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Abstract: Medicinal plants are sources of crude traditional herbal medicines that are uti-
lized to reduce the risk of, treat, or manage diseases in most indigenous communities. This
is due to their potent antioxidant and anti-inflammatory effects. It is estimated that about
80% of the population in developing countries rely on herbal traditional medicines for
healthcare. This signifies the need for traditional herbal medicines, which are polyherbal
formulations prepared by traditional health practitioners. This review examines prepara-
tory steps to extract bioactive phytoconstituents and post-extraction processes to increase
the potency of the extracted bioactive phytoconstituents. Achieving this will allow for the
reduced use of plant materials and promote the sustainable use of the limited resource of
medicinal plants, especially in our South African context. Electronic ethnobotanical books
and online databases were used to find studies that focus on phytoconstituent extraction
and post-extraction processing to enhance the potency of the extracted bioactive phytocon-
stituents. Modification of the extracted bioactive phytoconstituents to synthesize daughter
compounds facilitates an enhancement in their potency and bioavailability. Based on the
data collected through this review, the importance of understanding the properties of the
targeted phytoconstituents is essential in selecting the required extraction method. This
determines the quality and yield of extracted bioactive phytoconstituents.
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1. Introduction

According to epidemiological studies, over the years, there has been an exponential
increase in the prevalence of diseases related to inflammation and oxidative stress, predom-
inantly in developing countries [1]. In most developing countries, medicinal plants are
sources of crude herbal medicines, which are utilized to reduce the risk of, treat, or manage
acute and chronic diseases related to inflammation and oxidative stress [2].

This is due to the potent antioxidant and anti-inflammatory effects that medicinal
plants possess due to the presence of various bioactive phytoconstituents [2]. In developed
countries, treatment of diseases is achieved via preventative measures and synthetic drug
administration coupled with monitoring records of the patient’s health [3].
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In underdeveloped and developing countries, patients sometimes rely on traditional
herbal medicines from traditional health practitioners (THPs) for primary healthcare [4].

It is estimated by the World Health Organization (WHO) that about 80% of the pop-
ulation in developing countries relies on traditional herbal medicines [5]. Such statistics
validate the belief that traditional herbal medicines are utilized by a significant fraction of
the world’s population [6]. In developed nations, the usage of traditional herbal medicines
is also a fast-growing phenomenon as some synthetic drugs have been reported to result in
deleterious side effects [6,7]. This has resulted in traditional herbal medicines increasingly
becoming more accepted and popular in developed societies [6]. The formulation of tra-
ditional herbal medicines utilizes a number of medicinal plants to produce a polyherbal
mixture [8]. According to the WHO, traditional medicine is defined as “health practices, ap-
proaches, knowledge and beliefs incorporating plant, animal and mineral based medicines,
spiritual therapies, manual techniques, and exercises, applied singularly or in combination,
to treat, diagnose and prevent illnesses or maintain well-being” [9].

More than 35,000 medicinal plant species have been identified and reported to be uti-
lized for medical purposes, but only 121 bioactive compounds have been studied [10]. This
signifies the importance of determining suitable pre-extraction processing and extraction
methods to recover more bioactive phytoconstituents from medicinal plants. Bioactive
phytoconstituents may be degraded due to the use of extraction methods, such as decoc-
tion and infusion, that are widely used by THPs as they lack selectivity [11-13]. Several
natural bioactive compounds have been sourced from various medicinal plant species
based on their traditional applications for health benefits. This has resulted in more than
25% of clinical conventional medications originating from medicinal plants [14]. This
signifies that medicinal plants are pivotal in meeting the healthcare needs of people [6,7,14].
Scientific evaluation of various traditional herbal medicines and their constituent medic-
inal plants supports their traditional uses, which has led to the development of novel
drugs [14,15]. Furthermore, the presence of bioactive phytoconstituents in traditional
herbal medicines confirms the indigenous knowledge held by THPs and their indigenous
communities [14,16]. Bioactive phytochemical constituents found in medicinal plants, such
as flavonoids, phenolics, terpenes, coumarins, and saponins, are reported to exhibit numer-
ous therapeutic effects. These assist in reducing the risk of multiple diseases, including
inflammation, oxidative stress, and diabetes mellitus (DM) [17-19].

Herbal medicine products can be used as dietary supplements, nutraceuticals, or
traditional medicines [20,21]. There are over 3400 plant species in southern Africa that
are used for medicinal purposes [22]. Out of the 3400, 2062 medicinal plants have been
reported as used in traditional herbal medicine preparations and/or traded in herbal mar-
kets that supply THPs and local communities [23-25]. This is in line with reports that have
indicated that in South Africa, approximately 70,000 tonnes of plant material is harvested
annually [26-28]. Plant material harvested from wild resources is considered more potent
because of the presence of a wider range of bioactive phytoconstituents. The presence of
bioactive phytoconstituents manifests as a protective effect against various stimuli in wild
environments. Therefore, the presence of bioactive phytoconstituents may not be expressed
as much in medicinal plants cultured in vitro [29]. Amid the growing number of diseases
and patients that require traditional herbal medicines, the demand for medicinal plant ma-
terial is also growing. However, a wide range of medicinal plant species are showing signs
of unsustainable harvesting, seasonal irregular supply, and scarcity in some habitats [30].
Apart from use as traditional herbal medicines, threats to the sustainability of the medicinal
plant resource base are further exacerbated by habitat destruction due to urbanization and
industrialization [31]. This further threatens the sustainability of medicinal plants, which
are an integral part of traditional herbal medicines [30]. In the African context of preparing
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traditional herbal medicines, combining plants in herbal mixtures is widely practiced by
THPs. Polyherbal remedies may be traditionally prepared as infusions, decoctions, and
macerations, depending on the target bioactive phytoconstituents being extracted [12,13].
Because a certain medicinal plant may be a constituent of a number of traditional herbal
medicines, its wild harvesting may likely reach exploitive and unsustainable levels. Taken
together with habitat destruction, which leads to deforestation, this provides evidence
that the limited natural resource of medicinal plants, including the ones that are widely
used in the preparation of traditional herbal medicines in South Africa, is declining. These
include the decreased availability of Adansonia digitata L., Agrimonia eupatoria Krylov, Aloe
ferox (Mill.), Aspalathus linearis (Burm.f.) Dahlg., Eucomis autumnalis (Mill.) Chitt., Harpago-
phytum procumbens (DC. Ex Meisn.), Pelargonium sidoides DC., Plumbago auriculata, Psidium
guajava L., Sclerocarya birrea (A. Rich.) Hochst., and Sutherlandia frutescens (L.) R.Br., to
name a few [13,32-36]. Based on this, it has been estimated that the global population
loses at least one potential major drug that can be sourced from natural wild resources
every 2 years [14]. Due to a high demand for herbal medicinal products that promote
health in Africa, there is a need to study and identify the most effective pre-extraction
processes and extraction methods to preserve bioactive phytoconstituents from medicinal
plants. Additionally, the introduction of post-extraction processes to improve the efficacy of
extracted bioactive phytoconstituents is important. The conservation and sustainable use
of medicinal plants has been studied extensively in the field of biological sciences. Various
sets of recommendations have been compiled regarding the conservation of medicinal
plants. Therefore, this review aims to explore the extraction and processing of bioactive
phytoconstituents from widely used South African medicinal plants for the preparation of
effective traditional herbal medicine products. Achieving this will ensure that fewer plant
materials are utilized when preparing traditional herbal medicines to reach the threshold
potency of these medicinal products.

