13 pages, 748 KiB  
Article
Phytochemical Profiles and In Vitro Immunomodulatory Activity of Ethanolic Extracts from Galium aparine L.
by Tetiana Ilina, Natalia Kashpur, Sebastian Granica, Agnieszka Bazylko, Igor Shinkovenko, Alla Kovalyova, Olga Goryacha and Oleh Koshovyi
Plants 2019, 8(12), 541; https://doi.org/10.3390/plants8120541 - 25 Nov 2019
Cited by 24 | Viewed by 6328
Abstract
Galium aparine L., family Rubiaceae, is a widely spread species in the Galium genus. The herb of G. aparine is part of folk remedies and dietary supplements. In this study, we analyzed the chemical composition and immunomodulatory activities of G. aparine herb ethanolic [...] Read more.
Galium aparine L., family Rubiaceae, is a widely spread species in the Galium genus. The herb of G. aparine is part of folk remedies and dietary supplements. In this study, we analyzed the chemical composition and immunomodulatory activities of G. aparine herb ethanolic extracts obtained from the plant material by maceration with 20%, 60% or 96% ethanol. The contents of hydroxycinnamic acid derivatives, flavonoids and polyphenols were determined spectrophotometrically, with extractives and polysaccharides quantified gravimetrically. The qualitative composition was studied using UHPLC-DAD-MS/MS analysis; isolation not previously described in G. aparine quercetin rhamnoglucoside was carried out through column chromatography, and the immunomodulatory activity of extracts was determined in the reaction of lymphocyte blast transformation. Major constitutes of extracts were iridoids, i.e., monotropein, 10-desacetylasperulosidic acid and asperulosidic acid; p-hydroxybenzoic acid; hydroxycinnamic acid derivatives, i.e., 3-O-caffeoylquinic, 5-O-caffeoylquinic, 3,4-O-dicaffeoylquinic, 3,5-O-dicaffeoylquinic, 4,5-O-dicaffeoylquinic acids and caffeic acid derivatives; flavonoids, i.e., rutin, quercetin 3-O-rhamnoglucoside-7-O-glucoside, and isorhamnetin 3-O-glucorhamnoside. Significantly, quercetin 3-O-rhamnoglucoside-7-O-glucoside was first isolated and identified in Galium species so far investigated. All G. aparine herb ethanolic extracts stimulate the transformational activity of immunocompetent blood cells, with 96% ethanolic extract being the most active. The data obtained necessitate further research into the mechanisms of immunomodulatory activity of extracts from G. aparine herb. Full article
(This article belongs to the Special Issue Medicinal Plants)
Show Figures

Figure 1

18 pages, 6312 KiB  
Article
Exogenously-Sourced Ethylene Modulates Defense Mechanisms and Promotes Tolerance to Zinc Stress in Mustard (Brassica juncea L.)
by M. Iqbal R. Khan, Badar Jahan, Mohamed F Alajmi, Md Tabish Rehman and Nafees A. Khan
Plants 2019, 8(12), 540; https://doi.org/10.3390/plants8120540 - 25 Nov 2019
Cited by 44 | Viewed by 4521
Abstract
Heavy metal (HM) contamination of agricultural soil is primarily related to anthropogenic perturbations. Exposure to high concentration of HMs causes toxicity and undesirable effects in plants. In this study, the significance of ethylene was studied in response of mustard (Brassica juncea) [...] Read more.
Heavy metal (HM) contamination of agricultural soil is primarily related to anthropogenic perturbations. Exposure to high concentration of HMs causes toxicity and undesirable effects in plants. In this study, the significance of ethylene was studied in response of mustard (Brassica juncea) to a high level (200 mg kg−1 soil) of zinc (Zn) exposure. Plants with high Zn showed inhibited photosynthesis and growth with the increase in oxidative stress. Application of ethylene (as ethephon) to Zn-grown plants restored photosynthesis and growth by inhibiting oxidative stress through increased antioxidant activity, the proline metabolism glyoxalase system, and nutrient homoeostasis. The results suggested that ethylene played a role in modulating defense mechanisms for tolerance of plants to Zn stress. Full article
(This article belongs to the Special Issue Plant Responses and Tolerance to Metal/Metalloid Toxicity)
Show Figures

