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Abstract: Euonymus hamiltonianus Wall. is considered a medicinal plant and is used to treat pain,
cough, dysuria, and cancer, but a clear phytochemical investigation of its biological activities has
yet to be performed. Investigation of chemical constituents of the leaves of Euonymus hamiltonianus
Wall. led to the isolation of three new compounds by chromatography techniques, euonymusins A–C
(1, 10, and 11), and the acquisition of new spectroscopic data for euonymusin D (2), along with the
identification of ten known compounds. The chemical structures of the compounds were established
using extensive spectroscopic techniques, including NMR, MS, and hydrolysis, and compared with
the published data. These compounds were tested in vitro for their inhibitory effects on beta amyloid
production (Aβ42). Compounds 13 and 14 displayed weak inhibition, with IC50 values ranging
from 53.15 to 65.43 µM. Moreover, these compounds were also assessed for their inhibitory effects
on nitric oxide production. Of these compounds, 3, 4, and 14 displayed inhibitory effects on NO
production, with IC50 values ranging from 14.38 to 17.44 µM. Compounds 3, 4, and 14 also suppressed
LPS-induced expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein.

Keywords: Euonymus hamiltonianus; flavonols; beta amyloid; NO; iNOS; COX-2

1. Introduction

Neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease
(PD), and multiple sclerosis (MS), affect the lives of millions of patients across the world
and cause a variety of socio-economic problems [1]. The main reasons for these symp-
toms are the formation and accumulation of extracellular senile plaques of amyloid beta
(Aβ) [2,3]. It was reported that Aβ is the main component and plays an important role
in AD expression [4], causing astrocyte activation and neuronal apoptosis, leading to the
deterioration of AD. Aβ is produced by proteolysis of amyloid precursor protein (APP), a
type I transmembrane protein. APP can be cleaved in mediated stages through amyloido-
genic pathways by β-secretase 1 (BACE1) and then γ-secretase [5]. Therefore, inhibition
of the aggregation of Aβ peptides is considered one of the potential pieces of evidence
for the neuroprotective effect of natural products in the progression of neurodegenerative
diseases [6]. Additionally, during this progress, microglial cells are a type of CNS immune
cell which play an essential role in immune defense and tissue repair with a self-limiting
mechanism. Over-activation of microglia has been determined as a property of neurode-
generative diseases, leading to the production of various proinflammatory cytokines and
neurotoxic substances, including interleukin-1β (IL-1β), IL-6, tumor necrosis factor-alpha
(TNF-α), and nitric oxide (NO) [1]. NO is a product of the inducible isoforms of inducible
nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) enzymes. It was demonstrated
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that iNOS is not normally expressed in the brain, but LPS upregulates iNOS expression
in microglial cells, astrocytes, and possibly neurons [7]. Two forms of COX, COX-1 and
COX-2, are known to be induced in response to many stimulants and to be activated in
sites of inflammation [8]. Several studies have reported that COX-2 is associated with
cytotoxicity in neurodegenerative diseases. Taken together, the inflammatory mediators,
including iNOS and COX-2, are responsible for the symptoms of severe neuronal damage
in neurodegenerative diseases [7].

Phytochemical compounds, originating from plant sources, have demonstrated promis-
ing capabilities in the treatment of neurodegenerative conditions [9]. As more and more
evidence suggests that chronic inflammation caused by microglia contributes to disorders
in the central nervous system, it is becoming clear that anti-inflammatory natural products
and their components can serve as powerful protectors against a range of CNS patholo-
gies [10]. Euonymus hamiltonianus Wall. is a medicinal plant belonging to the Celastraceae
family, which is distributed in many Asian countries, including Korea, Japan, China, and
India [9]. This indigenous plant is a deciduous tree that has been used for traditional
treatment of various conditions, such as diuretic, carminative, stimulant, gynecological,
coughing, pain, and cancer-related diseases [10]. This medicinal plant species, E. hamiltoni-
anus, was used to treat pain, cough, dysuria, and cancer and exhibited effects of enhanced
memory and cognitive abilities when applied as a functional food in the prevention and
treatment of cognitive impairment-related diseases [11,12]. The genus Euonymus of the
family Celastraceae has been investigated and commonly compared to the species E. hamil-
tonianus. The genus Euonymus is reported to contain sesquiterpenes, flavonoids, and
coumarins [13–15]. As of this moment, there are only a limited number of reports on the
phytochemistry and related activities performed by E. hamiltonianus. Previous studies have
shown some of its phytochemicals by identifying novel coumarins in this indigenous plant,
but these phytochemicals did not perform any related bioactivity [16]. Furthermore, to
date, only three triterpenoids, six sesquiterpenoids, two flavonoids, and two coumarins
have been identified in this plant species, and further in-depth phytochemical investigation
of E. hamiltonianus is still needed [17–20].

