrations of CeO2 NPs reduce chlorophyll
content and increase the activities of hydrogen peroxide and superoxide dismutase en-
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zymes [50]. Under high concentrations of CeO2 NPs, the reduction in chlorophyll content
may be due to excessive production of ROS and lipid peroxidation, potentially damaging
chloroplast structures. The decline in chlorophyll is primarily caused by the degradation of
chlorophyllase, disruption of chlorophyll structure, and instability of pigment complexes.
Zhang et al. found that 500 mg/L or higher concentrations of CeO2 NPs induce lipid
peroxidation and cell membrane damage in lettuce [51]. These studies indicate that high
concentrations of CeO2 NPs may adversely affect plant dry weight, chlorophyll content,
and nutrient availability, leading to oxidative stress. High concentrations of CeO2 NPs
applied to the leaf surface might block stomata, reducing transpiration, photosynthesis,
growth, and plant resistance [52]. However, other studies report no significant effect of
CeO2 NPs on chlorophyll content in wheat leaves [53], while Wang et al. found that under
hydroponic conditions, 100 mg/L CeO2 NPs significantly increases fresh root biomass in
rice [54]. These discrepancies could result from varying plant species, concentrations, and
durations of exposure to CeO2 NPs.

To mitigate the adverse effects of CeO2 NPs, researchers have experimented with their
combined use with other substances. For example, Yan et al. found that treatment with
carbon dots (CDs) and CeO2 NPs under hydroponic conditions significantly increased the
chlorophyll content and peroxidase activity in wheat [55]. This finding could be attributed
to the combined application of CDs and CeO2 NPs increasing chlorophyll accumulation,
enhancing plant utilization and absorption of sunlight, and improving the photosystem
activity and photosynthesis in wheat. Azka et al. discovered that gibberellic acid (GA)
could reverse changes caused by CeO2 NPs alone, enhancing plant chlorophyll content and
antioxidant enzyme activity [56].

Overall, CeO2 NPs at low doses might positively impact the growth of Gramineae
plants and the amino acid content in grains, acting as catalysts for chlorophyll formation
and maintaining chloroplast structure, whereas high concentrations could block stomata,
causing oxidative stress. Therefore, their combined use with other functional materials or
plant hormones may be an effective way to reduce oxidative damage from CeO2 NPs.

3.2. Impact of Iron-Based Nanomaterials on Gramineae Plants

The positive effects of NMs on plants are believed to be related to their large specific
surface areas, leading to high solubility and reactivity, which determine their effective
interaction with membranes, other cell components, proteins, and lipids [57]. Iron is a vital
micronutrient for plant growth, playing a critical role in chlorophyll synthesis, respiration,
and redox reactions despite its low concentration in plants. Iron deficiency leads to chlorosis
and affects photosynthetic efficiency (Figure 5). Usually, iron fertilizers are added to crops
to supplement this element. There are typically two methods for iron to enter the root
zone: various compounds or organic complexes and diffusion. When plants absorb iron,
it migrates from higher to lower concentrations on the root surface. Chelated iron in the
soil solution spreads to the roots through mass flow or diffusion. Iron is transported across
the cell membrane, reduced, and released from the chelating molecule, with the inner
epidermal cells and epidermal cells of roots absorbing iron. Before entering the xylem, iron
is loaded into the endodermal cells’ pericycle sheath. The exodermis is where most of the
iron is transported to the shoots. From this point, it can be transported across the cell’s
plasma membrane into the cytoplasm and organelles [58].



Plants 2024, 13, 984 10 of 22

Plants 2024, 13, x FOR PEER REVIEW 10 of 23 
 

 

pericycle sheath. The exodermis is where most of the iron is transported to the shoots. 
From this point, it can be transported across the cell’s plasma membrane into the 
cytoplasm and organelles [58]. 

 
Figure 5. Absorption and response of plants to iron-based nanoparticles [59]. 

