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Abstract: Coralline algae are one of the most diversified groups of red algae and represent a major
component of marine benthic habitats from the poles to the tropics. This group was believed to be
exclusively marine until 2016, when the first freshwater coralline algae Pneophyllum cetinaensis was
discovered in the Cetina River, southern Croatia. While several studies investigated the element
compositions of marine coralline algal thalli, no information is yet available for the freshwater species.
Using XRD, LA-ICP-MS and nano indentation, this study presents the first living low-Mg calcite
coralline algae with Mg concentrations ten times lower than is common for the average marine
species. Despite the lower Mg concentrations, hardness and elastic modulus (1.71 ± 1.58 GPa and
29.7 ± 18.0 GPa, respectively) are in the same range as other marine coralline algae, possibly due to
other biogenic impurities. When compared to marine species, Ba/Ca values were unusually low, even
though Ba concentrations are generally higher in rivers than in seawater. These low values might be
linked to different physical and chemical characteristics of the Cetina River.

Keywords: low-Mg calcite; element composition; structural integrity; freshwater

1. Introduction

Coralline algae are the third most diversified group of red algae [1] with a global distribution
from the high latitudes to the tropics [2,3]. They provide important ecosystem services as dominant
autotrophic calcifiers in arctic and subarctic regions [4,5], consolidators of coral reefs [6] and builders
of rhodolith beds, coralligenous bioconstructions and intertidal “rims” [7,8]. They have also been
acknowledged for their role as carbon sinks, due to their high uptake, assimilation and therefore
storage potential [9].

Recently, coralline algae have received renewed attention in the context of global change, due to
the suggested vulnerability of their high-Mg calcite skeleton [6]. The genus Pneophyllum encompasses
17 species that are widespread in marine and some in transitional environments [10]. In 2016,
the first freshwater coralline alga Pneophyllum cetinaensis Kaleb, Žuljević & Peña was discovered [11].
Pneophyllum cetinaensis and the other Pneophyllum species from European Atlantic and Mediterranean

Plants 2020, 9, 1089; doi:10.3390/plants9091089 www.mdpi.com/journal/plants

http://www.mdpi.com/journal/plants
http://www.mdpi.com
https://orcid.org/0000-0002-2139-960X
https://orcid.org/0000-0003-3260-715X
https://orcid.org/0000-0001-7092-6931
https://orcid.org/0000-0002-9671-5283
http://dx.doi.org/10.3390/plants9091089
http://www.mdpi.com/journal/plants
https://www.mdpi.com/2223-7747/9/9/1089?type=check_update&version=3


Plants 2020, 9, 1089 2 of 14

coasts are distinguished on a morpho-anatomical basis by differences in development, dimension, and
organization of the crusts. It is assumed that the opportunistic nature of the brackish-water ancestor
of Pneophyllum cetinaensis, together with the specific chemo–physical characteristics of the Cetina
River (karst system), allowed the biome transition of this taxa [11]. There are several bottlenecks
for the successful transition of coralline algae across the marine–freshwater boundary caused by
chemo–physical obstacles. Among these, the reduced salt concentration in freshwater is one of
the major impediments, challenging the maintenance of osmotic homeostasis. Additionally, the relative
lack of Ca2+ ions is critical to coralline algae due to their absorption of calcium from surrounding
waters for calcification [12]. The process of calcification in coralline algae is dependent not only on
photosynthetic activity but also on inorganic carbon concentrations and Mg/Ca ratios in the water [13,14].
Magnesium is a common element in calcite and it has become customary to divide marine calcites
in high-Mg calcite and low-Mg calcite based on a threshold of 3–4 mol% Mg. Many organisms have
high-Mg calcite skeletons with magnesium contents ranging from 4% to 45% [15,16]. All coralline
algae are so far listed among this high-Mg calcite organisms, with magnesium contents ranging
from 10.5 to 16.4 wt.% MgCO3, with a mean of 13.1 wt.% MgCO3 [17], depending on the prevailing
temperature and seawater chemistry [13,18,19]. The substitution of Ca2+ by Mg2+ is critical since it
affects the calcite lattice geometry and solubility. In biogenic high-Mg calcite, mechanical properties
are enhanced compared to low-Mg calcite, conferring greater elastic modulus (E) and hardness (H)
to the tissue with increasing Mg2+ concentrations [19]. The different concentrations of Mg2+ found
in coralline algae, are not only driven by phylogeny [17], but also by changes in water temperature,
based on the endothermic substitution of Mg2+ in calcite, favoring the Mg2+ substitution at higher
temperatures [20]. Mg/Ca ratios have been shown to faithfully record temperature variations in a range
of marine calcifiers [21–23], including coralline algae [24–29].