As part of an ongoing chemical investigation to discover new potential drug candi-
dates derived from natural products for the treatment of neurodegenerative diseases [7],
30% ethanol extraction was selected for further research due to the strong inhibition ob-
served in total processed extractions with different ratios of ethanol and water. This
prompted us to identify the active principles of E. hamiltonianus by bioactivity-guided
fractionation [Figure S1]. This study describes the isolation, structural elucidation, and
biological investigation of three new compounds, the acquisition of new spectroscopic
data for one compound, and the identification of ten known compounds in relation to the
inhibition of Aβ peptide production in two kinds of cells. The products whose inhibition
was assessed were Aβ42 isoforms in APPsw-transfected HeLa cells and proinflammatory
factor secretions, such as NO, iNOS, and COX-2, in lipopolysaccharide (LPS)-activated
BV-2 microglial cells.

2. Results and Discussion
2.1. Structural Determination of Compounds 1, 2, 10, and 11

Compound 1 was a yellowish, amorphous powder, and its molecular formula of
C33H40O21 was determined by high-resolution electrospray ionization mass spectrometry
(HR-ESIMS) with m/z 773.2138 [M + H]+ (calcd. for C33H41O21, 773.2135) (Figure 1). Its
IR spectrum showed the presence of hydroxyl (3266 cm−1), carbonyl (1732 cm−1), and
aromatic ring (1471 cm−1) absorption bands, while the UV spectrum suggested the presence
of a highly conjugated system at 250 nm. The 1H NMR spectrum of 1 indicated the existence
of an ABX system at δH 7.86 (1H, d, J = 2.0 Hz, H-2′), 7.65 (1H, d, J = 8.5, 2.0 Hz, H-6′),
and 6.93 (1H, d, J = 8.5 Hz, H-5′); a pair of meta-coupled aromatic protons, δH 6.82 (1H,
d, J = 2.0 Hz, H-8) and 6.44 (1H, d, J = 2.0 Hz, H-6); three β-anomeric protons, δH 5.76
(1H, d, J = 7.0 Hz, H-1′′), 5.08 (1H, d, J = 7.5 Hz, H-1′′ ′′), and 4.62 (1H, d, J = 7.5 Hz,
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H-1′′′); and one methoxy group, δH 3.85 (3H, s, 3′-OCH3). The 13C NMR spectrum of 1
showed 33 signals that indicated the presence of two benzene rings, a methoxy group (δC
55.8), and one ketone group (δC 177.6), as well as three anomeric carbon units representing
sugar moieties, two glucose units (δC 98.1 and 99.8) and one xylose unit (δC 104.2). The
spectroscopic data of 1 showed a close resemblance to the flavonoid glycoside isorhamnetin-
3,7-O-di-β-D-glucopyranoside that was isolated from Brassica rapa [21]. Both were closely
related structures, but compound 1 had an additional xylose group that was positioned
at C-2′′ in 1. This was further confirmed by a heteronuclear multiple bond correlation
(HMBC) experiment, showing a significant correlation between δH 4.62 (Xylose, H-1′′′) and
δC 81.6 (C-2′′) (Figure 2). Acid hydrolysis of 1 by 5% HCl/MeOH confirmed the presence of
D-glucose and xylose, which were determined by comparisons of the retention times with
those of authentic samples (Figure S6) [22]. Therefore, 1 was identified to be isorhamnet-in-
3-O-(2′′-O-(β-D-xylopyranosyl)-β-D-glucopyranoside)-7-O-β-D-glucopyranoside (Figure 1).
It was named euonymusin A.
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Compound 2 was obtained as a yellowish, amorphous powder. HR-ESIMS data
showed a molecular ion peak at m/z 759.2010 [M + H]+ (calcd. for C32H39O21, 759.1978),
indicating a molecular formula of C32H38O21. Its IR spectrum showed the presence of
hydroxyl (3309 cm−1), carbonyl (1731 cm−1), and aromatic ring (1454 cm−1) absorption
bands. The UV spectrum suggested the appearance of the highest absorption band at
250 nm. The spectroscopic data of 2 closely resembled those of 1 (Table 1), except for the
fact the latter had one less methoxy group. 2 was previously identified as quercetin-3-O-(2′′-
O-(β-D-xylopyranosyl)-β-D-glucopyranoside)-7-O-β-D-glucopyranoside by the personal
empirical experience of Fiasson, K. G. and co-workers without significant spectroscopic data
to support the identification (Figure 1) [23]. This study reports the first full spectroscopic
data for a purified compound, 2 (Figure S3.1–S3.6). Therefore, the structure of 2 was
completely determined, and it was named euonymusin D.
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Compound 10 was obtained as a yellow, amorphous powder and displayed the
adduct ion in the HR-ESIMS data at m/z 359.1092 [M + Na]+ (calcd. for C17H20O7Na,
359.1101). The 1H NMR spectrum (Table 1) of 10 indicated the characteristic signals of
an AA’BB’ system at δH 7.59 (d, J = 8.5 Hz) and 6.79 (d, J = 8.5 Hz) and olefinic signals
at δH 7.60 (d, J = 16.0 Hz) and 6.46 (d, J = 16.0 Hz). The presence of additional carbonyl
and methylene was also deduced from the signals at δH 5.37 (dd, J = 8.0, 4.0 Hz), 2.86
(dd, J = 12.0, 4.5 Hz), and 2.79 (dd, J = 12.0, 3.5 Hz). Moreover, the signal of an n-butyl
moiety was distributed at δH 4.10, 1.54, 1.30 (each 2H, m), and 0.86 (t, J = 7.0 Hz). The 13C
NMR spectroscopic data of 10 indicated the presence of three carbonyl groups at 170.7,
169.0, and 165.8. Overall, the NMR spectrum showed a close resemblance to previously
isolated phytochemical 2-O-(trans-coumaroyl)malic acid [24]. Taken together, compound
10 appeared to possess a coumaroyl moiety in the trans-configuration, malic acid, and an
n-butyl moiety in its structure. Compound 10 has an additional butyl moiety attached,
as was determined via HMBC, according to which H-1′′ (δH 4.10) correlated with C-1 (δC
169.0). Other HMBC correlations are mentioned in Figure 2. With this evidence, compound
10 was determined as p-coumaroylmalic acid 1-butyl ester. The configuration of 10 was
determined by comparison of specific optical rotation values with reported values. The
optical rotation value of 10 {a23