2. Literature Search Strategy

The literature search encompassed electronic databases such as PubMed, Scopus,
Science Direct, Web of Science, and Google Scholar, covering studies from the year 2000
up to June 2024. Keywords such as medicinal plants, traditional herbal medicine, phyto-
constituents, extraction methods, derivative synthesis, and nanotechnology were used to
search for relevant articles. Studies were screened independently for relevance to bioactive
phytoconstituent extraction and post-extraction processing. After full-text retrieval and
exclusion of duplicates, insufficient data, and non-English publications, the search identi-
fied 301 studies for possible inclusion. Studies that focused on bioactive phytoconstituents
extracted from non-plant material were excluded, and 286 studies met the inclusion criteria
included in this review.

2.1. Pre-Extraction Processing of Medicinal Plants

Prior to the extraction of bioactive phytoconstituents from the harvested medicinal
plants or parts of the plant (roots, leaves, flowers, stem, or bark), they are normally sun-
or oven-dried. Drying facilitates preservation, as it limits and restricts bacterial activity
and fungal growth, which are usually found in moist and watery environments [37].
Drying also arrests the potential activity of active enzymes that may be present in the
fresh plant material. This prevents enzymatic degradation that may occur on the plant
material and its bioactive phytoconstituents [38]. Drying is followed by cutting into smaller
pieces or grounding the plant material to increase the surface area for the extractant.
This improves the contact of the powdered plant material with the solvent during the
bioactive phytoconstituent extraction process [39]. The particle size of the plant material
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determines the degree of penetration of the solvent to extract bioactive phytoconstituents.
Therefore, the yield of extracted bioactive phytoconstituents is directly dependent on the
two abovementioned steps [40]. In addition to the above processes, in African traditional
medicine (ATM) practice, these medicinal plants are combined into polyherbal formulations.
Extracting bioactive phytoconstituents from polyherbal formulations presents a wider array
of phytoconstituents due to the number of medicinal plants utilized. This phenomenon
presents a new class of bioactive phytoconstituent extraction compared to singular plant
extractions that have been reported in the majority of laboratory settings. In research related
to the utilization of bioactive phytoconstituents, the extraction process is pivotal, as it is
where the preservation of the bioactive phytoconstituents being isolated takes place [41].
Since medicinal plants usually consist of several bioactive phytoconstituents, this presents
a need for the development of extraction techniques/methods that can preserve bioactive
phytoconstituents [41].

The parameters for selecting an appropriate extraction method include the following:

i.  Botanical verification of the medicinal plant or its parts where bioactive phytocon-
stituents are to be extracted [42].

ii. The age of the plant, season, and exact location of harvest, including habitat [43].

iii. The nature of constituents:

(a) Whether or not the bioactive phytoconstituents require polar or non-polar solvents.

(b) If the bioactive phytoconstituents are heat sensitive or not (as some extraction
methods are performed at high temperatures).

(c) The duration required for the optimal extraction of bioactive phytoconstituents
is vital as a shorter than required extraction time would result in an incomplete
extraction. Or, if the duration of the extraction time is exceeded, unwanted
phytoconstituents may also be extracted.

(d) The concentration and drying procedures should ensure the safety and stability
of the bioactive phytoconstituents.

(e) Analytical parameters of the final extract, such as thin layer chromatography
(TLC) and high pressure liquid chromatography (HPLC), should be documented
to monitor the quality of different batches of the extracts [44,45].

2.2. Extraction Methods
2.2.1. Maceration

The term “maceration” denotes softening. The process of maceration extraction is a
solid (plant material)-liquid (solvent) extraction process. The grounded plant materials
are soaked in the solvent in a container that can be closed, and regular shaking and
agitation is applied [46]. The plant material-solvent mixture is allowed to stand at room
temperature for 2-7 days, depending on the bioactive constituents being extracted [47].
This process softens and breaks down the plant material cell walls, resulting in the release
of cellular encapsulated bioactive phytoconstituents into the extractant solvent [48]. When
the extraction is complete, the solvent is strained out, and the insoluble plant material is
pressed to extract all the solvents embedded within the plant material. In some instances,
pressing is replaced by filtration or centrifugation [49].

2.2.2. Tisane/Infusion Extraction

Infusion extraction refers to a process used to extract plant material that is readily
soluble. This material usually dissolves easily to release bioactive phytoconstituents when
in contact with organic solvents [50]. During this extraction process, plant materials are
soaked in a specific volume of either hot or cold solvent for approximately 15 min. This is
followed by cooling, which takes approximately 45 min, and then followed by filtration [51].
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This extraction method is a safe and effective process for crude drug extraction and is also
recognized by the Indian Pharmacopoeia for the extraction of crude drugs [52].

2.2.3. Decoction

A decoction is a water-based preparation used to extract active components from
medicinal plants. The plant materials are boiled in a certain volume of water for a set
period (15 min to 2 h), followed by cooling and filtration [51]. A decoction is best suited
for extracting water-soluble, heat-stable, and hard bioactive phytoconstituents from plant
materials [51]. Delicate plant parts such as leaves, roots, flowers, and tender stems are boiled
for 15 min. Hard plant parts such as branches and tree bark can be subjected to boiling
for up to an hour [51]. Herbal medicines produced via the decoction extraction method
are mostly consumed orally [53]. The decoction method of extraction of phytoconstituents
from medicinal plants is still largely used by THPs when formulating traditional herbal
medicines (Figure 1) [54]. This method of extraction lacks selectivity (especially water-
insoluble compounds), produces lower yields, and consumes large volumes of water.
Therefore, it presents a safety concern and environmental risk [53].

Stirrer —

Vessel —»

Extraction solvent and
raw material mixture

Drain valve —» 'l

Heater plate —» E

Figure 1. Diagram depicting the decoction extraction components [55].

2.2.4. Soxhlet Extraction

Soxhlet extraction involves the use of a Soxhlet apparatus for the extraction of bioactive
phytoconstituents from herbs. In this extraction method, the plant material is repeatedly
subjected to a warm solvent to provide a higher extraction yield [56]. The plant material is
placed in a thimble holder (plant material holder) that is repeatedly supplied with a solvent
from the distillation flask. The solvent is placed in the distillation flask, where it is subjected
to heat. Heating results in the solvent being delivered as a vapor into the distillation arm
to the plant material in the thimble [57]. Extraction is initiated via contact of the plant
material and the condensed solvent that was vaporized. Soxhlet extraction takes place in a
continuous cycle as the solvent is recirculated through the sample. As the condensed solvent
almost reaches full capacity on the thimble, a siphon aspirates the solvent from the thimble
back into the flask (Figure 2) [58]. The bioactive phytoconstituents being extracted from
the plant material are isolated via rotary evaporation [59]. Soxhlet extractions are limited
by the time required for the extraction process and the large volumes of solvent required
for optimal extraction. Such extractions are performed at the boiling point temperature of
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the solvents. Hence, if the boiling point of the bioactive phytoconstituents being extracted
is lower than that of the solvent, the bioactive phytoconstituents being extracted may
be susceptible to thermal decomposition. This may result in less biological activity or a
highly reduced potency of the herbal medicine, as the bioactive phytoconstituents would
not be preserved [60]. Soxhlet extraction takes about 6-48 h and is performed at about
65-100 degrees Celsius [61].

