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Abstract: Drought is a significant constraint to sugarcane productivity. Therefore, understanding how
different varieties of sugarcane respond to drought stress can facilitate breeding programs and set
up criteria for selecting drought-tolerant varieties. In the present study, we examined eight morpho-
physiological traits to distinguish 40 sugarcane genotypes categorized into four groups based on
significant differences in cane yield under non-stressed conditions and reduction of cane yield under
drought-stressed conditions. The study was conducted during the formative stage in a greenhouse,
encompassing both control and drought conditions. Drought treatments resulted in significant
changes and differences in the mean values of various morpho-physiological traits. The hierarchical
clustering analysis, utilizing stay-green traits such as higher chlorophyll fluorescence ratio (Fv/Fm),
leaf chlorophyll content (SPAD), leaf relative water content (RWC), and lower leaf rolling score
(LR), leaf drying score (LD), and drought recovery score (DR), successfully grouped 40 sugarcane
genotypes into four major clusters, similar to the previously categorized groups. Correlation analysis
showed significant relationships among cane yield, reduction of cane yield under drought conditions,
and the stay-green traits. Our results demonstrated that morpho-physiological traits contributing to
the “stay-green” phenotypes could be useful as selection criteria for drought tolerance in sugarcane.

Keywords: sugarcane; drought tolerance; stay-green

1. Introduction

Sugarcane is an economically important crop cultivated globally, serving as a primary
source of sucrose and bioenergy production [1]. However, sugarcane yield is frequently
impacted by suboptimal growth conditions, particularly drought stress, during the forma-
tive growth stage, which is the most sensitive stage for moisture stress in sugarcane [2–5].
This is common in tropical regions [6], leading to substantial yield reductions by inhibiting
growth and development, sometimes reaching up to 60% in rainfed areas [7]. Developing
drought-tolerant sugarcane varieties with high yield potential and minimal reduction un-
der drought stress is essential for enhancing the productivity and sustainability of rainfed
sugarcane agriculture.

The development of cultivars with enhanced yield under drought stress has encoun-
tered relatively limited success for various reasons. Firstly, direct selection based on crop
yield and yield reduction under drought conditions in comparison to well-watered condi-
tions in a field environment is expensive, time-consuming, labor-intensive, and complex
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due to inherent genotype–environment interactions [8]. Secondly, the yield performance of
plants in drought conditions is often masked by the spillover effects of high yield potential.
Consequently, a high-yield variety often exhibits significant yields during drought, even
though the relative yield reduction can be substantial [9]. A newly developed variety
may not closely maintain its yield potential under drought stress. Employing molecular
markers for the selection of drought-tolerant sugarcane genotypes is a promising approach
to enhance breeding efficiency and precision. Various molecular markers, such as ran-
dom amplified polymorphic DNA (RAPD; [10]), inter simple sequence repeat (ISSR; [11]),
and amplified fragment length polymorphism (AFLP; [12]), have been used in identify-
ing and selecting drought-tolerant sugarcane genotypes. However, the complex genetics
of sugarcane, characterized by its polyploid and aneuploid genome, present significant
challenges for molecular breeding efforts. Analytical approaches prioritizing breeding
for high yield potential and minimal reduction through indirect selection strategies using
morpho-physiological traits have garnered increasing attention in sugarcane breeding
programs [9,13–17]. Ideally, these traits should exhibit strong correlations with tolerance to
drought stress and yield-related traits. Additionally, they should be non-destructive, easily
measurable in early phenological stages, and possess high heritability and repeatability to
facilitate selection in breeding populations [9,18,19].

Although the mechanisms of drought tolerance in sugarcane are not entirely under-
stood, certain morpho-physiological traits have been implicated in better performance
under drought stress [7]. For instance, a higher chlorophyll fluorescence ratio (Fv/Fm),
higher leaf chlorophyll content estimated via the SPAD index, higher leaf relative water
content (RWC), higher transpiration rate, and lower leaf temperature can indicate a geno-
type with better performance [14,20]. Genotypes exhibiting earlier symptoms, such as
leaf rolling (LR) and stomatal closure, are considered sensitive, while tolerant genotypes
show the same symptoms after moderate stress [7,21]. Retaining green leaf area, known
as the stay-green phenomenon, is crucial for maintaining yield [22,23]. Root character-
istics also play a crucial role in evaluating the adaptive ability of sugarcane to drought
stress [24,25]. Deeper root systems, characterized by traits such as rope roots and larger
root systems, including root volume, total root length, and root biomass, are indicative
of drought-tolerant genotypes. Deeper and more extensive root systems enable plants
to access water and nutrients from deeper soil layers, thus enhancing their resilience to
drought conditions [26,27]. Morpho-physiological traits that can classify tolerant and sus-
ceptible genotypes based on relative yield under drought conditions have been suggested
as indirect selection indicators [28]. Identifying drought-tolerant varieties based on a single
trait is challenging due to the complex genetic mechanisms underlying the plant’s response
to drought stress [29]. Many studies conducted in this area have been limited by factors
such as field conditions and a small number of genotypes, which may not fully capture
the variability in drought response across different genetic backgrounds. Understanding
how these traits change over time in response to water stress and recovery periods with a
diverse range of genotypes is crucial for identifying reliable selection criteria for breeding
drought-tolerant sugarcane varieties.