D -27.3 (c 1.1, MeOH)} was in good agreement with that of
p-coumaroyl-D-malic acid 1-methyl ester {a25

D -12.8 (c 0.5, MeOH)}, whereas (+)-(E)-caffeoyl-
L-malic acid had an opposite value of {a20

D +31.5 (c 1.36, H2O)} [25]. Thus, the structure of 10
was determined (Figure 1), and it was named euonymusin B.

Compound 11 was obtained as a colorless, amorphous powder. Its molecular for-
mula was determined to be C9H6O4 by HR-ESIMS at m/z 179.0343 [M + H]+ (calcd. for
C9H7O4, 179.0344). Its IR spectrum showed the presence of hydroxyl (3440 cm−1), carbonyl
(1777 cm−1), and aromatic ring (1370 cm−1) absorption bands. Its UV spectrum showed
maximum absorption at 250 nm. The 1H NMR spectrum of 11 exhibited signals of a pair of
cis-coupled protons, δH 7.97 (1H, d, J = 5.6 Hz, H-3) and 6.19 (1H, ovl, H-4), and a pair of
meta-coupled protons, δH 6.33 (1H, d, J = 1.6 Hz, H-8) and 6.19 (1H, ovl, H-6). The 13C NMR
spectrum showed nine carbon signals, comprising one benzene ring, two olefinic groups,
and one carbonyl group (δC 183.4). The above results indicated that compound 11 was an
isocoumarin derivative similar to 5,7-dihydroxy-4-methylisocoumarin [26], but compound
11 did not have an additional methyl group. The position of functional groups was also
clarified by HBMC correlations (Figure 2). Thus, the structure of 11 was conclusively
determined to be 5,7-dihydroxyisocoumarin (Figure 1), and it was named euonymusin C.
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Table 1. 1H NMR and 13C NMR data of compounds 1, 2, 10, and 11.

Position
1 a 2 a 10 a 11 b

δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC

1 169.0 183.4
2 156.4 156.1 5.37, dd (8.0, 4.0) 67.9
3a 133.2 133.3 2.86, dd (12.0, 4.5) 35.7 7.97, d (5.6) 158.2
3b 2.79, dd (12.0, 3.5)
4 177.6 177.6 170.7 6.19, ovl c 111.6
4a 105.7 105.6 159.9
5 160.9 161.0 163.5
6 6.44, d (2.0) 99.3 6.42, d (2.0) 99.3 6.19, ovl c 100.2
7 162.9 162.8 166.2
8 6.82, d (2.0) 94.6 6.76, d (2.0) 94.3 6.33, d (1.6) 95.1
8a 156.0 156.0 106.6
1′ 121.0 121.1 124.9
2′ 7.86, d (2.0) 113.2 7.59, d (2.5) 115.3 7.59, d (8.5) 130.5
3′ 147.1 145.0 6.79, d (8.5) 115.5
4′ 149.8 148.8 160.3
5′ 6.93, d (8.5) 115.3 6.86, d (8.0) 116.4 6.79, d (8.5) 115.5
6′ 7.65, dd (8.5, 2.0) 122.8 7.67, dd (8.0, 2.5) 122.1 7.59, d (8.5) 130.5
7′ 7.60, d (16.0) 145.9
8′ 6.46, d (16.0) 112.8
9′ 165.8
1′′ 5.76, d (7.0) 98.1 5.73, d (7.0) 97.9 4.10, m 64.4
2′′ 3.48, d (7.0) 81.6 3.49, d (7.0) 82.0 1.54, m 29.7
3′′ 3.13, m 77.6 3.10, m 77.8 1.30, m 18.2
4′′ 3.05, dd (7.0, 3.0) 73.9 3.29, d (8.0) 74.1 0.86, t (7.0) 13.3
5′′ 3.25, m 73.2 3.14, m 73.2
6′′a 3.55, m 60.5 3.70, m 60.7
6′′b 3.35, m 3.53, d (11.5)
1′′′ 4.62, d (7.5) 104.2 4.58, d (7.5) 104.7
2′′′ 3.44, d (8.0) 77.3 3.06, d (7.5) 77.2
3′′′ 3.00, d (8.0) 76.2 3.14, m 76.3
4′′′ 3.23, m 69.4 3.24, d (9.0) 69.4
5′′′a 3.66, dd (11.0, 5.0)