-
Condenser Cooling
walter
-
Extractant
path
Extractor
Sample
Vapo
path
Solvent
Mantle

Figure 2. Diagram depicting the Soxhlet extraction apparatus [62].

New extraction methods with improved efficiency and selectivity are replacing tradi-
tional methods of extraction in laboratories and industrial settings. This is due to shortfalls
such as the lack of high-performance and reliable extraction techniques and methodologies
for establishing the purity and standard for herbal medicines [63]. Such factors mean that
herbal medicines require robust extraction methods in order to produce solutions for a
global healthcare market. The traditional method of solvent extraction of bioactive phyto-
constituents from plants is based on the suitability of solvents and the use of heat and/or
agitation, which improves the solubility and transfer of the target bioactive phytocon-
stituents [40]. Usually, traditional techniques require a longer extraction time, which poses
a risk to the thermal susceptibility of the bioactive phytoconstituents being extracted [64].
Novel extraction methods, including microwave-assisted extraction (MAE), supercritical
fluid extraction (SCFE), accelerated solvent extraction (ASE), subcritical water extraction
(SWE), and ultrasound-assisted extraction (USE), have drawn significant research atten-
tion in the past two decades [39]. If these techniques are explored scientifically, they can
provide an efficient extraction technology for ensuring the quality of herbal medicines
worldwide [64]. The limiting factor in our settings is that there are no studies that have
been performed using these new extraction methods in African traditional formulations to
assess their suitability to extract bioactive phytoconstituents for such formulations.

2.2.5. Accelerated Solvent Extraction

Accelerated solvent extraction, sometimes called pressurized solvent extraction or pres-
surized liquid extraction, is an extraction method that offers advantages such as reduced
extraction times and solvent consumption and increased extraction yields in comparison to
Soxhlet and decoction extraction methods [65]. ASE equipment consists of pressure and
heat settings, which facilitate extraction via reduced solvent viscosity (Figure 3). ASE is
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performed at temperatures that are higher than the boiling point of the extractant solvent.
Pressure helps maintain the solvent in liquid form at elevated temperatures during the
extraction process [66]. The temperature and pressure in this system are set to be constant
for the duration of the extraction process. The plant material and the solvent are placed
in a closed container inside the pressure vessel [67]. The container is connected to a ther-
mocouple that detects temperature fluctuations in the sample container. Therefore, if the
temperature changes, heating or cooling will take place to maintain the set temperature of
the sample container [66]. The pressure, on the other hand, is controlled by the pressure re-
lief valve. Whenever there are pressure fluctuations, the pressure relief valve will be opened
to prevent pressure from building up or the pressurization system will apply pressure to
the vessel to increase the pressure [67]. The ASE technique consists of mixing plant material
with a solvent, followed by the extraction of the target bioactive phytoconstituents, and,
lastly, the removal of solid (insoluble) plant material from the supernatant via filtration [68].
ASE is performed at high temperatures (50 to 200 °C) and pressures ranging from 10 MPa
to 15 MPa. This pressure range is the highest when compared to other extraction methods.
The ultra-high pressure and temperatures applied in the ASE method increase the solubility
of plant materials, resulting in shorter extraction times [69]. Hence, ASE is performed
at temperatures greater than the boiling point of the solvent to improve the extraction
kinetics via the disruption of solvent-bioactive phytoconstituent interactions (i.e., van
der Waals forces, hydrogen bonding, dipole interactions), increased molecular motion of
solvent molecules, and enhanced phytoconstituent solubility in the extraction solvent as
a result of the elevated temperature [70]. An increased temperature also accelerates the
extraction kinetics by keeping the viscosity of the solvent low, which allows for extensive
penetration of the plant material. This results in the rapid diffusion of phytoconstituents
into the solvent medium, which consumes less time and solvent [65,70]. The extraction
solvents used are selected based on their compatibility with the phytoconstituents being
extracted and post-extraction methods (purifying the phytoconstituent from the extractant
solvent). Bioactive phytoconstituents found in herbal medicines are mostly susceptible to
thermal degradation. Therefore, the temperatures required for ASE may result in thermal
degradation and, eventually, the loss of the biological activity of the phytoconstituents
being extracted [60]. Extract impurities due to the high pressure applied during extraction
also present a setback for the ASE method. This tightly embeds the extraction solvent into
the extract, therefore slightly affecting the purity of the extract [71]. The extraction time in
PLE varies from 5 to 20 min and the extraction efficiency varies between 95 and 100% when
compared to traditional extraction methods [72].

4 Pressure N
Purge valve  relief valve
Oven
> 13
Pump Wastes
. Extraction
cell
ok
Solvents
Nintrogen Collection
vessel

. J

Figure 3. Diagram depicting the accelerated fluid extraction apparatus [73].
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2.2.6. Supercritical Fluid Extraction

Broadly, the SCFE process can be divided into two: the extraction process of bioactive
phytoconstituents from the plant material followed by the removal of the solute from the
solvent. During this process, the solvent is subjected to heat and pressure to induce its
critical state before extraction commences. The SCFE system consists mainly of a chiller
used to cool a solvent, a solvent pump, an extraction column, separators, temperature
regulators, a pressure regulator, a back pressure regulator, and an oven (Figure 4) [74]. The
solvent pumps circulate the solvent throughout the system. The extraction column is where
the sample (plant material) to be subjected to extraction is placed. The separators collect
the final product (extracted bioactive phytoconstituents), and the temperature regulators
are used to adjust the temperature during the extraction process. The pressure regulator
maintains pressure in the system within the required ranges of a particular extraction. The
oven is used to keep the extraction column above the critical temperature of the extraction
fluid [74,75]. A fluid is in its critical state when its temperature and pressure are above
its respective critical values [75,76]. During the process of SCFE, the solvent properties
are an intermediate phase between a gas and a liquid. This induces a solvent power that
possesses both liquid- and gas-like viscosity, resulting in enhanced bioactive phytocon-
stituent transfer from the plant material [77]. As a function of pressure and temperature,
changes in the density of the fluid in its supercritical state permit excellent solvating
power, allowing for selective extractions by adjusting both the pressure and temperature
according to the optimal settings of the bioactive phytoconstituents being extracted [75,77].
The extraction mechanism of SCFE is categorized into (i) diffusion of the supercritical
solvent into the plant material [78] (ii) followed by the bioactive phytoconstituents being
deeply embedded into the extractant solvent as a result of the plant material penetration;
(iii) the third stage is the removal of the extracted bioactive phytoconstituents from the
solvent-bioactive phytoconstituent fluid mixture, followed, (iv) lastly, by the recovery of
the bioactive phytoconstituents from the solvent-bioactive phytoconstituent fluid mixture
via decompression [79]. The specificity of SCF extraction relies on the physicochemical
properties of the bioactive phytoconstituents being extracted, which can be modulated by
an increase in pressure and temperature. Viscosity and diffusivity are factors that affect the
penetration of the solvent into the plant materials. The decreased viscosity and increased
diffusivity of the solvent facilitate the penetration of the solvent into solid materials [78].
This results in increased bioactive phytoconstituent transfer from the plant material and
reduced extraction times in SCFE [78,79]. This is followed by the removal of extracted
bioactive phytoconstituents from the solvent, which takes place in the separator. Once this
is performed, the solvent is recirculated for re-use, where it is induced to its supercritical
state to continue with the process of extraction [80]. The extracted compound can be
collected at the bottom of the separator [81]. The SCFE process takes roughly 30-60 min to
complete, depending on the bioactive phytoconstituents being extracted [50].

