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Abstract: Genetic enhancement of grain production and quality is a priority in wheat breeding
projects. In this study, we assessed two key agronomic traits—grain protein content (GPC) and
thousand kernel weight (TKW)—across 179 Bulgarian contemporary and historic varieties and lan-
draces across three growing seasons. Significant phenotypic variation existed for both traits among
genotypes and seasons, and no discernible difference was evident between the old and modern
accessions. To understand the genetic basis of the traits, we conducted a genome-wide association
study with MLM using phenotypic data from the crop seasons, best linear unbiased estimators,
and genotypic data from the 25K Infinium iSelect array. As a result, we detected 16 quantitative
trait nucleotides (QTNs) associated with GPC and 15 associated with TKW, all of which passed
the false discovery rate threshold. Seven loci favorably influenced GPC, resulting in an increase of
1.4% to 8.1%, while four loci had a positive impact on TKW with increases ranging from 1.9% to 8.4%.
While some loci confirmed previously published associations, four QTNs linked to GPC on chro-
mosomes 2A, 7A, and 7B, as well as two QTNs related to TKW on chromosomes 1B and 6A, may
represent novel associations. Annotations for proteins involved in the senescence-associated nutrient
remobilization and in the following buildup of resources required for seed germination have been
found for selected putative candidate genes. These include genes coding for storage proteins, cysteine
proteases, cellulose-synthase, alpha-amylase, transcriptional regulators, and F-box and RWP-RK
family proteins. Our findings highlight promising genomic regions for targeted breeding programs
aimed at improving grain yield and protein content.

Keywords: association mapping; candidate genes; grain protein content; TKW; grain quality; grain
yield; Triticum aestivum L.

1. Introduction

Wheat is a unique cereal crop due to the baking qualities of its flour and occupies
a central strategic role in broadscale food security. Increasing yield and protein content
in wheat grain is essential for safeguarding the human rights to sufficient and nutritious
food. The quality and nutritional value of food products made from wheat flour largely
depend upon the type and concentration of grain proteins [1,2]. As a consequence, total
grain protein content (GPC) is one of the main determinants of both baking quality and
the international market price of wheat [3]. The range of protein in wheat grains is usually
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between 8% and 20%, accounting for less than 8–15% of the grain dry weight. Thousand
kernel weight (TKW) is a measure of grain weight and, along with spike number per
unit area and grain number per spike, is a main component of wheat total yield. Grain
weight and, respectively, grain yield is formed mainly by the starch accumulation in the
developing grain and, therefore, any starch gain in the endosperm if not accompanied by
an adequate rise in nitrogen (N)/protein accumulation has a dilution effect that influences
the concentration of grain protein and micronutrients [4]. Due to this important interaction,
breeders frequently encounter conundrums when aiming for genotypes that combine high
yield and high protein content in the grain [5–8].

Comparative studies on changes that have occurred in wheat varieties released or
introduced since the middle of the 19th century showed increased grain yield and decreased
protein over time [4,9]. This suggests that old germplasm (landraces and traditional
varieties) can be screened for new genetic diversity and targeted for the construction of new
varieties. Old germplasm grown in Bulgaria has some desirable traits, such as consistent
yield, resistance to drought, high protein content, or good quality for making bread [10].
The semi-dwarf high-yielding varieties that emerged in the 1970s replaced the landraces
and the tall varieties that were previously grown [11]. Most of this germplasm is now
extinct, but some seed samples are preserved and reproduced in the major European seed
gene banks [12].

Both GPC and TKW are quantitatively inherited and are controlled by multiple genes
or quantitative trait loci (QTL) [13,14]. The impact of the environmental conditions on gene
expression and the genotype-by-environment interactions further complicates the precise
evaluation of these traits [15].

Genome-wide association studies (GWAS) detect genetic effects based on linkage
disequilibrium (LD) in natural germplasm collections and have become effective tools
for modern plant breeding [16]. Following the rapid development of DNA marker tech-
nologies, and in particular the advent of single nucleotide polymorphism (SNP) chips,
association mapping has been used progressively to establish a strong connection between
a genome-wide SNP and a trait of interest. Identifying marker-trait associations (MTAs)
or quantitative trait nucleotides (QTNs) can make it easier for breeders to choose the best
genotypes, reduce the breeding cycle, and achieve higher genetic gains. A number of
recent GWAS studies reported genomic regions associated with GPC and yield compo-
nents [14,17–31].

The association panels employed in these studies varied in terms of diversity level,
genetic relatedness, and the nature of accessions. For instance, Kartseva et al. [27] used a
diverse population of 255 accessions from 27 countries on five continents, and revealed
novel stable genomic regions harboring GPC-associated markers on chromosomes 3A
and 3B. QTL hotspots containing 165 significant MTAs for quality and agronomic traits
were mapped on almost all chromosomes in an association panel of 170 diverse landraces
from the Mediterranean region [31]. Using a set of 93 spring common wheat varieties and
breeding lines adapted for cultivation in the Siberian region of the Russian Federation,
another study reported eleven genomic regions associated with GPC, of which nine were
physically mapped on chromosome 6A harboring the NAM-A1 gene, homoeologous to
the Gpc-B1 (NAM-B1) gene [23]. Another recent investigation by Tyrka et al. [30] screened
168 Polish breeding lines of common winter wheat for a number of agronomic traits, and
identified trait-associated markers for heading time, lodging resistance, plant height, and
TKW. Therefore, it is essential to evaluate new large mapping populations with different
underlying substructure, extents of genetic relatedness among individuals, and LD decays
to identify novel QTNs or QTL for yield and quality traits. Additionally, these traits are
influenced by environmental factors; therefore, detecting MTAs in multienvironment or
multiyear studies is crucial for their application in marker-assisted breeding.

For this study, we assembled an association panel of advanced and historical varieties
and local accessions from Bulgaria. Our fundamental focus was to explore the natural
genetic variation for protein content in wheat grain and thousand kernel weight, and to
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reveal the associated genetic determinants. We found a considerable amount of phenotypic
variation for GPC and TKW with no apparent differences between modern high-productive
varieties and old germplasm, nor did the traits significantly correlate with one another.
Based on GWAS findings, we identified promising genomic regions for wheat improvement
and uncovered possible candidate genes. These results provide information about the
genetic resources available to breeders to improve grain yield and nutritional properties
of wheat products, as well as an opportunity to develop closely associated markers to aid
molecular breeding of new varieties.

