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Abstract: Estimating and monitoring chlorophyll content is a critical step in crop spectral image
analysis. The quick, non-destructive assessment of chlorophyll content in rice leaves can optimize ni-
trogen fertilization, benefit the environment and economy, and improve rice production management
and quality. In this research, spectral analysis of rice leaves is performed using hyperspectral and
fluorescence spectroscopy for the detection of chlorophyll content in rice leaves. This study generated
ninety experimental spectral datasets by collecting rice leaf samples from a farm in Sichuan Province,
China. By implementing a feature extraction algorithm, this study compresses redundant spectral
bands and subsequently constructs machine learning models to reveal latent correlations among the
extracted features. The prediction capabilities of six feature extraction methods and four machine
learning algorithms in two types of spectral data are examined, and an accurate method of predicting
chlorophyll concentration in rice leaves was devised. The IVSO-IVISSA (Iteratively Variable Subset
Optimization–Interval Variable Iterative Space Shrinkage Approach) quadratic feature combination
approach, based on fluorescence spectrum data, has the best prediction performance among the
CNN+LSTM (Convolutional Neural Network Long Short-Term Memory) algorithms, with corre-
sponding RMSE-Train (Root Mean Squared Error), RMSE-Test, and RPD (Ratio of standard deviation
of the validation set to standard error of prediction) indexes of 0.26, 0.29, and 2.64, respectively. We
demonstrated in this study that hyperspectral and fluorescence spectroscopy, when analyzed with fea-
ture extraction and machine learning methods, provide a new avenue for rapid and non-destructive
crop health monitoring, which is critical to the advancement of smart and precision agriculture.

Keywords: hyperspectral; fluorescence spectrum; rice; non-destructive testing

1. Introduction

Rice is a vital human food crop with a long history of production and consumption.
Rice is consumed as a staple food by more than half of the world’s population because it
is extremely adaptable to varied environments, making it an essential staple crop world-
wide [1]. Rice production is the world’s third highest in terms of food production, only
after corn and wheat [2]. The primary yield-limiting factors in rice farming are water
and fertilizers, and a lack of fertilizers will cause changes in external morphology and
internal structure, such as the thickness and color of leaves, which will result in variations
in the reflectance properties of rice leaves and the spectrum of tree crowns [3]. Traditional
indicators of crop growth include chlorophyll content and nitrogen content. The main
methods of measurement are manual measurement, indoor chemical analysis [4], and the
rapid determination of leaf chlorophyll by SPAD (Soil and Plant Analyzer Develotrnent)
device. Molina L et al. used atomic absorption spectrometry to determine the content
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of heavy metals in rice [5]. Atomic absorption spectrometry can be used to assess mag-
nesium content and, consequently, chlorophyll content indirectly. The concentration of
chlorophyll in the extract can also be calculated using a spectrophotometer to determine
the absorbance value of the chlorophyll extract at the maximum absorption wavelength [6].
Traditional detection methods are laborious and frequently require a significant amount of
time and work, which hinders the development of plant growth monitoring and precise
management to some extent. An ultra-portable SPAD assessment system for leaf SPAD
distribution analysis was proposed by Tan LH et al. [7], which was used to further calculate
leaf chlorophyll content. The collection of plant growth information by traditional analysis
methods has gradually evolved remote sensing technology and its application in the field
of agriculture, particularly with the advent of hyperspectral remote sensing technology.

Chlorophyll is the principal pigment involved in photosynthesis in plants, with its
concentration directly affecting a plant’s capacity to absorb light energy; therefore, monitor-
ing chlorophyll levels in plants is of paramount importance [8]. A deficiency in chlorophyll
within rice leaves can arise from various factors, such as a lack of nitrogen, a deficiency in
essential trace nutrients, or unsuitable soil acidity. Timely interventions can prevent yield
losses caused by insufficient chlorophyll. Upon detecting a deficiency in chlorophyll, it is
imperative to promptly analyze the cause and take corrective measures such as adjusting
irrigation management, conducting soil tests, and swiftly replenishing nutrients. Given that
chlorophyll content affects the spectral reflectance of rice, particularly within the visible
light spectrum, reflectance spectra can be utilized to estimate chlorophyll content. Kandpal,
K.C. and colleagues compared various methods of chlorophyll detection in leaves under
laboratory and field conditions, concluding that Arnon’s spectrophotometric method is
most suitable for laboratory settings, while machine learning methods are widely employed
in chlorophyll detection tasks based on hyperspectral data [9]. Zhao, J.W. employed hy-
perspectral technology to detect chlorophyll content in tea leaves, with the constructed
MSAVI2 model achieving an optimal result of RMSE = 8.60 on the test set, proving the
viability of measuring chlorophyll content in tea leaves through hyperspectral imaging
technology [10]. Jang, S.H. established a combined model of stepwise multiple linear
regression and partial least squares to measure chlorophyll content in cucumber seedling
leaves, identifying nine critical bands including those at 501 and 505 nm, enabling accurate
and non-destructive detection of chlorophyll content in the leaves [11]. Yang, Y.C. and
colleagues targeted 335 wheat varieties to establish a non-destructive model for detecting
the SPAD value of wheat leaves, with experimental results indicating that the first-order
reflectance at 549 nm and 735 nm had the strongest correlation with SPAD values. Cao,
Y.L. et al. utilized drones equipped with spectral sensors to collect rice spectral images,
successfully estimating chlorophyll content using a mathematical inversion model, thereby
providing research ideas and data support for related research fields [12]. Feng, H. et al.
developed an automatic spectral data analysis system using spectral imaging technology,
discovering that chlorophyll, among four rice pigments, exhibited the strongest correlation
in the 700–760 nm range [13].