Figure 1

19 pages, 1207 KiB  
Article
Polyphenol Compounds and Biological Activity of Caper (Capparis spinosa L.) Flowers Buds
by Aneta Wojdyło, Paulina Nowicka, Mar Grimalt, Pilar Legua, Maria Soledad Almansa, Asunción Amorós, Ángel Antonio Carbonell-Barrachina and Francisca Hernández
Plants 2019, 8(12), 539; https://doi.org/10.3390/plants8120539 - 25 Nov 2019
Cited by 45 | Viewed by 6304
Abstract
The aim of the study was to analyze potential health-promoting components of caper flower buds (Capparis spinosa L.) at six stages of development in two cultivars. Polyphenol compounds (flavonols, hydroxycinnamic acids, flavan-3-ols) were identified by Liquid Chromatography– quadrupole Time–of–Flight –Mass Spectrofotometer/Mass Spectrofotometer [...] Read more.
The aim of the study was to analyze potential health-promoting components of caper flower buds (Capparis spinosa L.) at six stages of development in two cultivars. Polyphenol compounds (flavonols, hydroxycinnamic acids, flavan-3-ols) were identified by Liquid Chromatography– quadrupole Time–of–Flight –Mass Spectrofotometer/Mass Spectrofotometer (LC-qTOF-MS/MS) and quantified by Ultra Performance Liquid Chromatography–Photodiode Array-Fluorescence Detector (UPLC-PDA-FL). Moreover, antioxidant properties (ABTS+•, FRAP, and ORAC), anti-diabetic potential (α-amylase and α-glucosidase), and anti-aging activity (acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)) of the buds were examined. Total phenolic compounds in the investigated caper varied from 10,720 to 3256 mg/100 g dry weight (DW), and depended on a genotype and growing stage of caper flowers. Among six different growing stages, the one named ‘nonpareilles’ was characterized by significantly higher content of polyphenols than the remaining five stages. The flavonols in caper flowers represented a mixture of different glycosylated quercetin, kaempferol, myricetin, and isorhamnetin derivatives, accounting for 38%–67%, 15%–36%, 4%–7%, and 0.8%–3%, respectively, of total flavonols,. Their contents strongly depended on the growth stage. ‘Nonpareilles’ and ‘surfines’ were richer in flavonols than ‘fines’ and ‘gruesas’. Of the six investigated growth stages, ‘nonpareilles’ accumulated the greatest amounts of bioactive compounds that correlated with antioxidant and anti-diabetic properties, and were more potent BuChE than AChE inhibitors. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

18 pages, 3908 KiB  
Article
Preventive Effects of Fluoro-Substituted Benzothiadiazole Derivatives and Chitosan Oligosaccharide against the Rice Seedling Blight Induced by Fusarium oxysporum
by Bo Ma, Junhe Wang, Chuanzeng Liu, Jifang Hu, Kefei Tan, Fuyang Zhao, Ming Yuan, Junhua Zhang and Zhijia Gai
Plants 2019, 8(12), 538; https://doi.org/10.3390/plants8120538 - 24 Nov 2019
Cited by 14 | Viewed by 3705
Abstract
Rice seedling blight, caused by Fusarium oxysporum, significantly affects global rice production levels. Fluoro-substituted benzothiadiazole derivatives (FBT) and chitosan oligosaccharide (COS) are elicitors that can enhance plant resistance to pathogen infection. However, there is a lack of information regarding FBT and COS [...] Read more.
Rice seedling blight, caused by Fusarium oxysporum, significantly affects global rice production levels. Fluoro-substituted benzothiadiazole derivatives (FBT) and chitosan oligosaccharide (COS) are elicitors that can enhance plant resistance to pathogen infection. However, there is a lack of information regarding FBT and COS used as elicitors in rice seedlings blight. Therefore, the aim of this study was to evaluate the effect of FBT and COS treatments on rice seedling blight and elucidate the molecular mechanisms of the two elicitors for inducing resistance using proteomic technique. Results indicated that FBT and COS significantly reduced the disease incidence and index, and relived the root growth inhibition caused by F. oxysporum (p < 0.05). Biochemical analyses demonstrated that these two elicitors effectively enhanced activities of defense enzymes. Moreover, the proteomic results of rice root tissues disclosed more differentially expressed proteins in diterpenoid biosynthesis pathway that were particularly stimulated by two elicitors compared to the other pathways studied, resulting in the accumulation of antimicrobial substance, momilactone. Findings of this study could provide sound theoretical basis for further applications of FBT and COS used as rice elicitors against seedling blight. Full article
(This article belongs to the Special Issue Induced Resistance (IR) of Plants)
Show Figures