65.6
3.67, m 65.8

5′′′b 2.98, d (11.0) 3.03, m
1′′ ′′ 5.08, d (7.5) 99.8 5.10, d (7.5) 99.7
2′′ ′′ 3.12, m 69.6 3.27, d (7.5) 69.6
3′′ ′′ 3.28, m 76.5 3.10, m 76.5
4′′ ′′ 3.11, m 77.1 3.46, d (8.0) 76.9
5′′ ′′ 3.16, m 69.5 3.11, m 69.5
6′′ ′′a 3.69, m 60.7 3.44, m 60.7
6′′ ′′b 3.46, d (7.0) 3.31, m
3′-OCH3 3.85, s 55.8
5-OH 12.60, s 12.69, brs
4′-OH 9.95, brs
3′′-OH 4.46, d (5.5)
4′′-OH 5.20, brs
6′′-OH 4.45, d (5.5)
2′′′-OH 4.66, d (6.0)
3′′′-OH 5.54, d (4.0)
4′′′-OH 5.13, brs
2′′ ′′-OH 5.02, m
3′′ ′′-OH 5.45, d (4.5)
4′′ ′′-OH 5.49, d (4.0)
6′′ ′′-OH 4.65, d (5.5)
OH 4.93, brs

a 1H NMR (500 MHz) and 13C NMR (125 MHz) measured in DMSO-d6. b 1H NMR (400 MHz) and 13C NMR
(100 MHz) measured in methanol-d4. c Overlapped with other signals. Assignments were supported with COSY,
HMQC, and HMBC NMR spectra.

Repeated column chromatography of n-BuOH soluble fractions led to the isolation
of three new compounds, euonymusin A–D (1, 10, and 11); one new set of spectroscopic
data that had not previously been reported (2); together with ten known compounds
whose chemical structures were identified as those of known compounds by comparing
their spectroscopic data with data reported in the literature, namely, quercetin-3-O-β-D-
galactopyranoside (3) [27], quercetin-3,7-di-O-β-D-glucopyranoside (4) [27], isorhamnetin-
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3,7-di-O-β-D-glucopyranoside (5) [28], quercetin-3-O-sambubioside (6) [29], isoquercetin
(7) [30], quercetin-3,3′-di-O-β-D-glucopyranoside (8) [31], liriodendrin (9) [32], caffeic acid
trans-3-O-β-D-glucopyranoside (12) [33], methyl trans-3-O-(β-D-glucopyranosyl) caffeate
(13) [34], and benzyl gentiobioside (14) [34] (Figure 1).

2.2. Chemical Profiling of Phytochemicals 1–14

In this study, qualitative profile analysis was performed on the 30% EtOH crude
extract of the leaves of E. hamiltonianus using HPLC. The isolated phytochemicals, 1–14,
were used as standards and compared to the crude extract profile represented by a high-
performance liquid chromatogram (Figure 3). While analyzing the chemical profile of the
HPLC chromatogram, the isolated compound 2 showed signs of degradation. With com-
parative UV area normalization, compound 2 was confirmed as a pure compound initially
when isolated (Figure S3.8). After compound 2 was stored for 27 days, the compound was
re-evaluated through LC-MS analysis and showed signs of degradation (Figure S3.9). For
reconfirmation, LC-MS analyses of both the dried powdered form of the compound when
isolated and the compound in DMSO solution were performed (Figure S3.9), both sets of
results showing signs of degradation. Compound 2 was degraded into three separate peaks,
and the original compound 2 indicated by m/z 759.2 was verified by LC-MS analysis, and
the peaks of 2a and 2b were indicated by m/z 465.1 and 627, respectively. This suggested
that the original compound 2 was partially degraded into different quercetin glycosides,
with possible hydrolysis of the sugar moieties. Due to the close resemblance of compound
2 to compound 1, it was investigated in the same manner after a significant length of
time. Compound 1 did not show any sign of degradation (Figure S3.10), and the structural
difference between 1 and 2 is the substitution of a methoxy group at C-3′. Previous studies
suggested that the presence of abundant hydroxyl groups in the chemical structures of
flavonoids can facilitate degradation, whereas substituents of sugar moieties and methoxyl
groups can possibly protect against degradation of flavonoids [35,36].
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(30–100%), 40–45 min (100%).