This study aimed to identify morpho-physiological traits during the early growth
stage to facilitate the rapid selection of drought-tolerant genotypes, focusing on achieving
high yield and minimal reduction under drought stress. We investigated eight morpho-
physiological traits, including Fv/Fm ratio, SPAD index, RWC, LR, leaf drying (LD), drought
recovery index (DR), height, and shoot growth rate to differentiate sugarcane genotypes
based on high yield potential and low reduction (PHRL) under drought conditions from
other groups. These groups consist of those with high yield potential and high reduction
(PHRH), low yield potential and high reduction (PLRH), and low yield potential and low
reduction (PLRL). The study focused on drought and recovery responses during the
formative growth phase in a greenhouse pot experiment. Hierarchical clustering was
utilized to depict distinct drought-responsive patterns among sugarcane genotypes and
to identify multiple traits associated with drought tolerance, particularly those linked to
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high yield potential and low reduction characteristics. Our findings highlight the utility of
the morpho-physiological traits related to “stay-green” phenotypes as valuable selection
criteria for drought tolerance in sugarcane.

2. Results
2.1. Morpho-Physiological Variations in Progressive Drought Stress and Recovery

In this study, 40 sugarcane genotypes categorized into four groups, namely high yield
potential and low reduction (PHRL), high yield potential and high reduction (PHRH), low
yield potential and high reduction (PLRH), and low yield potential and low reduction
(PLRL) (Supplementary Materials Figure S1), were grown in a greenhouse pot environment
under both control (CT) and drought (DS) conditions. Under CT conditions, soil moisture
content (SMC) ranged from 32.29 to 36.42% throughout the experiment. In contrast, under
the DS condition, SMC dropped to 13.85% and 9.21% at 7 and 14 days after water with-
holding (DAW) during the drought period, respectively. Subsequently, SMC rebounded to
36.45% and 35.54% at 7 and 14 days after re-watering (DAR) during the recovery period,
respectively (Supplementary Material Figure S2). Despite the short duration of the drought
and recovery periods, significantly different and wide variations were observed among the
studied genotypes for all traits (Figure 1 and Supplementary Material Figure S3).

During the drought period (91–104 days after planting; DAP), the intensity of drought-
related symptoms in morpho-physiological traits was linked to decreased soil moisture
content (Supplementary Material Figure S3). All traits significantly decreased under DS
conditions, except for leaf rolling score (LR) and leaf drying score (LD), which significantly
increased. However, shoot growth rate (SGR) showed a non-significant difference between
the DS and CT conditions.

A higher reduction in the DS condition compared to the CT conditions was observed
for height growth rate (HGR, 69.99%), leaf relative water content (RWC, 52.23%), estimated
chlorophyll content (SPAD, 29.33%), chlorophyll fluorescence ratio (Fv/Fm, 24.97%), and
SGR (9.88%), while LR (87.80%) and LD (74.78%) increased in the DS condition (Figure 1).
In contrast, all traits showed a non-significant difference between the DS and CT conditions
during the recovery period (105–118 DAP), except for HGR, SGR, and drought recovery
score (DR) (Figure 1). A comparatively higher decrease was recorded in plant growth-
related traits than in the other traits. HGR decreased by 44.96%, and SGR decreased by
48.73%, while Fv/Fm, SPAD, and RWC showed marginal variations of 0.02%, 0.32%, and
0.24%, respectively. However, DR related to the green leaf area of the plant decreased
by 52.78%.

Variations in morpho-physiological traits among sugarcane groups were observed
during the drought and recovery periods (Figure 2). In the drought period, all traits
exhibited significant differences among groups and between conditions, except for SGR.
The PLRH group showed the highest value in HGR at 0.25 cm/day, while the lowest value
at 0.10 cm/day was recorded in the PHRH group. The PHRL group showed the highest
values in Fv/Fm at 0.661, SPAD at 36.5, and RWC at 55.75%, but the lowest values in LR
at 3.5 and LD at 5.2. In contrast, the PLRH group displayed the lowest values in Fv/Fm at
0.562, SPAD at 29.62, and RWC at 30.45%, recording the highest values in LR at 4.9 and
LD at 7.7. During the recovery period, all traits showed no significant differences among
groups and conditions, except for the DR traits. The PHRL group had the lowest DR value
(3.0), whereas the PLRH group recorded the highest value (5.8). HGR, Fv/Fm, SPAD, RWC,
LR, and LD explained the differences among sugarcane groups and between conditions
during drought, while DR explained the differences during recovery.
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Figure 1. Box plots showing the descriptive statistics of morpho-physiological traits measured under
control (CT) and drought (DS) conditions. (a) HGR (height growth rate); (b) SGR (shoot growth rate);
(c) Fv/Fm (the chlorophyll fluorescence ratio); (d) SPAD (estimated chlorophyll content using SPAD
units); (e) RWC (leaf relative water content); (f) LR (leaf rolling score); (g) LD (leaf drying score) and
DR (drought recovery score). Different letters on the boxes indicate significant differences by the
least significant difference (LSD) test at p < 0.05. The box’s horizontal line represents the median. The
lower and upper limit of the box, lower and upper whisker, represents Q1 (25th percentile), Q3 (75th
percentile), (Q1−1.5IQR), and (Q3 + 1.5IQR), respectively. IQR—interquartile range.



