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Abstract: Accurate diagnosis of crop nutritional status is critical for optimizing yield and
quality in modern agriculture. This study enhances the accuracy of Raman spectroscopy-
based nutrient diagnosis, improving its application in precision agriculture. We propose a
method to identify optimal diagnostic positions on cucumber leaves for early detection of
nitrogen (N), phosphorus (P), and potassium (K) deficiencies, thereby providing a robust
scientific basis for high-throughput phenotyping using Raman spectroscopy (RS). Using
a dot-matrix approach, we collected RS data across different leaf positions and explored
the selection of diagnostic positions through spectral cosine similarity analysis. These
results provide critical insights for developing rapid, non-destructive methods for nutrient
stress monitoring in crops. Results show that spectral similarity across positions exhibits
higher instability during the early developmental stages of leaves or under short-term
(24 h) nutrient stress, with significant differences in the stability of spectral data among
treatment groups. However, visual analysis of the spatial distribution of positions with
lower similarity values reveals consistent spectral similarity distribution patterns across
different treatment groups, with the lower similarity values predominantly observed at
the leaf margins, near the main veins, and at the leaf base. Excluding low-similarity data
significantly improved model performance for early (24 h) nutrient deficiency diagnosis,
resulting in higher precision, recall, and F1 scores. Based on these results, the efficacy of the
proposed method for selecting diagnostic positions has been validated. It is recommended
to avoid collecting RS data from areas near the leaf margins, main veins, and the leaf base
when diagnosing early nutrient deficiencies in plants to enhance diagnostic accuracy.

Keywords: nutrient deficiency; cucumbers; Raman spectroscopy; precision agriculture; leaf
position; nitrogen; phosphorus; potassium

1. Introduction
As the tension between human activities and the environment intensifies, the transi-

tion from traditional extensive agriculture to precision agriculture has emerged as a pivotal
direction in modern agricultural development. Precision agriculture requires rapid, reliable,
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and non-destructive methods to capture crop information [1]. Nutrient diagnostics play a
pivotal role in this transition. Nitrogen (N), phosphorus (P), and potassium (K) are essential
nutrients for plant growth, each playing critical roles in metabolism and development.
They are central to crop nutrient diagnostics and fertilizer management strategies [2]. N is
a fundamental component of plant proteins and chlorophyll, and its deficiency leads to
leaf yellowing and growth retardation [3,4]. P plays a critical role in energy transfer and
photosynthesis, with early-stage P deficiency causing dark green leaf discoloration and
impairing root development [5]. K functions as an activator of various enzymes involved in
photosynthesis and significantly enhances crop stress resistance. A deficiency in K results
in leaf yellowing and browning, while also reducing the plant’s ability to resist diseases [6].
Although laboratory-based chemical analyses (e.g., Kjeldahl [7], spectrophotometry [8])
offer high accuracy, they are time-consuming, destructive, and risk environmental contam-
ination. It is evident that high-throughput, cost-effective, and non-destructive detection
technologies are poised to revolutionize crop nutrient diagnosis, significantly advancing
the field of precision agriculture.

Raman spectroscopy (RS) is a non-invasive, non-destructive technique that resists
moisture interference, does not require sample pretreatment, and allows for in vivo detec-
tion. This method is adept at identifying subtle changes in the biochemical composition
of plant tissues, offering a robust tool for the early detection of plant nutritional stress [9].
Notably, RS can swiftly analyze plant samples, detecting pathogens or identifying sources
of abiotic stress within seconds [10–12]. Importantly, experimental evidence indicates
that RS lasers do not cause thermal or photodegradation of plant materials [13]. While
Raman spectroscopy is effective in detecting visible nutrient deficiencies, its capability to
diagnose latent starvation, where biochemical changes precede visible symptoms, remains
an important research area.