Iron-based nanomaterials, much smaller than typical iron oxides or iron molecules, 
can form more complexes with different molecules, providing more bioavailable iron to 
plant organs. Similar to zinc and copper, iron-based nanomaterials are usually absorbed 
gradually, while their ionic forms are rapidly absorbed and immediately involved in 
various biochemical reactions [60]. Iron-based NMs, with their small surface areas and 
high biocompatibility, are considered effective iron fertilizers. These nanoparticles not 
only enhance crop antioxidant enzyme activity, promoting seed germination and 
seedling growth, but also increase chlorophyll content and prevent heavy metal 
accumulation. Kokina et al.’s study showed that barley seedlings treated with low 
concentrations of magnetite nanoparticles (Fe3O4 NPs) under hydroponic conditions 
exhibited significantly increased growth rates, chlorophyll contents, and specific miRNA 
expression levels. In contrast, high concentrations of Fe3O4 NPs showed a negative 
correlation with chlorophyll content [61]. Tombuloglu’s study revealed that under 
hydroponic conditions, Fe3O4 NPs penetrate and internalize in plant root cells, 
significantly boosting barley growth, chlorophyll content, and dry weight and doubling 
root length with increasing concentrations of Fe3O4 NPs [62]. Plants treated with Fe3O4 
NPs also exhibit higher potassium and phosphorus contents in their leaves, these 
elements being crucial for maintaining the activity of many enzymes, including those 
involved in the Calvin cycle and dark respiration. Some SOD isozymes in plants depend 
on Fe activation, so an increased Fe content in leaves maximally reduces the adverse 
effects of ROS produced under high light conditions, thereby increasing chlorophyll 
content and enhancing the net assimilation rate of CO2. However, the effects of iron-
based NMs are not uniform. Jie et al. found that high concentrations of nano-zero-valent 
iron (NZVI) inhibited the growth of rice seedlings, which showed clear symptoms of 
iron deficiency. However, toxicity symptoms decreased with aged nZVI [63]. Although 
nZVI can accumulate in the roots, it hardly transfers to the edible parts of the plant. The 
activation of H+-ATPase induced by nZVI, leading to proton secretion, may increase the 
availability of P in the soil by acidifying the rhizosphere. Overexpression of PM H+-
ATPase enhances stomatal opening, promoting CO2 absorption and thus enhancing 
photosynthesis. However, overexpression of PM H+-ATPase-related genes (CsHA1) by 
nZVI affects plant growth and Fe uptake [64]. Conversely, Li et al. discovered that foliar 

Figure 5. Absorption and response of plants to iron-based nanoparticles [59].

Iron-based nanomaterials, much smaller than typical iron oxides or iron molecules,
can form more complexes with different molecules, providing more bioavailable iron to
plant organs. Similar to zinc and copper, iron-based nanomaterials are usually absorbed
gradually, while their ionic forms are rapidly absorbed and immediately involved in vari-
ous biochemical reactions [60]. Iron-based NMs, with their small surface areas and high
biocompatibility, are considered effective iron fertilizers. These nanoparticles not only en-
hance crop antioxidant enzyme activity, promoting seed germination and seedling growth,
but also increase chlorophyll content and prevent heavy metal accumulation. Kokina
et al.’s study showed that barley seedlings treated with low concentrations of magnetite
nanoparticles (Fe3O4 NPs) under hydroponic conditions exhibited significantly increased
growth rates, chlorophyll contents, and specific miRNA expression levels. In contrast, high
concentrations of Fe3O4 NPs showed a negative correlation with chlorophyll content [61].
Tombuloglu’s study revealed that under hydroponic conditions, Fe3O4 NPs penetrate
and internalize in plant root cells, significantly boosting barley growth, chlorophyll con-
tent, and dry weight and doubling root length with increasing concentrations of Fe3O4
NPs [62]. Plants treated with Fe3O4 NPs also exhibit higher potassium and phosphorus
contents in their leaves, these elements being crucial for maintaining the activity of many
enzymes, including those involved in the Calvin cycle and dark respiration. Some SOD
isozymes in plants depend on Fe activation, so an increased Fe content in leaves maxi-
mally reduces the adverse effects of ROS produced under high light conditions, thereby
increasing chlorophyll content and enhancing the net assimilation rate of CO2. However,
the effects of iron-based NMs are not uniform. Jie et al. found that high concentrations of
nano-zero-valent iron (NZVI) inhibited the growth of rice seedlings, which showed clear
symptoms of iron deficiency. However, toxicity symptoms decreased with aged nZVI [63].
Although nZVI can accumulate in the roots, it hardly transfers to the edible parts of the
plant. The activation of H+-ATPase induced by nZVI, leading to proton secretion, may
increase the availability of P in the soil by acidifying the rhizosphere. Overexpression of
PM H+-ATPase enhances stomatal opening, promoting CO2 absorption and thus enhancing
photosynthesis. However, overexpression of PM H+-ATPase-related genes (CsHA1) by
nZVI affects plant growth and Fe uptake [64]. Conversely, Li et al. discovered that foliar
application of iron-based nanoparticles, such as Fe and Fe3O4, significantly increased the
chlorophyll content, net photosynthetic rate, and biomass in maize plants [65]. Saleha’s
study further indicated that foliar application of appropriate concentrations of glutamic
acid-modified trivalent iron nanoparticles (Glu-ZVFe NPs) and indole acetic acid (IAA)
enhanced root length, leaf area, and germination rate in maize, reducing the toxic effects of