Figure 1

15 pages, 614 KiB  
Article
First Report on Evaluation of Basic Nutritional and Antioxidant Properties of Moringa Oleifera Lam. from Caribbean Island of Saint Lucia
by Jozef Fejér, Ivan Kron, Vito Pellizzeri, Mária Pľuchtová, Adriana Eliašová, Luca Campone, Teresa Gervasi, Giovanni Bartolomeo, Nicola Cicero, Andrea Babejová, Mária Konečná, Vincent Sedlák, Janka Poráčová and Daniela Gruľová
Plants 2019, 8(12), 537; https://doi.org/10.3390/plants8120537 - 23 Nov 2019
Cited by 31 | Viewed by 5947
Abstract
Moringa oleifera Lam. has been considered as a multipurpose tree. The studies on it focus on its variable nutritional benefits. It is growing in many regions, but information about nutritional properties of those growing in the Caribbean is missing. The present study focused [...] Read more.
Moringa oleifera Lam. has been considered as a multipurpose tree. The studies on it focus on its variable nutritional benefits. It is growing in many regions, but information about nutritional properties of those growing in the Caribbean is missing. The present study focused on biochemical analysis of main nutritional and antioxidant properties in plant material—dried leaves and seeds—of Moringa oleifera. The composition of lipids, proteins, and vitamin E was evaluated in powdered dried leaves and seeds. Fatty acids were evaluated in oil extracted from the moringa seeds. Potential antioxidant properties of the moringa were evaluated in extract from crushed and powdered leaves, as well as from the powdered seeds. The total amounts of lipids, proteins, and vitamin E were higher in powdered seeds (31.85%, 35.13%, and 220.61 mg/kg) than in powdered leaves (12.48%, 20.54%, and 178.10 mg/kg). The main compound of fatty acids presented oleic acid (76.78%) in seeds’ oil and oleic (25.01%), palmitic (24.84%), and linolenic (24.71%) acids in leaves. Neohesperidin (126.8 mg/kg), followed by chlorogenic acid (99.96 mg/kg) and quercetin (43.44 and 21.44 mg/kg) were main phenolic compounds identified. Total phenols in powdered leaves’ extract (635.6 mg GAE/L) was higher than in powdered seeds’ extract (229.5 mg GAE/L). The activity against superoxide radical and hydroxyl radical was 92.4% and 73.1% by leaves’ powder extract and 83.6% and 60.7% by crushed-leaf extract; seed-powder extract exhibited a pro-oxidation activity (−68.4%) against superoxide radical and the lowest antioxidant effect against the hydroxyl radical (55.0%). Full article
Show Figures