Nutritional stress in crops induces changes in specific chemical components within
leaf tissues, which ultimately manifest as visible deficiency symptoms [14]. Leaf-based
diagnostics is a prevalent method for assessing plant nutritional status in agricultural prac-
tice [15]. While previous studies have explored the application of RS for diagnosing nutrient
deficiencies in crops such as rice, Arabidopsis thaliana, Pak Choi, and Choy Sum [16,17],
they have not specifically addressed the influence of leaf position selection on diagnostic ac-
curacy during spectral data collection. Traditionally, repeated measurements or multi-point
detection have been commonly employed to obtain averaged spectra, thereby mitigating
the influence of anomalous spectral data [16,18]. Prior research has demonstrated signifi-
cant spatial variability in nutrient distribution within the same leaf [19]. In comparison,
systematically determining the optimal diagnostic positions on individual leaves is of
greater practical significance [20,21]. Moreover, several reports have attempted to enhance
the accuracy of RS diagnosis through combinations of various preprocessing methods [22],
feature extraction techniques [23], or algorithmic improvements [24]. Nevertheless, these
approaches often overlook a critical issue: the validity of the results heavily depends on the
accuracy of the raw spectral data. Therefore, identifying specific positions on the leaf that
yield the most stable and representative Raman spectra is critical for improving diagnostic
accuracy in early nutrient deficiency detection.

Cosine Similarity Analysis (CSA) is a metric used to evaluate the cosine of the angle
between two vectors within a vector space. Due to its computational simplicity and
independence from absolute intensity, this method has been widely applied in fields such
as spectral analysis and anomaly detection [25–27]. CSA not only reflects the similarity
between vectors, but also captures the variations in their individual components, making it
a useful tool for identifying relevant or anomalous samples in complex datasets [28].
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In this study, we focused on the selection of optimal positions for the early diagnosis
of N, P, and K deficiencies in cucumber leaves. Nutrient stress was induced in cucumber
plants through soilless cultivation. Spectral data from cucumber leaves were collected using
a Raman spectrometer in a dot-matrix pattern, referencing sensor array methodologies,
across different stress durations and the control group [29]. Concurrently, chemical analysis
was performed to quantify N, P, and K levels in the leaves, enabling the monitoring of
nutrient deficiency progression. By analyzing the spatial variations in spectral similarity
in different positions, we aimed to identify key positions on cucumber leaves with stable
spectral responses that accurately reflect nutritional status. Finally, low-similarity spectral
data were removed from each leaf, and the performance of the diagnostic model was
compared before and after data cleansing to validate the effectiveness of the diagnostic
positions selection method.

2. Materials and Methods
2.1. Plant Growth Conditions and Experimental Design

We hypothesized that spatial–spectral variations in leaves could be systematically
analyzed to determine optimal diagnostic positions for early nutrient deficiency detec-
tion. The cucumber variety (Jin You 401), developed by the Tianjin Kerun Cucumber
Research Institute, was used in this study. Perlite served as the substrate for indoor soilless
cultivation, ensuring controlled and consistent cultivation conditions across all samples.
The nutrient solution was based on the Hoagland formula, with normal nutrient solution
applied during the early growth stages [30]. Throughout cultivation, plants were exposed
to fluorescent light for 16 h per day, maintaining a relative humidity of (50 ± 5)%, and
a temperature of 29 ◦C/26 ◦C (day/night). The hydroponic system was regularly moni-
tored to maintain stable pH and electrical conductivity levels. Due to the high uniformity
of cucumber seedlings during early growth and their heightened sensitivity to nutrient
stress, 48 uniformly grown seedlings were selected for experimentation at the two-leaf,
one-core stage. The cultivation substrate was first rinsed with deionized water before the
seedlings were randomly assigned to four groups: control-check (CK), nitrogen-deficient
(ND), phosphorus-deficient (PD), and potassium-deficient (KD), with twelve plants per
group. Each group was cultivated with its respective nutrient solution. The CK nutrient so-
lution followed the complete Hoagland formula, containing Ca(NO3)2·4H2O at 945 mg/L,
KNO3 at 607 mg/L, (NH4)H2PO4 at 115 mg/L, and MgSO4·7H2O at 493 mg/L, along
with trace elements, including Fe-EDTA at 2.5 mg/L, H3BO3 at 2.86 mg/L, MnCl2·4H2O at
2.13 mg/L, ZnSO4·7H2O at 0.22 mg/L, CuSO4·5H2O at 0.08 mg/L, and Na2MoO4·2H2O
at 0.02 mg/L. In the ND nutrient solution, Ca(NO3)2·4H2O and KNO3 were omitted and
replaced with CaCl2 at 520 mg/L and KCl at 450 mg/L, respectively [16]. In the PD nutrient
solution, (NH4)H2PO4 was removed and replaced with NH4Cl at 53 mg/L to maintain N
supply, while in the KD nutrient solution, NaNO3 at 510 mg/L was used as a substitute for
KNO3. Sampling time points were selected based on preliminary experiments and previous
studies on nutrient deficiency responses in crops [17,31]. Leaf samples were collected at
24 (24 h), 72 (72 h), 120 (120 h), and 168 (168 h) hours after stress induction. At each time
point, the first-node leaves from three cucumber plants per treatment group were excised,
sealed in bags, and immediately brought back to the laboratory for RS data collection
and chemical analysis of N, P, and K content. A total of 12 leaf samples were collected
at each time point, resulting in 48 leaf samples across all time points. Although Raman
spectroscopy is inherently a non-destructive technique, in this study, leaf excision was
employed to ensure consistent measurement conditions and improve data reliability. This
approach provides a foundation for future in vivo non-destructive diagnostics.
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2.2. Measurement of Leaf NPK Content