2.3. Inhibition of the Aβ Aggregation of Compound 13

Preventing the harmful aggregation of Aβ peptides has been indicated to be a promis-
ing strategy against neurodegenerative disease [37]. Phytomedicines have been widely
reported to be utilized in the treatment of neurodegenerative diseases and other conditions
associated with Aβ [38]. The total extraction and fractions (Figure S1) of E. hamiltonianus
displayed inhibitory effects against Aβ production [19]. Secretion levels of Aβ42 were
significantly decreased by EA and BuOH fractions, with inhibitions of 50.6% and 50.4% at
25 µg/mL, respectively. All isolated compounds were tested for their inhibitory activity
against Aβ42 production in APPsw-transfected HeLa cells. Among them, compound 13
showed weak inhibition of Aβ42 production with an IC50 value of 65.43 µM (Table 2).
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Table 2. Inhibition of Aβ peptide and NO production in HelaAPP and BV-2 microglial cells by the
14 isolated compounds (1–14).

Compounds
IC50 Value (µM) a

Aβ42 NO Cytotoxicity

1 - >100 >100
2 >100 >100 >100
3 - 16.33 ± 2.94 >100
4 - 14.38 ± 8.68 >100
5 - >100 >100
6 >100 >100 >100
7 - >100 >100
8 - >100 >100
9 - >100 >100

10 - >100 >100
11 - >100 >100
12 >100 >100 >100
13 65.43 ± 6.71 >100 >100
14 - 17.44 ± 2.77 >100

Justicidine A b 1.0 ± 0.043
Dexamethasone b 1.24 ± 0.104 >100

a Cells were pretreated with isolated compounds (50 µM) for 1 h and incubated with 100 ng/mL LPS for 24 h. The
results are presented as means ± SDs (n = 3). b Positive control—not detected.

The accumulation of Aβ is a characteristic trait of both hereditary and random occur-
rences of AD. The intense focus of pharmaceutical developments for the treatment of AD
is to decrease Aβ levels, a task that seems to be quite difficult [39]. Inhibitors that have
been directly proven to be effective in reducing Aβ production in the lab have encoun-
tered potential issues during clinical trials [40]. This study shows that only compound
13 (Table 2) reduced Aβ levels in Hela-swAPP cells. This suggests that while compound
13 may not be highly potent or efficient, it does interact with Aβ in a way that results in
inhibition. The inability to detect decreased Aβ in the supernatants of Hela cells could
be due to the extremely low amounts of the peptide these cells secrete. Considering the
relative content in the extract, the effect was similar between the subfraction Bu6 + 7
(Figure S1) and compound 13, and this indicates that 13 may possibly alleviate AD via
targeting anti-β-amyloidosis during the pathogenesis of AD.