Plants 2024, 13, 1072 5 of 17
Plants 2024, 13, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 2. Box plots illustrating descriptive statistics in morpho-physiological traits under control 
(CT) and drought (DS) conditions of four sugarcane groups: high yield potential and high reduction 
(PHRH), high yield potential and low reduction (PHRL), low yield potential and high reduction (PLRH), 
and low yield potential and low reduction (PLRL). (a) HGR (height growth rate); (b) SGR (shoot 
growth rate); (c) Fv/Fm (the chlorophyll fluorescence ratio); (d) SPAD (estimated chlorophyll content 
using SPAD units); (e) RWC (leaf relative water content); (f) LR (leaf rolling score); (g) LD (leaf dry-
ing score) and DR (drought recovery score). ** and NS denote significant and non-significant varia-
tions between treatments at 0.01 probability level, respectively. Different letters on the boxes indi-
cate significant differences by the least significant difference (LSD) test at p < 0.05. The box�s hori-
zontal line represents the median. The lower and upper limit of the box, lower and upper whisker, 
represents Q1 (25th percentile), Q3 (75th percentile), (Q1−1.5IQR), and (Q3 + 1.5IQR), respectively. 
IQR−interquartile range. 

2.2. Hierarchical Clustering of Sugarcane Genotypes Based on Morpho-Physiological Traits 
Hierarchical clustering analysis using the UPGMA algorithm and a heatmap was 

conducted to cluster sugarcane genotypes based on their responses to drought and recov-
ery treatments. This analysis utilized six traits (HGR, Fv/Fm, SPAD, RWC, LR, and LD) 
measured at 14 DAW and one trait (DR) measured at 14 DAR. As a result, 40 sugarcane 
genotypes were reclassified into four clusters, each reflecting distinct responses to drought 
conditions (Figure 3a). Genotypes with similar morpho-physiological responses to 
drought stresses were grouped together within the same cluster. Cluster 2 contained the 
highest number of sugarcane genotypes (13), followed by cluster 3 (11), 1 (8), and 4 (8). In 
general, cluster 1 was characterized by Fv/Fm, RWC, LR, and LD. Cluster 2 was dominated 
by Fv/Fm, SPAD, and RWC. LR, LD, and DR characterized cluster 3, while HGR, LR, and 
LD determined cluster 4. The first phenotype was represented by sugarcane genotypes in 
cluster 2, exhibiting a stay-green phenotype, sustaining their green leaf area throughout 
the experiment (Figure 3b). The second and third phenotypes were represented by clusters 
1 and 4, respectively. Sugarcane genotypes in both clusters showed symptoms of leaf roll-
ing and drying during the drought period but rapidly recovered after re-watering. 

Figure 2. Box plots illustrating descriptive statistics in morpho-physiological traits under control
(CT) and drought (DS) conditions of four sugarcane groups: high yield potential and high reduction
(PHRH), high yield potential and low reduction (PHRL), low yield potential and high reduction
(PLRH), and low yield potential and low reduction (PLRL). (a) HGR (height growth rate); (b) SGR
(shoot growth rate); (c) Fv/Fm (the chlorophyll fluorescence ratio); (d) SPAD (estimated chlorophyll
content using SPAD units); (e) RWC (leaf relative water content); (f) LR (leaf rolling score); (g) LD
(leaf drying score) and DR (drought recovery score). ** and NS denote significant and non-significant
variations between treatments at 0.01 probability level, respectively. Different letters on the boxes
indicate significant differences by the least significant difference (LSD) test at p < 0.05. The box’s
horizontal line represents the median. The lower and upper limit of the box, lower and upper whisker,
represents Q1 (25th percentile), Q3 (75th percentile), (Q1−1.5IQR), and (Q3 + 1.5IQR), respectively.
IQR—interquartile range.

2.2. Hierarchical Clustering of Sugarcane Genotypes Based on Morpho-Physiological Traits

Hierarchical clustering analysis using the UPGMA algorithm and a heatmap was
conducted to cluster sugarcane genotypes based on their responses to drought and recov-
ery treatments. This analysis utilized six traits (HGR, Fv/Fm, SPAD, RWC, LR, and LD)
measured at 14 DAW and one trait (DR) measured at 14 DAR. As a result, 40 sugarcane
genotypes were reclassified into four clusters, each reflecting distinct responses to drought
conditions (Figure 3a). Genotypes with similar morpho-physiological responses to drought
stresses were grouped together within the same cluster. Cluster 2 contained the highest
number of sugarcane genotypes (13), followed by cluster 3 (11), 1 (8), and 4 (8). In general,
cluster 1 was characterized by Fv/Fm, RWC, LR, and LD. Cluster 2 was dominated by
Fv/Fm, SPAD, and RWC. LR, LD, and DR characterized cluster 3, while HGR, LR, and
LD determined cluster 4. The first phenotype was represented by sugarcane genotypes in
cluster 2, exhibiting a stay-green phenotype, sustaining their green leaf area throughout
the experiment (Figure 3b). The second and third phenotypes were represented by clusters
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1 and 4, respectively. Sugarcane genotypes in both clusters showed symptoms of leaf rolling
and drying during the drought period but rapidly recovered after re-watering. However,
genotypes in cluster 1 maintained Fv/Fm and RWC during the drought period, while HGR
characterized cluster 4. The last phenotype was denoted by genotypes in cluster 3, where
all morpho-physiological traits were severely affected by drought stress, and the green leaf
area gradually recovered upon re-watering after withholding. Furthermore, the results
revealed that the six genotypes in cluster 1 belonged to the PHRH group, while the nine
genotypes in cluster 2 matched the PHRL group (Figure 3a). The six genotypes in cluster
4 were placed in the PLRH group. However, the genotypes in cluster 3 included sugarcane
genotypes from PHRH (4), PHRL (1), PLRH (3), and PLRL (3) groups.
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Figure 3. (a) Heatmap and clustering of 40 sugarcane genotypes based on seven morphological
and physiological traits under drought conditions determined over 14 days of water withholding
followed by 14 days of re-watering. (b) Phenotypic responses of the represented sugarcane variety
for each cluster during the formative growth phase of sugarcane to drought stress at seven (7 DAW)
and 14 (14 DAW) days of water withholding and water recovery at seven (7 DAR) and 14 (14 DAR)
days of re−watering. Kpk98−40, K88−92, PR3067, and MPT02−669 represent clusters 1, 2, 3,
and 4, respectively. HGR = height growth rate; SGR = shoot growth rate; Fv/Fm = the chlorophyll
fluorescence ratio; SPAD = estimated chlorophyll content using SPAD units; RWC = leaf relative water
content; LR = leaf rolling score; LD = leaf drying score; DR = drought recovery score; PHRH = high
yield potential and high reduction; PHRL = high yield potential and low reduction; PLRH = low yield
potential and high reduction; PLRL = low yield potential and low reduction.