After collecting the spectral data, cucumber leaves were immediately placed in an
oven at 105 ◦C for 20 min to deactivate the enzymes [32]. Subsequently, the leaves were
dried at 80 ◦C to a constant weight [33]. The dried samples were then stored in a desiccator
for subsequent chemical analysis.

The samples were weighed, ground, and digested with concentrated H2SO4. The N
content was determined using the Kjeldahl method, with the total N content (w1) calculated
using Equation (1) as follows:

w1 =
(V2 − V0)× c × 0.014

m × (V1/V)
× 100 (1)

where c is the concentration of the sulfuric acid standard titration solution (1/2 H2SO4) in
0.01 mol/L, V2 is the volume of the standard acid solution consumed by the sample (mL),
V0 is the volume consumed by the blank (mL), V1 is the volume of liquid A tested during
distillation (mL), V is the total volume of liquid A tested (mL), m is the sample mass (g),
and 0.014 represents the mass of N in 1 mL of 1 mol/L sulfuric acid standard titration
solution (g).

The P content was measured by molybdenum-antimony anti-absorption spectropho-
tometry, with the total P content (w2) calculated using Equation (2), as follows:

w2 =
ρ × V

m
× V2

V1
× 10−4 (2)

where ρ is the mass concentration of P in liquid A (mg/L), V is the total volume of liquid A
tested (mL), V1 is the dispensed volume of liquid A tested (mL), V2 is the volume of the
color solution (mL), and m is the sample mass (g).

The K content was assessed using flame photometry, with the total K content (w3)
calculated using Equation (3), as follows:

w3 =
(ρ − ρ0)× V

m
× V2

V1
× 10−4 (3)

where ρ is the mass concentration of K in liquid A (mg/L), ρ0 is the mass concentration of
K in the reagent blank digestion solution (mg/L), V is the total volume of liquid A tested
(mL), V1 is the dispensed volume of liquid A tested (mL), V2 is the volume of the color
solution (mL), and m is the sample mass (g).

The NPK content results were expressed as g·kg−1 on a dry weight basis.

2.3. Raman Spectroscopy Data Collection

To minimize fluorescence interference, a miniature Raman spectrometer (ATP3000P,
OPTOSKY, Xiamen, China) equipped with a 785 nm fiber laser source was utilized to
acquire spectral data. The spectrometer covered a wavelength range of 200–3400 cm−1

with a spectral resolution of ±4 cm−1, conforming to standard specifications. The RS
parameters were as follows: laser intensity set at 400 mW, integration time of 3.5 s, with
three consecutive acquisitions per point, and the mean of these three measurements was
used as the representative spectrum.

During the preparation of the spectral sampling dot-matrix template, we tested tem-
plates with different hole spacings of 0.5 cm, 0.75 cm, and 1.0 cm. Due to the susceptibility
of the template material to deformation during high-temperature laser cutting, the maxi-
mum achievable hole diameters for the 0.5 cm and 0.75 cm hole spacing templates were
limited to 0.3 cm and 0.35 cm, respectively. In contrast, the 1.0 cm hole spacing template
allowed for a hole diameter of 0.5 cm. Larger hole diameters facilitate data acquisition, but
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may reduce spatial resolution. Given the relatively large leaf area of cucumber plants, the
template with a 1.0 cm hole spacing and a 0.5 cm hole diameter was therefore selected, as
shown in Figure 1. Spectral data were collected in a dot-matrix pattern according to the
template positions, focusing on the main vein side of the leaf. Due to variability in leaf size
under different nutrient stresses and time points, the number of spectra collected varied
slightly among groups. A total of 1367 spectra were acquired across four groups: 420 from
CK, 303 from ND, 307 from PD, and 337 from KD.
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2.4. Spectral Similarity Calculation Method