Graphical abstract

15 pages, 2045 KiB  
Article
Comparative Analysis of the YABBY Gene Family of Bienertia sinuspersici, a Single-Cell C4 Plant
by Prabhakaran Soundararajan, So Youn Won, Dong Suk Park, Yeon-Hee Lee and Jung Sun Kim
Plants 2019, 8(12), 536; https://doi.org/10.3390/plants8120536 - 22 Nov 2019
Cited by 12 | Viewed by 3907
Abstract
The emergence and expression of the YABBY gene family (YGF) coincided with the evolution of leaves in seed plants, and was integral to the early evidence of lamina followed by reproductive development. YGF contains six subclasses, i.e., CRC, INO, FIL, YAB2, YAB3, and [...] Read more.
The emergence and expression of the YABBY gene family (YGF) coincided with the evolution of leaves in seed plants, and was integral to the early evidence of lamina followed by reproductive development. YGF contains six subclasses, i.e., CRC, INO, FIL, YAB2, YAB3, and YAB5. This study aims to extract the genome sequences of the YGF in Bienertia sinuspersici, an important model plant for single-cell C4 (SCC4), non-Kranz photosynthesis. A comparative genomic analysis was undertaken with Vitis vinefera, Arabidopsis thaliana, Brassica rapa, and Chenopodium quinoa. Six copies of YGF were present in B. sinuspersici and A. thaliana with a single copy of each YGF subgroup. V. vinefera possessed seven copies of YGF with duplicates in FIL and YAB2 subgroups, but no YAB3. B. rapa and C. quinoa after whole genome duplication contained additional copies of YGF. The gene structure and conserved motifs were analyzed among the YGF. In addition, the relative quantification of YGF was analyzed in the leaves, reproductive developmental stages such as the bud, and the pre-anthesis and anthesis stages in B. sinuspersici, A. thaliana, and B. rapa. CRC and INO possessed conserved floral-specific expression. Temporal and perpetual changes in the expression of YGF orthologs were observed in the leaves and reproductive developmental stages. The results of this study provide an overview of YGF evolution, copy number, and its differential expression in B. sinuspersici. Further studies are required to shed light on the roles of YABBY genes in the evolution of SCC4 plants and their distinct physiologies. Full article
(This article belongs to the Special Issue Genomics for Plant Breeding)
Show Figures

Figure 1

17 pages, 2960 KiB  
Article
High Below-Ground Productivity Allocation of Alpine Grasslands on the Northern Tibet
by Ben Niu, Chaoxu Zeng, Xianzhou Zhang, Yongtao He, Peili Shi, Yuan Tian, Yunfei Feng, Meng Li, Zhipeng Wang, Xiangtao Wang and Yanan Cao
Plants 2019, 8(12), 535; https://doi.org/10.3390/plants8120535 - 22 Nov 2019
Cited by 17 | Viewed by 3321
Abstract
The allocation of net primary production (NPP) between above- and belowground components is a key step of ecosystem material cycling and energy flows, which determines many critical parameters, e.g., the fraction of below ground NPP (BNPP) to NPP (fBNPP) and [...] Read more.
The allocation of net primary production (NPP) between above- and belowground components is a key step of ecosystem material cycling and energy flows, which determines many critical parameters, e.g., the fraction of below ground NPP (BNPP) to NPP (fBNPP) and root turnover rates (RTR), in vegetation models. However, direct NPP estimation and partition are scarcely based on field measurements of biomass dynamics in the alpine grasslands on the Northern Tibetan Plateau (NTP). Consequently, these parameters are unverifiable and controversial. Here, we measured above- and belowground biomass dynamics (monthly from May to September each year from 2013 to 2015) to estimate NPP dynamics and allocations in four typical alpine grassland ecosystems, i.e., an alpine meadow, alpine meadow steppe, alpine steppe and alpine desert steppe. We found that NPP and its components, above and below ground NPP (ANPP and BNPP), increased significantly from west to east on the NTP, and ANPP was mainly affected by temperature while BNPP and NPP were mainly affected by precipitation. The bulk of BNPP was generally concentrated in the top 10 cm soil layers in all four alpine grasslands (76.1% ± 9.1%, mean ± SD). Our results showed that fBNPP was significantly different among these four alpine grasslands, with its means in alpine meadow (0.93), alpine desert steppe (0.92) being larger than that in the alpine meadow steppe (0.76) and alpine steppe (0.77). Both temperature and precipitation had significant and positive effects on the fBNPP, while their interaction effects were significantly opposite. RTR decreased with increasing precipitation, but increased with increasing temperature across this ecoregion. Our study illustrated that alpine grasslands on the NTP, especially in the alpine meadow and alpine desert steppe, partitioned an unexpected and greater NPP to below ground than most historical reports across global grasslands, indicating a more critical role of the root carbon pool in carbon cycling in alpine grasslands on the NTP. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