Plants 2024, 13, 984 11 of 22

lead ions [66]. Some Fe3O4 NPs found in chloroplast thylakoids may envelop chloroplast
surfaces in the Fe3O4 NP–chloroplast system, acting as both electron donors and acceptors
instead of releasing iron, enhancing photosynthesis.

The effect of hematite NMs, another type of iron-based NMs, is also noteworthy.
Tombuloglu’s study using hematite nanoparticles (Fe2O3 NPs) on barley showed toxicity
inhibiting germination and pigment synthesis [67]. Lu et al. found that foliar application
of Fe2O3 NPs on wheat seedlings led to excessive production of OH- in plant bodies,
accelerating chlorophyll degradation and significantly reducing photosynthesis [68]. Foliar-
applied Fe2O3 NPs mostly accumulate in the leaves, with a portion being translocated to
the stem and roots through the vascular system. It is noteworthy that Fe3O4 NPs might
bind to organic acids or ligands secreted by leaf surfaces [57]. Additionally, Elena et al.
reported positive effects of nanohydroxyapatite (nHA) and Fe2O3 NPs on photosynthesis
in maize and winter wheat plants [69]. In another study, different sizes of Fe2O3 NPs
absorbed by roots and transferred to leaves indicated that nanoparticles as an iron source
in metabolic reactions could stimulate photosynthetic mechanisms, enhancing root length,
plant height, biomass, and chlorophyll content in wheat [59]. Lastly, Iannone et al. found
that hydroponically applied citrate-coated Fe3O4 NPs did not affect germination rate,
chlorophyll content, or plant growth in wheat while enhancing antioxidant enzyme activity
in the roots and aerial parts, showing a response against oxidative damage [70]. Upon
absorption by plant roots, Fe2O3 NPs are prone to agglomeration or even clogging of
vascular bundles, preventing their translocation to stems and leaves. As the concentration
of Fe2O3 NPs increases, the chlorophyll content in plants decreases, and the MDA content
significantly increases.

In summary, iron-based nanomaterials can generate hydroxyl radicals through Fenton
or Fenton-like reactions, leading to changes in leaf antioxidant enzyme activity and malon-
dialdehyde levels. Eventually, -OH promotes the degradation of chlorophyll, negatively
impacting photosynthesis and thus inhibiting plant growth. No free iron ions were detected
in the mixture of Fe2O3 NPs and chloroplasts, suggesting that the effect of free iron ions
on -OH generation is negligible. Iron-based NMs show significant potential in enhancing
chlorophyll content and antioxidant enzyme activity in Gramineae plants (Table 1). These
materials, absorbed through the root system, not only promote chlorophyll synthesis and
photosynthesis but also strengthen plant resistance to environmental stresses. However, the
impact of iron-based NMs on the iron content in edible parts of Gramineae plants requires
further study.

Table 1. Influence of iron-based nanoparticles on the growth of Gramineae plants.

Material Plant Application Form Effect Proposed Mechanism of Action Reference

nZVI, size of 33.8 ±3.59 nm Rice Soaking of seeds for
3 days in 20 mg/L

suspension

Increased seedling growth Chlorophyll content, NADPH
dehydrogenase activity, and root

metabolism significantly increased

[71]

nZVI or Fe3O4 NPs, size of 20 nm Rice Seedlings treated with
50 mg/L suspension for

14 days

Promoted seedling growth Chlorophyll content and POD
enzyme activity increased

[72]

Fe3O4 NPs, size of 50–100 nm Rice Spraying with
0–20 mg/L suspension

for four months

Promoted growth of rice Reduced chromium absorption and
accumulation, chlorophyll content,

and SOD enzyme activity

[73]

Fe2O3 NPs, size of 20–40 nm Wheat Seedlings treated
hydroponically for

21 days

Root length, plant height,
biomass, and chlorophyll content

of wheat increased

NPs supported
chlorophyll synthesis

[74]