2. Results
2.1. Phenotypic Variation

Descriptive statistics, frequency distribution, and boxplots showed wide pheno-
typic variation for both GPC and TKW over three growing seasons (harvests 2014, 2017,
2021) within the set of 179 wheat accessions with total average over the crop seasons of
13.4 ± 1.34% for GPC, and 45.2 ± 4.28 g for TKW (Tables 1, S1 and S2; Figure 1). The
range of coefficients of variation (CV, %) across the individual years was similar for the two
traits. Estimates of high broad-sense heritability (h2) for both traits showed moderate to
high values in the individual growing seasons (from 0.64 to 0.78), and high values over
the environments (0.82 for GPC and 0.81 for TKW). To exclude the impact of the growing
season, we computed best linear unbiased estimator (BLUE) values for each accession,
treating genotype as fixed and growing season as random effects. BLUEs varied across the
years from 11.6 to 14.7%, on average 13.4% for GPC, and from 39.5 to 51.8 g, on average
45.4 g for TKW (Tables 1, S1 and S2; Figure 1).
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Figure 1. Probability density and box plots for (a,c) grain protein content (GPC) and (b,d) thousand
kernel weight (TKW) across three growing seasons and based on best linear unbiased estimators
(BLUEs) in a set of 179 Bulgarian bread wheat accessions. *** is the significant differences between
means at p < 0.001.
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Table 1. Descriptive statistics for grain protein content (GPC) and thousand kernel weight (TKW) in
a set of 179 Bulgarian bread wheat accessions evaluated over three growing seasons.

Trait Env. Mean * Std. Dev. Min. Max. CV % h2

GPC (%) Sofia 2014 13.2 b 1.46 7.6 16.8 11.09 0.64
Sofia 2017 12.9 b 2.06 6.0 16.8 15.90 0.78
Sofia 2021 14.2 a 1.62 7.1 19.4 11.43 0.69
Average 13.4 1.34 9.4 16.8 10.00 0.82
BLUE 13.4 0.51 11.6 14.7 3.81

TKW (g) Sofia 2014 43.1 b 6.43 22.2 65.8 14.92 0.77
Sofia 2017 44.0 b 4.72 31.0 58.2 10.73 0.64
Sofia 2021 48.6 a 5.42 24.4 61.6 11.14 0.70
Average 45.2 4.28 33.7 55.0 9.46 0.81
BLUE 45.4 2.25 39.6 51.8 4.94

* different letters denote significant difference between the mean values at p < 0.001. Env. = environments;
Std. Dev. = standard deviation; CV = coefficient of variation; h2 = broad-sense heritability; BLUE = best linear
unbiased estimator.

The statistical analysis (Shapiro–Wilk test) indicates that the phenotypic data adheres
to a normal distribution at a p-value threshold of 0.05. The ANOVA results explained the
presence of broad phenotypic variation among genotypes for GPC and TKW, revealing
highly significant effects of genotype, environment (growing season), and their interactions
(Table 2). For both traits, no significant differences were noted only between 2014 and 2017
(Figure 1, Table S3).

Table 2. Factorial analysis of variance (ANOVA) for (a) grain protein content (GPC) and (b) thousand
kernel weight (TKW) across three environments (growing seasons) for a set of 179 Bulgarian bread
wheat accessions.

(a)

Source of Variation SS df MS F p-Value F Crit

Genotype (G) 962.685 178 5.408 3.010 0.0000 1.233
Environment (E) 145.483 2 72.741 40.485 0.0000 3.021
G × E 639.638 356 1.797 7.210 0.0000 3.320
Total 1747.805 536

(b)

Source of Variation SS df MS F p-Value F Crit

Genotype (G) 9792.257 178 55.013 2.897 0.0000 1.233
Environment (E) 3128.650 2 1564.325 82.375 0.0000 3.021
G × E 6760.582 356 18.990 4.3643 0.0000 4.092
Total 19681.49 536

SS = sum-of-squares; df = degrees of freedom; MS = mean squares; F = F-value; F crit = F-critical value.

To assess the trait consistency across the environments and to explain the relationships
between GPC and TKW, Pearson’s correlation coefficient approach was used. Low to
high positive Pearson’s correlation coefficients (r) over the years were computed for GPC
(spanning from 0.50 to 0.92) and TKW (ranging from 0.30 to 0.79) (Table 3). In general,
consistency was noted across the growing seasons, with one exception—GPC in 2017
was not correlated with that in 2021. From the perspective of the data desirability for
GWAS, correlation analysis was performed also with the BLUE mean values. The Pearson’s
correlation coefficients (r) computed based on BLUEs were positively significant (p < 0.001)
for both GPC and TKW. The two grain characteristics were not correlated across the growing
seasons, as well as based on BLUEs (Table 3).
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Table 3. Pearson’s correlation coefficients (r) for grain protein content (GPC) and thousand kernel
weight (TKW) among growing seasons (harvests in 2014, 2017, and 2021) and with the mean best
linear unbiased estimator (BLUE) values in a set of 179 Bulgarian bread wheat accessions.

GPC-2017 GPC-2021 GPC-BLUE TKW-2014 TKW-2017 TKW-2021 TKW-BLUE

GPC-2014 0.69 *** 0.50 *** 0.93 *** 0.00 −0.09 −0.08 −0.05
GPC-2017 0.10 0.61 *** 0.04 0.01 −0.01 −0.02
GPC-2021 0.47 *** 0.16 * −0.01 0.12 0.06
GPC-BLUE −0.01 −0.10 −0.07 0.02
TKW-2014 0.39 *** 0.30 *** 0.60 ***
TKW-2017 0.53 *** 0.42 ***
TKW-2021 0.38 ***

*, *** significant at p < 0.05 and 0.001, respectively.

According to a previous work, the studied population has a distinct structure based
on the membership coefficient matrix (Q-matrix), calculated in STRUCTURE [32]. It is com-
posed of three subpopulations (SPs), and only five genotypes are deemed to be admixed.
The largest subpopulation—SP1 (109 entries) includes 6 old accessions and 103 modern va-
rieties, most of them developed in the breeding centers in the Northern and Southern parts
of the country. Of the 49 accessions in the SP2 subpopulation, 43 belong almost solely to the
old germplasm, with the majority of them originating from Northern Bulgaria. The remain-
ing 6 accessions are contemporary varieties. The smallest subpopulation—SP3—consists
mostly of modern varieties (14), and 2 old accessions. Taking into account the distinct
population structure, we tested the hypothesis of whether the old accessions differ sig-
nificantly and consistently from the modern releases. Therefore, we compared the three
SPs across the growing seasons. While the two subgroups containing modern varieties
did not differ significantly across the years and with BLUEs concerning both GPC and
TKW, the subgroup of old accessions (SP2) displayed variability across the environments.
Subpopulation SP2 had significantly lower GPC compared to the SP3-varieties in 2021,
but did not differ from both groups of modern releases in 2014 and 2017 and with BLUEs
(Figure 2a). The group of old germplasm showed a higher TKW mean value in 2017 but
a lower value in 2021 when compared to SP1, whereas the TKW mean BLUE of SP2 was
significantly lower than that of SP3 (Figure 2b).