Cosine similarity is commonly used to evaluate the similarity between two multidi-
mensional vectors. When the two vectors have the same orientation, the angle θ between
them is 0◦, and cos θ equals 1. Conversely, when the vectors are orthogonal, θ is 90◦, and
cos θ is 0. Therefore, a cosine value approaching 1 indicates that θ is near 0◦, signifying a
higher degree of similarity between the vectors. In this study, discrete spectral intensity
distributions in the wavenumber domain are treated as multidimensional vectors. The
cosine similarity is the inner product normalized by the norms of the vectors and can be
expressed using Equation (4), as follows:

cos θ =

→
A ·

→
B

∥
→
A∥∥

→
B∥

=
∑i Ai · Bi√

∑i Ai
2
√

∑i Bi
2

(4)

where the vectors A = [A1, A2, A3, . . .] and B = [B1, B2, B3, . . .] represent spectra with
intensities Ai and Bi at the wavelength 1/λi.

In the experiment, the presence of experimental errors in spectral data is unavoidable;
averaging the spectra helps to eliminate biases that may arise from individual samples
and provides a more accurate representation of the overall nutritional status of the leaf.
Kelly et al. have explored the rationale of species mean values from a mathematical per-
spective [34]. Therefore, we used the mean spectrum of individual leaves as a reference
spectrum. The optimal sampling areas for leaf nutrient diagnosis were analyzed by com-
paring the similarity between preprocessed spectra from different positions on the leaf and
the reference spectrum.

2.5. Diagnostic Model Development and Evaluation Methods

The cucumber variety (Jin You 401), developed by the Tianjin Kerun Cucumber Re-
search Institute, was used in this study. Perlite served as the substrate for indoor soilless
cultivation, ensuring controlled and consistent cultivation conditions across all samples.
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Data preprocessing is a critical step in spectral analysis, which helps to reduce the
potential interference of instrumental errors and environmental factors on spectral data
while maximizing spectral differences [35]. In this study, the iterative improved moving
average method was used to correct the baseline drift due to background fluorescence,
with the window size set to 31 and the iteration count to 5. After baseline correction, the
spectral data were normalized in order to adjust the eigenvalues to a uniform scale, which
solved potential issues arising from discrepancies in eigenvalue scales, thereby optimizing
model performance.

Partial Least Squares Discriminant Analysis (PLS-DA) is a multivariate statistical tech-
nique extensively utilized in chemometrics [36,37]. Compared with traditional discriminant
analysis methods, PLS-DA is adept at managing data characterized by strong correlations
and multicollinearity, making it particularly effective in scenarios where the number of
samples is fewer than the number of variables. To validate the diagnostic position selec-
tion method, we developed a PLS-DA model using the aforementioned preprocessing
techniques for early detection of N, P, and K deficiencies in cucumber leaves.

To evaluate the model’s performance, we utilized several metrics, including precision
(macro-P), recall (macro-R), F1 score (macro-F1), the number of latent variables (LVs),
and the number of misdiagnoses (MDs). F1 score was selected as a key metric due to its
strengths in handling imbalanced datasets and its ability to balance precision and recall
through the harmonic mean. The optimal latent variable setting for the model was deter-
mined using K-fold cross-validation. A higher number of LVs may improve model fitting,
but also increases the risk of overfitting, reducing generalizability. To achieve a balance,
we determined the optimal LVs as the smallest number at which the model reached stable
performance, preferably below 10, as suggested in previous studies [38,39]. In nutrient defi-
ciency diagnosis, misclassifications can lead to incorrect fertilization strategies, potentially
harming crop growth and reducing yield. Therefore, among these metrics, lower LVs and
MDs values, along with an F1 score closer to 1, indicate superior diagnostic performance.

The spectral data from different stress durations and treatment groups were evenly
divided into the training and test sets at an interval of 1 based on the collection sequence
to validate the diagnostic position selection method. All data processing was conducted
using Python 3.10.4, with plotting performed in Origin 2021.