Back pressure
regulator

A ome }

COz
pump

Sample
Extraction callection
vessel in
oven

CO2
cylinder

Figure 4. Diagram depicting supercritical fluid extraction [82].
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2.2.7. Microwave-Assisted Extraction

Microwaves are non-ionizing waves/radiations that consist of electric and magnetic
fields. The electro and magnetic fields of microwaves oscillate perpendicularly to each
other within a frequency range of 300 MHz to 300 GHz, located between the X-rays and
infra-red rays in the electromagnetic spectrum [83]. Microwave-assisted extraction (MAE)
is an extraction process that uses a solvent such as water or alcohol to extract the bioactive
phytoconstituents from medicinal plants [84]. During MAE, the microwave transfers energy
to the solvent and plant material. This facilitates extraction due to changes in the plant
material cell structure caused by electromagnetic waves [85]. The microwave energy is
delivered directly to the medicinal plant cellular particles through interactions with the
electromagnetic field. The energy is absorbed by the plant material that has been penetrated
by the solvent. The microwave energy is converted to heat energy [84,85]. Heating may
cause liquid vaporization within the cells, which may rupture the cell walls to facilitate
the penetration of plant material by the extractant, resulting in greater extraction yield
(Figure 5) [86]. Devices utilized for MAE are closed and focused extraction vessels. In
a closed extraction vessel, MAE takes place under regulated pressure and temperature,
while in a focused extraction vessel, MAE is performed at atmospheric pressure. Therefore,
a closed extraction vessel is recommended for bioactive phytoconstituents that require
elevated temperature and pressure [87]. The principle of heating using microwaves is based
on its interaction with a solvent, facilitated by ionic conduction and dipole rotation, which
happen simultaneously [88]. Ionic conduction refers to the migration of negatively and
positively charged molecular bodies as a result of the driving force exerted by the electric
field [89]. The resistance caused by the solvent to the migrating ions and electrons generates
friction, which eventually warms up the solvent. This phenomenon of ionic conduction
occurs when the frequency is ~2450 MHz [90]. Dipole rotation refers to the realignment of
the negatively and positively charged poles of the molecules being realigned due to the
driving force exerted by the electric field. This results in collisions between dipoles and
surrounding molecules, thus generating heat. Polar solvents have greater heat-producing
abilities when subjected to microwaves, compared to lesser polar solvents [91]. The heat
production efficiency of different solvents, when subjected to microwaves, depends on the
dissipation factor, which is the measure of the ability of the solvent to absorb microwave
energy and pass it on as heat to the surrounding medicinal plant material where bioac-
tive phytoconstituents are extracted [90,91]. The end result of this entire process is the
breakdown of the plant material cell wall, leading to the release of bioactive phytocon-
stituents [85]. The duration of MAE can last up to 20 min when performed at a temperature
range of 120-140 degrees Celsius, depending on the bioactive phytoconstituents being
extracted [92].

CONDENSER
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Figure 5. Schematic depicting a microwave-assisted extraction apparatus [93].
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2.2.8. Sonication/Ultrasound-Assisted Extraction

The sonication/ultrasound extraction method can be carried out via the use of an
ultrasound probe or an ultrasound bath, whereby a transducer is a source of ultrasound
waves [94]. Apart from sonication, a pressure of 50 MPa and a 40-60 degree Celsius
heat application are required to perform this extraction [95]. The sonication/ultrasound-
assisted extraction technique employs ultrasonic waves found between the frequency range
of 20 kHz-10 MHz, which are audio and microwaves (Figure 6). The ultrasound wave
range is presented by power ultrasound (20 kHz-100 kHz) and diagnostic ultrasound
(100 kHz-10 MHz) [96]. The ultrasound probe system is preferable in the extraction
industry. This is due to the power of intensity that it can deliver through a small surface
area, which is the tip of the ultrasound probe [97]. Ultrasound extraction using a probe
requires the probe to be immersed into the solvent-plant material mixture and operated at
a frequency of 20 kHz. Power ultrasound is used for bioactive phytoconstituent extraction
and food processing applications [98]. Diagnostic ultrasound is used in clinical settings
for diagnostic instruments [99]. The mechanical effect from the ultrasound increases the
surface area of contact between solvents and plant material. This allows the permeability of
the plant material cell wall by the solvent via bubble formation, followed by bubble growth
and, eventually, the rupture of the plant material cellular structures after the bubble has
collapsed [100]. The extraction of bioactive phytoconstituents is achieved based on acoustic
cavitation. Acoustic cavitation is a process that consists of the formation, growth, and
collapse of bubbles when ultrasound waves travel through the extractant solvent following
irradiation with an ultrasound wave at a frequency greater than 20 kHz [101]. Once bubbles
are formed, their growth depends on frequency, pressure, and bubble radio [102]. Bubble
growth follows bubble formation, which can be explained by coalescence or the rectified
diffusion phenomenon. Coalescence refers to two bubbles combining to form one bigger
bubble. Rectified diffusion is defined by single bubble growth as a result of pressure
gradient differences between the outer and the inner regions of bubbles [102]. The end
result is bubbles collapsing at the end of acoustic cavitation and producing the cavitation
effect. This leads to the formation of microcracks on the surface of solids due to the release
of high energy when the bubble is collapsed [100]. This effect results in improved solvent
penetration into the plant material and the release of cellular contents to the solvent. This
facilitates bioactive phytoconstituent transfer from the plant’s cellular structures [103].

Ultrasound
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| U Itrasonic probe
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Figure 6. Diagram depicting a sonication-assisted extraction apparatus [104].
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From the comparison of methods for extracting various phytochemicals, it can be
concluded that researchers have been conducting research to discover methods that could
result in higher extraction yield, possess better selectivity, use less solvent and energy, have
shorter extraction times, and are environmentally friendly processes. Table 1 below is a
comprehensive summary of these extraction methods, including their advantages and
disadvantages, and the suggested inputs to improve these methods.

Table 1. Medicinal plant extraction methods, including their advantages and disadvantages, and
suggested inputs to improve these methods.

Extraction oo . Suggested Inputs to Improve
Method Application Advantages Disadvantages the Method
. Duration of the process is 2-7
days [47].
. Consumption of large
. The method is simple, only volumes of solvents
requiring a vessel with a compared to novel extraction
hﬁ [105]' d f methods [109]. d Due to the longevity the
This method is widel; * There is no need for a ¢ Some solvents used are rocess, the addition of
applied in wine Y skilled technician to hazardous [92] I':lcohollma be required to
makin [10] perform the *  Theprocesslacks inhibit mictobial
Maceration Itis usged to extract extraction [106]. selectivity [110]. development [112]
nonvolatile compounds in ° The process is heat-free, . Increased risk of microbial Introduction of a v\;arm
the pharma indtfstr [48] thus conserving contamination, especially solvent to the extraction
P y 1ok energy [107]. when water is used as the rocess [113]
. This method is suitable for solvent [111]. p o
less non-hard plant . Produces low extraction
materials [108]. yield compared to novel
extraction methods [110].
. Suitable for nonvolatile
substance extraction [48].
. Best suited for delicate
plant material such as
E?)t;l:;;e[?‘l]g]s , and . Effective in extracting readily
X L . soluble secondary
. . . . This extraction method is .
Infusion finds its . . metabolites [50].
T recognized by the Indian X
Infusion application in tea Pharmacoposia for the . Infusions do not
preparation [114]. extractionr()Jf crude accommodate hard plant
drugs [52] materials such as bark and
. Does not require complex roots [50].
settings or expensive
equipment for setup [116].
Longer duration for the
extraction process to allow
. Does not require complex . Lacks selectivity [119]. greater extraction of
cettings or g( ensive p . Produces lower yields bioactive
g P compared to novel phytoconstituents [122].
equipment for setup [116]. . .
o Best suited for extractin methods [120]. For delicate plant material
Formulation of African bioactive & . Consumes large volumes of such as flowers and leaves,
Decoction traditional medicines, hytoconstituents from water compared to novel extraction shall be
extraction decoctions, concoctions, phy methods [121]. performed at lower than

and teas [117].

hard plant materials such
as bark and roots [50].