To distinguish genotypes that could be used for improving grain protein content in
breeding programs, the accessions were classified according to [2] into five groups with
protein ≥ 13% (Group 1), ≥12% (Group 2), ≥11% (Group 3), and >10% (Group 4), <10
(Group 5). The prevailing part of the accessions (90% and 94% of SP1 and SP3 modern
releases, 84% of SP2 old accessions, or 89% of the entire population) fall into Groups 1 and 2
(Figure 3).

In order to evaluate the phenotypic variability of the population throughout the crop
seasons, we initially determined the deviations from the respective yearly average GPC
and TKW. Subsequently, these discrepancies were averaged for each accession throughout
the three seasons. The influence of genotypes fluctuated per the environmental gradient,
with the variance extending from 0.012 (2014) to 0.025 (2017) for GPC (Table S4), and from
0.011 (2017) to 0.022 (2014) for TKW (Table S5). The variance within the entire population
over the years spanned from 0.0 to 0.108 for GPC, and from 0.0 to 0.101 for TKW.
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three subpopulations (SPs) distinguished by the Q-matrix [32] within a population of 179 Bulgarian
bread wheat accessions. *, *** are the significant differences between means at p < 0.05 and 0.001,
respectively.
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Figure 3. Proportion of accessions (a–c) from the three subpopulations distinguished by the Q-
matrix [32] and (d) within the entire population of 179 Bulgarian bread wheat accessions with respect
to grain protein content (GPC); classification is according to [2].

2.2. Linkage Disequilibrium (LD) Estimation, Genotype Relatedness, and Significant Quantitative
Trait Nucleotides (QTNs)

From the perspective of GWAS, LD was considered. This is essential to define the
interval of highly associated SNPs and to identify the most significant loci [16]. Here,
we calculated LD decay using the whole association panel irrespective of the genotype
status (old vs. modern). The LD decay values varied from 1.5 to 3.0 Mbp on the individ-
ual chromosomes, with the highest value of LD decay in the D-genome (2.54 Mbp) and
homoeologous group 3 (2.27 Mbp), on average 1.98 Mbp (Table S6).

High relatedness between the genotypes was demonstrated by the phylogenetic
tree and the heat map of the values in the kinship matrix constructed from 17,083 SNPs
(Figure S1).

In GWAS, controlling for population structure is a routine method that is especially
relevant in this study because the genotypes comprise both historical and contemporary
varieties as well as landraces. In an earlier study, the degree of diversity and population
stratification were examined [32]. Three subpopulations were identified by STRUCTURE
and the k-means clustering algorithm. The old germplasm was distinguished by both meth-
ods, as well as by principal component analysis. This work provides also a comprehensive
comparative analysis of the old and modern accessions in terms of SNP-based genetic
diversity and LD [32].

For both traits, the phenotypic data from three crop seasons and the genotypic data
for the association panel that were already available from the 25K Infinium iSelect array
(SGS Institut Fresenius GmbH TraitGenetics Section, Gatersleben, Germany) and described
in [32] were used for association mapping. An examination of the variance showed sub-
stantial genotype-by-environment interactions (Table 2), despite the fact that both traits
showed moderate to high broad-sense heritability estimates in each crop season (Table 1).
Therefore, association mapping analysis was performed for each crop season, followed by
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analysis based on BLUEs using MLM (Q + K) model to account for population structure
and kinship. The Q-Q plots showed deviations of the observed p-values from the null
hypothesis suggesting there is a certain overestimation of the positive genomic signals
(Figure S2). Therefore, in order to maintain a low false positive rate, the significance thresh-
old was set at −log10 (p-value) > FDR (false discovery rate), p < 0.01, and was calculated
for each trait and environment.

GWAS for GPC evidenced 16 significant QTNs (−log10 > FDR, p < 0.01) distributed on
11 chromosomes across the three environments and BLUEs: 1B, 2A, 2B, 4B, 5A, 5B, 6A, 6B,
6D, 7A, and 7B (Table 4, Figure 4a). For the yield-related trait TKW, a total of 15 significant
QTNs distributed on chromosomes 1A, 1B, 2A, 4A, 4D, 5B, 6A, and 6D were detected
over the three crop seasons and based on BLUEs (Table 5, Figure 4b). The proportion of
phenotypic variance (R2) explained by the significantly associated markers was within the
range 0.09 to 0.27 for GPC, and 0.12 to 0.23 for TKW; this range may have been upward
biased to the relatively small population size. Seven QTNs presented positive additive
effect on protein content spanning from 1.4% (RFL_Contig5739_641) to 8.1% (AX-158545828).
Regarding TKW, four markers were identified as having positive additive effects on the
trait, with wsnp_JD_c4217_5322858 having the most impact (8.4%).

Table 4. Quantitative trait nucleotides (QTNs) and candidate genes associated with grain protein
content (GPC) detected in a population of 179 Bulgarian bread wheat accessions using the MLM
(Q + K) model.

Marker Chr Position
(bp)

−log10
(p) Effect R2 Gene ID Annotation Co-Located

Loci a

GPC_2014

RAC875_rep_c98040_163 1B 512,632,139 3.78 −1.054 0.084 TraesCS1B01G294600
GTP cyclohydrolase
II/3,4-dihydroxy-2-butanone
4-phosphate synthase

BobWhite_c17047_268 2B 11,077,394 3.85 −1.011 0.089 TraesCS2B01G023800 Ethylene receptor

wsnp_BE500291A_Ta_2_1 5A 148,056,504 3.82 −0.889 0.087 TraesCS5A01G101200 1-acyl-sn-glycerol-3-phosphate
acyltransferase

Tdurum_contig54917_597 6B 32,324,229 3.73 1.357 0.083 TraesCS6B01G052900 Kelch repeat–containing protein [33]

GPC_2017

CAP11_c601_120 4B 38,791,353 4.21 −2.456 0.096 TraesCS4B01G050200 Histidine kinase
AX-95148678 4B 39,015,957 4.15 −2.446 0.095 TraesCS4B01G050400 UDP-glucose 6-dehydrogenase
AX-94513493 4B 39,045,208 4.21 −2.456 0.096 TraesCS4B01G050500 UV-B-induced protein, chloroplastic
BS00109912_51 7A 653,925 4.36 2.874 0.101 NA

GPC_2021

RFL_Contig5739_641 5B 531,538,634 4.11 1.412 0.092 TraesCS5B01G350900 Plant regulator RWP-RK family
protein, putative [34]

IACX2946 6A 599,046,570 4.16 −2.172 0.092 TraesCS6A01G378000 Protein kinase family protein [23,33]
Tdurum_contig46670_911 6A 599,050,921 4.16 2.172 0.092 TraesCS6A01G378100 Diphthine-ammonia ligase [23,33]
AX-94649878 6D 453,347,731 4.86 −1.954 0.111 TraesCS6D01G362900 NAC domain protein

GPC_BLUE

Ra_c22880_760 2A 498,105,752 8.38 7.918 0.217 TraesCS2A01G289800 Alpha-amylase

AX-158545828 2A 501,850,514 8.46 8.069 0.219 TraesCS2A01G291200 Mitochondrial import inner membrane
translocase subunit TIM22

Tdurum_contig59467_433 7A 715,692,069 9.94 −9.349 0.267 NA

AX-94519723 7B 121,890,360 8.57 7.372 0.222 TraesCS7B01G105700
DNA-binding storekeeper
protein-related transcriptional
regulator

a Previously reported significant marker/QTL in close proximity to the QTNs identified in the current study.