2.4. Anti-Inflammation Effect of the Isolated Compounds 3, 4, and 14

The cytotoxic effects of the isolated compounds (1–14) were evaluated by the MTT assay
and did not affect the viability of BV-2 microglial cells following 12 h of treatment in the
presence or absence of LPS, even at a concentration of 100 µM (Table 2). The anti-inflammatory
effects of the fourteen compounds (1–14) isolated from E. hamiltonianus were evaluated in
activated BV-2 microglial cells by the production of NO and proinflammatory cytokines.
BV-2 microglial cells were stimulated with 0.1 µg/mL LPS for 12 h in the presence of the
compounds at various concentrations, and the levels of NO in the culture supernatants were
measured using Griess reactions. Dexamethasone was used as a positive control compound,
with an IC50 value of 1.24 µM. The results of the NO production assay, including IC50 values,
are summarized in Table 2. Among them, those for compounds 3, 4, and 14 are displayed,
their IC50 values ranging from 14.38 to 17.44 µM, but the other compounds were inactive.
In a comparison of the activities of the pair of 4 (IC50 = 14.38 µM) and 5 (IC50 > 100 µM),
the substituted hydroxy group was indicated to have a more potent activity against NO
production than methoxy substitution at position C-3′. In the same manner, the substi-
tuted sugar moiety at C-3 also showed a different inhibition of NO production compared
with 3 (galactose, IC50 = 14.38 µM) and 6 and 7 (sambubiose and glucose, respectively;
IC50 > 100 µM), showing greater potential inhibition for the substituted galactopyranoside
unit. The compounds were continuously assessed to determine whether they suppressed
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the expression of iNOS and COX-2 in LPS-stimulated BV-2 microglial cells. The cells
were stimulated with LPS in the presence of these compounds at various concentrations,
and the expression levels of iNOS and COX-2 were determined by Western blotting. The
results indicated that 3, 4, and 14 also downregulated expression levels of LPS-induced
iNOS and COX-2 proteins in a concentration-dependent manner (Figure 4). Among them,
compound 3 exhibited the most potent inhibitory activity against LPS-induced iNOS and
COX-2 expression at treatment concentrations of 1.0, 2.0, and 4.0 µM. Although compound
3 inhibited NO production to a somewhat lesser extent than compound 4, 3 significantly
suppressed iNOS and COX-2 protein expression compared to 4. Thus, compound 3 may be
considered a potential anti-inflammatory agent.
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Lipopolysaccharide (LPS), a key constituent of the cell wall in Gram-negative bacteria,
is instrumental in triggering inflammation, with the ability to activate immune cells and
provoke an inflammatory reaction [41]. And microglia residing in the CNS plays a crucial
role in preserving the balance within its microenvironment. When microglia are activated
by LPS, they release a large number of cytotoxic mediators, such as NO, causing neuronal
damage [42]. Phytochemicals, which are secondary metabolites produced by plants, serve
as a defense mechanism against environmental pressures like LPS-induced inflammatory
stress [43]. The treatments with compounds 3, 4, and 14 effectively downregulated the
production of inflammatory mediators, including NO and iNOS, against LPS. Moreover,
some research reports have found that certain phytochemicals can inhibit the production
of NO and iNOS without inhibiting COX-2 [44]. In our study, a similar phenomenon was
observed in the treatment of compound 14, which showed no significant effect in terms
of COX-2 inhibition. It was indicated that induced COX-2 can mobilize excessive release
of PGE2, which can be a great booster for the progress of inflammation [45]. Therefore,
inhibition of COX-2 will also be an essential effect when investigating the anti-inflammatory
activity of natural products. Combined with iNOS and NO inhibition, compounds 3
and 4 showed significant anti-inflammatory activity, and compound 3 in particular can
be a potential target for potential development as an anti-inflammation constituent of
E. hamiltonianus.

3. Materials and Methods
3.1. General Experimental Procedures

UV spectra were recorded using a Thermo spectrometer. IR spectra were recorded
using a JASCO FT/IR-4100 spectrometer (JASCO, Easton, MD, USA). The 1D- and 2D-NMR
spectra were obtained using Varian Unity Inova 400 MHz and 500 MHz spectrometers with
tetramethylsilane (TMS) as an internal standard, and the chemical shifts were recorded
as δ values (ppm). Mass spectra were recorded using a Thermo Scientific™ (Q Exactive)
EASY-nLC 1000 spectrometer (San Jose, CA, USA). Silica gel (Merck, Darmstadt, Germany;
63–200 µm particle size), RP-C18 (Merck; 75 µm particle size), sephadex LH-20 (Pharmacia,
Uppsala, Sweden ), and dianion HP-20 (Supelco, St. Louis, MI, USA) were used for column
chromatography. TLC was performed using Merck silica gel 60 F254 and RP-C18 F254 plates
(Merck, Darmstadt, Germany). Preparative high-performance liquid chromatography
(HPLC) was performed using a Water System with a UV detector 2996 (Waters, Miford,
MA, USA) and a YMC-Triart C18 column (10 mm × 250 mm, 5 µm particle size; YMC Co.,
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Ltd., Kyoto, Japan). Compounds were visualized after spraying with aqueous 10% H2SO4
and heating for 3–5 min.

3.2. Plant Materials

The leaves of E. hamiltonianus Wall. were collected at Hantaek Botanical Garden
(37.094376, 127.406739; entrance of the botanical garden) in Yongin-si, Gyeonggi-do, Re-
public of Korea, from August to October 2019. Botanical identification was performed
by Prof. Hyun Ok Yang, and the voucher specimen KGC07EH was deposited at the
Herbarium of the Korea Institute of Science and Technology (Gangneung, Gangwon-do,
Republic of Korea).