2.3. Variability of the Genotypes in the Clusters

The effects of drought treatment revealed that genotypes in cluster 2 exhibited signifi-
cantly better performance under DS conditions, followed by those in clusters 1 and 4. In
contrast, genotypes in cluster 3 were substantially affected by water stress (Figure 4 and
Table 1). During the drought stress treatment, HGR decreased by 85.19%, 66.34%, 75.00%,
and 56.52% in clusters 1, 2, 3, and 4, respectively, compared to CT conditions (Table 1). The
percentage decrease in Fv/Fm was 21.84%, 15.15%, 38.08%, and 26.14% in clusters 1, 2, 3,
and 4, respectively. A similar decrease pattern was observed in SPAD with 32.98%, 19.69%,
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35.65%, and 32.83% decreases in clusters 1, 2, 3, and 4, respectively. As a result of drought
stress treatment, the smallest decrease in RWC (41.02%) was recorded in cluster 2, followed
by 49.51% (cluster 1), 59.96% (cluster 3), and 62.31% (cluster 4). Conversely, LR increased
under drought stress treatment in all clusters. The lowest LR was recorded in cluster 2 (3.6),
followed by cluster 3 (4.7), while the highest scores of LR (4.8) were recorded in the other
two clusters. Meanwhile, the lowest LD was recorded in cluster 2 (5.0), followed by clusters
1 (6.8), 4 (7.6), and 3 (8.0). Under recovery treatment, the lowest DR was recorded in cluster
2 (3.0), followed by clusters 1 (4.5), 4 (5.5), and 3 (6.5).
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different clusters due to drought treatments. Values are expressed as a percentage of trait values
under DS conditions relative to those under CT conditions. HGR = height growth rate; Fv/Fm = the
chlorophyll fluorescence ratio; SPAD = estimated chlorophyll content using SPAD units; RWC = leaf
relative water content; LR = leaf rolling score; LD = leaf drying score; DR = drought recovery score.

Table 1. Mean of morphological and physiological traits and percent change over CT conditions for
40 sugarcane genotypes grown under both CT and DS conditions.

Cluster Treatment
Drought Period Recovery Period

Yield (ton/ha.)
HGR Fv /Fm SPAD RWC LR LD DR

1 CT 0.54 0.792 46.7 92.91 1.0 0 0 121.20
DS 0.08 c 0.619 b 31.3 b 46.91 ab 4.8 a 6.8 b 4.5 b 65.27 b

% Change (-) 85.19 C (-) 21.84 B (-) 32.98 B (-) 49.51 AB 96.0 A 75.56 B 50.0 B (-) 46.15 B

2 CT 0.53 0.792 45.7 94.31 1.0 0 0 122.14
DS 0.18 b 0.672 a 36.7 a 55.62 a 3.6 b 5.0 c 3.0 c 106.84 a

% Change (-) 66.34 AB (-) 15.15 A (-) 19.69 A (-) 41.02 A 72.0 B 55.56 C 33.33 C (-) 12.53 A

3 CT 0.60 0.793 46.0 94.31 1.0 0 0 115.19
DS 0.15 b 0.491 c 29.6 b 37.76 b 4.8 a 8.0 a 6.5 a 67.27 b

% Change (-) 75.0 BC (-) 38.08 C (-) 35.65 B (-) 59.96 B 96.0 A 88.89 A 72.22 A (-) 41.60 B

4 CT 0.69 0.788 46.0 95.68 1.0 0 0 100.98
DS 0.30 a 0.582 b 30.9 b 36.06 b 4.7 a 7.6 a 5.5 ab 61.04 b

% Change (-) 56.52 A (-) 26.14 B (-) 32.83 B (-) 62.31 B 94.0 A 84.44 A 61.11 AB (-) 39.55 B

Different letters indicate a significant difference by the least significant difference (LSD) test at p < 0.05.
HGR = height growth rate; Fv/Fm = the chlorophyll fluorescence ratio; SPAD = estimated chlorophyll content
using SPAD units; RWC = leaf relative water content; LR = leaf rolling score; LD = leaf drying score; DR = drought
recovery score.