No environmentally stable QTNs were detected for GPC and TKW, which confirms
that both grain traits are significantly influenced by the crop seasons (environments) and
demonstrate the presence of genotype-by-environment interactions.

In our analysis, we examined the significant markers associated with GPC and TKW
across the three distinct subpopulations, as differentiated by the Q-matrix in a previous
study [32]. Our observations indicate that among the 16 loci significantly associated with
GPC, only locus BS00109912_51 exclusively (100%) carries allele C in the old accessions (SP2
subpopulation). However, the other allele (T) is still present in the old germplasm, albeit
at a lower frequency (20% of all accessions with this allele) (Table S7). In the case of 8 out
of 15 significant loci associated with TKW, one allele is predominantly (95–100%) present
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in the SP1 and SP3 subpopulations, which are mainly composed of modern varieties. The
other allele is also highly represented among the modern releases (Table S8).
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Table 5. Quantitative trait nucleotides (QTNs) and candidate genes associated with thousand kernel
weight (TKW) detected in a population of 179 Bulgarian bread wheat accessions using the MLM
(Q + K) model.

Marker Chr Position
(bp)

−log10
(p) Effect R2 Gene ID Annotation Co-Located

Loci a

TKW_2014

BobWhite_c2027_215 1B 640,555,504 5.27 −10.268 0.124 TraesCS1B01G415400
TSA: Wollemia nobilis
Ref_Wollemi_Transcript_14910_3291
transcribed RNA sequence

[21],[35]

wsnp_JD_c4217_5322858 4A 140,291,399 5.25 8.388 0.123 TraesCS4A01G115300 Small nuclear ribonucleoprotein [36]

TKW_2017

AX-95145282 6A 100,766,008 7.84 4.780 0.199 NA

TKW_2021

GENE-0925_515 2A 656,820,630 6.42 −4.526 0.143 NA
BobWhite_c13435_700 6D 471,008,534 6.43 −4.534 0.144 NA [37]

CAP7_c2559_543 6D 471,017,962 6.40 −4.519 0.143 TraesCS6D01G402800 Zinc finger CCCH
domain-containing protein 19 [37]

TKW_BLUEs

AX-94692394 1A 7,186,246 8.54 1.927 0.209 TraesCS1A01G012600 Leucine-rich repeat receptor-like
protein kinase family protein [21,35]

Tdurum_contig50667_306 1B 20,588,032 9.49 2.705 0.238 TraesCS1B01G041200 F-box protein-like

AX-94641316 4D 374,832,658 8.55 −2.485 0.210 TraesCS4D01G219400 Regulator of Vps4 activity in the
MVB pathway protein, putative

wsnp_Ex_c24031_33277293 5B 707,131,836 9.10 −3.002 0.226 TraesCS5B01G560400 PGR5-like protein 1A,
chloroplastic [35],[37]

wsnp_Ex_c4480_8056013 6A 611,487,998 8.76 −2.084 0.216 TraesCS6A01G405500 Lysine-specific histone
demethylase 1-3-like protein [35],[37],[38]

Kukri_c11902_580 6A 611,491,408 8.76 −2.085 0.216 TraesCS6A01G405500 Lysine-specific histone
demethylase 1-3-like protein [35],[37],[38]

wsnp_Ex_c4480_8056354 6D 464,946,552 8.67 −2.078 0.214 TraesCS6D01G389200 Lysine-specific histone
demethylase 1-3-like protein [37]

AX-158600736 6D 464,948,739 8.70 −2.078 0.215 TraesCS6D01G389200 Lysine-specific histone
demethylase 1-3-like protein [37]

TA005561-0543 6D 465,050,368 8.48 −2.065 0.211 NA [37]
a Previously reported significant markers/QTL coinciding with (underlined references) or in close proximity to
the QTN identified in the current study.

2.3. Potential Candidate Genes

In order to hypothesize potential candidate genes that underlie the analyzed traits, we
examined the 16 significant QTNs detected for GPC and the 15 significant QTNs detected
for TKW. The search for candidate genes was performed based on the physical position of
the prominent QTNs on Triticum aestivum L. cv. Chinese Spring reference genome extended
by the LD interval estimated for each chromosome based on LD decay. Within the defined
regions, associated with GPC and TKW, we retrieved a total of 493 and 639 high-confidence
annotated genes, respectively (Tables S9 and S10). These genes were evaluated as potential
candidate genes. The genes directly hit by the significant SNPs, along with their putative
functions, are presented in Tables 4 and 5.

In the following section, we look at the genes with significant QTNs of positive addi-
tive effects, as well as at several pertinent candidates detected in the LD-defined intervals
on both sides of the QTNs. Relevant potential genes linked to GPC and TKW encode
storage proteins, proteins implicated in senescence- and germination-associated proteol-
ysis, carbohydrate synthesis, protein synthesis and trafficking, and auxin biosynthesis.
Products of certain candidate genes are transcriptional and posttranscriptional regulators,
or transmembrane factors that can sense, transduce, and transmit signals.

3. Discussion
3.1. Phenotypic Variation

To meet the growing demand for sufficient amounts and quality of food and overcome
the challenges posed by environmental changes, it is essential to effectively utilize the avail-
able genetic resources of bread wheat [39]. Here, we used a collection of old and modern
bread wheat accessions, and explored the genetic variation of TKW and GPC, the two
most important characters determining yield and end-use quality, and eventually, the eco-
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nomic value of bread wheat. The study revealed large phenotypic variability for the target
traits with highly significant contributions of genotype, environment, and genotype-by-
environment interactions. The observed moderate to high values of broad-sense heritability
and the consistency of trait records evidenced by the significant correlations between the
crop seasons suggest that a considerable part of the variation is due to inherent genetic
differences among the accessions. These results agree with similar findings in bread and du-
rum wheat for GPC [19,25,27,40], and TKW [13,41]. Given that the panel contains historical
and contemporary varieties released or collected between 1925 and 2010, it is possible that
the recorded genetic variance—especially for TKW—is inflated. This is because through-
out the course of nearly nine decades, genetic factors have contributed significantly to
increases in yield and yield-related attributes. The landmark of these genetic gains for the
Bulgarian wheat collection is the introduction of semi-dwarfing genes in the 1970s [11].
The pleiotropic effects that these genes exert on plant responsiveness to N applications,
on photosynthetic rates, and on the accumulation of carbohydrates in the grain ultimately
have improved grain yield.