Theoretical support exists for spectroscopic detection of chlorophyll concentration in
rice leaves [14]. However, since different samples and experimental settings result in distinct
chlorophyll sensitive bands, there is a need for a quick, non-destructive detection approach
with broader applicability. As artificial intelligence technology advances, more scientists
are employing machine learning to hyperspectral detection. Liu, H.H. et al. employed
a hyperspectral imager on a drone to predict the chlorophyll content of a rice canopy by
analyzing the obtained hyperspectral images [15]. Yang, Y.C. et al. proposed a more precise
approach for non-destructive detection of chlorophyll using hyperspectral images and
then studied the mechanism of photosynthesis in wheat drought tolerance [16]. Ruszczak,
B. et al. examined 15 machine learning methods and chose the most effective model for
detecting chlorophyll content in the hyperspectral data of rice leaves [17]. The utilization
of machine learning algorithms aims to construct a non-invasive detection model. In the
research presented herein, a system capable of rapidly and non-destructively determining
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the chlorophyll content in rice leaves through spectral data has been developed. With this
model, spectral collection from rice leaves suffices to obtain the corresponding chlorophyll
values, obviating the need for destructive measurement methods. The accurate detection
of chlorophyll content can effectively detect the nutritional state of rice, which aids in the
scientific management of agricultural production, fertilization, and grain yield.

Fluorescence is a powerful tool to study photosynthetic performance, especially when
coupled with other noninvasive measurements such as absorption spectroscopy, gas anal-
yses, and infrared thermometry. The use of chlorophyll fluorescence measurements to
examine photosynthetic performance and stress in algae and plants is now widespread
in physiological and ecophysiological studies [18]. Malenovsky, Z. posited that supple-
menting the measurement of vegetation physicochemical characteristics with fluorescence
measurement methods, based on existing spatial platforms, can help eliminate errors
and uncertainties in the interpretation of recent remote sensing data. Remote sensing
of plant fluorescence signals can contribute to a better understanding of the photosyn-
thesis process in vegetation [19]. Mishra, A. employed chlorophyll fluorescence imaging
and compared eight classifiers and four feature selection methods, resulting in a species
discrimination model with enhanced resolution efficiency [20]. Mattila, H. utilized a pulse-
amplitude-modulated fluorescence camera imaging technique, which enabled the capture
of fluorescence induction curve characteristics for each pixel in an image, achieving a
92.2% identification accuracy rate in the recognition of oat leaves [21]. Codrea, M.C. used a
chlorophyll fluorescence kinetics imaging technique that allows for the simultaneous use
of multiple fluorescence traits to determine photosynthetic mutants, facilitating rapid and
non-destructive screening of these mutants [22]. Tyystjärvi, E., through the construction of
a chlorophyll fluorescence fingerprint spectrum, successfully differentiated corn and barley
from six weed species, extracting 17 features from fluorescence induction curves based
on a neural network classifier with an accuracy rate ranging from 50.2% to 80.8% [23].
Fluorescence spectroscopy has demonstrated considerable promise in a host of applications,
ranging from growth monitoring to the identification of diseases and stressors. Empiri-
cal evidence attests to the capability of fluorescence spectroscopy in pinpointing various
stress factors affecting rice, including hydric stress, nutritional shortages, and pathogenic
invasions. For example, research indicates that fluorescence metrics can exhibit marked
variations under differing conditions of water scarcity, yielding invaluable data for the
optimization of irrigation strategies [24]. In a similar vein, deficiencies in key nutrients
such as nitrogen and phosphorus induce discernible changes in the fluorescence profiles of
rice foliage, facilitating the prompt detection and rectification of these insufficiencies [25].

The utility of fluorescence spectroscopy has also been harnessed for the differentiation
of rice cultivars [26]. Yang et al. advocated for the application of Laser-Induced Fluores-
cence (LIF) in conjunction with a multivariate analytical approach, incorporating Principal
Component Analysis (PCA) and Support Vector Machine (SVM), to distinguish various
paddy rice varieties [27]. Zhang et al. endeavored to delineate the correlation between the
chlorophyll fluorescence spectra of rice and its growth dynamics, employing the PCA to
facilitate the prognostication of rice development [28].

To achieve the accurate, rapid, and non-destructive detection of chlorophyll content
in rice leaves, this study focuses on rice cultivars, and employs spectral technology as
the foundational research tool. The study utilizes machine learning methodologies and
information extraction techniques to identify characteristic bands and parameters for
chlorophyll content in rice leaves. We have compared various analytical algorithms and
investigated the predictive efficacy of hyperspectral and fluorescence spectral imaging
methods to determine chlorophyll content in rice leaves. A fused CNN+LSTM model was
employed, which accurately predicts the chlorophyll content in rice leaves. This research
contributes to the non-destructive automatic monitoring and rational management of plant
growth, thereby promoting the advancement of precision agriculture.
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2. Plant Materials and Methods
2.1. Measurement of Hypespectral and Fluorescence Data

Figure S1 depicts the experimental region, which is located on a farm in the Yucheng
District, Ya’an City, Sichuan Province (29.9890 N, 102.9820 E). The type of rice we selected
was Ya5You5217, which is a rice variety selected and bred by the College of Agriculture of
Sichuan Agricultural University. The climatic type is that of the western boundary of the
Sichuan Basin—humid subtropical monsoon. The annual average temperature ranges from
14.1 ◦C to 17.9 ◦C , and rainfall is abundant, with most places receiving more than 1000 mm.
There are 10 sampling fields in the test area, with a single sampling field size of 12 × 8 m.