Based on data from the field experiment, the potential yield under non-stressed ex-
periments was recorded as the highest in cluster 2 (122.14 ton/ha.), followed by clusters
1 (121.20 ton/ha.), 3 (115.19 ton/ha), and 4 (100.98 ton/ha) (Table 1). Under the drought-
stressed field experiment, the highest cane yield was observed in cluster 2 (106.84 ton/ha),
followed by cluster 3 (67.27 ton/ha), 1 (65.27 ton/ha), and 4 (61.04 ton/ha). The per-
cent reduction in cane yield was 12.53%, 39.55%, 41.60%, and 46.15% in clusters 2, 4, 3,
and 1, respectively.
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2.4. Principal Component Analysis

Principle component analysis (PCA) was conducted on a dataset comprising 40 sug-
arcane genotypes, 6 traits (HGR, Fv/Fm, SPAD, RWC, LR, and LD) measured at 14 DAW,
and 1 trait (DR) measured at 14 DAR to evaluate the diversity of the genotypes and their
association with the observed traits. The PCA-biplot was generated, considering that the
first two PCs accounted for the highest proportion of variance (Figure 5b). The first PC,
explaining 45.2% of the total variability, was mainly contributed to by Fv/Fm (24.5%), LD
(21.2%), DR (15.8%), and SPAD (15.4%) (Figure 5c). The second PC, explaining 20.4% of the
total variation, was primarily defined by HGR (82.2%) (Figure 5d). The PCA-biplot analysis
grouped traits based on homogeneity and dissimilarity. In this dataset, three groups of
traits and four groups of genotypes were identified in the PCA biplot (Figure 5a). The
Fv/Fm, SPAD, and RWC were clustered in group I, while LR, LD, and DR were in group II
and HGR in group III. The PCA biplot revealed a strong association between group I traits
and genotypes of cluster 2, group II traits with genotypes of cluster 3, and group III traits
with genotypes of cluster 4. However, some traits of group I (RWC) and group II (LR) were
closely linked with the genotypes of cluster 1.
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Figure 5. (a) Principal component analysis (PCA)−biplot of 40 sugarcane genotypes on the variation
in seven morpho-physiological traits grown under drought conditions. Arrows indicate the strength
of the trait influence on the first two PCs, with longer arrows representing a higher contribution of
the traits. I, II, and III indicate the group of associated traits contributing to a cluster of sugarcane
genotypes. Bigger circles indicate the centroid of the corresponding cluster. (b) Bar plots with
percentage variation above represent the contribution of each PC to the total variation. (c,d) Red
dashed lines in the bar plots denote reference lines, and the variable bars above the reference lines are
considered the most important contributors to PC1 and PC2. HGR = height growth rate; Fv/Fm = the
chlorophyll fluorescence ratio; SPAD = estimated chlorophyll content using SPAD units; RWC = leaf
relative water content; LR = leaf rolling score; LD = leaf drying score; DR = drought recovery score.
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2.5. Correlation Analysis

The Pearson correlation coefficient was determined to reveal the degree of relationships
among seven morpho-physiological traits (HGR, Fv/Fm, SPAD, RWC, LR, LD, and DR).
All traits showed significant correlations (p < 0.05) among them, except for the correlation
between HGR and all morpho-physiological traits (Figure 6). Leaf drying (LD) exhibited the
highest significant correlation with Fv/Fm (−0.70), SPAD (−0.61), RWC (−0.61), LR (0.74),
and DR (0.85). Furthermore, the traits in group I (Fv/Fm, SPAD, and RWC) demonstrated a
positive and significant correlation among them, while the traits in group II (LR, LD, and
DR) showed a similar correlation pattern. Significantly negative correlations were noticed
between the traits of groups I and II.
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Figure 6. The correlation coefficient among morpho-physiological traits, cane yield, and the percent-
age reduction of cane yield was measured in 40 sugarcane genotypes under drought conditions. * and
** indicate significance at p < 0.05 and p < 0.01, respectively. HGR = height growth rate; Fv/Fm = the
chlorophyll fluorescence ratio; SPAD = estimated chlorophyll content using SPAD units; RWC = leaf
relative water content; LR = leaf rolling score; LD = leaf drying score; DR = drought recovery score;
CY = cane yield under drought-stressed conditions and rCY = the percentage reduction of cane yield.