However, Mg2+ is not the only trace and minor element in biogenic carbonates considered to be
a reliable proxy of past environments. Of particular interest are all the cations that can substitute Ca2+

in the crystal lattice such as Sr2+ and Ba2+ in aragonite (orthorhombic crystal structure) and Mg2+ and
Ba2+ in calcite (trigonal–rhombohedral crystal structure [30]). The incorporation of these ions occurs,
for some part [31,32], proportionally to the concentration of the dissolved element in the water and for
some elements, such as Sr2+ and Mg2+, this incorporation is also thermodynamically controlled [33].

In marine settings, skeletal Ba/Ca ratios have proven to be a valuable proxy, providing information
on coastal sediment transport, freshwater discharge, salinity, and nutrients distributions [34,35].
Barium concentrations are generally higher in rivers and lakes than in seawater as a result of chemical
weathering in their catchments, and freshwater discharges have thus been recognized as important
sources of barium in seawater [36].

This study presents the trace elemental composition and structural integrity of Pneophyllum
cetinaensis and provides a very first insight in the skeletal characteristics of a freshwater coralline
alga. Particular attention will be given to the elements that provide valuable proxies within marine
coralline algae, being Ba/Ca for coastal sediment transport, freshwater discharge, salinity, and nutrient
distributions and Sr/Ca, and Mg/Ca for temperature.

2. Results

2.1. XRD Analysis

Calcite was the only crystalline phase detected in the sample, as all XRD reflections were well
covered by the calcite structure. Refinement of calcite resulted in a cry size (Lorentz contribution) of 94
nm and a microstrain (Gauss contribution) of 0.15 (Figure 1).
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Figure 1. XRD spectra of Pneophyllum cetinaensis showing calcite as the only crystallite phase (n = 1). 

2.2. Mechanical Properties  

The hardness (Figure 2a,c) showed significant variability (pH = <0.001; pEr = <0.001, respectively) 
among specimens with an overall average of 1.71 ± 1.58 GpA. Specimen 8 was significantly different 
from specimen 6 (Kruskal–Wallis; Dunn’s; Sp8vsSp6: p = 0.019), 9 (Kruskal–Wallis; Dunn’s; Sp8vsSp9: 
p = 0.0023) and 7 (Kruskal–Wallis; Dunn’s; Sp8vsSp7: p = 0.004), while specimen 2 was significantly 
different from specimen 7 (Kruskal–Wallis; Dunn’s; Sp8vsSp7: p = 0.039).  

The elastic modulus (Figure 2b,d) also showed a high variability among specimens, with 
specimen 7 significantly different from specimen 2 (Kruskal–Wallis; Dunn’s; Sp2vsSp7: p = <0.001) and 
specimen 8 (Kruskal–Wallis; Dunn’s; Sp8vsSp7: p = 0.030). The overall average of the elastic modulus 
was 29.7 ± 18.0 GPa. Like the hardness the elastic modulus was not homogeneous within specimens. 

 
Figure 2. Mechanical properties of Pneophyllum cetinaensis measured by nanoindentation. (a) 
Hardness measurements of the nine specimens analysed (specimens in numerical order one–nine 
starting from the left to right along the x axes). (b) Elastic modulus measurements of the nine 
specimens analysed (specimens in numerical order one–nine starting from the left to right). (c) 
Hardness partial maps (15 × 15 indents) of specimens one to three (starting from the left) inside the 
blue oval in panel (a). (d) Elastic modulus partial maps (15 × 15 indents) of specimens one to three 
(starting from the left) inside the blue oval in panel (b). (a,b) Error bars = standard errors; X axes = 
specimens. (c,d) Colour legends are given in units of GPa where red is hardest (c) and stiffest (d). 