The GaiaSorter Hyperspectral Sorter is used to capture hyperspectral image data from
rice in situ. Its key components are a unified tungsten-bromine light source, a spectral
camera, and an electronically controlled mobile platform with a spectral band range of
387 nm to 1034 nm. Gaia series and aFluo series fluorescence spectral detection systems
have been used to acquire fluorescence spectral image data of rice. The core components
include a Gaiafluo VN-HR spectral camera, xenon light source, and fluorescence filter.
Spectral data were measured directly with two sets of four LSTS-200 tungsten bromine
lamp uniform light sources. A white reference plate with 99% reflectance was used for
calibration before and after measurements. The spectral reflectance of three parts of rice
leaves, namely, leaf tip, leaf center, and leaf occiput, were measured and their average
values were used as the spectral reflectance of the samples. The sampling interval was 0.1 s
and the spectrometer was calibrated every 15 min with a white reference plate.

The working principle is to irradiate the object to be measured (sample) placed on
the electronically controlled moving platform (or conveyor belt) through the light source,
the reflected light of the sample is captured by the spectral camera through the lens,
and a one-dimensional image as well as spectral information is obtained, and with the
electronically controlled moving platform (or conveyor belt) to drive the sample to run
continuously, so as to obtain continuous one-dimensional image as well as the real-time
spectral information. For both hyperspectral and fluorescence spectra measurements,
the diffuse light source was placed directly above the measured sample at the same distance
from the sample. The spatial uniformity of illumination was greater than or equal to 90%.

We cut normal leaves from rice plants during normal growth. Because of the differ-
ences in chlorophyll content in the tip, occiput, and middle of the leaf of rice leaves, we
sampled these three positions separately to ensure the reasonableness of our data. Three
areas of interest (ROI) were chosen for each rice leaf based on the tip of the leaf, the middle
of the leaf, and the back of the leaf. Each ROI was 15 × 15 pixels in size, and the raw spectral
values of the samples were calculated by averaging the ROI values of the three portions
of each sample. Figure 1a depicts the hyperspectral curves of the 90 rice samples. The hy-
perspectral has 256 spectral bands ranging in wavelength from 387.15 nm to 1034.99 nm.
According to Figure 1a chlorophyll and other pigments in rice leaves absorb weakly near
the red part of the spectrum, creating absorption valleys at 500 and 670 nm. The reflection
peaking at 550 nm are mostly caused by the rice leaves’ high absorption of green light.

The fluorescence spectrums contained 125 spectral bands ranging in wavelength from
376.80 nm to 1011.05 nm. This wavelength range is green light (wavelength 500–560 nm),
which is mainly absorbed by chlorophyll. The studies were carried out with a 495 nm
fluorescence filter, and after passing through the excitation filter at 390 nm, the resulting
fluorescence spectrum pictures revealed obvious wave peaking at about 510 nm, as well as
inconspicuous wave peaking at around 690 nm and 740 nm. Varied samples contain varied
chlorophyll contents in the hyperspectral and fluorescence spectra, resulting in variances
in the spectral curves.
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Figure 1. (a): Raw hyperspectral image data; (b): Raw fluorescence spectral image data.

Before building a model with machine learning algorithms, the data was frequently
separated into samples, which helps to increase the predicted accuracy of the model while
also maintaining the model’s stability [29]. The Kennard Stone model was employed in
this investigation [30,31]. The Kennard Stone algorithm first chooses the two samples
with the greatest Euclidean distances from the data to be included in the training set,
then computed the Euclidean distances between the remaining data and the chose data,
and finally included the two samples with the greatest distances from the known samples
in the training set. The above calculation is repeated to select representative samples
until the required number of training samples is met, which helps to improve the model’s
computational efficiency and generalizability. Table 1 shows the specific information for
the 90 samples, which are separated into the training set and the test set in a 2:1 ratio.

Table 1. Summary of hyperspectral and fluorescence spectroscopy data.

Record Sample
Number

Minimum
Value (µg/cm2)

Maximum
Values (µg/cm2)

Average Value
(µg/cm2)

(Statistics)
Standard
Deviation
(µg/cm2)

hyperspectral Training set 60 32.4 47.8 38.9 1.95
Test set 30 33.6 48.2 39.1 1.62

Fluorescence
spectroscopy

Training set 60 32.4 47.8 38.9 1.95
Test set 30 33.6 48.2 39.1 1.62

Table 1 shows that the training set’s chlorophyll content ranges from 32.4 µg/cm2

to 47.8 µg/cm2 while the test set’s chlorophyll content ranges from 33.6 µg/cm2 to
48.2 µg/cm2. The test set’s standard deviation, 1.62 µg/cm2, is lower than the training set’s,
1.95 µg/cm2, indicating that the data distribution in the test set is more concentrated.

2.2. Invasive Measurement of Chlorophylls

Three sections of each rice leaf sample were taken from top to bottom in the experi-
mental plot for the measurement of chlorophyll content in the rice samples; each section
was cut into pieces of less than 1 cm, and samples weighing 2 g were selected and placed in
triangular vials. As diffusate, 95% ethanol was poured into a 100 mL volumetric flask and
filled to capacity. A total of 5 mL of the solution was pipetted into a 50 mL volumetric flask
and fixed at 50 mL with 95% ethanol after vigorous shaking. Once the chlorophyll had been
completely extracted, its colorimetric content was evaluated using a spectrophotometer.
The chlorophyll content of the three regions of each sample leaf was averaged to determine
the average chlorophyll content of the rice leaf [32].
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2.3. Experimental Techniques and Protocols

Savitzky–Golay convolutional smoothing (SG) [33], a common preprocessing approach
for hyperspectral data, was used to reduce noise and interferences of image acquisition
environment. Figure S2 illustrates the data before and after preprocessing.