3.3. Extraction and Isolation

The leaves of E. hamiltonianus Wall. (3.0 kg) were extracted three times (3 h × 15 L)
with 30% EtOH. After the solvent was removed under reduced pressure, the residue
was suspended in H2O and then partitioned with n-hexane (0.5 g), EtOAc (12.0 g), n-
BuOH (136.0 g), and residue, successively. The BuOH-soluble fraction was continuously
chromatographed (diaion HP-20, Supelco) on a silica gel column using a stepwise gradient
of H2O:MeOH (100%:0 to 0:100%, each 20 L) to yield thirteen fractions (EHBu.1–13), while
the EtOAc-soluble fraction was eluted on a normal phase silica gel column using a solvent
gradient of MC:MeOH 40:1 to 0:1 to obtain ten subfractions (EHEA.1–10), according to
their TLC profiles. A combined fraction, EHBu.6 + 7 (6.5 g), was subsequently subjected
to silica gel column chromatography (60 cm× 6.5 cm) and eluted with MC:MeOH:H2O
(25:1:0.1) to yield fourteen subfractions (EHBu.6A to N). Subfraction EHBu.6C (1.5 g) was
chromatographed on a silica gel column (60 cm × 3.5 cm) using a gradient solvent system
of EA:MeOH:H2O (8:1:0.1) to obtain 5 subfractions EHBu.6C1–5). Subfractions EHBu.6C2
(950.0 mg) and 6C4 (720.0 mg) were further purified over YMC RP-18, using a sephadex
LH-20 column with MeOH-H2O (1:1) and a semi-preparative Waters HPLC system with an
isocratic solvent system of 30% MeOH in H2O + 0.1% formic acid (flow rate 3 mL/min)
kept for over 60 min as an eluent to yield 1 (19.0 mg), 2 (55.0 mg), 3 (2.1 mg), 4 (8.0 mg), 5
(3.0 mg), 6 (2.3 mg), 7 (14.0 mg), 8 (2.2 mg), 9 (5.6 mg), 12 (5.0 mg), and 14 (6.0 mg), with UV
detection at 210 and 254 nm. In the same manner, compounds 10 (2.4 mg) and 11 (3.8 mg)
were isolated from subfractions of EHEA.5 (260.0 mg) and EHEA.8 (140.0 mg), respectively.

3.4. Euonymusin A (1)

A yellowish, amorphous powder; UV λmax (DMSO) (ε): 250 (1500) and 300 (1150) nm;
IR (ATR) νmax: 3266, 1732, 1471, and 1189 cm−1; 1H and 13C NMR (DMSO-d6) data, see
Table 1; HR-ESIMS m/z 773.2138 [M + H]+ (calcd. for C33H41O21, 773.2135).

3.5. Euonymusin D (2)

A yellowish, amorphous powder; UV λmax (DMSO) (ε): 250 (46) and 300 (35) nm;
IR (ATR) νmax: 3309, 1731, 1454, and 1196 cm−1; 1H and 13C NMR (DMSO-d6) data, see
Table 1; HR-ESIMS m/z 759.2010 [M + H]+ (calcd. for C32H39O21, 759.1978).

3.6. Euonymusin B (10)

A yellow, amorphous powder; a23
D –27.3 (c 1.1, MeOH), UV λmax (DMSO) (ε): 210

(90), 235 (80), and 330 (140) nm; IR (ATR) νmax: 3324, 2943, 2838, 1646, 1445, 1413, and
1021 cm−1; 1H and 13C NMR (DMSO-d6) data, see Table 1; HR-ESIMS m/z 359.1092 [M + Na]+

(calcd. for C17H20O7Na, 359.1101).

3.7. Euonymusin C (11)

A colorless, amorphous powder; UV λmax (DMSO) (ε): 220 (50), 250 (100), and 290 (40)
nm; IR (ATR) νmax: 3440, 1777, 1370, and 1193 cm−1; 1H and 13C NMR (methanol-d4) data,
see Table 1; HR-ESIMS m/z 179.0343 [M + H]+ (calcd. for C9H7O4, 179.0344).
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3.8. Hydrolysis of 1

Compound 1 (1.0 mg) was hydrolyzed by 4.0 mL of 5% HCl/MeOH for 3 h at 95 ◦C.
After the reaction, the mixture was dried and separated in one part CH2Cl2 to three parts
water (15 mL CH2Cl2), after which the water residue was evaporated in vacuo to dryness
with MeOH, then analyzed by HPLC, and the results were compared with authentic
samples [20].

3.9. Aβ Assay

APPsw-transfected HeLa cells were cultured with the isolated compounds or DMSO in
Dulbecco’s modified Eagle medium (DMEM, Welgene, Gyeongsan-si, Republic of Korea) for
8 h, and then the cell culture supernatants were collected for the following analyses. For the
detection of Aβ secretion, kits for Aβ42 (KHB3442) and Aβ40 (KHB3482) were purchased
from the Invitrogen Company and used according to the supplier’s instructions [46].