3. Results
3.1. Identification of Nutrient Deficiency in Cucumber

Visual observations of leaf color and growth status across different treatment groups
under varying stress durations revealed that after 72 h of stress, ND and PD plants exhibited
slight stress responses in leaf color. However, by 168 h, although the leaf color in KD plants
showed no significant changes, their growth rate was noticeably slower compared to CK.
These preliminary observations suggest that early deficiencies of different nutrients may
need to be detected through comparison at different times.

To further validate these visual observations, chemical analyses were conducted to
measure the N, P, and K content in the samples from each group, as shown in Figure 2. The
N content in the CK group leaves exhibited an increase from 24 h to 72 h, followed by a
decline from 72 h to 168 h. In contrast, P content remained relatively stable, while K content
showed a decreasing trend after 72 h. This phenomenon was associated with the functional
transition of leaves from a “sink” to a “source” during development and maturation [40,41].
At all observed time points (24 h, 72 h, 120 h, and 168 h) after introduction to stress, N,
P, and K content in the leaves of the stress group were lower than those of CK. As the
stress duration increased, N and K content in the leaves showed a marked decrease, while
the decline in P content was relatively moderate. Notably, an anomalous increase in P
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content was observed at 120 h. This phenomenon was likely attributed to the inherently
narrow fluctuation range of P content, which, combined with individual variations among
sampled plants, resulted in certain samples exhibiting higher P content at 120 h compared
to their 72 h counterparts. However, despite this variation, the P content in stressed samples
remained distinguishable from that of the CK group, confirming their nutrient-deficient
status. Therefore, this deviation was considered to be within an acceptable range.
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A comparative analysis of the chemical measurements and visual observations sug-
gests that, within 24 h of nutrient stress in cucumber, an internal physiological response is
initiated, despite the absence of significant morphological changes or color abnormalities
in the leaves. This underscores the critical importance of timely intervention during the
early stages of stress.

3.2. Evaluation and Analysis of Spectral Similarity at the Same Position

The cosine similarity of spectra is influenced by multiple factors, including the stability
of the spectrometer, variations in the detection environment, and the ability of specific
positions to represent the plant’s nutrient deficiency status. Analyzing the similarity of
spectra collected repeatedly from the same position is valuable for assessing spectral
consistency. In this study, a total of 1367 spectra were acquired from 48 cucumber leaves, so
the average number of acquisitions per leaf was about 30. Given the relatively controlled
conditions of the laboratory environment, we aimed to evaluate the potential impact of
spectrometer stability on spectral similarity. To this end, three random positions on the
left were selected, and 30 spectra were collected from each position. These spectra were
compared to the mean spectrum of their respective positions to evaluate similarity. Table 1
summarizes the minimum similarity values for 10, 20, and 30 spectral collections at each
position compared to the mean spectrum.

Table 1. Statistical summary of minimum similarity values for multiple spectral collections at the
same position.

Positions 10 Times 20 Times 30 Times

P1 0.99211 0.99139 0.99135
P2 0.99191 0.99153 0.99134
P3 0.99273 0.99215 0.99203

Mean value 0.99225 0.99169 0.99157

The results showed that the mean value of the minimum similarity for 10 spectra
collected from the three positions was 0.99225, for 20 was 0.99169, and for 30 was 0.99157.
Although the spectrometer exhibited high reproducibility, a slight decline in similarity
was observed as the number of spectral collections from the same position increased. This
trend should be attributed to the cumulative effects of spectrometer stability. Notably,
the minimum similarity values of spectra repeatedly collected at each position, when
compared with their respective mean spectra, remained above 0.991. Therefore, when
identifying outliers in spectral similarity across positions, we prioritized spectral data with
similarity below 0.991, enabling a more targeted focus on spectra that may be anomalous
in characterizing the plant’s nutrient status. It is important to emphasize that 0.991 is
not a fixed global threshold, but rather a reference benchmark for outlier analysis, aimed
at minimizing biases stemming from instrument stability and enhancing the reliability
of the analysis.