Mean-variance normalization (Z-score normalization) is a commonly used data pro-
cessing method in machine learning [34]. Data normalization is a common machine learn-
ing method. The values of different bands of different samples have obvious differences,
and using data normalization cannot change the data distribution while limiting the data
to a small range, as depicted in Figure S3. Normalizing the spectral data of the samples
facilitates the convergence of the model. The scaled data size helps to reduce the running
memory during model training and improve the training efficiency. The normalized data
helps the model find a better solution.

2.4. Feature Extraction Methods

Preprocessing only changes the data, but not the dimension of the data, and the pro-
cessed data still has high dimensionality and redundant variables. Different bands show
different correlations for chlorophyll content, so it is necessary to use feature extraction
algorithms to filter out the feature variables with higher correlations and eliminate irrele-
vant variables. In this study, the bootstrapping soft threshold method bootstrapping soft
shrinkage (Boss) was chosen overall [35], which is used to filter out noise, highlight key
features, and improve the resolution of the data. A total of six feature extraction algorithms,
competitive adapative reweighted sampling (CARS), Iteratively Variable Subset Optimiza-
tion (IVSO), Model Adaptive Space Shrinkage (MASS), and Interval Variable Iterative Space
Shrinkage Approach (IVISSA) were selected to process the spectral data and increase the
prediction accuracy [36].

2.5. Modeling
2.5.1. Convolutional Neural Networks and Long Short-Term Memory

Convolutional neural networks (CNNs) are multilayer perceptrons for simulating
neurons that can be deepened by continuously deepening the layers of the perceptron,
which is why they are also referred to as deep learning [37]. Convolutional neural networks
are powerful and can be used for image classification [38], text analysis [39], microplastics
in soil [40], and other areas. A complete convolutional neural network consists of an input
layer, an output layer, a convolutional layer, and a fully connected layer. Generally, the input
layer receives the preprocessed data and passes them to the subsequent convolutional
layer for feature extraction. The convolutional layer is the central functional layer of the
convolutional neural network, which contains multiple convolutional kernels for feature
extraction. The pooling layer is a special type of convolutional layer that usually pools the
data after each convolutional operation. The pooling layer can play a role in compressing
the parameters and data, which helps to improve the accuracy of the model and increase the
efficiency of the model operation. Long short-term memory (LSTM) is a network specialized
in sequential data processing and used in stock price prediction [41], text comprehension
and other prediction tasks. The use of LSTM networks for accurate spectral predictions
also has good potential as a result of the fact that spectral data are also continuous between
400 and 1000 nm. Convolutional neural networks have higher feature extraction capabilities;
however, they are generally independent in computation and can only extract features for
a section of the data, frequently neglecting the correlation before and after the data. In this
study, a fusion network comprising CNN and LSTM is utilized to assure the effectiveness
of feature extraction while boosting the model’s ability to capture the information before
and after the data, which helps increase the accuracy of model’s prediction. Figure 2 depicts
the network. Furthermore, this study conducts a comparative analysis of three prevalent
machine learning algorithms—linear regression, decision tree regression, and XGBoost
(eXtreme Gradient Boosting)—to elucidate the superiority of the proposed method in
assessing the chlorophyll content within rice leaves ([42–44]).
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Figure 2. Schematic representation of the CNN+LSTM network structure.

2.5.2. Model Analysis

When there is a significant linear relationship in the data, the predictive accuracy
of the model constructed using the linear regression method is very accurate. The mea-
sured hyperspectral/fluorescecne spectral features contain a large number of nonlinear
relationships, which is the reason why numerous experiments in linear regression perform
generally. In contrast, the regression tree can learn non-linear relationships and is also
highly robust to outliers. Therefore, the regression tree model basically outperforms the
linear regression model in all experimental metrics. And XGBoost adopts the idea of
integrated learning, which effectively avoids the overfitting problem that occurs in the
regression tree model. Therefore, its performance is optimal among these three comparative
methods. For the CNN+LSTM fusion network method proposed in this paper, it achieves
very impressive performance with the same input features as the above comparison ex-
periments. Meanwhile, drawing on previous ideas, we have conducted secondary feature
extraction experiments on the combination of CNN+LSTM+IVSO. Since CNN itself has
certain feature extraction ability, more information can be extracted for prediction when
there are more feature bands. Therefore, we obtain the optimal experimental combination:
CNN+LSTM+IVSO−IVISSA.

2.6. Evaluation Indicators

To analyze the classification outcomes in this work, the training set root mean square
error (RMSE-Train), test set root mean square error RMSE-Test), and relative analysis error
RPD are utilized as assessment metrics ([45–48]). The formula for the metrics used is
as follows:

RMSE =

√
∑n

i=1( ft − yt)
2

n
(1)

RPD =
Stdp

RMSEP
(2)

Stdp =

√
1

n − 1

n

∑
i=1

(yt − y)2 (3)

The square root of the ratio between the square of the predicted value’s divergence
from the true value and the total number of samples N is RMSE. In Equation (1), ft is the
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predicted value of the sample and yt is the actual value of the sample determined by the
standard method. In Equation (2), Stdp is the standard deviation. The formula is as in (3),
where y is the average of the actual measured value of the sample. The lower the RMSE
score is, the greater the model’s prediction accuracy will be. RPD is the ratio of the data
standard deviation to the root mean square error.4.2 Effectiveness of feature extraction.