This study shows that a large proportion (89%) of the accessions have protein above
12%, and are suitable for preparing leavened breads [2]. The average grain protein values
(13.4%) are similar to or higher than the reported information on protein contents in other
bread wheat collections [19,27,28,31,34]. Additional research revealed that some accession
sets had greater protein values (up to 20%), demonstrating the impact of genotype-by-
environment interactions [22,23,33].

Wheat yield and quality are affected by climatic factors (temperature, precipitation,
drought type) [42]. In contrast to the abundant rainfall that was recorded at the experimen-
tal site from April to July in 2014, stretching from heading time to maturity, the amount
of rain that fell in May and June 2017 was consistently less than the average for the cli-
mate (Figure S3), which suggests a sustained moderate drought during anthesis and grain
filling. Prolonged water insufficiency early in grain development reduces the number of
amyloplasts and endosperm cells, which lowers the capacity of starch accumulation, and ul-
timately lowers grain weight [43,44]. In 2021, a modest drought during anthesis and a more
severe final drought were seen (Figure S3). Minor postanthesis water stress can speed up
grain filling in wheat by boosting the activity of key catalytic enzymes that convert sucrose
to starch, and by remobilizing nonstructural carbohydrates from the vegetative tissues to
the grain [44]. The effects of these patterns of drought (timing and severity) explain well the
significantly higher mean TKW value obtained in 2021 than those in 2017. The considerably
lower mean TKW recorded in 2014 is consistent with research showing that prolonged soil
wetness after anthesis restricts the amount of assimilates available to growing grains, hence
diminishing the development of grain yield [45]. The observed variance in the protein
content in the collection under study may potentially be explained by the precipitation
oscillations among the three crop seasons. In our study, we found a significant difference
(p < 0.001, Table 1) in the average protein values for 2014 (13.2%) and 2021 (14.2%), when
prolonged waterlogging or terminal drought periods, respectively, were suggested during
late vegetation. A decline in GPC has been associated with waterlogging [46]. Conversely,
during a drought, an increase in the seed proteins has been shown [47], possibly connected
to modified carbon (C) partitioning and, hence, to a shift in the C/N ratio, that favors
greater N-assimilation [48].

Significant genotype-by-environment interactions were seen (Table 2), and the geno-
typic effects varied along with the environmental gradient (Tables S4 and S5). It is interest-
ing to note, that throughout the growing seasons varieties Mustang, Bozhana, and Levent
displayed consistently high positive deviation from the average GPC and high values of
TKW. These accessions are potential sources for concurrent improvement of the two traits.
Ancestral history indicates that the Mustang variety is descended from the old accession
Yubilejna-3, which also exhibits consistently high protein levels in the grain. Additionally,
its pedigree involves a hybrid derived from Agropyron sp., a wheatgrass that has been
shown to contribute to seed storage proteins in wheat-Agropyron introgressions [49,50].
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The lack of association between TKW and GPC in our data using Pearson’s approach
shows that there is little to no decrease in seed weight in the presence of the identified
loci for GPC. Similarly, no significant correlations were found between GPC and TKW
across environments in studies of wheat lines derived from wild emmer [51,52]. This obser-
vation is consistent with findings by Oury and Godin [6] that genotype-by-environment
interactions for grain yield and GPC may obscure the strong genetic background of the
yield–protein interrelationship. Thus, Lindeque et al. [53] detected limited significant
correlations between grain yield and protein content in a study of wheat accessions of
various yielding capacities grown in environments of different precipitation trends. This
result holds promise for the simultaneous genetic enhancement of the two traits.

Historical germplasm, such as landraces and traditional varieties, are an important
source for bringing new genes into contemporary crops [31,54,55]. Therefore, it is strate-
gically important to characterize these genetic resources in order to properly utilize them
in prebreeding. Our comparative analysis of variation for GPC showed that although
the old germplasm (SP2) was characterized in general by high values of grain protein
concentrations (Figure 3, Table S1), these values were lower than those of modern releases
or did not differ notably from them (Figure 2). Moreover, the percentage of high-protein
genotypes (≥12%) was higher in the two modern subpopulations, SP1 (90%) and SP3
(94%), compared to the old accessions of SP2 (84%). The idea that the older germplasm had
superior yield-related metrics than the more recent varieties was also not supported by the
observed variability in mean TKW values of SP2-accessions across the growing seasons.
One likely reason is that a lot of contemporary Bulgarian varieties are either descended
from old accessions, or have highly productive and high-protein Russian and Serbian
ancestors in their pedigrees as Table S1 and the research by Kartseva et al. [27] show. These
results suggest that wheat breeders have managed to construct improved varieties in terms
of the studied traits.

3.2. Genomic Regions Associated with Grain Protein Content (GPC) and Thousand Kernel
Weight (TKW)

Significant verified SNPs or genomic regions linked to GPC and TKW have been de-
tected on all wheat chromosomes, according to recent research [14,35,56,57]. We compared
the strongly associated SNPs found in this study to previously published loci or markers
using the IWGSC RefSeq v.1.0 map as a reference.

Our analysis confirmed some known trait-associated genomic regions, or found associ-
ated markers in proximity (distance 0.1–6.5 Mbp) to previously described loci [21,23,33–38]
(Tables 4 and 5). For example, the GPC-associated marker Tdurum_contig46670_911 on
chromosome 6A (position 599,050,921 bp) has been reported as an environmentally specific
one in a study on a Siberian wheat collection [23]. The same marker is also located inside
a known QTL (q6A-3), defined by the interval 599.2–602.9 Mbp [33], and stays two Mbp
apart from locus QGpc.ipg-6A.4 reported by Leonova et al. [23] (Table 4). Similarly, six
TKW-associated QTNs detected on chromosomes 1B, 5B, 6A, and 6D overlapped with
previously reported QTL [21,35,37] (Table 5).

Certain significant QTNs have not been previously linked to the studied traits, sug-
gesting that these loci are novel. New genomic loci that seem promising for grain protein
improvement in wheat harbor markers Ra_c22880_760 and AX-158545828 on chromosome
2A, AX-94519723 on chromosome 7B, and BS00109912_51 on chromosome 7A, presenting
protein increasing effects up to 8.1%. Two potentially novel loci with positive additive
effects on TKW are defined in this study. The linked markers are Tdurum_contig50667_306
on chromosome 1B, and AX-95145282 on chromosome 6A. Some of the trait-associated
loci were detected with BLUEs, whereas the rest are environmentally specific and need
further validation.

The comparative analysis of the historical and contemporary genotypes, focusing on
the significant markers associated with GPC and TKW, revealed little to no divergence of
the old germplasm. This observation is consistent with molecular findings from previous
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research on Bulgarian wheat germplasm which utilized microsatellites [58] and SNPs [32].
These studies demonstrated that wheat breeders have maintained the high levels of genetic
diversity found in the older germplasm since the 1970s. Furthermore, a shift in some
prevailing alleles from the older accessions to the modern ones seems to have occurred,
with some unique or rare alleles disappearing and others being introduced.