15 pages, 2851 KiB  
Article
Methyljasmonate Elicitation Increases Terpenoid Indole Alkaloid Accumulation in Rhazya stricta Hairy Root Cultures
by Amir Akhgari, Into Laakso, Hannu Maaheimo, Young Hae Choi, Tuulikki Seppänen-Laakso, Kirsi-Marja Oksman-Caldentey and Heiko Rischer
Plants 2019, 8(12), 534; https://doi.org/10.3390/plants8120534 - 22 Nov 2019
Cited by 24 | Viewed by 3792
Abstract
Methyl jasmonate is capable of initiating or improving the biosynthesis of secondary metabolites in plants and therefore has opened up a concept for the biosynthesis of valuable constituents. In this study, the effect of different doses of methyl jasmonate (MeJA) elicitation on the [...] Read more.
Methyl jasmonate is capable of initiating or improving the biosynthesis of secondary metabolites in plants and therefore has opened up a concept for the biosynthesis of valuable constituents. In this study, the effect of different doses of methyl jasmonate (MeJA) elicitation on the accumulation of terpenoid indole alkaloids (TIAs) in the hairy root cultures of the medicinal plant, Rhazya stricta throughout a time course (one-seven days) was investigated. Gas chromatography-mass spectrometry (GC-MS) analyses were carried out for targeted ten major non-polar alkaloids. Furthermore, overall alterations in metabolite contents in elicited and control cultures were investigated applying proton nuclear magnetic resonance (1H NMR) spectroscopy. Methyl jasmonate caused dosage- and time course-dependent significant rise in the accumulation of TIAs as determined by GC-MS. The contents of seven alkaloids including eburenine, quebrachamine, fluorocarpamine, pleiocarpamine, tubotaiwine, tetrahydroalstonine, and ajmalicine increased compared to non-elicited cultures. However, MeJA-elicitation did not induce the accumulation of vincanine, yohimbine (isomer II), and vallesiachotamine. Furthermore, principal component analysis (PCA) of 1H NMR metabolic profiles revealed a discrimination between elicited hairy roots and control cultures with significant increase in total vindoline-type alkaloid content and elevated levels of organic and amino acids. In addition, elicited and control samples had different sugar and fatty acid profiles, suggesting that MeJA also influences the primary metabolism of R. stricta hairy roots. It is evident that methyl jasmonate is applicable for elevating alkaloid accumulation in “hairy root” organ cultures of R. strica. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

28 pages, 6836 KiB  
Review
Structure–Function Analysis Reveals the Singularity of Plant Mitochondrial DNA Replication Components: A Mosaic and Redundant System
by Luis Gabriel Brieba
Plants 2019, 8(12), 533; https://doi.org/10.3390/plants8120533 - 21 Nov 2019
Cited by 10 | Viewed by 4580
Abstract
Plants are sessile organisms, and their DNA is particularly exposed to damaging agents. The integrity of plant mitochondrial and plastid genomes is necessary for cell survival. During evolution, plants have evolved mechanisms to replicate their mitochondrial genomes while minimizing the effects of DNA [...] Read more.
Plants are sessile organisms, and their DNA is particularly exposed to damaging agents. The integrity of plant mitochondrial and plastid genomes is necessary for cell survival. During evolution, plants have evolved mechanisms to replicate their mitochondrial genomes while minimizing the effects of DNA damaging agents. The recombinogenic character of plant mitochondrial DNA, absence of defined origins of replication, and its linear structure suggest that mitochondrial DNA replication is achieved by a recombination-dependent replication mechanism. Here, I review the mitochondrial proteins possibly involved in mitochondrial DNA replication from a structural point of view. A revision of these proteins supports the idea that mitochondrial DNA replication could be replicated by several processes. The analysis indicates that DNA replication in plant mitochondria could be achieved by a recombination-dependent replication mechanism, but also by a replisome in which primers are synthesized by three different enzymes: Mitochondrial RNA polymerase, Primase-Helicase, and Primase-Polymerase. The recombination-dependent replication model and primers synthesized by the Primase-Polymerase may be responsible for the presence of genomic rearrangements in plant mitochondria. Full article
(This article belongs to the Special Issue Plant Organelle DNA Maintenance)
Show Figures