Fe3O4 NPs, size of 6.85 ±1.70 nm Wheat Seeds treated with
2000 mg/L suspension

for five days

Alleviation of heavy
metal-induced oxidative stress in

wheat seedlings

Absorption of cadmium, lead, copper,
and zinc decreased, and antioxidant

enzyme activities of SOD and
POD increased

[75]

Fe3O4 NPs, size of 80–110 nm Wheat Treatment with
200–500 mg/L

suspension for three
weeks

Photosynthetic pigment content
and SOD enzyme activity

increased

Improved plant photosynthetic
performance and iron and

phosphorus utilization rates
promoted plant growth

[57]
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3.3. Impact of Titanium-Containing Nanomaterials on Gramineae Plants

Titanium dioxide nanoparticles (TiO2 NPs) are among the most produced NMs glob-
ally. Early research indicated that titanium application generally enhances plant enzyme
activity and promotes the synthesis of crucial substances like chlorophyll and carotenoids,
thus fostering plant growth. This effect is partly attributed to titanium and its compounds
increasing iron activity in plant tissues, enhancing the absorption of elements like iron,
magnesium, and phosphorus, thereby affecting plant metabolism. The transformation
and translocation of TiO2 NPs within plant cells are usually achieved by adding TiO2
NPs to the water. However, high concentrations of titanium are toxic to plants [76]. High
concentrations of TiO2 NPs can damage the photosynthetic pigments in plants. However, at
low concentrations, TiO2 NPs, existing as metal oxides in the photosynthetic light reactions
rather than as free metal ions, do not exhibit any toxic effects.

With advancing research on TiO2 NPs, it has been found that they can interfere in the
early stages of plant growth. Through root exposure and foliar contact, TiO2 NPs affect the
growth of seedlings. Morphological analysis revealed that titanium complexes with the
parenchyma and vascular columns of common wheat accumulated in cells, endosperm, and
nuclei. Once absorbed by seedlings, TiO2 NPs may cause metabolic anomalies, genotoxicity,
and chloroplast structure damage [77]. The increase in TiO2 NP concentration leads to their
extensive attachment to the plant root surface, blocking cell wall pores and causing osmotic
stress due to reduced water absorption. This ultimately affects stomatal closure, reduces
net carbon dioxide fixation, and inhibits plant transpiration. However, at suitable concen-
trations, the beneficial effects of titanium are more pronounced, especially in plants with
nutrient deficiencies. For example, magnesium-deficient plants absorb titanium through
roots, replacing phosphorus deposits in roots, thereby increasing the transport of magne-
sium to the plant apex. Foliar application of titanium improves seed germination [78]. This
effect is attributed to the enhanced absorption of nitrates caused by TiO2 NP treatment,
thereby accelerating chlorophyll synthesis and increasing the efficiency of solar energy
capture, which in turn promotes photosynthesis. Studies on the physiological processes
of rice seedlings show that TiO2 NP treatment significantly increases chlorophyll content
and antioxidant enzyme activity [79]. Titanium application enhances plant absorption of
elements like iron and magnesium, significantly increasing chlorophyll content, enzyme
activities (like that of nitrate reductase), carotenoid content, photosynthesis rate, and symbi-
otic nitrogen fixation rate, accelerating rapid crop growth [80]. The promoting effect is often
associated with increased activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Ru-
BisCO) within the plant. TiO2 NPs induce changes in the secondary structure of enzymes,
enhancing the activity of Mg2+-ATPase and chloroplast coupling factor (CF1)-ATPase on
the one hand, improving light absorption and conversion efficiency, promoting carbon
dioxide assimilation for plant growth [81]; on the other hand, they accelerate nitrogen
metabolism within the plant, enhance the activity of enzymes such as nitrate reductase, and
speed up the metabolic process of converting absorbed nitrates and inorganic nitrogen into
organic nitrogen (such as proteins and chlorophyll), thereby promoting plant growth [82].