3.3. Putative Candidate Genes Related to Grain Protein Content (GPC) and Thousand Kernel
Weight (TKW)

Grain production and nutrient content of cereal crops are governed by the buildup of
nutrients in the grain near the end of the plant lifespan [59]. The quantity and quality of
these nutrients is greatly affected by the remobilization of C and N from vegetative tissues to
developing grain during senescence, as well as by the subsequent accumulation of resources
for seed germination. All these processes are accompanied by expressional changes in a
vast number of genes that ultimately impact grain output and protein content [60]. We
searched for potential candidate genes at suggestively novel loci, as well as at loci that
verified previously established associations. The next section covers potential genes in
genomic regions harboring QTNs with positive additive effects on the traits.

Our findings highlighted seven QTNs with positive effects on grain protein, of
which the two QTNs with the highest effect (ca. 8% each) are located in the interval
498,105,752–501,850,514 bp on chromosome 2A. Marker Ra_c22880_760 resides within
TraesCS2A01G289800, a gene translated into alpha-amylase. Alpha-amylase is one of the
primary enzymes responsible for starch degradation to fuel early germinating grain [61].
The gene TraesCS2A01G291200 hit by marker AX-158545828 is annotated as mitochondrial
import inner membrane translocase subunit TIM22. This protein is a PRAT (preprotein and
amino acid transporters) family member and an important constituent of the mitochon-
drial protein import machinery [62]. Although the effect of this gene has not previously
been documented in wheat, the functions of the Arabidopsis orthologous gene during seed
development have been recently reported [63].

The gene TraesCS7B01G105700 on chromosome 7B hit by marker AX-94519723 encodes
for a DNA-binding storekeeper protein-related transcriptional regulator (STKR). The STKR
was the first B-box motif plant-specific binding protein identified as a putative regulator of
expression of patatin, the most abundant storage protein of potato tubers [64]. In transgenic
Arabidopsis plants, overexpression of the orthologous protein (STKR1) was shown to result
in reduced growth, a delay in flowering, attenuated senescence, exhausted carbohydrate
pool, and amino acids accumulation [65] and, therefore, is related to nutrient source-to-
sink remobilization.

One QTN (BS00109912_51) is located on chromosome 7A, possibly in a noncoding
interval. Within the LD-expanded genomic region to the left and right of the significant SNP,
we retrieved two genes encoding cysteine-proteases. These enzymes are among the most
abundant proteases activated during leaf senescence that are essential for N remobilization
from senesced leaves to developing seeds [66].

We found prospective putative candidate genes for GPC improvement in the genomic
region on chromosome 6A harboring marker Tdurum_contig46670_911 (position 599,050,921
bp). The gene TraesCS6A01G378100 translated into Diphthine-ammonia ligase has not been
previously associated with effects in wheat. This enzyme is evolutionarily conserved in
eukaryotes and catalyzes the last step in the conversion of an L-histidine residue in the
translation elongation factor eEF2 to diphthamide [67]. Interestingly, there is a gene close to
TraesCS6A01G378100, encoding translation elongation factor EF1A. The elongation factors
(EFs) are key mediators in the peptide chains elongation during protein synthesis [68].
Nearby TraesCS6A01G378100 we found two genes encoding NAC-domain-containing
proteins. NAC genes, especially NAM-B1 (Gpc-B1) together with its homoeologs NAM-
A1 and NAM-D1 have been shown to regulate the transcriptional changes during leaf
senescence in wheat, affecting N and nutrient source-to-sink remobilization [69,70]. Marker
Tdurum_contig46670_911 identified in the current study is situated 0.1 Mb away from a GPC
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locus (QGpc.icg-6A.4), described in the distal part of the long arm of chromosome 6A [23].
Since NAM-A1 gene is located on the short arm of 6A [23], the NAC genes identified here
close to TraesCS6A01G378100 are, therefore, distinct.

The QTN RFL_Contig5739_641 showing increase on GPC of ca. 1.4% resides inside the
gene TraesCS5B01G350900 coding for plant regulator RWP-RK family protein. RWP-RKs
represent a small family of transcription factors that are unique to plants. The NLPs (NIN-
like proteins) subfamily of RWP-RKs have been confirmed as master regulators of the nitrate
signaling and the expression of a series of genes for nitrate transport and assimilation,
including nitrate-transporter and nitrate reductase genes [71,72]. Interesting putative
candidates for grain protein are four genes detected nearby TraesCS5B01G350900 that
were translated into flavin-containing monooxygenase, and one gene coding for subtilisin-
like protease. In plants, the flavin-containing monooxygenase (FMO) gene superfamily
is implicated in the auxin biosynthesis [73]. Auxin plays a pivotal role as a regulator,
modulating a variety of cellular processes that are integral to seed formation. Genes coding
for auxin-related FMO had steadily increasing expression levels during the wheat grain
expanding phase, indicating a potential role in grain development [74]. Subtilisin-like
proteases contribute to the degradation of reserve proteins during germination [75]. Genes
for subtilisin-like proteases have been proposed as possible candidates for GPC [19] and
seed longevity [76] in wheat.

Another QTN, which contributes to approximately a 1.4% increase in protein, is
located within the gene TraesCS6B01G052900 on chromosome 6B. This gene codes for a
Kelch repeat–containing protein, a subclass of F-box proteins. F-box proteins are important
players in the ubiquitin/26S proteasome system [77]. Protein breakdown, one of the most
significant catabolic processes associated with leaf senescence, plays a key role in nutrient
recycling, especially N. Consequently, it is closely linked to grain filling in cereals [75].
Chen et al. [78] reported on an F-box protein containing a Kelch repeat motif (OsFBK12) that
regulates leaf senescence, seed size, and grain number in rice (Oryza sativa). The expression
of wheat TaKFB genes encoding Kelch repeat F-box proteins was shown to increase during
the pigmentation stage of grain development [79]. Close to TraesCS6B01G052900 we found
another gene coding for subtilisin-like protease, discussed above.

Four QTNs were identified that had positive effects on TKW. The QTN on chromo-
some 4A with the highest effect (ca. 8%) co-locates with TraesCS4A01G115300, a gene
encoding small nuclear ribonucleoprotein (snRNP). The snRNPs, along with over 300
other splicing factors, form the spliceosome, the enzyme that catalyzes the splicing of the
primary transcripts to mature mRNAs, an essential step in gene expression [80]. Lopato
et al. [81] showed that the wheat gene TaRSZ38, a homologue of the Arabidopsis AtRSZ33
splicing factor, regulates posttranscriptional processes in wheat grain with an expression
peak in the immature grain. A relevant candidate gene for TKW, located 682,883 bp apart
from TraesCS4A01G115300 is translated into aminotransferase. A genome-wide analysis in
bread wheat has identified 15 Tryptophan Aminotransferase of Arabidopsis1/Tryptophan
Aminotransferase-Related (TAA1/TAR) genes involved in auxin biosynthesis. These find-
ings highlight the potential of the gene TaTAR2.1-3A for genetically enhancing grain yield.
It has been demonstrated that overexpression of this gene leads to increased plant height,
spike number, grain yield, and aerial N accumulation under various N supplies [82].