3.3. Analysis of Spectral Similarity Outliers at Different Positions

Box plots are highly effective for identifying outliers, providing the distinct advantage
of remaining unaffected by them, which allows for an accurate and stable depiction of data
dispersion. Additionally, box plots facilitate data cleansing processes. In this study, we
systematically analyzed the cosine similarity between individual positions on cucumber
leaves and the mean spectrum using a box plot, as shown in Figure 3. The results indicated
that the minimum value of spectral similarity was 0.93328, the maximum value was 0.99724,
the mean value was 0.99244, and the standard deviation was 0.00434. Points below the
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lowest value in the box plot were labeled as similarity outliers, resulting in the detection
of 63 anomalous values. Table 2 presents the distribution of these outliers, while Table 3
summarizes the data distribution for spectral similarities below the overall lower quartile.
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Table 2. Statistical distribution of anomalous spectral similarity data in cucumber leaves.

Duration of Stress
Treatment Groups

Total
CK ND PD KD

24 h 37 9 4 1 51
72 h 2 3 0 0 5

120 h 1 2 1 1 5
168 h 1 0 0 1 2
Total 41 14 5 3 63

Table 3. Statistical distribution of spectral similarity values below the overall lower quartile in
cucumber leaves.

Duration of Stress
Treatment Groups

Total
CK ND PD KD

24 h 107 35 23 6 171
72 h 22 28 19 7 76

120 h 21 23 11 6 61
168 h 15 11 4 4 34
Total 165 97 57 23 342

The lower quartile is 0.99091.

A comprehensive analysis of Tables 2 and 3 reveals a discernible pattern in the distri-
bution of similarity values. Notably, the number of spectral similarity anomalies and those
below the overall lower quartile were highest in the 24 h group. The number of anomalies
decreased gradually as the stress duration increased. This trend suggests that spectral
similarity at various positions on cucumber leaves exhibits greater instability during the
early developmental stages or under shorter periods of nutrient stress. Further comparison
among treatment groups indicates that the spectral similarity in CK leaves was the most
unstable, followed by ND and PD, with KD showing relatively more stability.
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3.4. Analysis of Spatial Distribution Characteristics of Spectral Similarity on Cucumber Leaves

To further investigate the distribution characteristics of spectral similarity on cucumber
leaves, we focused on the similarity values at positions below the lower quartile and
replaced the similarity values at other positions with 1.0. By visualizing these processed
data as a heat map, we clearly depicted the distribution of lower similarity positions
on the leaves, as illustrated in Figure 4. In the heat map, the closer the similarity value
is to 1.0, the darker the corresponding color appears. This color gradient effectively
highlights the distribution pattern of spectral similarity across different treatment groups
and stress durations. Notably, the spectral data with lower similarity were primarily
concentrated along the leaf margins, followed by areas near the main veins and the leaf
base, in both control plants and those subjected to stresses. The observed spectral variations
likely correspond to biochemical adjustments in leaf tissues during early nutrient stress
adaptation. These findings validate our earlier hypothesis that spectral data from individual
positions on cucumber leaves may not consistently characterize early nutrient deficiencies,
providing a critical reference for optimizing subsequent diagnostic models.
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3.5. Establishment of an Early Diagnostic Model for Nutrient Deficiency in Cucumber

Figure 5 presents the complete process of raw spectral data preprocessing. Initially,
the characteristic peaks in the raw spectra are obscured by the fluorescence background. To
address this issue, we applied an iterative improved moving average method for baseline
correction, as depicted in Figure 5B. The effect of this correction is illustrated in Figure 5C,
where the corrected spectra more accurately reflect the original characteristic peaks, en-
suring that all spectral curves are positioned above the zero-coordinate axis. To further
examine the relationship between the corrected spectra and the original peaks, both the
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raw and baseline-corrected spectra were normalized, as shown in Figure 5D,E. Although
the spectra between 200 and 700 cm−1 were not fully baseline-corrected due to strong
fluorescence interference, the spectral characteristics in this range were rendered more
clearly, which does not compromise the reliability of subsequent model training. In the
range of 700 to 3400 cm−1, the spectra displayed a series of prominent peaks, with distinct
characteristic peaks observed at 747, 917, 1005, 1048, 1080, 1117, 1155, 1185, 1218, 1265,
1288, 1301, 1327, 1387, 1440, 1488, 1528, 1611, 1674, and 3191 cm−1 in the Raman spectra of
cucumber leaves.
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We integrated the aforementioned preprocessing methods with PLS-DA to construct
an early diagnostic model for N, P, and K deficiencies in cucumber leaves. To assess the
diagnostic performance of the model, a confusion matrix was generated, with the horizontal
axis representing the predicted labels of the samples and the vertical axis representing
the true labels. The diagonal values indicate the number of correctly predicted samples,
providing a clear visualization of the diagnostic results across different treatment groups.
As depicted in Figure 6, the model effectively classified the spectral data of cucumber leaves
from the test set into CK, ND, PD, and KD categories across different stress durations,
providing empirical support for further optimization of the model.
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3.6. Selection and Validation Analysis of Early Diagnostic Positions for Nutrient Deficiencies
in Cucumber