3. Results
3.1. Feature Extraction Results

In this study, 90 rice leaf samples were employed, each of which had spectral infor-
mation from 256 different bands, and a substantial quantity of redundant information is
always present in sample data at high latitude. Six feature extraction techniques (BOSS,
CARS, IVSO, MASS, IVISSA, UVE) are utilized for feature extraction of hyperspectral data
to increase operating efficiency and prediction accuracy. The approach with the best results
is chosen for the next trial based on the experimental findings, and the results are shown
in Figure 3.

Figure 3. Hyperspectral feature band map created using various feature extraction algorithms:
(a) BOSS; (b) CARS; (c) IVSO; (d) MASS; (e) IVISSA; and (f) UVE.

As shown in Figure 3a, 21 feature variables are generated following feature extraction
of the spectrum data with the BOSS algorithm, accounting for 8.2% of the total number
of hyperspectral variables. The retrieved feature bands are primarily in the 500–650 nm
and 800–1000 nm ranges. The feature variables are concentrated near the wave crests and
troughs, but their distribution is insufficiently uniform. As shown in Figure 3b, after ap-
plying the CARS algorithm, a total of 37 feature bands are created, accounting for 14.4%
of the total hyperspectral variables. The feature bands are predominantly concentrated
between 400–600 nm and 750–900 nm, and the frequency of the feature bands outside
the wave crest is higher. As shown in Figure 3c, the IVSO algorithm recovers 46 feature
bands for the original data, accounting for 17.9% of the total number of hyperspectral
variables. The feature distribution is quite uniform, with the majority of features gathered
between 800 and 1000 nm. The MASS algorithm selects 58 feature bands from the original
data, accounting for 22.6% of the total hyperspectral variables, as shown in Figure 3d.
As illustrated in Figure 3e, the IVISSA method yields 76 feature bands, accounting for 29.6%
of the total number of hyperspectral variables. Among all feature extraction techniques, it
obtains the most feature bands, and the feature bands are uniformly distributed. The EIS
method generates 64 feature bands, accounting for 25% of the total number of hyperspectral
variables; the feature band distribution is illustrated in Figure 3f.

The results of six feature extraction techniques used to extract features from fluores-
cence spectrum data are displayed in Figure S4. As illustrated in Figure S4a, when BOSS
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feature extraction is performed on the original fluorescence spectral data, the minimum
number of feature bands obtained is only 11, accounting for 8.8% of the total number of
feature bands in the fluorescence spectra. The main feature bands are clustered near the
510 and 700 nm peaks. Figure S4b depicts the results of CARS feature extraction from the
original fluorescence spectrum data. A total of 14 feature bands were discovered, account-
ing for 11.2% of all feature bands in the fluorescence spectrum.The majority of the feature
bands are approximately 70 nm in wavelength. As shown in Figure S4c, the IVSO algorithm
discovers 19 feature bands from the original fluorescence spectral data, accounting for
15.2% of the total number of fluorescence spectral features. The feature bands are mostly
spread uniformly near the wave crests and troughs. The MASS algorithm extracted a
total of 24 feature bands for the original data, accounting for 19.2% of the total number of
hyperspectral variables, as shown in Figure S4d, with the main feature bands focused at the
wave crests at 510 nm and 700 nm.The IVISSA feature extraction of the original fluorescence
spectral data produced the most feature bands, with a total of 38 feature bands accounting
for 30.4% of the total number of fluorescence spectral features, and the feature band range
is between 475–600 nm and 700–800 nm, as shown in Figure S4e. Following the application
of the EIS method, a total of 27 feature bands are retrieved, accounting for 21.6% of the total
number of feature bands in the fluorescence spectrum, as shown in Figure S4f.

3.2. Validity of the Modeling Methods
3.2.1. Linear Regression

The six types of hyperspectral feature variables collected above were separately en-
tered into the linear regression model, and the prediction results obtained are displayed
in Table 2.

Table 2. Linear regression prediction results based on hyperspectral data.

Feature Extraction Method The Number of
Characteristic Variables RMSE Train RMSE Test RPD

Chief 21 0.71 0.85 1.76
CARS 37 0.65 0.79 1.97
IVSO 46 0.60 0.71 2.04

IVISSA 76 0.82 0.97 1.84
MASSES 58 0.79 0.82 1.93

EIS 64 0.73 0.89 1.75

As shown in Table 2, the linear regression models built with the six types of feature
spectra are generally less effective. The IVISSA algorithm has the highest number of
features after extraction, but the RMSE train indicator is the highest at 0.82. The reason
for this is that there are still some redundant data in the feature variables extracted by the
IVISSA algorithm. The most effective feature extraction method is the IVSO algorithm
with an RMSE train of 0.60 and an RPD of 2.04, which is also the highest value. The linear
regression model, which can only capture the relationship between variables based on
a linear relationship between data, has weak performance on data with a hierarchical
structure. The results show that the linear regression method has a better predictive ability
for high-dimensional and complex data. The results of prediction performance obtained by
inputting each of the six types of fluorescence spectral features extracted above into the
linear regression model are shown in Table 3. The IVSO algorithm, which performs better
on hyperspectral data, performs poorly on fluorescence spectral data, and the RMSE train
reaches the highest value of 0.74 among the comparison algorithms. From the RMSE train
index, IVISSA is the algorithm with the best feature extraction effect, with the smallest
RMSE train of 0.54. However, the corresponding RMSE train of the IVISSA algorithm
is the highest at 0.83, indicating that the prediction model is overfitted and has poor
generalization performance. In terms of RPD index, the best effect of feature extraction is
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the Boss algorithm, which achieves a maximum RPD of 2.11. The prediction effect of the
fluorescence spectral data is better than that of the hyperspectral data.