TiO2 NPs not only improve the absorption of plant nutrients but also alleviate the
effects of cadmium, other nanoparticles, and drought stress. For example, plants exposed
to TiO2 NPs exhibit higher levels of chlorophyll and carotenoids, showing a higher transpi-
ration rate and less susceptibility to oxidative stress. However, some studies indicate the
negative effects of TiO2 NPs on plant growth. Dias et al., using TiO2 NPs with rutile P25
long-term, found that P25-TiNP adversely affected normal wheat photosynthetic processes,
reducing the content of substances like chlorophyll [83]. Xu et al.’s study showed that
combined treatment of carbon dioxide with TiO2 NPs significantly increased chlorophyll
and phosphorus content, plant height, and antioxidant activity in rice leaves as the CO2 con-
centration increased [84]. Additionally, foliar application of sodium nitroprusside protected
wheat seedlings from drought-induced oxidative damage in environments exposed to TiO2
NPs [85]. Furthermore, the increase in proline and soluble sugar content in plant cells can
effectively regulate the osmotic balance within plant cells under drought stress [86].
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In conclusion, TiO2 NPs have various positive impacts on plants, including enhancing
chlorophyll biosynthesis, improving photosynthetic efficiency, and stimulating nitrogen
metabolism. TiO2 NPs also influence levels of plant growth hormones, protect plants from
Cd absorption in polluted soils, and enhance nutrient absorption. However, under certain
conditions, TiO2 NPs may produce harmful ROS, causing oxidative damage. Therefore, the
application of TiO2 NPs for plant growth and development needs careful consideration.

3.4. The Impact of Nanozinc on Gramineae Plants

Zinc, a critical micronutrient for plant growth, is not only a vital component of enzymes
like superoxide dismutase but also plays a key role in the repair process of photosystem
II [87]. Zinc oxide nanoparticles (ZnO NPs) are extensively studied in agriculture, with
both positive and negative effects on plants.

Studies by Boonyanitipong and Li, respectively, found that ZnO NPs negatively affect
the growth of rice roots, potentially halting growth altogether [88,89]. Chen et al. further
investigated the absorption and translocation of ZnO NPs in rice to reveal their toxicity
mechanisms. Research has shown that under hydroponic conditions, the degradation rate
of ZnO NPs is accelerated at the root, where they are absorbed in both ionic and particulate
forms. It was found that the degradation rate of ZnO NPs in roots accelerates, as they are
absorbed in both ionic and particulate forms. ZnO NPs inhibit the growth of rice seedlings
by reducing biomass and chlorophyll content and decreasing the activity of antioxidant
enzymes in rice, indicating potential oxidative damage caused by ZnO NPs [90]. Low
concentrations of ZnO NPs enhance the synthesis of plant photosynthetic pigments and
proteins, reduce the content of MDA, and alleviate membrane lipid peroxidation, whereas
high concentrations of ZnO NPs disrupt chloroplast structure, decrease the number of
grana and thylakoids, and reduce chlorophyll content. On the other hand, Meng’s study
on the interaction between rice and metal oxide NPs (such as CuO NPs and ZnO NPs)
revealed that under conditions of high exposure to MNPs, gene expression related to auxin
biosynthesis in rice increased. These studies suggest that rice might increase its tolerance
to MNPs by regulating auxin biosynthesis [91].

In practical agricultural applications, ZnO NPs are used as materials to improve crop
growth conditions. Proper zinc addition can increase plant stress resistance. Mazhar et al.
showed that treatment of rice seeds under drought conditions with ZnO NPs significantly
increased chlorophyll contents and superoxide dismutase, catalase, and peroxidase ac-
tivities, proving the effectiveness of ZnO NPs in improving crop growth under drought
conditions [92]. Daniele et al. found that hybrid materials composed of ZnO-containing
lignin nanoparticles (ZnO-L NPs) significantly increased the chlorophyll content and an-
tioxidant properties of treated maize seeds [93]. Adil et al., applying ZnO NPs to wheat
under salt stress, found that external application of ZnO NPs significantly improved the
wheat’s chlorophyll content, plant height, and fresh root weight, achieving an increase
in yield. ZnO NPs also enhance plant tolerance to salt and drought stress by improving
plant nitrogen transport and total nitrogen content, regulating stress-related proteins, an-
tioxidant enzyme activities, and stabilizing photosynthetic pigments [94]. Compared to
traditional fertilizers, the external application of ZnO NPs had a more significant impact
on the physical parameters and chlorophyll content of wheat [95].

However, it is important to note that zinc deficiency leads to slowed plant growth, re-
duced ability to cope with stress conditions, and decreased chlorophyll synthesis [87]. High
concentrations of zinc can be toxic, similar to heavy metals, promoting ROS production
and potentially displacing other metals from active sites in proteins, leading to iron and
magnesium deficiency [96]. High concentrations of ZnO NPs can rapidly penetrate and
accumulate in the vacuoles of plant root rhizomes, undergoing valence transformation (to
Zn2+) and directly jeopardizing plant growth. ZnO NPs can positively affect the absorption
and transfer of other nutrients, such as nitrogen, phosphorus, and boron, reducing the
uptake of heavy metals. ZnO NPs have the advantage of slow dissolution compared to sol-
uble salts, avoiding leaf burn, and converting into soluble salts within the plant, supporting
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gradual zinc absorption by the plant. In cases where rapid zinc absorption is required, the
application of soluble zinc salts and chelates may be more suitable, while ZnO NPs can
be used as slow-release zinc fertilizers. Foliar application of ZnO NPs can also reduce the
uptake of heavy metals like cadmium, but there is a risk of reduced absorption of other
nutrients like iron and magnesium.