To evaluate the correlation between the spectral similarity of cucumber leaves and
the selection of early diagnostic positions for nutrient deficiencies, we excluded spectral
data with similarity values below the lower quartile of each leaf, as these are shown in
Figure 7, where the gray color indicates that the data from these positions were culled.
Table 4 compares the diagnostic model’s evaluation results across different stress durations
before and after data cleansing.

Before data cleansing, model evaluation metrics for cross-validation and the test set
indicated that the optimal number of LVs across different stress durations ranged from 6
to 11, while the number of MDs varied between 7 and 15. Notably, in the 24 h group, the
optimal number of LVs reached 11, the highest number of MDs (15) was recorded, and
the F1 scores for cross-validation and the test set were the lowest, at 89.56% and 91.20%,
respectively. These findings suggest that the model faces substantial challenges in the
early (24 h) stress phase, potentially exhibiting a degree of overfitting. As stress duration
increased, the number of MDs gradually declined, while macro-P, macro-R, and macro-F1
scores improved. In the 168 h group, F1 scores for cross-validation and the test set reached
91.45% and 96.03%, respectively, highlighting the significant impact of stress duration on
the stability of spectral signals.

After data cleansing, the optimal LVs and MDs at each time point were reduced,
particularly in the 24 h group, where the number of LVs decreased by 4 (from 11 to 7) and
the number of MDs dropped by 7 (from 15 to 8), indicating a notable enhancement in model
reliability during the early stage (24 h). Furthermore, Test set results demonstrated that the
F1 scores for the 24 h, 72 h, 120 h, and 168 h groups increased by 2.10%, 2.16%, 1.53%, and
1.81%, respectively, surpassing the pre-cleaning outcomes. Cross-validation results further
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corroborated the trends observed in the test set, confirming that data cleansing not only
optimized overall model performance, but also enhanced its generalization capability.
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Table 4. Comparison of diagnostic model evaluation metrics across different stress durations before
and after data cleansing.

Group Names Sample
Size

LVs MDs
Cross-Validation Test Set Evaluation

Macro-P
(%)

Macro-R
(%)

Macro-F1
(%)

Macro-P
(%)

Macro-R
(%)

Macro-F1
(%)

24 h 335 11 15 90.99 89.31 89.56 90.75 92.35 91.20
24 h-cleaned 254 7 8 92.32 91.52 90.57 92.70 94.76 93.30

72 h 323 7 10 91.71 90.55 90.70 93.72 93.65 93.64
72 h-cleaned 243 7 5 92.68 91.92 91.67 95.78 95.87 95.80

120 h 358 8 9 91.21 90.92 90.91 94.80 94.90 94.78
120 h-cleaned 270 6 5 91.80 90.97 91.00 96.34 96.30 96.31

168 h 351 6 7 92.21 92.55 91.45 96.12 95.99 96.03
168 h-cleaned 265 5 3 93.64 94.24 92.95 97.84 97.93 97.84

LVs, the number of latent variables; MDs, the number of misdiagnoses.

In summary, data cleansing significantly improved diagnostic accuracy, with the re-
duction in MDs (by up to 7) and the increase in F1 scores (by up to 2.16%) demonstrating
its effectiveness. These findings suggest that removing low-similarity spectral data from
areas near the margins, main veins, and base of cucumber leaves can significantly enhance
the accuracy and reliability of the early diagnostic model for nutrient deficiencies. Conse-
quently, it can be inferred that the level of spectral similarity on cucumber leaves is closely
related to the reliability of the diagnostic positions.
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4. Discussion
While RS has demonstrated significant potential for monitoring plant nutritional