Table 3. Linear regression prediction results based on fluorescence spectral data.

Feature Extraction Method The Number of
Characteristic Variables RMSE Train RMSE Test RPD

Chief 11 0.62 0.69 2.11
CARS 14 0.61 0.71 1.87
IVSO 19 0.74 0.80 1.37

IVISSA 38 0.54 0.83 1.61
MASSES 24 0.66 0.76 1.53

EIS 27 0.68 0.77 1.75

3.2.2. Regression Tree

The constructed regression tree model is better at capturing the nonlinear relationship
in the data, and it is obviously lower than the above model in terms of training and
prediction speed. However, the prediction accuracy is relatively low, and due to the
complex structure of the tree model, more data is often required to determine the best
parameters. The indices of the prediction results are shown in Table 4. The RMSE train
index of the regression tree model is significantly lower than the RMSE test index, which
proves that the regression tree model has a generalization ability and the possibility of
overfitting. The CARS feature extraction algorithm performs optimally in the regression
tree model, and both RMSE-Train and RMSE-Test reach the minimum, and the RPD value
is the highest among the comparison models, which proves the effectiveness of the selected
features. The IVISSA algorithm, on the other hand, performs poorly in this section of
the experiment.

Table 4. Regression tree regression prediction results based on hyperspectral data.

Feature Extraction Method The Number of
Characteristic Variables RMSE Train RMSE Test RPD

Chief 21 0.68 0.73 1.83
CARS 37 0.63 0.70 2.03
IVSO 46 0.65 0.73 1.88

IVISSA 76 0.77 0.86 1.95
MASSES 58 0.71 0.81 2.1

EIS 64 0.67 0.76 1.90

The results of the regression tree prediction model based on fluorescence spectral data
are shown in Table 5. Overall, the indicators of each algorithm are better than the regression
tree prediction model for hyperspectral data. The best feature extraction algorithm is IVSO
with the lowest RMSE train metric of 0.60, and the RMSE test metric also performs well,
with the largest RPD value of 2.12 among the algorithms, while the IVISSA algorithm
performs poorly, with the highest values of both the RMSE train and RMSE test metrics
and the lowest corresponding RPD value of 1.93. also has the smallest value of 1.93.

Table 5. Regression tree prediction results based on fluorescence spectral data.

Feature Extraction Method The Number of
Characteristic Variables RMSE Train RMSE Test RPD

Chief 11 0.65 0.70 2.06
CARS 14 0.64 0.67 2.02
IVSO 19 0.60 0.68 2.12

IVISSA 38 0.72 0.76 1.97
MASSES 24 0.68 0.74 1.93

EIS 27 0.64 0.71 2.04
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3.2.3. XGBoost

The predictive performance of the six types of hyperspectral feature variables input to
the XGBoost model is shown in Table 6. XGBoost uses the practice of random forests to
sample different columns for training, which is able to avoid overfitting while reducing
the training time. The XGBoost model has the lowest performance on spectral features
extracted by the IVSO algorithm, and both the RMSE train and RMSE test are the lowest
among the comparison methods. The CARS algorithm is the second most effective and the
UVE feature extraction algorithm is the most ineffective.

Table 6. XGBoost regression prediction results based on hyperspectral data.

Feature Extraction Method The Number of
Characteristic Variables RMSE Train RMSE Test RPD

Chief 21 0.60 0.68 2.07
CARS 37 0.56 0.67 2.25
IVSO 46 0.54 0.63 2.27

IVISSA 76 0.57 0.69 2.17
MASSES 58 0.60 0.67 2.00

EIS 64 0.67 0.73 1.78

The six types of fluorescence spectral variables were input into the XGBoost model,
whose prediction results are shown in Table 7. For fluorescence spectral data, the IVSO
algorithm again performs well, with RMSE-Train and RMSE-Test achieving the best results
in all comparison experiments. While the IVISSA feature extraction algorithm did not
perform well, the regression prediction model for fluorescence spectral data performed
better than the regression prediction model for hyperspectral data.

Table 7. XGBoost regression prediction results based on fluorescence spectral data.

Feature Extraction Method The Number of
Characteristic Variables RMSE Train RMSE Test RPD

Chief 11 0.57 0.63 2.11
CARS 14 0.53 0.59 2.28
IVSO 19 0.50 0.56 2.34

IVISSA 38 0.52 0.60 2.08
MASSES 24 0.55 0.62 2.03

EIS 27 0.61 0.69 1.98

3.2.4. CNN+LSTM

In this work, when the fusion network based on convolutional neural network and
LSTM is developed, a learning rate of 0.01 is selected, the relu function is used as the
activation function, and the cross entropy loss function is used as the objective function of
the model. The six types of spectral feature variables extracted as described previously are
respectively input to the convolutional neural network, and the obtained prediction result
indices are shown in Table 8.

Table 8. CNN+LSTM prediction results based on hyperspectral data.

Feature Extraction Method The Number of
Characteristic Variables RMSE Train RMSE Test RPD

Chief 21 0.47 0.52 2.06
CARS 37 0.41 0.46 2.23
IVSO 46 0.36 0.40 2.42

IVISSA 76 0.32 0.38 2.53
MASSES 58 0.44 0.47 2.19

EIS 64 0.37 0.43 2.13
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As seen from Table 8, the lowest RMSE train of the convolutional neural network built
with six types of spectral feature variables is 0.32, which corresponds to the IVISSA feature
extraction method, while the RMSE train of the IVSO algorithm, which performs better
in the previous model, is 0.36. The lowest value of the RMSE train is also found in the
features extracted by the IVISSA algorithm, while the maximum RPD value is 2.2. The
suggestion that this round of experiments seems to contradict the previous experiments
is that the convolutional neural network also plays a role in feature extraction during the
convolutional process. Again, feature extraction is more beneficial for samples with a larger
number of features to obtain more valid information. For samples with a smaller number
of features, re-feature extraction may eliminate the effective information, which in turn
affects the results. To further investigate this hypothesis, a secondary feature extraction
experiment is conducted.