. Thermo-stable compounds
are accommodated by this
method [118].

. Use of water as the solvent
risks the development fungal
and bacteria, which can
degrade bioactive
phytoconstituents [112].

boiling temperatures of the
solvent [57].

Covering or uncovering
the vessel of extraction,
depending on the bioactive
phytoconstituents being
extracted [122].
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Table 1. Cont.

Extraction
Method

Application

Advantages

Disadvantages

Suggested Inputs to Improve
the Method

Soxhlet extraction

. Removal of pesticides and

organic pollutants from .
environmental
samples [123].
. Pharmaceutical industry
for bioactive compound .

extraction. Food industry
for flavor and to
determine nutritional

The recuring application of
the solvent extracts

more bioactive
phytoconstituents [56].
CO; can be recycled,
which alleviates the
greenhouse effect.

This extraction technique
is widely used to extract
fragrance-and-aroma oils
due to its simplicity.

This method requires less
solvent than traditional
methods.

Does not require solvent
filtration from the sample
following the extraction
process [125].

A large quantity of
medication may be
extracted using a little
amount of solvent [108].

Lacks selectivity of
heat-sensitive
phytoconstituents [125].
Uses hazardous and
flammable organic solvents
with potential of toxic
emissions during
extraction [57,127].
Extensive duration of the
extraction process [56].
Large volumes of solvent
required for optimal
extraction [128].

The Soxhlet apparatus is not
provided with any kind of
agitation or stirrer to
facilitate mass transfer [59].
The prolonged extraction
process and the high volume
of solvents also make this
process expensive [129].

. Soxhlet rinsing of graphite
oxide after Hummers’
oxidation method [134].

. Use of a double bypass
Soxhlet apparatus to
reduce the overall
extraction time [135].

. High-pressure Soxhlet
extraction in which the
extractor is placed in a
cylindrical stainless-steel
autoclave [125].

. Automated Soxhlet
extraction equipped to
perform reflux boiling and
Soxhlet extraction

Accelerated
solvent extraction

is predominantly used in
the extraction of
fragrance-and-aroma
oils [50].

Being a fully automated
process, it eliminates
possible human

errors [136].

Considered an alternative
approach to SCFE for the
extraction of polar
molecules [137].

solvent during static

mode [138].

Costly to run as high
pressure is a safety

concern [139].

Preparation of extractions for
the process is time
consuming [140].

Large volumes of solvents
are required for rinsing [141].
Sometimes requires the
removal of impurities from
the extract [141].

content [123,124]. * Esetd ftoile xtracting Not suitable for samples with followed by extractant
cc?re;soings 58] high moisture content and recovery [125].

o Hi h-efﬁciené 'automatic roughly ground . Ultrasound-assisted
cor%tinuous exz:action ’ samples [130,131]. Soxhlet extraction in an
technology that consumes The requirement for extractor based on
less time and solvent than ultrapure solvents increases Soxhlet’s physiochemical
maceration or the cost of the principles [125].
percolation [126] procedure [132].

. The Soxhlet extre;ction This method is unfavorable

X . for the environment and can
method is also a reliable . tal
method for the extraction cause er_1v1r9nm§;13a
of fat-soluble contamination [133].
phytochemicals [92].

Susceptible to thermal
degradation of heat-sensitive
phytoconstituents [60].
Extract impurity due to high
pressure applied during

. Uses less solvent and extraction [71]. . Introduction of a fully
requires less time May result in incomplete automated ASE
compared to traditional extractions due to the system [87].

. . . methods [85]. reduced volume of the . Use of non-ionic surfactant
. This extraction technique

solutions Instead of ionic
surfactant solutions [142].

. Coupling ASE with gas
chromatography to extract
pyrethroid and
organophosphorus
residues in herbal plant
materials [143].
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Table 1. Cont.

Extraction
Method

Application

Advantages

Disadvantages

Suggested Inputs to Improve
the Method

Supercritical fluid
extraction

Research and commercial
laboratories to produce
natural food ingredients,
nutraceuticals, and
pharmaceuticals and also
to remove pesticides from
food products [144].

Faster bioactive
phytoconstituent transfer
rates during extraction
compared to traditional
methods [77].

SCFE is widely used at the
commercial scale.

Suitable for extracting
thermolabile
phytochemicals by keeping
the temperature low and
the pressure high [145].
CO; is an easily removable
solvent from extracts [146].
Near-ambient critical
temperature, which
reduces a risk of thermal
degradation [78].

CO; is non-toxic and a
non-flammable

solvent [147].

Less polar compounds and
small molecules are easily
dissolved in super critical
CO; [148,149].

Polar compounds and
large molecules are easily
dissolved with the
addition of a co-solvent
such as ethanol, methanol,
or water [150].
Compounds that are
thermally stable as well as
high-boiling components
can be extracted at low
temperatures using the
SCFE method [151].

CO,; is relatively cheaper
when compared to other
solvents [152].

The SCF extraction
apparatus can be directly
connected to gas
chromatography for
analytical purposes [153].
Reduced extraction
duration; suitability for
extracting volatile [154].
Reduced solvent use [154].
High pressure in the
equipment prevents
oxygen entry into the
system during extraction,
thus preventing oxidation
reactions [155].

CO; is considered as
environmentally
friendly/green

solvent [152].

The gas-like diffusivity of
supercritical CO; is greater
than liquid solvents [156].
Product purity is high, and
the decomposition of
compounds never happens
since a relatively moderate
temperature is

applied [157,158].

Carbon dioxide can easily
be filtered from the

extract [158].

The pressure and CO,
applied by the system
eliminates microorganisms
without altering affecting
bioactive phytoconstituent
composition [147].

Less volatile, polar, and
high-molecular-weight
compounds are not easily
soluble in super critical

CO; [148,149].

The need for relatively small
sample sizes.

Extraction of unwanted
compounds occurs [159].
Using an organic modifier
(co-solvent) requires an
additional purification step
in order to remove any
remaining solvent [160].
Costly due the high-pressure
requirement as it poses a
safety concern [161].
Limited ability to solvate
highly polar
phytoconstituents [162].
Large capital investments are
required for the setup of this
method’s equipment [161].
The high pressure used in the
SCFE operation requires a
skilled technician, hence
making the extraction

costly [161].

Has a limited ability to
dissolve fat and
water-soluble bioactive
phytoconstituents.

The equipment is difficult to
clean following use.