Cane yield (CY) exhibited positive and significant correlations (p < 0.05) with traits
measured during the drought period, including Fv/Fm (0.60), SPAD (0.63), and RWC (0.57).
Conversely, a negative and significant correlation was observed with LR (−0.68) and LD
(−0.67) (Figure 6). The percentage reduction of cane yield (rCY) exhibited negative and
significant correlations with Fv/Fm (−0.50), SPAD (−0.54), and RWC (−0.45) while showing
positive and significant correlations with LR (0.56) and LD (0.57). However, CY and rCY
showed a non-significant correlation with HGR. During the recovery period, DR exhibited
significant correlations with CY (0.37) and rCY (−0.84). The results indicated that Fv/Fm,
SPAD, RWC, LR, LD, and DR were not only associated with drought tolerance, represented
by the sugarcane genotype in cluster 2 (Figure 3), but also with cane yield parameters.
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3. Discussion
3.1. Trait Variability under Drought and Recovery Treatments

The present study evaluated the morpho-physiological traits of sugarcane genotypes
to identify trait variability in responses to drought and recovery treatments during the
formative growth phase. The significant changes and differences for all the evaluated traits
were observed among sugarcane genotypes, providing wide genetic variability and an
opportunity for drought-tolerant improvement in sugarcane (Figures 1 and 2). The results
indicated that growth-related traits (HGR and SGR), photosynthesis-related traits (Fv/Fm
and SPAD), green leaf area-related traits (LR and LD), and RWC progressively declined
with exposure to drought during the formative phase. However, Fv/Fm, SPAD, RWC, and
LR could fully recover after drought relief within a short-term period, in contrast to the
lack of recovery observed in HGR, SGR, and DR. Similar findings for the HGR have been
reported by previous research [30,31]. It has also been positively correlated with stalk
dry weight in sugarcane under early season drought [6]. This correlation might partially
explain how drought can reduce yield in sugarcane.

The four sugarcane groups, namely PHRH, PHRL, PLRH, and PLRL, exhibited sig-
nificant differences in both potential yield and percentage reduction in yield, reflecting
variations in their levels of drought tolerance. The results indicated that sugarcane geno-
types in the PHRL group were less affected by drought than in other groups. They showed
minimal reductions in photosynthesis-related traits and RWC and maintained a higher
green leaf area throughout the experiment, attributed to lower LR, LD, and DR (Figure 2).
In contrast, sugarcane genotypes belonging to the PLRH group experienced severe effects
under drought stress, with the green leaf area gradually recovering upon re-watering after
withholding. Generally, genotypes that can delay drought symptoms, including leaf rolling,
leaf senescence, and impairment of photosynthesis and growth, are regarded as more
tolerant. Conversely, genotypes showing earlier symptoms are considered sensitive to
drought [7,21]. The increase in photosynthetic attributes, leaf relative water content, and
green leaf area in drought-tolerant genotypes relative to drought-sensitive genotypes has
been observed in sugarcane [14,32,33], switchgrass [34,35], wheat [36,37], and rice [38,39].
Tolerance mechanisms are favorable under mild and moderate drought conditions because
they allow plants to endure stress, maintain essential functions, and sustain growth during
stress [40,41]. The present study demonstrated that higher values of Fv/Fm, SPAD, and
RWC, coupled with lower values of LR, LD, and DR, reflected the higher capability to
tolerate drought stress. HGR, Fv/Fm, SPAD, RWC, LR, and LD played an important role in
screening drought-tolerant genotypes during the drought period. Meanwhile, during the
recovery phase, monitoring DR becomes essential as it reflects the plants’ ability to recover
from stress once water is reintroduced. These traits exhibited varied responses to stress
across different sugarcane groups and conditions, allowing for the distinction between
sugarcane genotypes known to be drought-tolerant or susceptible.

3.2. Relationships between Genotypes, Traits, and Drought Tolerance

Drought simultaneously affects various morphological and physiological traits in
plants. A single characteristic cannot reflect the complexity of drought tolerance mecha-
nisms, so it is necessary to consider multiple traits together to select a drought-tolerant
genotype. Based on the proposed morpho-physiological traits, hierarchical clustering
analysis can provide insights into the interrelationships between genotypes and measured
traits under various treatments [35,42]. As the result of cluster analysis, the 40 sugarcane
genotypes were regrouped into four distinct hierarchical clusters (clusters 1–4), each exhibit-
ing different responses to drought conditions. The heat map and radar plot revealed that
genotypes in cluster 2 demonstrated the highest ability to tolerate water stress, as indicated
by all evaluated traits, except HGR (Figures 3 and 4 and Table 1). These genotypes can
minimize reductions in Fv/Fm, SPAD, RWC, LR, LD, and DR, allowing them to maintain
their yield potential. The results of PCA also revealed significant contributions from these
traits in characterizing variations in the sugarcane genotypes. Fv/Fm, SPAD, and RWC
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clustered in the PCA-biplot, closely scattered around sugarcane genotypes in cluster 2.
Conversely, traits LR, LD, and DR formed a cluster and were closely associated with sugar-
cane genotypes in cluster 3, while HGR contributed substantially to the differentiation in
cluster 4. These results underscore the importance of these traits in selecting characteristics
under drought conditions, supporting the identification of drought-tolerant genotypes of
cluster 2.