Figure 1. XRD spectra of Pneophyllum cetinaensis showing calcite as the only crystallite phase (n = 1).

2.2. Mechanical Properties

The hardness (Figure 2a,c) showed significant variability (pH = < 0.001; pEr = < 0.001, respectively)
among specimens with an overall average of 1.71 ± 1.58 GpA. Specimen 8 was significantly different
from specimen 6 (Kruskal–Wallis; Dunn’s; Sp8vsSp6: p = 0.019), 9 (Kruskal–Wallis; Dunn’s; Sp8vsSp9:
p = 0.0023) and 7 (Kruskal–Wallis; Dunn’s; Sp8vsSp7: p = 0.004), while specimen 2 was significantly
different from specimen 7 (Kruskal–Wallis; Dunn’s; Sp8vsSp7: p = 0.039).
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Figure 2. Mechanical properties of Pneophyllum cetinaensis measured by nanoindentation. (a) Hardness
measurements of the nine specimens analysed (specimens in numerical order one–nine starting from
the left to right along the x axes). (b) Elastic modulus measurements of the nine specimens analysed
(specimens in numerical order one–nine starting from the left to right). (c) Hardness partial maps (15 ×
15 indents) of specimens one to three (starting from the left) inside the blue oval in panel (a). (d) Elastic
modulus partial maps (15 × 15 indents) of specimens one to three (starting from the left) inside the blue
oval in panel (b). (a,b) Error bars = standard errors; X axes = specimens. (c,d) Colour legends are given
in units of GPa where red is hardest (c) and stiffest (d). High variability within the same specimen (c,d)
is also clearly visible in the maps, where peaks in hardness are shown in red.
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The elastic modulus (Figure 2b,d) also showed a high variability among specimens, with specimen
7 significantly different from specimen 2 (Kruskal–Wallis; Dunn’s; Sp2vsSp7: p = <0.001) and specimen
8 (Kruskal–Wallis; Dunn’s; Sp8vsSp7: p = 0.030). The overall average of the elastic modulus was 29.7 ±
18.0 GPa. Like the hardness the elastic modulus was not homogeneous within specimens.

2.3. Elements Composition

The investigated elements are summarized in Table S2 and Figure 3. Elements were chosen on
the bases of either importance for the structural integrity (Mg/Ca) or importance as a proxy (Sr/Ca
for temperature; Ba/Ca for coastal sediment transport, freshwater discharge, salinity, and nutrients
distributions) in marine coralline algae. There is a significant difference for some of the elements
between different specimens.Plants 2020, 9, x FOR PEER REVIEW 5 of 15 
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Mg/Ca concentrations (µg/g) do vary significantly among specimens, with an overall average
of 0.110 ± 0.31. However, there is a significant difference between specimens nr. seven, nr. four
(Kruskal–Wallis; Dunn’s; Sp4vsSp7: p = 0.003), and nr. two (Kruskal–Wallis; Dunn’s; Sp2vsSp7: p =

0.039).
Ba/Ca concentration (µg/g) ratios have an overall average of 6.3 × 10−5

± 1.7 × 10−5 (µg/g).
Specimen nr. four was significantly different from specimens nr. six (Kruskal–Wallis; Dunn’s; Sp4vsSp6:
p = 0.001), nr. eight (Kruskal–Wallis; Dunn’s; Sp4vsSp8: p = 0.004) 7 (Kruskal–Wallis; Dunn’s; Sp4vsSp7:
p = 0.007), and nr. one (Kruskal–Wallis; Dunn’s; Sp4vsSp1: p = 0.001).