Addition of polar
co-solvents to super critical
CO; enhances the polarity
and density of the super
critical CO; to dissolve
polar compounds [150].
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Table 1. Cont.

Extraction oo . Suggested Inputs to Improve
Method Application Advantages Disadvantages the Method
. Shortened extraction time
compared to traditional . High-pressure resistance and
methods [164]. air-tightness makes running
. Reduced solvent the extraction costly [175].
consumption in relationto Specifically, accommodates
traditional methods [164]. solvents that can absorb
. In MAE, impurities are microwaves [176].
removed during . Each cycle only allows for a
extraction. small quantity of plant
. Equipment and setup for material extraction [177].
MAE costs are relatively . Volatile solvents are not
modest [165]. permitted for use in this Introduction of
. Solvent recovery is method since they degrade modifications such as the
reasonably high [166]. the effectiveness of the pressure and flow of
. The use of less polar microwave extraction oxygen [85].
solvents reduces the risk process [178]. Introduction of vacuum
thermal degradation [167]. e Suitable for relatively smaller microwave-assisted
° Closed extraction molecules [179]. extraction,
consumes less . Requires time to cool off to nitrogen-protected
solvent [168]. remove the residue after microwave-assisted
. MAE is used for . Closed extraction is best extraction [180]. extraction, ultrasonic
Microwave- . suited for volatile . At industrial-scale utilization microwave-assisted
5 pharmaceutical and food . . .
assisted . compound of MAE remains very extraction, and dynamic
N extractions from plant . ; L. . .
extraction materials [163] extraction [169]. limited [170]. microwave-assisted
o . Successful in sample . Requires additional clean-up extraction
preparation at the for the removal of the solvent modifications [186].
laboratory scale [170]. from the sample matrix [180]. Introduction of mechanical
. The application of MAE . Restricted to polar solvent or magnetic stirrers [187].
combined with other application [181]. Some articles reported that
treatment like ultrasound . MAE efficiency may be very an enhancement in oil
is recommended in food poor when the viscosity of yield under MAE was due
preservation [171]. the solvent is high [182]. to a decrease in viscosity
. Oils extracted with MAE . The microwave extraction of when increasing the
have improved phenol is not efficient as temperature [188].
pharmacological compared to conventional
properties compared to oils methods [183].
extracted with the Soxhlet . Cannot adequately extract
extraction method [172]. tannins or anthocyanin [184].
. In comparison to SFE, . MAE has the potential to
MAE is a simpler degrade polyphenols with
process [165]. many hydroxyl-type
. In food analysis, MAE can substituents and
perform condensation and heat-sensitive polyphenols
drying using a single piece such as Anthocyanin [185].
of equipment [173,174].
. Cavitation sometimes
degrades plant material,
which reduces yield [195].
. Shorter extraction timesin ~ * Lack of uniformity in the
. " process.
comparison to traditional . . .
. . Direct immersion of the
extraction methods [86]. .
L probe into the sample
. Shorter extraction times . . .
- sometimes increases the risk
and better yields than .
e of thermal degradation [98].
traditional methods [191]. . X
. Filtration and clean-up step
. UAE preserves the . - -
e . . required. Combination of sonication
composition of bioactive The bath ¢ is1 ith alt H tracti
hvtoconstituents that . e bath system is less with alternative extraction
s 4 efficient due to energy loss to methods—MAE, ASE, and
egrade at elevated h di 97 SCFE h h
temperatures [192] the medium [97]. —to shorten the
. This extraction method is N . Furthermore, low extraction time [189].
- . Less solvent usage in A . . -
used in wastewater R i reproducibility is also one of Direct immersion of the
e . . comparison to traditional . .
purification, oil extraction, . the major concerns of the probe into the sample
L . extraction methods [86]. ..
Sonication/ and techniques that ultrasound bath system [196]. causes a rise in
. . . . The probe system has a . .
ultrasound- require cell disruption to N . The design data for the temperature in a shorter
3 L shorter extraction time due L .
assisted obtain intracellular application of ultrasound at space of time. Therefore, a
¢ to lower energy loss to . SO : X .
extraction structures from plants, the industry scale is still jacketed cooling system is

food processing, and
diagnostic clinical
settings [99,189,190].

surroundings [97].

. Another study reported
that UAE is able to reduce
the degradation of a
thermal-sensitive
compound in essential

oil [193].

. Ultrasonic waves can
propagate through any
medium [191].

. The choice of solvents that

can be considered in this
type of extraction is
wide [94].

limited to date [197].

. Due to the action of
ultrasound, changes in the
extractant medium occur,
negatively affecting
yield [194,198].

. The disadvantages of
applying UAE are a decline
in power over time and a
decline in uniformity in the
distribution of ultrasonic
energy [191].

. An increase in temperature
initially improves UAE yield,
but as the temperature rises
above 45 oC, the yield
declines [192].

required to carry out the
extraction process [199].
Using ionic liquids instead
of conventional organic
solvents assisted by
ultrasound extraction
improves the process [94].
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Table 1. Cont.

Extraction
Method

Application

Suggested Inputs to Improve

Advantages Disadvantages the Method

Sonication/
ultrasound-
assisted
extraction

. Low energy and solvent
consumption [194].

. Compared to other
conventional techniques,
the application of the
ultrasonic bath in industry
is cheaper and quite
simpler [189].

. In comparison to modern
extraction techniques,
ultrasonic equipment is
less costly and simpler to
use [191].

. Can extract a wide range
of natural compounds
using a wide range any
solvent [191].

. UAE has an extraction
efficiency of 85 to 97%
depending on the type of
sample being extracted at a
20-80 °C temperature
range within
10-60 min [191].

3. Post-Extraction Methods for Enhancing the Potency of
Phytoconstituents

3.1. Derivatives Synthesis

Based on the structural and pharmacokinetic characteristics of the bioactive phyto-
constituent (parent compound), derivatives are synthesized to improve the efficacy of
the parent compound [200]. Properties such as low solubility and poor bioavailability
associated with herbal medicines limit the application of traditional medicine products in
clinical settings [201]. Therefore, strategies toward the improvement of their properties are
in urgent demand.

Based on the structural and pharmacokinetic characteristics of the extracted bioactive
phytoconstituent (parent compound), derivatives are synthesized to improve the desired ef-
ficacies [200]. Synthesized derivatives exhibit their potency via improved physicochemical,
biopharmaceutical, or pharmacokinetic properties of pharmacologically active compounds,
thereby optimizing absorption, distribution, metabolism, excretion, and toxicity properties
for potential drug candidates, which finally improves therapeutic indices of the parent
drugs [200,201]. A prodrug is a chemically modified version of a pharmacologically active
agent that elicits its desired pharmacological effects due to chemical modification(s) to the
parent compound [202]. A prodrug undergoes chemical and/or enzymatic biotransfor-
mation in a regulated or predictable manner prior to exerting its biological effects [203].
Specifically, the conjugation of parent drugs with different functional groups (phosphoric
acids, sulfuric acids, amino acids, polymers, or sugars) is employed to improve aqueous
solubility, bioavailability, and pharmacokinetics [204]. The conjugation of non-ionized func-
tional groups (e.g., alkyl or aryl esters) has been applied to enhance lipophilicity and oral or
topical absorption of parent drugs [205]. It is estimated that currently, about 10% of world-
wide marketed drugs can be classified as prodrugs [206]. These include 2-fluoroadenosine
(F-ara-A), which has clinical use as an anti-neoplastic agent. However, it is difficult to
formulate because of its lipophilicity. Therefore, fludarabine phosphate (2F-ara-AMP),
which is a prodrug that is rapidly dephosphorylated to give fludarabine (F-ara-A), was
synthesized [207]. Another example is the anti-Parkinson’s agent L-DOPA. This prodrug
increases the efficacy of dopamine, which does not efficiently cross the blood—brain barrier.
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However, the prodrug of dopamine, L-DOPA, enables the uptake of dopamine into the
brain [208].