In the present study, Pearson correlation analysis revealed significant correlations
among cane yield under drought conditions, the percentage reduction of cane yield, and
morpho-physiological traits, such as Fv/Fm, SPAD, RWC, LR, LD, and DR. These correla-
tions underscore the substantial role of these traits in fostering high yield under drought
conditions and contribute to the clustering of sugarcane genotypes into similar groups
as those pre-categorized. Consistent with our findings, results from various studies have
also reported that high values of Fv/Fm, SPAD, and RWC, along with low leaf rolling and
drying scores, were related to better yield or yield stability under drought stress [43–48].
Traits linked to drought tolerance, which exhibit direct correlations with cane yield, are
typically employed to identify superior genotypes or cultivars [49–51]. Under drought
conditions, traits in group I (Fv/Fm, SPAD, and RWC) showed significant positive cor-
relations with each other but exhibited negative correlations with traits in group II (LR,
LD, and DR). This implies that genotypes maintaining their water status may mitigate
damage to the chloroplast by improving antioxidant enzyme activity. This process could
delay drought-induced leaf senescence, enhancing photosynthetic capability under drought
conditions [24,42,52]. Photosynthesis in monocot leaves is affected directly by leaf structure.
From light interception to carbon dioxide metabolic fixation, leaf rolling plays an essential
role in regulating gas exchange and photosynthesis [53]. Leaf rolling is a plant mechanism
to avoid excessive sunlight exposure; low water status causes the turgor pressure to drop
and the bulliform cells to deflate, reducing stomatal conductance, photosynthesis, and
yield [54]. Bulliform cells enlarge to maintain turgor pressure, which flattens the leaves
when the drought is relieved [55]. These findings thus reveal the prominence of these traits
in selecting tolerant genotypes for drought stress.

3.3. Morpho-Physiological Traits Related to Stay-Green Phenotype

Drought can accelerate plant leaf senescence, resulting in decreases in biomass, green
leaves, canopy size, and loss of photosynthesis due to diminished chlorophyll levels, ulti-
mately leading to lower yields [56]. Genotypes with higher photosynthesis-related traits,
RWC, and green leaf area-related traits can minimize the reduction in morpho-physiological
and yield traits under drought conditions. The retention of green leaf area, often referred to
as the “stay-green” phenomenon, has been reported as a crucial characteristic for sustaining
yield [22,23]. A higher chlorophyll fluorescence ratio (Fv/Fm), elevated leaf chlorophyll
content estimated via the SPAD index, increased leaf relative water content (RWC), a higher
transpiration rate, and a lower leaf temperature can indicate a genotype with superior
performance [14,20]. Leaf senescence correlates with leaf relative water content [57,58]. The
mean relative water content of leaves in the non-senescent cultivar was higher than that
of the senescent cultivar. Delayed leaf senescence in the stay-green phenotype provides
substantial tolerance to plants, especially those exposed to drought stress [59], by repro-
gramming the expression of genes controlling steps towards chlorophyll catabolism and
leaf death [60]. It is considered an important trait that allows plants to retain their leaves in
an active photosynthetic state when subjected to stress conditions. Upon receiving stress sig-
nals, late-senescent plants can adapt to maintaining high water potential in tissues to avoid
dehydration stress and allow normal cell functionality. In sugarcane, drought-tolerant
genotypes display higher values for SPAD, Fv/Fm, and RWC than drought-susceptible
genotypes [14], supporting the conclusion that leaf drying (LD) exhibited the highest sig-
nificant correlation with SPAD, Fv/Fm, RWC, and DR. Our study provided information
about morpho-physiological traits which play an important role in imparting stay-green
trait, which has potential to stabilize the yield of sugarcane under drought stress condition.
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These morpho-physiological traits are non-destructive, rapid, and easily measurable in the
early growth stage, inexpensive, and exhibit high repeatability, facilitating their use in the
selection of breeding populations.

4. Materials and Methods
4.1. Plant Materials and Stress Treatment

Based on our previous research, we investigated the effects of drought stress on
the yield components of 159 sugarcane genotypes, examining both non-stressed (NS)
and drought-stressed (DS) treatments in the field experiments [61]. These genotypes
exhibited varying degrees of drought tolerance, as evidenced by differences in cane yield
and reductions in cane yield under drought conditions. In this study, we selected ten
sugarcane genotypes representing each of the following groups: high yield potential and
low reduction (PHRL), high yield potential and high reduction (PHRH), low yield potential
and high reduction (PLRH), and low yield potential and low reduction (PLRL). These
groups were categorized based on significant differences in cane yield under non-stressed
conditions and reduction of cane yield under drought-stressed conditions, as illustrated
in Figure S1. Seedlings of all genotypes were derived from single-budded setts and pre-
germinated in plastic trays. The uniformly germinated seedlings 30 days after planting
(DAP) were then transplanted into 15-inch plastic pots containing 15 kg of dry soil. The
soil type was identified as sandy clay loam with a composition of 52.93% sand, 19.00% silt,
and 28.07% clay. The soil water holding capacity (WHC) was determined to be 38.89%. The
experiment was set up as a factorial design in a randomized complete block experiment,
with three replications, under greenhouse conditions at the Mitr Phol Innovation and
Research Center, Thailand, during the dry season (January to April 2019). Factor A included
two water regimes (full irrigation and drought stress followed by recovery), and factor B
comprised 40 sugarcane genotypes. Water was supplied daily at close WHC level from
planting to 90 DAP. Subsequently, the water level at WHC was maintained throughout the
experiment for control (CT) conditions. For drought (DS) conditions water was withheld
during 91 to 104 DAP and then re-watering during 105–118 DAP at the WHC level.

4.2. Soil Moisture Measurement and Meteorological Conditions

Soil moisture content (SMC) was measured weekly between 91 and 118 DAP using the
gravimetric method at the midpoint of soil depths (Supplementary Materials Figure S2a).
The soil samples were weighed and subjected to oven-drying at 105 ◦C for 48 h. The
percentage of soil moisture was calculated by comparing the weights of the wet and dry
soils using the following equation:

SMC (%) =

(
wet soil − dry soil

dry soil

)
× 100.