Our analysis did not detect a candidate gene directly associated with QTN AX-
95145282 (position: 100,766,008 bp, chromosome 6A) having ca. 5% increasing effect
on TKW. The gene search within the LD-expanded interval found 16 genes encoding
leucine-rich repeat receptor-like protein kinase family protein (LRR-RLKs) and a squamosa
promoter-binding protein-like (SBP domain) transcription factor family protein. LRR-RLKs
are the largest group of receptor-like kinases in plants implicated in plant growth, develop-
ment, and stress responses [83]. The effects of this protein family on yield-related traits in
wheat have not been reported, but overexpression of the rice gene LRK1 has been shown to
increase cell proliferation and several yield components, resulting in a 27% increase in total
grain yield per plant [84]. Studies in rice [85] and wheat [86] reported on putative candidate
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genes for grain size and TKW, encoding for squamosa promoter binding protein-like (SPL),
a star player for plant growth and development [87]. Interestingly, the Arabidopsis AtSPL9
gene was reported as a potential regulator of nitrate transporters and nitrate reductase [72]
thereby possibly regulating the N assimilation.

The QTN Tdurum_contig50667_306, located on chromosome 1B (position: 20,588,032
bp; ca. 3% trait increase) is inside the gene TraesCS1B01G041200, that translates into an
F-box protein-like. The role of this super protein family in plant cells was briefly covered
previously in this section. Recent studies suggested that the wheat gene WAPO-A1, also
known as TaAPO-A1, encoding an F-box protein is associated with variation for grain yield
and quality traits [8,88,89]. In close proximity to TraesCS1B01G041200, we found another
gene that seems to play a significant role in explaining the variation for TKW. This gene
encodes a developmentally regulated G protein. Heterotrimeric G proteins in plants are
membrane-attached signal transducers known to control diverse cellular processes, such as
cell proliferation, hormonal responses, growth, and development [90]. G protein-mediated
regulation of grain size has been reported in Arabidopsis [91], rice [90,92], barley [93], and
could therefore impact the harvestable yield in crop plants. Moreover, the plant G protein
complex was shown to regulate N signaling and N use efficiency in rice [94].

The QTN AX-94692394 on chromosome 1A with the lowest increasing effect on TKW
(ca. 2%) resides within gene TraesCS1A01G012600, translated into leucine-rich repeat
receptor-like protein kinase family protein. Earlier in this section, we provided short infor-
mation about the possible functions of LRR-RLKs. Interestingly, we discovered a putative
candidate gene, TraesCS1A01G010900, in the LD interval close to TraesCS1A01G012600 an-
notated as gliadin/LMW glutenin/bifunctional inhibitor/plant lipid transfer protein/seed
storage helical domain. Similarly, Giancaspro et al. [86] and Schierenbeck et al. [95] identi-
fied candidate genes coding for the primary prolamins in TKW-coding regions. This finding
is not surprising given that gliadins and glutenins make up the majority of endosperm
reserve proteins in wheat grain. Others also reported on such function of suggestive candi-
date genes underlying marker associations with grain architecture traits and TKW [36,95].
Another relevant candidate in the 1A-genomic region (TraesCS1A01G010500) encodes cellu-
lose synthase-like protein (Csl). This enzyme controls the cellulose biosynthesis thereby
contributing to the cell wall organization. A recent genome-wide analysis of the Csl gene
family in bread wheat revealed 108 Csl genes, and some of them were expressed in the
grain [96]. Interestingly, a candidate gene for the wheat tiller inhibition gene (tin) that
reduces tillering and increases grain weight was predicted to encode a Csl protein [97].

4. Materials and Methods
4.1. Plant Material

The plant material consisted of 179 winter wheat (Triticum aestivum L.) accessions
that originated from Bulgaria, of which 129 were modern varieties, and 50 were old
accessions (historic varieties of tall stature and landraces). Seeds from the old accessions
were procured from the seed gene banks at the Leibniz Institute for Plant Genetics and
Crop Research (IPK), Gatersleben, Germany, and the Crop Research Institute, Prague,
Czech Republic. According to the available information, the period of early breeding and
research expeditions to aggregate seeds from landraces and historic varieties for gene bank
collections expands from 1925 to 1970. Seeds from the contemporary varieties released until
2010 were made available from the two major breeding centers in Bulgaria (Dobrudzha
Agricultural Institute, General Toshevo and the Institute of Plant Genetic Resources, Sadovo,
Bulgaria), as well as by breeders. Information about botanical variety, status (modern vs.
old), year of release, and known genealogy is given in Table S1.

4.2. Phenotyping

The seed material was collected from field experiments conducted in Sofia, Bulgaria
(42◦41′ N, 23◦19′ E) during three crop seasons (2013/14, 2016/17, and 2020/21), denoted
by the year of harvest (2014, 2017, and 2021). For each growing season, the accessions were
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sown in a random design in double 1 m-long rows and two replications. The soil type at
the experimental field is leached vertisol, pH 6.1, with 3.1% humus, 1420 mg total N per
kg soil, of which 18 mg inorganic N. Plants received 120 kg N/ha as ammonium nitrate
in two split doses, 40 kg/ha two weeks after sowing and 80 kg/ha before stem extension
growth stage. For pest control, standard agricultural practices were applied. The average
monthly temperature ranged between −5.8 ◦C and 23.2 ◦C, during the vegetation cycles
(October–July). The monthly precipitation ranged from 4.7 mm to 150.5 mm, with average
annual precipitation of 682 mm, which is around 20% higher than the climate norm for
Sofia. Information on the monthly weather statistics for the region of the experimental field
is presented in Figure S3.

Plant material was hand-harvested and hand-threshed. For each genotype and crop
season, the thousand kernel weight (TKW) was determined based on grain number and
grain mass of 10 main spikes per replication. The grain protein content (GPC) was measured
in three pooled whole-grain powder samples (1.0 g each) for each accession and year.
Before analyses, seeds were dried to a constant weight and ground to a fine powder
with IKA Tube Mill Control (IKA Werke GmbH & Co., Staufen, Germany). The total N
concentration was determined using a UDK 159 Automatic Kjeldahl Nitrogen Protein
Analyzer (Velp Scientifica, Usmate, MB, Italy), and the corresponding GPC values (in %)
were automatically inferred from the N values, according to [98].