3.2. Nanoparticle Synthesis

The unique features of nanoparticles offer various therapeutic advances in the field
of drug delivery due to their potential to improve the clinical efficacy of bioactive phyto-
constituents obtained from medicinal plants [209]. Nanoparticulate formulations in herbal
medicines improve drug delivery by introducing alternative routes of drug administration,
which have been reported in hydrophilic and hydrophobic drugs, proteins, vaccines, and
biological macromolecules [210]. Some of the challenges of most drug delivery systems re-
lated to herbal medicines include poor bioavailability, in vivo stability, solubility, intestinal
absorption, sustained and targeted delivery to specific receptors, therapeutic potency, side
effects, and plasma fluctuations of drugs that either fall below the minimum effective doses
or exceed the safe therapeutic concentrations [211-213]. However, nanotechnology drug
delivery systems overcome these challenges through the development of drug delivery
systems that can be applied to reformulate existing drugs. This has the advantages of
extending the products’ shelf life, and potency, as well as increasing the safety profile of
the drug, which may significantly contribute to patients” adherence to medication and,
ultimately, a reduction in healthcare costs [214]. For instance, nanotechnology has been
successfully incorporated into therapeutics used for cancer treatment [7,8]. This has led
to the development of drugs such as Dox-il, DaunoXome, Myocet, DepoCyt, Marqibo,
and Onivyde [215]. These drugs have also been granted approval by the Food and Drug
Administration (FDA) for treating diseases such as COVID-19 [216]. Nevertheless, to be
clinically relevant, nanoparticle-based therapies must be produced through techniques
that ensure stability during storage, compatibility with sterilization, quality control, and
regulatory compliance [217]. An example of such challenges is that during preparation or
storage of lipid-based nanoparticles, triglycerides may convert from their a-form to the
-form, leading to the formation of aggregates that result in drug leakage [218]. Industrial
mass production also requires sterilizing. This presents a limit due to destabilization that
may result from conventional sterilization methods [218].

3.3. South African Medicinal Plants with Phytochemicals That Can Be Enhanced Through
Post-Extraction Processing

African traditional medicines in South Africa are prepared via the utilization of various
medicinal plants as polyherbal formulations. According to traditional knowledge, the use
of medical plant formulations facilitates reducing the toxic effects of some medicinal plants
while also eliciting synergistic effects. A variety of plant material preparation methods
are used to prepare traditional medicine for different types of ailments and diseases in the
study area, as indicated in Table 2. Decoction, infusion, paste, and ash were recorded as the
main methods utilized for the extraction of bioactive phytoconstituents [12,13].

Table 2. Widely used South African medicinal plants, their common traditional preparation methods,
known active phytoconstituents, and the potential use of post-extraction processing to enhance the
activity of phytoconstituents.

Post-Extraction

Medicinal Therapeutic Effects Tradltlor}al Phyto‘chemlcal Methods to References
Plant Preparation Methods  Constituents X
Increase Efficacy
Flavonoids, glycosides,
. . . . saponins, tannins, phenols,
Adansonia Oral infections and dental Burning of the plant . .
digitata L. disorders. material to ash terpenoids, anthraquinones,  No records [219-222]

steroids, reducing sugars,
and alkaloids.
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Table 2. Cont.

Medicinal
Plant

Therapeutic Effects Traditional

Preparation Methods

Phytochemical
Constituents

Post-Extraction
Methods to
Increase Efficacy

References

Agrimonia
eupatoria
Krylov

Oral infections and dental

Decoction
remedy.

Tannins, coumarins,
polysaccharides, flavonoids,
phenolic acids, and
terpenoids.

No records

[223-225]

Aloe ferox
(Mill.)

Laxative, topical gel/paste,
analgesic, antiviral,
antiparasitic, antitumor,
antimicrobial,
antihypertensive, wounds,
burns, gastric ulcers, and
oedema remedy.

Decoction,
pulverized gel
extract/paste

Phenolic compounds,
flavonoids, alkaloid,
tannins, and
polysaccharides.

No records

[226-229]

Aspalathus
linearis
(Burm.f.)
Dahlg.

Vomiting, stomach cramps,
immunomodulatory,
antiviral, antidiabetic,
antihypertensive,
antiaging, antieczema, and
antimicrobial remedy.

Infusion

Flavonoids, glycosides,
phenolic compounds,
alkaloids, and polyphenols.

Nanoparticle
synthesis

[230-235]

Eucomis
autumnalis
(Mill.) Chitt.

Wound healing, flu,
common colds,
antihyperglycemic, urinary
diseases, stomach aches,
fevers, colic, viral and
bacterial infections,
flatulence, hangovers and
syphilis, childbirth,
stomach ache, colic,
syphilis, fever, urinary
diseases, pulmonary
ailments, fracture healing,
urinary inflammation,
oral blisters,

and eczema remedy.

Decoctions

Flavanones and terpenoids.

Nanoparticle
synthesis

[230,231,236-238]

Harpagophytum
procumbens
(DC. ex

Meisn.)

Allergies, analgesia,
antidiabetic,

appetite stimulant,
childbirth difficulties,
dysmenorrhea, oedema,
fever, gastrointestinal
disorders, and headache
remedy.

Decoction

Glycosides, triterpenes,
flavonoids, phenols and
flavonoids, phenolic acids,
and carbohydrates.

No records

[239-245]

Pelargonium
sidoides DC.

Treatment of respiratory
infections,

disorders of the
gastrointestinal tract,
antibacterial, respiratory
tract infections,
gastrointestinal disorders,
bronchitis, common cold,
respiratory ailments,
diarrhea, vomiting, and
antiviral tract disorders.

Infusion, decoction

Phenolic acid compounds,
coumarins, flavonoids, and
proanthocyanins.

No records

[246-248]

Plumbago
auriculata

Treatment for
hyperglycemia,
cardiovascular diseases,
kidney infections,
gastrointestinal disorders,
respiratory disorders.

Decoction

Tannins, phenols, alkaloids,
saponins, and flavonoids.

Nanoparticle
synthesis

[249-251]

Psidium
guajava L.

Antihyperglycemic and

antibacterial effect remedy. Infusion

Glycosides,
polysaccharides, flavonoids,
terpenes, tannins, phenols,
alkaloids, saponins, and
carbohydrates.

Nanoparticle
synthesis

[12,252-255]
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Table 2. Cont.

Post-Extraction

Medicinal Therapeutic Effects Tradmor.lal Phyto?hemmal Methods to References
Plant Preparation Methods  Constituents .
Increase Efficacy
Tr.eatment' for . Polyphenols, flavonoids,

Sclerocarya diarrhea, insect bites, . ! . .

. R K . . Decoctions, tannins, steroids, Nanoparticle
birrea (A. malaria, diarrhea, microbial, . . N . . [256-260]
Rich) Hochst.  plasmodial, hypertensive powdered, infusions  glycosides, flavonoids, synthesis

’ ’ ! ’ alkaloids, and phenols.

diabetic tissue injury.