3.5. The Impact of Nanocopper on Gramineae Plants

The chlorophyll content is a key determinant of plant photosynthetic capacity. Ade-
quate copper (Cu) is beneficial for the formation and stability of chlorophyll, as Cu can form
coordination compounds with chloroplast pigments [97]. However, high concentrations
of Cu can be detrimental to plant chlorophyll content. This reduction in chlorophyll may
be due to Cu entering the plant, causing an imbalance in chloroplast enzyme activity and
accelerating chlorophyll degradation. Due to the difficulty in achieving uniform foliar ap-
plication of NMs, treatment of Gramineae plants is usually conducted through hydroponic
or soil application methods. CuO NPs can induce gradual deposition of lignin in roots,
inhibiting root growth and obstructing the synthesis of abscisic acid and indole-3-acetic
acid, leading to reduced absorption of trace elements (B, Mo, Mn, Mg, and Zn) by plants.
Localized excessive accumulations of Cu may bind to the protein SH groups in chloroplasts
or substitute for Fe2+ and Zn2+, causing changes and deactivation in the ionic composition
of the chlorophyll–protein complexes. One of the reasons for the decline in photosynthetic
ability is Cu2+ toxicity, which inhibits the transfer of photosynthetic electrons and the
functionality of photosystem II [98]. CuO NPs negatively affect photosynthetic activity
by deactivating the PSII reaction centers and reduce electron transfer, thylakoid number,
photosynthetic rate, and photosynthetic pigments. With increasing Cu treatment concentra-
tion, the contents of chlorophyll a, chlorophyll b, and total chlorophyll in seedling leaves
show a downward trend. Thus, Cu, as a key structural and catalytic component in various
enzymes for electron transfer and redox reactions, is crucial for promoting plant growth.
Cu mainly affects mitosis in plants, thus affecting the root system. Deposition of CuO NPs
within leaf and root cells and on the surface of root tips leads to disordered arrangements
of root tip cells, disconnection of cell wall linkages, loosening of the ties between cell wall
microfibrils, disruption of cell adhesion, reduced levels of cell wall hemicellulose and
esterified pectins, and swelling in the root hair zone, severely damaging the root system
structure of the plant. These effects are likely caused by soluble Cu2+ ions. Most of the
copper absorbed by plants from the soil accumulates in the roots, with relatively less
transport to the above-ground parts [99]. However, the main reason for CuO NPs inhibiting
plant growth is their induction of excessive ROS production within cells, which damages
plant tissue cells, especially the root system, and significantly upregulates the expression of
antioxidant enzyme-related genes in the oxidative defense system. This leads to protein
dysfunction, adversely affecting Gramineae plants.

In practical applications, the effects of Cu NPs vary depending on their concentration
and application method. For instance, Tamez’s soil application treatment of sugarcane
with CuO NPs showed a significant increase in antioxidant enzyme activity and a slight
increase in chlorophyll content [100]. Tiwari et al.’s treatment of rice seedlings with laser-
ablated CuO NPs showed that low concentrations of CuO NPs promoted chlorophyll and
antioxidant capacity in rice. In contrast, high concentrations showed obvious toxicity [2].
Choudhary et al. used chitosan copper nanoparticles to enhance maize’s defense response
against Curvularia leaf spot (CLS) and promote plant growth [101]. Li et al. stimulated
antioxidant enzymes in rice with MoS2-Cu NPs to achieve an antibacterial effect [102].
Notably, both Ag NPs and Cu NPs are heavy metal nanoparticles. Jaskulski’s application
of urea foliar containing Ag NPs during barley cultivation showed that this urea could pro-
mote plant growth and increase antioxidant enzyme activity and chlorophyll content [103].
Therefore, combining urea or other substances with Cu NPs may reduce the oxidative
damage of Cu NPs to plant cells and potentially confer certain resistance to the plant.
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In conclusion, NMs have a wide-ranging impact on the physiological processes of
plants throughout their lifecycle. These impacts can be positive or negative, depending on
various factors, including plant characteristics (such as species and developmental stage),
the chemical properties of NMs, particle size, concentration, and environmental conditions
(Figure 6).
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NMs can affect plant growth and development in multiple ways. For example, they
can improve root structures and nutrient absorption, thereby enhancing overall plant
health and growth rates. Additionally, controlling the use of NMs can reduce their toxic
effects on plants, for instance, lowering the concentration of NMs or altering their chemical
composition to mitigate negative impacts. However, the effects of NMs on plants are not
always linear or predictable. Some types of NMs may have a promoting effect under certain
concentrations or environmental conditions, while others may exhibit inhibitory or toxic
effects. Therefore, comprehensive and detailed assessments of the potential impacts of NMs
are required when applying them in agriculture and plant sciences. Moreover, with the
ongoing development and application of nanotechnology, further research is needed into
the long-term impacts of NMs on plant growth and environmental safety. Future research
should focus on the environmental friendliness and sustainability of NMs to ensure that
they enhance crop yield and quality without adversely affecting the ecosystem.