stress [42], research into identifying optimal diagnostic positions under varying nutritional
conditions remains limited. Therefore, to effectively utilize RS for the early diagnosis
of nutrient deficiencies, it is essential to identify key diagnostic positions that accurately
represent the nutritional status of crop leaves across different conditions. Removing low-
similarity data improved model accuracy by eliminating spectral noise and inconsistent
signals from unstable leaf regions. The diagnostic position selection method proposed
in this study effectively identifies anomalous spectral data on cucumber leaves, circum-
venting the limitations associated with the previous reliance on averaged spectral data.
Our study found that avoiding the collection of RS data from areas near the cucumber
leaf margins, main veins, and the leaf base can effectively improve the reliability of the
spectral data. Furthermore, optimizing the sampling data through the analysis of the
spatial distribution of spectral similarity obviously enhanced the PLS-DA model’s ability
to diagnose early-stage N, P, and K deficiencies in cucumber, resulting in more stable and
reliable diagnostic performance.

In contrast to Hu et al. [20], who primarily investigated variations in SPAD values
across different positions on cucumber leaves, our study demonstrates significant variations
in spectral similarity, particularly near the leaf margins, main veins, and the leaf base, where
greater fluctuations and instability were observed. This finding aligns with Hu’s results in
terms of positional variability; however, their study focused solely on identifying optimal
sampling positions for N diagnosis, without addressing the influence of other key nutrients.
Meanwhile, prior research has used hyperspectral imaging to diagnose N deficiency in
cucumber plants by mapping chlorophyll distribution [43]. Nonetheless, this approach
primarily targets later stages of chlorophyll degradation, which can be influenced by various
biotic and abiotic stresses, thereby limiting the specificity and accuracy of hyperspectral
imaging [16]. In comparison, RS, which directly samples stable spectral areas on the leaf,
offers a distinct advantage for early diagnosis of nutrient deficiencies.

The preprocessed spectral results demonstrated that the spectral features within
the 700–1800 cm−1 range in cucumber leaves closely resemble those observed in rice
leaves, as reported by Sanchez et al. [17]. This similarity highlights the potential of RS for
diagnosing early nutrient deficiencies across different plant species. The identified spectral
peaks correspond to pectin [44], cellulose [45], carotenoids [46], phenylpropanoids [47,48],
protein [49], and aliphatic vibrations [50]. This indicates that variations in spectral similarity
at different leaf positions are closely related to the changes in their contents, which is crucial
for the understanding of the diagnostic mechanism of plant nutrient deficiencies.

While we anticipate that the method proposed in this study will enhance the accuracy
of RS for detecting nutrient status in various crops, further research is required to validate its
efficacy. Notably, the dataset utilized here reflects the impact of a single variable on spectral
similarity across different positions on leaves under hydroponic conditions. In practical
agricultural settings, environmental factors are far more complex and dynamic, potentially
introducing additional uncertainties into the selection of diagnostic positions. Moreover,
variability in leaf size and environmental conditions may limit the generalizability of these
spatial patterns. Future work should consider multi-crop trials and real-field conditions to
validate the robustness of these diagnostic positions. Additionally, validating the model
across diverse environmental conditions will be essential to enhance its practical use in
real-world agricultural settings, ensuring broader applicability in precision agriculture.
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5. Conclusions
This study introduces a novel analytical method for selecting early diagnostic positions

of nutrient deficiencies in plant leaves by analyzing the spatial distribution characteristics
of spectral similarity. We examined the impact of four nutrient statuses (ND, PD, KD, and
CK) and four stress durations (24 h, 72 h, 120 h, and 168 h) on the selection of diagnostic
positions. We systematically explored reliable areas for spectral data collection from
cucumber leaves at the early stage of nutrient deficiency, considering aspects such as outlier
identification, low-similarity patterns, and model validation. Our findings demonstrate
that, under the tested nutrient stresses and stress durations, excluding RS data from
areas near leaf margins, main veins, and the leaf base yields more representative and
reliable spectral data. Integrating this diagnostic approach into automated sensor networks
could facilitate real-time, large-scale monitoring of plant nutritional status. Additionally,
this method effectively identifies anomalous spectral data on cucumber leaves, leading
to a marked improvement in diagnostic model performance across all stress durations.
Notably, during the early stress stage at 24 h, the model achieves higher diagnostic accuracy.
This method not only enhances early nutrient deficiency detection in cucumbers but also
lays the groundwork for non-destructive diagnostics in other crops, contributing to the
advancement of precision agriculture.
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