3.10. Cell Cultures and MTT Assay for Cell Viability

For the Aβ-Hela-APPsw model, Hela cells were stably transfected with an APP
carrying the Swedish mutation (APPsw) using BioT (Bioland Scientific LLC, Paramount,
CA, USA) according to the manufacturer’s instructions, which was provided by Prof. Tae-
Wan Kim (Department of Pathology, Columbia University of Medical Center, New York,
NY 10032, USA). APPsw-transfected HeLa cells were grown in DMEM supplemented
with 10% fetal bovine serum (FBS; Thermo Fisher Scientific, Lafayette, CA, USA), 1%
penicillin/streptomycin (Thermo Fisher Scientific, Lafayette, CA, USA), 260 µg/mL Zeocin,
and 400 µg/mL G418. The cells were maintained at 37 ◦C under a humidified atmosphere of
5% CO2. The stock sample solution was dissolved in DMSO and kept at −20 ◦C and diluted
to the final concentration in fresh medium before each experiment. For the cell viability
assay, Hela cells were cultured in 96-well plates for 24 h and then various concentrations
of comp 27 (0–10 µM) were treated for 12 h. The EZ-Cytox kit (DAEILLAB, Cheongwon,
Republic of Korea) was applied to detect the cell viability, following the manufacturer’s
instructions, and measurements were taken by a microplate reader (BIO-TEK® Dower-
Wave; BioTek, Winooski, VT, USA) under absorbance at 450 nm. The results were presented
as the percentage of MTT reduction, compared with the control group as 100%. For the
LPS-induced microglia model, the BV-2 mouse microglia cell line was provided by Prof.
Lee Sung Jung’s research team in the College of Medicine, Seoul National University, and
was cultured in DMEM-F12 with 5% FBS and 1% penicillin/streptomycin at 37 ◦C under a
humidified atmosphere containing 5% CO2. And the cell viability assay was performed
using the Aβ-Hela-APPsw model.

3.11. Determination of NO Production and the Cell Viability Assay

Cells were grown in 6-well plates (5 × 105 cells per well) for 24 h, and after incubation
for 24 h, the cells were pre-administrated 5, 10, and 20 µM concentrations of the sample for
1 h, then treated with 0.1 µg/mL LPS for 12 h. The media were collected and centrifuged
at 13,000 rpm for the removal of dead cells. The supernatants were collected and mixed
with an equal volume (50 µL) of Griess reagents (1% sulfanilamide and N-(1-naphthyl)
ethylenediamine dihydrochloride in 2.5% H3PO4) for 5 min at room temperature, and
the Nitric Oxide concentration was measured at 540 nm using a microplate reader and
compared with the sodium nitrite standard curve.

3.12. Western Blot Analysis

The total protein samples (10 µg) were loaded in sodium dodecyl sulfate polyacry-
lamide gel electrophoresis (SDS–PAGE) gels with 10% acrylamide/bis and transferred to
polyvinylidene difluoride membranes (Millipore, Burlington, MA, USA). Then, the mem-
branes were blocked with 5% silky milk dissolved in TBST (Tris Buffered saline Tween)
for 1 h under room temperature and incubated overnight at 4 ◦C with specific primary
antibodies (1:1000). After being washed with TBST, the membranes were incubated with
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secondary HRP-conjugated IgG (1:2000) at room temperature for 1 h and visualized using
enhanced chemiluminescence (ECL) reagents (Thermo Fisher Scientific, Lafayette, CA,
USA). Densitometry analysis of the bands was performed with the fusion solo system
(Vilber, Paris, France). The band densities were determined as the intensities of protein by
TotalLab TL120 software v2009 (TotalLab, Newcastle, UK).

3.13. Statistical Analysis

Data were expressed as the mean ± SD of each independent repeat. For comparison
of three or more repeats, data were analyzed by one-way analysis of variance (ANOVA)
with Dunnett’s post hoc test. A value of p < 0.05 was considered statistically significant.
Statistical tests were carried out using GraphPad Prism 5.0 (GraphPad Software, San Diego,
CA, USA).

4. Conclusions

The chemical investigation of the leaves of E. hamiltonianus was carried out and
brought a general phytochemical view with a structural characterization of eight flavonols
(1–8), one lignan (9), and five phenols (10–14, including one isocoumarin and four phenolic
derivatives). Among them, one novel flavonoid glycoside (1), one phenolic acid (10),
and one coumarin (11) were identified as new compounds, and this is the first study
to present the purified spectroscopic data of euonymusin D (2). The neuroprotective
effects of the isolated compounds were elucidated via assessment of their inhibition of Aβ

and NO production. Their inhibitory effects were weak with respect to Aβ production,
whereas compounds 3, 4, and 14 displayed good inhibitory effects against NO production.
Furthermore, these compounds suppressed the expression levels of iNOS and COX-2 in
LPS-stimulated BV-2 microglial cells. This also suggests that the isolated compounds 3,
4, and 14 may be a possible target for future neuroprotective agents. Among published
studies, this is the first to report an investigation into the relationship between secondary
metabolites obtained from E. hamiltonianus species and their bioactivity.
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