Figure 1

12 pages, 976 KiB  
Article
First Broad Screening of Allelopathic Potential of Wild and Cultivated Plants in Turkey
by Tugba Gonca Isin Ozkan, Emine Akalin Urusak, Kwame Sarpong Appiah and Yoshiharu Fujii
Plants 2019, 8(12), 532; https://doi.org/10.3390/plants8120532 - 21 Nov 2019
Cited by 6 | Viewed by 4217
Abstract
Turkey has one of the richest plant diversities in the Mediterranean region. In the current literature, no broad screening has been conducted on the potential allelopathy of plants from Turkey. This study aimed to evaluate the allelopathic activity of a large number of [...] Read more.
Turkey has one of the richest plant diversities in the Mediterranean region. In the current literature, no broad screening has been conducted on the potential allelopathy of plants from Turkey. This study aimed to evaluate the allelopathic activity of a large number of plants from Turkey for the first time and to determine the species with significant plant growth inhibitory potentials by bioassay. Dried samples of different plant parts were collected from local herbalists. The sandwich method was used to evaluate the potential allelopathy of 126 medicinal plants belonging to 55 families. The results of lettuce radicle and hypocotyl growth for 10 and 50 mg sample treatment conformed to normal distribution. Significant inhibition on lettuce radicle elongation with 10 mg sample was observed in 40 species, out of which 27 species showed over 50% inhibitory activity. The results suggested that these species could contain potential inhibitory compounds against lettuce radicle or hypocotyl growth. The calyxes of Hibiscus sabdariffa (3.2% of control) and the seeds of Prunus dulcis (5.7% of control) showed the most potent growth inhibitory activity on lettuce radicle elongation. The potential plant growth inhibitory effects of these plants, together with the fruits of Rhus coriaria and seeds of Prunus mahaleb, have been reported in this study for the first time. All these plants are medicinal, and the results hereby presented provide essential information about the allelopathic effects of medicinal plants from Turkey. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

28 pages, 6690 KiB  
Article
Transcription Factor Networks in Leaves of Cichorium endivia: New Insights into the Relationship between Photosynthesis and Leaf Development
by Giulio Testone, Elena Baldoni, Maria Adelaide Iannelli, Chiara Nicolodi, Elisabetta Di Giacomo, Fabrizio Pietrini, Giovanni Mele, Donato Giannino and Giovanna Frugis
Plants 2019, 8(12), 531; https://doi.org/10.3390/plants8120531 - 21 Nov 2019
Cited by 10 | Viewed by 4150
Abstract
Cichorium endivia is a leafy crop closely related to Lactuca sativa that comprises two major botanical varieties characterized by a high degree of intraspecific morphological variation: var. latifolium with broad leaves (escarole) and var. crispum with narrow crisp curly leaves (endive). To investigate [...] Read more.
Cichorium endivia is a leafy crop closely related to Lactuca sativa that comprises two major botanical varieties characterized by a high degree of intraspecific morphological variation: var. latifolium with broad leaves (escarole) and var. crispum with narrow crisp curly leaves (endive). To investigate the relationship between leaf morphology and photosynthetic activity, escaroles and endives were used as a crop model due to the striking morphological diversity of their leaves. We constructed a leaf database for transcription factors (TFs) and photosynthesis-related genes from a refined C. endivia transcriptome and used RNA-seq transcriptomic data from leaves of four commercial endive and escarole cultivars to explore transcription factor regulatory networks. Cluster and gene co-expression network (GCN) analyses identified two main anticorrelated modules that control photosynthesis. Analysis of the GCN network topological properties identified known and novel hub genes controlling photosynthesis, and candidate developmental genes at the boundaries between shape and function. Differential expression analysis between broad and curly leaves suggested three novel TFs putatively involved in leaf shape diversity. Physiological analysis of the photosynthesis properties and gene expression studies on broad and curly leaves provided new insights into the relationship between leaf shape and function. Full article
(This article belongs to the Special Issue From Genes to Shape and Function: Leaf Morphogenesis at Play)
Show Figures