3.6. The Impact of Nanomaterials on the Environment

When assessing the application of NMs in agriculture and their ecological sustain-
ability, it is crucial to delve into the potential impacts of these materials on non-target
organisms, soil microbial communities, and the overall dynamics of ecosystems. NMs, due
to their unique physical and chemical properties, such as their small size effects, surface
effects, and quantum size effects, have been extensively researched and applied in various
fields, including agriculture. However, these same properties have also raised concerns
about environmental safety and ecological impacts. Firstly, NMs may have adverse effects
on non-target organisms. These organisms are not the direct targets of nanomaterial appli-
cations but may be affected due to environmental exposure. For example, nanoparticles
may accumulate through the food chain, affecting higher trophic levels [105]. Furthermore,
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the bioavailability and bioaccumulation of NMs may lead to unintended ecological risks.
Secondly, soil microbial communities are a crucial component of agricultural ecosystems,
responsible for nutrient cycling, organic matter decomposition, and soil structure mainte-
nance. NMs could indirectly affect plant growth and soil health by altering the structure
and function of soil microbial communities [106]. For instance, certain nanoparticles have
been found to inhibit the growth of specific microbes, thereby disrupting the balance of
microbial communities. Lastly, the impact of NMs on the overall dynamics of ecosystems is
a complex issue that requires consideration of various ecological processes and interactions.
NMs could alter how energy flows and material cycles in ecosystems, thereby affecting the
stability and functionality of ecosystems [107].

To unlock the full potential of nanotechnology in agriculture, it is essential to address
the safety concerns associated with the use of NMs, with a key focus on understanding
their transformation in the environment. The transformation of NMs is related to their
physicochemical properties and dynamic changes in soil and biological environments. For
example, MNPs (metal nanoparticles) in soil can rapidly dissolve, releasing metal ions
that are directly accumulated by plants or forming complexes with other environmental
components [108]. These factors are interconnected and influenced by environmental and
climatic conditions. As shown in Figure 7, the interaction between plants, microbes, and
NMs is complex [109]. Plants recruit specific microbial subgroups from the soil through root
exudates, which settle and increase both inside and outside the root system, participating
in carbon and nitrogen cycles, nitrogen fixation, and nutrient absorption, thus benefiting
the plant [110]. NMs can alter microbial communities by affecting plant root exudates and
extracellular substances, thereby impacting plant productivity. For instance, in one study,
after the application of TiO2 NPs and ZnO NPs, the composition of bacteria involved in the
nitrogen cycle significantly decreased. In contrast, bacteria involved in the decomposition
of organic pollutants increased in the soil microbial community [111]. Moreover, titanium
dioxide nanoparticles are known to affect the composition of mycorrhizal fungi related
to wheat without negatively impacting plant growth [112]. However, the antimicrobial
activity of NMs is also well documented; Johansen et al. found that the growth of fast-
growing bacteria was inhibited by three to four times when the soil was treated with
fullerenes 50 nm in size [113]. Among various CNTs, a reduction in GO had the most
significant impact on microbial communities. NMs disrupt microbial cell membranes,
protein denaturation, and DNA breakage in plant root microbiomes, interfering with
microbial metabolic functions [114]. The interactions of NMs can affect the soil microbiome,
the plant microbiome, and the overall health of the plant. Since the microbial communities
of different soils and plants vary, generalizations cannot be made.