Based on fluorescence spectral data, the results of the different prediction indices of
the convolutional neural network constructed with six types of spectral features are shown
in Table 9. When spectral data are used to construct the model, the results obtained are
generally better than those obtained with the hyperspectral data. Consistent with the results
of the hyperspectral data, the IVISSA feature extraction algorithm is the most effective,
with the lowest RMSE train value of 0.30, the lowest RMSE test value of 0.34, and the
highest corresponding RPD value of 2.56, while the Boss algorithm performs the worst.

Table 9. CNN+LSTM prediction results based on fluorescence spectral data.

Feature Extraction Method The Number of
Characteristic Variables RMSE Train RMSE Test RPD

Chief 11 0.46 0.53 2.09
CARS 14 0.40 0.47 2.25
IVSO 19 0.33 0.38 2.47

IVISSA 38 0.30 0.34 2.56
MASSES 24 0.38 0.41 2.27

EIS 27 0.34 0.39 2.18

In the conventional realm of hyperspectral prediction, it is posited that the amalga-
mation of features derived from the extraction of multifaceted attributes can enhance the
veracity of the resultant predictions. This assertion is predicated on the premise that inte-
grating diverse spectral characteristics can provide a more comprehensive representation
of the data, thereby facilitating improved analytical outcomes [49]. In Table 10, the IVSO
feature extraction algorithm was chosen, which performs well in most models, as the bench-
mark and perform feature extraction again on the data after performing feature extraction
once and input it to the convolutional neural network for training. The results are shown
in Table 6. The number of feature bands obtained after the second feature extraction is
reduced. From Table 6, it can be seen that the feature extraction algorithm obtained by
combining IVSO-IVISSA performs the best, with the number of feature bands at 37 and
the maximum RPD value at 2.57. Compared with the other experiments, the effect of the
feature bands obtained by the secondary feature extraction algorithm is much better than
that of the feature extraction algorithm using only the primary feature extraction algorithm.
Compared with the experiments in Table 9, although the RMSE values all decrease, the de-
gree of change in the RMSE values of the IVSO-IVISSA method is less than that of the other
centralized feature extraction algorithms, while the IVSO-IVISSA method obtains more
bands. This shows that the CNN+LSTM network is still superior, but when the number of
features decreases, it has a certain negative impact on the performance of the network.
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Table 10. CNN+LSTM and quadratic feature extraction prediction results based on fluorescence
spectral data.

Feature Extraction Method The Number of
Characteristic Variables RMSE Train RMSE Test RPD

IVSO Boss 19 0.39 0.43 1.96
IVSO-CARS 22 0.37 0.40 2.09

IVSO-IVISSA 37 0.26 0.29 2.64
IVSO-MASS 27 0.32 0.38 2.13
IVSO-UVE 32 0.29 0.34 2.28

To validate the performance of the fusion network chosen for this study, a regres-
sion analysis were conducted independently for each model based on the selection of the
ideal feature extraction algorithm, and the chlorophyll prediction results are displayed in
Figure 4. The CNN+LSTM fusion technique, among various techniques, outperforms the
other networks in terms of prediction accuracy. The linear regression algorithm and the
LSTM-only algorithm outperform the other three networks in the training set, but the linear
regression approach performs poorly in the test set, while the LSTM prediction set outper-
forms them. The CNN algorithm performs relatively well in the training and prediction
results of test set. The preceding experiments demonstrate the fusion network’s advantage.

Figure 4. Comparison of the prediction functions of six models in the same hyperspectral feature
band: (a) LinearRegression; (b) RandomForestRegressor; (c) XGBRegressor; (d) CNN; (e) LSTM; and
(f) CNN+LSTM.

Regression analysis was carried out separately for each model using fluorescence spec-
tral data, and the results are displayed in Figure 5. In a direct comparison, the CNN+LSTM
fusion algorithm surpasses the control group in both the training and test sets. The model
that utilizes solely CNN and LSTM performs better than the regression tree and XG-
Boost algorithms in the training set and maintains better overall performance in the test set.
The regression tree approach, coupled with the XGBoost training process, performed poorly,
failing to effectively learn the probable relationships within the data. When the models are
developed with fluorescence spectrum data, the six regression prediction models exhibit a
slight improvement over those developed with hyperspectral data.
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Figure 5. Comparison of the prediction functions of six models in the same fluorescence spectral fea-
ture band: (a) LinearRegression; (b) RandomForestRegressor; (c) XGBRegressor; (d) CNN; (e) LSTM;
and (f) CNN+LSTM.

Given the limited experimental data available, we used five-fold cross-validation
within the established context of fluorescence spectral data and the dual feature extraction
methods of IVSO-IVISSA to compare the performance of the models discussed in this paper.
The results, as depicted in Table 11, confirm the superior performance of the methodologies
proposed in this study.

Table 11. Model performance comparison.