Graphical abstract

14 pages, 1257 KiB  
Article
Genetic Diversity, Population Structure, and Marker-Trait Association for Drought Tolerance in US Rice Germplasm
by Uttam Bhattarai and Prasanta K. Subudhi
Plants 2019, 8(12), 530; https://doi.org/10.3390/plants8120530 - 21 Nov 2019
Cited by 13 | Viewed by 4621
Abstract
Drought is a major constraint in some rice-growing areas of the United States. Its impact is most severe at the reproductive stage resulting in low grain yield. Therefore, assessment of genetic and phenotypic variation for drought tolerance in US rice germplasm is necessary [...] Read more.
Drought is a major constraint in some rice-growing areas of the United States. Its impact is most severe at the reproductive stage resulting in low grain yield. Therefore, assessment of genetic and phenotypic variation for drought tolerance in US rice germplasm is necessary to accelerate the breeding effort. Evaluation of 205 US rice genotypes for drought tolerance at the reproductive stage revealed tolerant response in rice genotypes Bengal, Jupiter, Cypress, Jazzman, Caffey, and Trenasse. Harvest index and fresh shoot weight were identified as important traits to explain the majority of variability among the genotypes under drought tolerance. Genotyping with 80 SSR markers indicated a low level of genetic diversity in US germplasm. Population structure analysis grouped the genotypes into eight clusters. The genotypes from California, Louisiana, and Arkansas formed distinct subgroups. Texas genotypes were similar to those from Louisiana and Arkansas. Marker-trait association analysis showed significant association of RM570 and RM351 with grain yield, spikelet fertility, and harvest index whereas shoot dry weight showed association with RM302 and RM461. The drought-tolerant genotypes identified in this study and the SSR markers associated with drought tolerance attributes will be helpful for development of improved drought-tolerant rice varieties through marker assisted selection. Full article
(This article belongs to the Special Issue Genomics for Plant Breeding)
Show Figures

Figure 1

11 pages, 516 KiB  
Review
The Role of MicroRNAs in Genome Response to Plant–Lepidoptera Interaction
by Katarína Ražná and Ľudovít Cagáň
Plants 2019, 8(12), 529; https://doi.org/10.3390/plants8120529 - 20 Nov 2019
Cited by 3 | Viewed by 3267
Abstract
RNA interference is a known phenomenon of plant immune responses, involving the regulation of gene expression. The key components triggering the silencing of targeted sequences are double-stranded RNA molecules. The regulation of host–pathogen interactions is controlled by miRNA molecules, which regulate the expression [...] Read more.
RNA interference is a known phenomenon of plant immune responses, involving the regulation of gene expression. The key components triggering the silencing of targeted sequences are double-stranded RNA molecules. The regulation of host–pathogen interactions is controlled by miRNA molecules, which regulate the expression of host resistance genes or the genes of the pathogen. The review focused on basic principles of RNA interference as a gene-silencing-based defense mechanism and the role of miRNA molecules in insect genomes. RNA interference as a tool for plant protection management is discussed. The review summarizes current miRNA-based biotechnology approaches for plant protection management. Full article
(This article belongs to the Special Issue RNAs and Plant Disease Resistance)
Show Figures