4.3. Statistical Analyses

The normal distribution of the empirical data was checked by the Shapiro–Wilk test
using the online software MVApp (https://mvapp.kaust.edu.sa) (accessed on 12 January
2024). The significant differences in GPC and TKW among accessions, growing seasons,
and interaction effects between genotype and environment were tested using analysis of
variance (ANOVA). The best linear unbiased estimators (BLUEs) for each accession across
the growing seasons were obtained to eliminate the environmental impact by assuming the
genotype as a fixed effect and the growing season as a random effect. The relationships
for GPC and TKW among the growing seasons and with the BLUEs of these traits were
tested by Pearson’s correlation coefficients (r). The correlation coefficients r were calculated
from the empirical phenotypic data obtained in each growing season and from the mean
BLUE values.

Broad sense heritability h2 for GPC and TKW was calculated using the formula

h2 =
σ2

G(
σ2

G +
σ2

E
nE

)
where σ2

G is the genotype variance, σ2
E is the variance of the residual, and nE is the number

of environments (growing seasons). Heritability in each environment was estimated using
the same formula, where nE in the denominator is the number of replications in a given
environment.

All phenotypic data analyses were accomplished using STATISTICA 14 [99].

4.4. Association Mapping and Candidate Gene Search

Before performing marker-trait association analysis, the population stratification,
the genetic relatedness among population entries, and the LD were considered. The
genotypic data for the association panel of 179 accessions were already available from the
25K Infinium iSelect array (SGS Institut Fresenius GmbH TraitGenetics Section, Gatersleben,
Germany) and described in [32]. Population structure was modeled using the Bayesian
clustering algorithm in STRUCTURE 2.3.4, and the membership coefficients (Q-values)
were determined [32]. Kinship was estimated as a similarity matrix (K) from 17,083 SNPs
based on the method developed by VanRaden [100] using the Genomic Association and

https://mvapp.kaust.edu.sa
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Prediction Integrated Tool (GAPIT) in R package. The values of LD decay (in Mbp) were
determined for each chromosome as described in [32].

Considering the distinctive population structure and the high genetic relatedness
among population individuals, GWAS was undertaken with a mixed linear model (MLM)
Q + K model to control pseudo associations [101]. Hence, the filtered set of 17,083 SNPs,
phenotypic data from the three crop seasons, and the calculated BLUE mean values for
the traits, along with population structure (Q values) and kinship similarity matrix (K) as
covariates were used for association mapping analysis in TASSEL v.5.

To analyze our data, we applied another powerful algorithm—the fixed and random
model circulating probability unification (FarmCPU)—through GAPIT in R. The FarmCPU
model uses the advantages of the MLM and stepwise regression (fixed effect model) and,
at the same time, overcomes their disadvantages, which makes this approach very accurate
for GWAS by effectively controlling the rate of false positive signals [102]. The FarmCPU
algorithm delivered altogether three significant associations for the two traits, while the
MLM output involved a large number of genomic signals. To test how the two models fit
the data, we examined the quantile–quantile (Q-Q) plots, which show the distributions
of important p-values (expected vs. observed −log10 (p-values)). Based on the number of
significant SNPs (QTNs) and the Q-Q plots, we present here the results obtained by the
MLM (Q + K) model. In order to reduce the number of false positive signals, we set the
threshold of statistically significant QTNs at −log10 (p-value) > FDR (false discovery rate),
at p < 0.01. FDR was calculated for each trait and environment.

To draw the Manhattan plots and Q-Q plots, R package qqman was employed [103].
Additive effects and R2 (percent phenotypic variation) of QTNs were estimated in

TASSEL v.5 and Excel 16 (Microsoft). The percentage of phenotypic variation explained
by each QTN (R2) was calculated as the difference of R2 with and without the strongest
associated SNP.

For the significant trait-associated SNPs, flanking regions within the LD-estimated
interval on either side of the marker were searched for candidate genes. Within these
regions, high-confidence putative candidate genes were predicted by blasting against the
cv. Chinese Spring reference genome IWGSC RefSeq v1.0. [104]. Gene annotations, gene
ontologies (GOs), InterPros, and details for the potential candidate genes were obtained
using EnsemblPlants, and Persephone web-based platforms (http://plants.ensembl.org/
Triticum_aestivum/Info/Index; https://web.persephonesoft.com/?data) (accessed on
12 March 2024).

5. Conclusions

The GWAS revealed significant QTNs underlying both studied traits. Among these,
seven GPC-associated loci as well as four TKW-related loci had notably positive effect on
the traits, thereby representing promising genomic regions for use in breeding projects
aiming at improving grain protein and yield, respectively. While some of the loci confirmed
already published ones, others might be new. In addition, to our knowledge, the targeted
GPC-linked regions on chromosomes 2A, 7A, and 7B, as well as two TKW-associated
intervals on chromosomes 1B and 6A, have not been previously linked to the studied
traits. Based on their gene functional annotation, a few of the many high-confidence genes
that were retrieved from the trait-associated genomic regions were selected as intriguing
candidates. Annotations to senescence- and germination-related proteolysis, peptide chain
elongation and protein translocation, synthesis of storage proteins, structural carbohydrates,
and auxin, as well as a number of transcriptional regulatory factors and signal transducers,
are present in these genes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13081084/s1, Figure S1: Heat map of kinship matrix with
dendrogram based on 17,083 SNPs; Figure S2: Q-Q plots of the genome-wide association scan for
(a) GPC and (b) TKW; Figure S3: Climate characteristics at the experimental site, Sofia, Bulgaria
(42◦41′ N, 23◦19′ E) during three crop seasons (2013/14, 2016/17 and 2020/21). The precipitation is
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related to the climate norm (1961–1990) accepted by the Bulgarian National Institute of Meteorology
and Hydrology, Ministry of Environment and Water; Table S1: Information about 179 bread wheat
accessions from Bulgaria and summary statistics for GPC from three crop seasons (harvests 2014,
2017, 2021), average over the seasons, and the average BLUE values; Table S2: Information about
179 bread wheat accessions from Bulgaria, and summary statistics for TKW from three crop seasons
(harvests 2014, 2017, 2021), average over the seasons, and the average BLUE values; Table S3: Analysis
of variance of the single factor “Growing season” on GPC and TKW in a set of 179 bread wheat
accessions from Bulgaria in three growing seasons (harvests 2014, 2017, 2021); Table S4: Variability
and stability of GPC in a set of 179 bread wheat accessions from Bulgaria; Table S5: Variability
and stability of TKW in a set of 179 bread wheat accessions from Bulgaria; Table S6: Values of
linkage disequilibrium (LD) decay for each chromosome, homoeologous group and genome in a
set of 179 bread wheat accessions from Bulgaria; Table S7: Comparative analysis at the significant
GPC-associated SNP loci; Table S8: Comparative analysis at the significant TKW-associated SNP loci;
Table S9: Candidate genes for GPC; Table S10: Candidate genes for TKW.
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