Data
Categories

Cross-
Validation

Average
RMSE-Train

Average
RMSE-Test

Linear
Regression ✕ 0.18 0.74

Linear
Regression ✓ 0.16 0.87

Random
Forest ✕ 0.47 0.52

Random
Forest ✓ 0.47 0.51

XGBoost ✕ 0.33 0.36
XGBoost ✓ 0.34 0.38

LSTM+CNN ✕ 0.26 0.29
LSTM+CNN ✓ 0.25 0.27

4. Discussion

This study collects hyperspectral and fluorescence spectral data from rice leaves to
examine the spectral features of chlorophyll. Six feature extraction algorithms, includ-
ing regression trees, linear regression, and the XGBoost model, are employed to assess
the nitrogen content in rice leaves. The gathered data are normalized, and convolution
smoothing is applied to reduce noisy samples. The findings suggest that fluorescence
spectroscopy is superior in detecting chlorophyll concentration in rice leaves. Utilizing
the strengths of both CNN and LSTM for learning non-linear and multidimensional data,
the CNN+LSTM fusion model presented in this paper outperforms other machine learning
models in accurately predicting chlorophyll content. This study also verifies the effective-
ness of secondary feature extraction and identifies the optimal combination for chlorophyll
prediction in rice leaves: the CNN+LSTM+IVSO−IVISSA method based on fluorescence
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spectral data. A comparison with other studies on chlorophyll prediction using machine
learning methods—most of which involve standard approaches such as XGBoost, SVM,
and Random Forest—demonstrates the capability of machine learning to effectively predict
chlorophyll content. Beyond rice, the task of chlorophyll prediction is relevant to fields
such as water quality, corn, tea, and more, as shown in Table 12. The paper underscores
that spectral imaging technology combined with machine learning can facilitate rapid,
accurate, and nondestructive detection of chlorophyll in rice leaves, offering a simpler and
time-saving measurement method. Limited by equipment constraints, it is challenging
to acquire leaf spectral band information in field conditions during practical applications.
Consequently, designing portable spectral sensors is an issue that urgently needs to be
addressed. Future research will expand the types of samples, including the measurement
of rice canopies. Moreover, while this study focuses on a single developmental stage of rice,
future work will develop multiple growth monitoring models for different developmental
stages to elucidate the rice growth process. The current study, based on field experiments,
examines the physiological and biochemical parameters of rice at the leaf level using hy-
perspectral diagnostics. Its practical application awaits further validation. Due to the
commonality of spectral mechanisms, the findings will be verified using unmanned aerial
vehicles (UAVs) and satellite remote sensing data to ensure the broader applicability of the
study’s conclusions.

Table 12. The comparison of the work of this paper with the work of other researchers.

Literature Method RMSE RPD Data

Shin, Y. [50] XGBoost 3.93 - Chlorophyll-a concentrations
in the Nakdong RiverLSTM 4.69 -

Random Forest 3.12 -
Sonobe, R. [51] SVM - 0.81 Tea leaf chlorophyllRandom Forest - 1.12
De Amorim, F.D.L. [52] Random Forest 0.35 - Chlorophyll-a concentration

Narmilan, A. [53] XGBoost 0.14 -
Canopy chlorophyll content
in sugarcane crops

Tang, X.D. [54] SVM 10.07 -
Chlorophyll A
concentration in
Donghu Lake

Our study CNN+LSTM 0.26 2.64 Rice chlorophyll

5. Conclusions

This study collected hyperspectral and fluorescence spectral data of rice leaves and
analyzed the spectral characteristics of chlorophyll in rice leaves. Six feature extraction
algorithms, utilizing regression trees, linear regression, XGBoost models, and other ma-
chine learning models, were employed to detect the chlorophyll content in rice leaves.
The collected data were normalized, and convolutional smoothing was applied to reduce
noise samples. The results indicate that fluorescence spectra have advantages in detecting
chlorophyll content in rice leaves. In comparison to existing machine learning models,
the CNN+LSTM fusion model used in this study more accurately predicts the chlorophyll
content in rice leaves. The CNN+LSTM fusion model, applicable to fluorescence spectral
data, exhibited optimal RMSE-Train, RMSE-Test, and RPD indicators, with values of 0.26,
0.29, and 2.64, respectively. This demonstrates that the combination of spectral imaging
technology and machine learning regression prediction methods enables the rapid and
accurate non-destructive detection of chlorophyll in rice leaves, providing a simpler and
time-saving method for measuring chlorophyll in rice leaves. The detection method de-
vised in this study relies on specific spectral equipment, and obtaining real-time spectral
band information from rice leaves in the field presents certain challenges. In future work,
we will further diversify sample types, considering chlorophyll content measurements in
both rice leaves and the rice canopy. Additionally, this study focused solely on a specific
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developmental stage of rice; subsequent efforts will establish growth monitoring models
for different stages of rice development to reveal the growth mechanisms of rice. This
research, conducted based on field experiments, specifically addressed leaf-scale physi-
ological and biochemical parameters of rice using hyperspectral diagnosis. The design
of portable spectral sensors is advantageous for the real-time acquisition of leaf spectral
band information in the field and constitutes an essential step toward the future goal of
achieving efficient and rapid chlorophyll detection in rice leaves. The practical application
awaits verification, and given the spectral mechanism’s commonality, future efforts will
involve unmanned aerial vehicles and satellite remote sensing data to validate the research
results, aiming to ensure the broader applicability of the conclusions drawn from the study.
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(d)fluorescence spectral data after convolution smoothing; Figure S3: Schematic representation of the
data normalization process; Figure S4: The illustration of the characteristic bands of the fluorescence
spectrum obtained by different feature extraction algorithms. (a): Feature Extraction Results of BOSS
Method; (b): Feature Extraction Results of CARS Method; (c): Feature Extraction Results of IVSO
Method; (d): Feature Extraction Results of MASS Method; (e): Feature Extraction Results of IVISSA
Method; (f): Feature Extraction Results of UVE Method.
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