Sutherlandia
frutescens (L.)
R.Br.

Stomach ailments,

backache, diabetes, stress,
fever, wounds, body Infusion and

rash, bladder,

kidney, urinary tract,

Flavonoids, glycosides,
phenolic compounds,
saponins, and terpenoids.

Nanoparticle

synthests [230,237,261,262]

decoction

infection remedy.

4. Challenges for the Herbal Industry

Bioactive phytoconstituents are vital constituents of herbal products because bioactive
phytoconstituents determine the safety and efficacy of herbal products [263]. Data on phy-
toconstituent processing can be difficult to obtain; particularly, the physical and chemical
properties, including solubility values, partition coefficients, and heat transfer coefficients,
are not available [264]. These critical data are required to develop an effective process model
that can be integrated into process design methods [263,264]. The physiochemical property
data can be obtained through either experimental studies or mathematical modeling of de-
velopmental drugs. Determining the physical and chemical properties of phytoconstituents
can be challenging because herbal materials contain multiple phytochemical components,
and each component contributes to these properties [263,265]. Reports on herbal extrac-
tion analysis using either GC or HPLC indicate that the bioactive phytoconstituents vary
with the method and solvent applied during the extraction process [266]. In the case of
THPs, who solely rely on wild resources for medicinal plant harvesting, this presents a
challenge as there may be seasonal and habitat/environmental harvest variations from each
batch. It is therefore expected that there will be batch-to-batch variations in the bioactive
phytoconstituent contents between harvests, making it difficult to ensure consistency in
their traditional herbal medicines. This has a huge impact on the use of wild-harvested
medicinal plants to meet the healthcare needs of people, especially through the practice
of traditional healing [267]. In addition to the aforementioned challenges, habitat destruc-
tion due to urbanization and industrialization poses threats to the practice of traditional
healing due to deforestation, which eliminates a critical resource for the practice [268,269].
Thus, this further signifies the need to develop methods that can effectively optimize the
processing, extraction, and post-extraction processing of target bioactive phytoconstituents
and improve the potency of the extracted bioactive phytoconstituents. This would ensure
that, with the limited supply of plant material, the maximal health benefits of medicinal
plants would still be achieved.

4.1. Standardization of Traditional Herbal Medicines and Their Products in South Africa

The growing demand for traditional herbal medicines raises concerns about qual-
ity control, safety, efficacy, and reproducibility when formulating traditional herbal
medicines [270]. The standardization of traditional herbal medicines and their products is
crucial [271]. Standardization would involve monitoring and controlling various compo-
nents of traditional herbal medicines. This includes product development, manufacturing,
and distribution. Standardization will guarantee that traditional herbal medicines and their
products meet standards and specifications set by a regulatory body [272,273]. However,
the South African Health Products Regulatory Authority (SAHPRA) has established regula-
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tions for complementary and alternative medicines but has not yet formulated regulations
for African traditional herbal medicines and their products. This hinders the local tradi-
tional herbal medicine industry from building practice standards, accurate packaging, and
labeling of products for consumers to make informed choices about these products [274].
The steps required to achieve standardization include macroscopic analysis, which refers
to the botanical identification and geographic origin of the constituent plant material. Mi-
croscopic analysis and chemical analysis involve the confirmation of moisture content,
phytochemical composition, microbial contaminants present, heavy metal contaminants
present, residual solvents present, and bioactive phytoconstituent identification via quali-
tative and quantitative analysis [275-277]. Standardization also includes establishing the
best suitable extraction method(s), and process validation should be performed to ensure
consistent and reproducible extraction results. These should be compared to established
predetermined quality standards, including extraction efficiency, yield produced, and the
presence of targeted bioactive phytoconstituents [278-280].

The standardization of traditional herbal medicines would require the establishment of
a unified framework based on national guidelines and good manufacturing practices. The
encouragement of multidisciplinary partnerships between THPs, scientists, and regulators
would bring together both traditional knowledge and modern expertise [281]. It would
also preserve the valuable wisdom of THPs and indigenous communities while exercising
the highest standards of modern care [282].

4.2. Conservation of Medicinal Plants to Sustain the Production of Traditional Herbal Medicines

The International Union for Conservation of Nature (IUCN) Red List of Threatened
Species records data concerning endangered plant species globally [283]. Following the
identification of endangered plant species, different methods are adopted. In situ con-
servation is the most appropriate conservation approach for the preservation of species,
including endemic species. In situ conservation preserves the original genetic and geograph-
ical centers of biodiversity, resulting in the conservation of ecosystems and biodiversity in
their natural habitats [284]. Ex situ conservation, the conservation of biodiversity outside
its natural habitats, is a widely adopted option for the preservation of rare and endemic
species [285]. Ex situ conservation can also be achieved via conventional seed bank dry stor-
age at —20 °C, mostly performed for plant germplasm [285]. However, some plant species
cannot be preserved via these methods. Therefore, the introduction of biotechnology,
in vitro propagation, slow growth preservation, and cryopreservation have contributed
immensely to preserving endangered plant species conservation [286]. The introduction of
these strategies is not to replace traditional conservation methods but rather to complement
and improve the methods available [285,286].

5. Limitations

There was a substantial bias in the literature selection as this study was based on
available and accessible data on the chosen search engines. Limitations associated with this
study include its reliance on research lab-based setting reports on the various medicinal
plant processing, extraction methods, and post-extraction processes discussed in this paper.
This is biased against industrial-based data reports as there are far fewer reports on the
industrial applications of different extraction methods. This indicates that there is a gap
in the literature between the research laboratory applications and industrial applications
of these methods. Another limitation is the missing reports on why THPs heavily rely
on the decoction extraction method instead of other methods, as the conventional meth-
ods are widely researched. To overcome such limitations, it is essential that researchers
collaborate with THPs to share knowledge of different extraction methods for medicinal
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plant preparation. This will not only enhance the work of THPs but also inform researchers
about indigenous ways of extraction. This may further benefit researchers and THPs by
producing their medicines in higher yields compared to the ones offered by current meth-
ods. Focusing on the exchange of knowledge between researchers and THPs may even
bring about standardization of some extraction methods, which would advance herbal
medicines production.

6. Conclusions

This review stresses the importance of refining extraction processes and exploring
innovative post-extraction techniques to ensure the sustainable use of medicinal plants. By
adopting a collaborative relationship between research and traditional practices, we can
advance herbal medicine, making it more effective and accessible to meet the diverse health-
care needs of communities. Through these efforts, we can work towards a future where
traditional healing practices are enriched by modern scientific advancements, safeguarding
and enhancing medicinal plant resources for generations to come.

7. Future Perspectives

It is pivotal to research and develop extraction methods that are selectively compatible
with target bioactive phytoconstituents being extracted, as higher yields may result in
higher productivity of medications required to meet human needs for disease eradication.
This necessitates the development of extraction techniques that require less solvent, energy,
and time consumption. This would result in the elimination of the toxic and non-organic
solvents used. Hence, protecting resources of the natural environment against environ-
mental pollution is a global burden. Based on the type of work that is conducted in our
laboratory, we aim to adopt some of these methods in our research settings to achieve the
sustainability of traditional healing practice through innovative approaches to research and
development. We will be working hand in hand with THPs to modernize the practice to
provide traditional herbal medicines for the broader public.
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