Figure 1

18 pages, 3358 KiB  
Article
Fly-Ash Pollution Modulates Growth, Biochemical Attributes, Antioxidant Activity and Gene Expression in Pithecellobium Dulce (Roxb) Benth
by Sami Ullah Qadir, Vaseem Raja, Weqar Ahmad Siddiqui, Mahmooduzzafar, Elsayed F. Abd_Allah, Abeer Hashem, Pravej Alam and Parvaiz Ahmad
Plants 2019, 8(12), 528; https://doi.org/10.3390/plants8120528 - 20 Nov 2019
Cited by 23 | Viewed by 3379
Abstract
This study investigates the effect of fly ash (FA) on the Pithecellobium dulce (Roxb) Benth. trees growing at three different locations. FA stress caused significant changes in different leaf attributes like sugar, protein contents, photosynthetic pigments, nitrate content and nitrate reductase activity in [...] Read more.
This study investigates the effect of fly ash (FA) on the Pithecellobium dulce (Roxb) Benth. trees growing at three different locations. FA stress caused significant changes in different leaf attributes like sugar, protein contents, photosynthetic pigments, nitrate content and nitrate reductase activity in foliar tissues of plants growing at a highly contaminated site, as compared to a low-pollution site. Lower rates of stomatal conductance (SC) were observed in P. dulce leaves under fly ash stress conditions that drastically reduced net photosynthetic rate (PN); however, intercellular carbon dioxide concentration and stomatal index (SI) showed an increase under the same stress conditions. On the other hand, significant increase was also observed in the proline, sulphur and nitrogen contents. A significant increase in oxidative stress and, consequently, in antioxidant enzymes such as ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and superoxidase dismutase (SOD) and Air pollution tolerance index were discovered at three different sites. The transcriptional expression of antioxidant and stress responsive genes was higher at HPS as compared to two other two sites of the study. Taken together the results demonstrated that the P. dulce is best suited as a fly ash stress tolerant plant species with the potential to provide an alternative for the reclamation of fly ash affected soils. Full article
Show Figures

Figure 1

9 pages, 1375 KiB  
Communication
Withaninsams A and B: Phenylpropanoid Esters from the Roots of Indian Ginseng (Withania somnifera)
by Su Cheol Baek, Seoyoung Lee, Sil Kim, Mun Seok Jo, Jae Sik Yu, Yoon-Joo Ko, Young-Chang Cho and Ki Hyun Kim
Plants 2019, 8(12), 527; https://doi.org/10.3390/plants8120527 - 20 Nov 2019
Cited by 13 | Viewed by 3560
Abstract
Withania somnifera (L.) Dunal (Solanaceae), known as Indian ginseng or ashwagandha, has been used in Indian Ayurveda for the treatment of a variety of disorders, such as diabetes and reproductive and nervous system disorders. It is particularly used as a general health tonic, [...] Read more.
Withania somnifera (L.) Dunal (Solanaceae), known as Indian ginseng or ashwagandha, has been used in Indian Ayurveda for the treatment of a variety of disorders, such as diabetes and reproductive and nervous system disorders. It is particularly used as a general health tonic, analgesic, and sedative. As part of continuing projects to discover unique bioactive natural products from medicinal plants, phytochemical investigation of the roots of W. somnifera combined with a liquid chromatography–mass spectrometry (LC/MS)-based analysis has led to the isolation of two novel phenylpropanoid esters, Withaninsams A (1) and B (2), as an inseparable mixture, along with three known phenolic compounds (3, 4, and 6) and a pyrazole alkaloid (5). The structures of the new compounds were elucidated using a combination of spectroscopic methods, including one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectroscopy (HR-ESIMS). Withaninsams A (1) and B (2) are phenylpropanoid esters that contain a side chain, 4-methyl-1,4-pentanediol unit. To the best of our knowledge, the present study is the first to report on phenylpropanoid esters with 4-methyl-1,4-pentanediol unit. The anti-inflammatory activity of the isolated compounds (16) was evaluated by determining their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, where compound 3 inhibited LPS-induced NO production (IC50 = 33.3 μM) and TNF-α production, a pro-inflammatory cytokine (IC50 = 40.9 μM). The anti-inflammatory mechanism through the inhibition of transcriptional iNOS protein expression was confirmed by western blotting experiments for the active compound 3, which showed decreased iNOS protein expression. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Graphical abstract