Sr/Ca concentration (µg/g) ratios were also very similar between specimens with an overall
average of 3.95 × 10−4

± 7.99 × 10−5. Only specimen nr. three was significantly different from specimen
nr. one (Kruskal–Wallis; Dunn’s; Sp3vsSp1: p = 0.047) and specimen nr. 5 (Kruskal–Wallis; Dunn’s;
Sp3vsSp1: p = 0.043).

Magnesium concentrations in all the specimens of Pneophyllum cetinaensis were ~10 times lower
than the concentrations found in coralline algae living in seawater (Figure 4). With the magnesium
concentrations of Pneophyllum cetinaensis, the family of the Corallinaceae features the highest and
the lowest concentrations of mol% MgCO3 (Figure 4) among all calcifying red algae living in
temperate regions.Plants 2020, 9, x FOR PEER REVIEW 6 of 15 

 

 
Figure 4. mol% MgCO3 of marine coralline algae from different families and regions (New Zealand 
(NZ) and Mediterranean Sea (Med)) and the freshwater algae Pneophyllum cetinaensis. Data of the 
seawater coralline algae were collected from: [17,37,38]. 

3. Discussion 

All the measurements carried out during this study showed some significant variability among 
specimens. The thallus of Pneophyllum cetinaensis is layered and arranged in superimposed flattened 
branches (Figure 1) which grow at different times (i.e., months). We were unable to determine the 
specific time of growth for each layer and therefore, the variability of the elements and structural 
measurements between specimens most likely reflects the different physico–chemical parameters of 
the Cetina River during the growth of the different layers.  

There is a positive correlation between the magnesium content and hardness in biogenic calcite 
[19,39,40], however the magnesium concentrations in adult specimens of Pneophyllum cetinaensis were 
 �10 times lower (average of 0.97 molMg% ± 0.02 SD) than the concentrations found in coralline algae 
living in seawater (average of 14.7 molMg% ± 1.3 SD) [37,38]. Magnesium incorporation in coralline 
algae is determined by water temperature [24,41–43], phylogeny [17] and the water Mg/Ca ratio 
[13,18]. While temperature and phylogeny did not vary within our study, the Mg/Ca ratio of the 
ambient water in Cetina River was the driving factor of such a low magnesium content (Mg/Ca: 0.10 
± 0.66 SD mg/L). As conditions of elevated Mg/Ca ratios can gives highly variable calcites but low 
Mg/Ca ratio can only give low Mg Calcites [44]. The structural integrity of Pneophyllum cetinaensis 
showed a highly heterogeneous distribution of elastic modulus and hardness within and between 
the specimens. Surprisingly, Hardness (H) and Elastic modulus (Er) in Pneophyllum cetinaensis are 
within the same range of value measured in different coralline algae species living in different marine 
environments (intertidal: [45], subtidal: [46]). Cristallographic size and texture play an important role 

Figure 4. mol% MgCO3 of marine coralline algae from different families and regions (New Zealand (NZ)
and Mediterranean Sea (Med)) and the freshwater algae Pneophyllum cetinaensis. Data of the seawater
coralline algae were collected from: [17,37,38].
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3. Discussion

All the measurements carried out during this study showed some significant variability among
specimens. The thallus of Pneophyllum cetinaensis is layered and arranged in superimposed flattened
branches (Figure 1) which grow at different times (i.e., months). We were unable to determine
the specific time of growth for each layer and therefore, the variability of the elements and structural
measurements between specimens most likely reflects the different physico–chemical parameters of
the Cetina River during the growth of the different layers.