The application of nanotechnology in agriculture, especially nanofertilizers and
nanopesticides, has shown potential to improve crop yield and resilience. However, it
also raises concerns about potential impacts on the environment and ecosystems. Recent
studies have begun to focus on the long-term effects of NMs on plant growth and soil
health. For example, Upadhayay et al. explored the synergistic effects of NMs and plant
probiotics in agriculture, emphasizing the potential benefits of their combined use for
long-term agricultural sustainability. They noted that while the combined use of NMs
and plant probiotics is in its early stages, it has shown better crop regulatory effects in
enhancing crop productivity, alleviating environmental stress (such as drought, salinity,
etc.), restoring soil fertility, and strengthening the economy. However, they also stressed the
need for proper assessment before applying NMs to ensure that dosages do not produce
any toxic effects on the environment and soil microbial communities [115]. Furthermore,
Noor et al. studied the impact of organic and chemical fertilizers on soil health and the
productivity of Taramira through long-term field experiments. They found that organic and
integrated fertilizer options significantly enhanced plant growth characteristics, yield, and
seed quality. This suggests that integrated fertilizer strategies, including the use of NMs,
could be more beneficial due to their improving nutrient contents and energy values while
effectively delaying plant senescence [116]. These studies indicate that the application
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of NMs in agriculture requires careful consideration of their long-term effects on crop
productivity, soil health, and environmental safety. By conducting in-depth research and
assessing the long-term effects of NMs, we can better understand how to utilize nanotech-
nology to enhance the sustainability and efficiency of agriculture without harming the
environment and human health. The application of NMs in cereal crop production not only
shows potential for improving crop yield and resilience but also raises concerns about their
potential socio-economic impacts and equity issues.

Finally, the agricultural application of nanotechnology may lead to increased pro-
duction costs and changes in production methods, impacting traditional agricultural
knowledge and practices and thus affecting socio-economic welfare and ecosystem ser-
vices [117]. Especially in developing countries, the inequality in technology access and
benefit distribution could worsen, and small-scale and resource-poor farmers may struggle
to afford the high costs of nanotechnology [118]. Therefore, ensuring that the application
of nanotechnology in agriculture promotes social equity and economic welfare requires
thoughtful planning and policy support to achieve equitable and sustainable technological
development. This entails conducting independent impact assessments while promoting
nanotechnology, ensuring community consent that is free, prior, and informed, and encour-
aging compliance with certification standards to increase the likelihood of project success
and ensure fairness in agricultural investments.
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4. Conclusions and Future Outlook

This study delves into the mechanisms of nanoparticle impacts on Gramineae plants,
with a particular focus on three critical aspects: photosynthesis, chlorophyll content, and
oxidative stress. We found that under certain concentrations, nanoparticles significantly
promote the root development of Gramineae plants, thereby enhancing photosynthesis.
This phenomenon is closely related to the increase in chlorophyll content, as chlorophyll is
a core component of photosynthesis, and nanoparticles can effectively elevate its concen-
tration under appropriate conditions. In terms of oxidative stress, the impact of NMs on
Gramineae plants is distinct, as certain types of NMs can enhance the antioxidant enzyme
activity of Gramineae plants, aiding their resistance to external environmental stresses.
On the other hand, excessive NMs may lead to oxidative stress damage, thereby affecting
plant photosynthesis and chlorophyll content. In particular, the metal ions produced by
MNPs can damage plant cell structures, leading to oxidative stress. Therefore, the type
and concentration of NMs have significant effects on the physiological and biochemical
responses of Gramineae plants, necessitating further research for a deeper understanding.

This study provides an important theoretical foundation for the development of
nanofertilizers that can precisely target Gramineae plants, enhance their antioxidant stress
capacity, and improve photosynthesis efficiency. Future research should focus on designing
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and implementing more experiments to explore strategies that maximize the benefits of
nanotechnology while minimizing its potential environmental impacts. In particular, the
combined application of NMs with other substances to provide more favorable conditions
for the growth and production of Gramineae plants warrants attention.

In summary, nanotechnology has shown tremendous potential in the growth and
development of Gramineae plants. However, as its application continues to expand, we
must cautiously address the potential environmental risks associated with nanotechnology.
Ensuring that the increase in yield and quality of Gramineae crops goes hand in hand with
maintaining the health and sustainability of the ecosystem will be a crucial topic in future
nanotechnology research and application.
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writing—review and editing, Y.X. All authors have read and agreed to the published version of
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