Meteorological data, including relative humidity, maximum temperature, and mini-
mum temperature, were collected daily between 91 and 118 DAP from the weather station
in the greenhouse. Throughout the experiment, daily relative humidity ranged from 41.1%
to 62.5%. The maximum daily air temperature ranged from 36.6 ◦C to 48.1 ◦C, while the
minimum daily air temperature ranged from 21.6 ◦C to 26.2 ◦C (Supplementary Materials
Figure S2b).

4.3. Morpho-Physiological Measurements

Data on morpho-physiological traits were collected five times at 7-day intervals for
both control (CT) and drought (DS) treatments. Data collection covered intervals of 0, 7,
and 14 days after withholding water (DAW) between 90 to 104 DAP and 7 and 14 days after
re-watering (DAR) between 105 to 118 DAP. Growth-related traits were assessed through
the growth rates of plant height and shoot numbers, referred to as height growth rate (HGR)
and stem growth rate (SGR), respectively. Photosynthesis-related traits were measured
through the photochemical efficiency of photosystem II, indicated by the chlorophyll
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fluorescence ratio (Fv/Fm), and estimated chlorophyll content using SPAD units (SPAD
index). Green leaf area-related traits were assessed using leaf rolling score (LR), leaf drying
score (LD), and drought recovery score (DR), while plant water status was evaluated
through leaf relative water content (RWC).

Plant height was measured from the ground to the top visible dewlap (TVD) of the
main stem, while the number of stems per pot was recorded by counting the total number
of stems that emerged from the soil. The HGR and SGR were calculated as follows [6]:

HGR =

(
∆H
∆T

)
,

SGR =

(
∆SN
∆T

)
,

where ∆H represents the difference in plant height between the two measurements (plant
height at 104 DAP–height at 90 DAP), ∆T represents the time interval between the two
measurements (104 DAP–90 DAP), and ∆SN represents the difference in stem numbers
between the two measurements (stem numbers at 104 DAP–stem numbers at 90 DAP)

The Fv/Fm ratio was measured between approximately 09:00 a.m. and 2.00 p.m. on
cloudless days using a chlorophyll fluorescence meter (Handy PEA, Hansatech Instrument
Ltd., Norfolk, UK). The center of the leaf blade at the first and second fully expanded leaf
of the main stem per plot was dark-adapted for 30 min using a leaf clip before fluorescence
measurements. The Fv/Fm ratio was determined to quantify the level of drought-induced
photoinhibition [62]. The variable fluorescence (Fv) represents the difference between Fo
(the minimum fluorescence) and Fm (the maximum fluorescence). Leaf chlorophyll content
(SPAD unit) was estimated non-destructively using a SPAD chlorophyll meter (SPAD-501,
Minolta, Tokyo, Japan). Measurements were taken on the same leaf with the Fv/Fm ratio
between approximately 09:00 a.m. and 2.00 p.m. The average measurements at the bottom,
middle, and tip of each leaf were recorded.

The relative water content (RWC) of plant leaves was examined [63]. Leaf samples,
approximately 7 cm2 in size (1.0 cm × 7.0 cm), were cut and immediately placed in pre-
weighted tubes kept in an icebox to minimize water loss. The fresh weight (FW) was then
recorded, and the samples were immersed in distilled water for 24 h at 4 ◦C in darkness.
After blotting the leaves dry, they were reweighed to obtain the turgid weight (TW). The
dry weight (DW) was determined after drying in an oven at 80 ◦C for 48 h. The RWC was
calculated as follows:

RWC (%) =

[
(FW − DW)

(TW − DW)

]
× 100.

Leaf rolling (LR) in drought-stressed plants was characterized using a score scale from
1 (healthy or unrolled leaf) to 5 (onion leaf or tight rolling) [38]. Leaf drying (LD) was
evaluated based on the dried leaf area, using a scoring system from 0 (no symptoms) to 9
(dead plant) [64]. The drought recovery score (DR) was utilized to indicate the percentage
of leaf area that recovered to green after re-watering, employing a scoring system from 1
(90–100% recovery) to 9 (0–19% recovery) [39]. All evaluations were performed at noon
using whole plants.

4.4. Statistical Analysis

The experimental data were subjected to an analysis of variance (ANOVA). Significant
differences between means were determined based on the least significant difference (LSD)
test at 0.05 probability level using Statistix 10 software program (Analytical Software,
Tallahassee, FL, USA). R statistical software version 4.2.2 was employed to determine the
Pearson correlation coefficient between traits and perform principal component analysis
(PCA) [65]. In addition, hierarchical clustering and heatmap were conducted using the
UPGMA algorithm in GENESIS software version 1.8.1 [66]. A radar plot was generated
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based on trait values under DS conditions, expressed as a percentage relative to those under
CT conditions.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants13081072/s1. Figure S1: The difference in cane yield and
the percentage reduction in yield among 40 sugarcane genotypes under both non-stressed and
drought-stressed conditions in field environments; Figure S2: (a) Soil moisture content (%) at the
midpoint of soil depths, (b) maximum temperature (Tmax, ◦C), minimum temperature (Tmin, ◦C),
and relative humidity (RH, %) during 91–118 days after planting under greenhouse environments;
Figure S3: Dot plots showing the variation in eight measured traits of 40 sugarcane genotypes grown
during drought and recovery periods under drought conditions.
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