There is a positive correlation between the magnesium content and hardness in biogenic calcite [19,
39,40], however the magnesium concentrations in adult specimens of Pneophyllum cetinaensis were ~10
times lower (average of 0.97 molMg% ± 0.02 SD) than the concentrations found in coralline algae living
in seawater (average of 14.7 molMg% ± 1.3 SD) [37,38]. Magnesium incorporation in coralline algae is
determined by water temperature [24,41–43], phylogeny [17] and the water Mg/Ca ratio [13,18]. While
temperature and phylogeny did not vary within our study, the Mg/Ca ratio of the ambient water in
Cetina River was the driving factor of such a low magnesium content (Mg/Ca: 0.10 ± 0.66 SD mg/L). As
conditions of elevated Mg/Ca ratios can gives highly variable calcites but low Mg/Ca ratio can only give
low Mg Calcites [44]. The structural integrity of Pneophyllum cetinaensis showed a highly heterogeneous
distribution of elastic modulus and hardness within and between the specimens. Surprisingly, Hardness
(H) and Elastic modulus (Er) in Pneophyllum cetinaensis are within the same range of value measured in
different coralline algae species living in different marine environments (intertidal: [45], subtidal: [46]).
Cristallographic size and texture play an important role in the optimization of the calcite material
properties [47]. However, in biominerals, small variation in geometrical parameters and crystal size
are very common, therefore the composite behaviour of the biostructure does not usually depend on
small variation in structural geometry [48]. Mechanical anisotropy due to the heterogeneous structure
of coralline algae is thought to increase the risk of fractures but the high magnesium content improves
the hardness of the thallus [49]. The process behind the hardening of the biogenic calcite by Mg2+

substitution is related to the creation of lattice distortion due to the smaller size of Mg2+ compared
with calcium [40], which will hinder dislocation motion and increase hardness. However, there are
other components apart from Mg2+ that help increase the hardness in biogenic calcite [50]. Via model
dynamics, Cote’ t al. [50] proved that biogenic impurities, such as amino acids, decrease the strain
required to induce plastic deformation in calcite, consequently increasing hardness and perforation
resistance. Therefore, the mismatch of H, Er and magnesium concentration could be linked to other
added impurities that might contribute to the enhanced hardness of biogenic calcite.

Pneophyllum cetinaensis is the only known living low-Mg calcite coralline algae. Despite the riverine
environment, the low Mg/Ca ratio in Pneophyllum cetinaensis is very close to the ratio predicted
from seawater (Ries 2006) calibrations considering the measured Mg/Ca ratio in the Cetina River.
The possibility of the existence of low-Mg calcite coralline algae was already investigated in some
laboratory experiments looking at late Cretaceous seas [51]. After investigating the changes in
the Mg/Ca ratio of Amphiroa genus growing in Mg/Ca=1 artificial seawater, [52] concluded that
many taxa that now produce high-Mg calcite, produced low-Mg calcite in late Cretaceous seas. In
Pneophyllum cetinaensis, the capability to maintain the low-Mg calcite polymorph that is less susceptible
to dissolution at lower pH [53], has probably evolved to cope with the pH fluctuations occurring in
the Cetina river. The pH of the study site is on average 8.19 ± 0.21 with occasional decrease in pH
as low as 7.0 during summer. A study on Lithothamnion glaciale [19] showed a significantly lower
magnesium concentration in specimens growing at pH 7.9.

Both strontium and barium element concentrations in Pneophyllum cetinaensis are roughly two
orders of magnitude lower than the average Sr/Ca and Ba/Ca ratios in marine coralline algae ([54]
Sr/Ca: from 6.0 × 10−3to 9.0 × 10−3; Ba/Ca: from 2.0 × 10−5 to 0.4 × 10−5).

The low Sr2+ values are expected since Mg2+ should facilitate the uptake of Sr2+. In fact,
the incorporation of smaller Mg2+ in the calcite lattice may distort the crystal lattice subsequently
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facilitating the uptake of larger ions such as Sr2+ [19]. Therefore, the low Sr2+ values are likely caused
by the low magnesium concentrations in Pneophyllum cetinaensis.

Concentrations of barium are generally higher in rivers than in seawater (50 µg/L vs. 6 µg/L
Ba2+; [55]) as a result of chemical weathering in their catchments, and for this reason, one might have
expected a higher Ba/Ca ratio in Pneophyllum cetinaensis compared to marine coralline algae. However,
the mechanisms of barium enrichment in coralline algae are still not fully understood. Several studies on
marine coralline algae report either positive, negative or no correlation between Ba/Ca and freshwater
input (for examples nutrients [31]). For instance, Hetzinger et al. [56] showed a positive correlation
between sea surface salinity and Ba/Ca, while a study carried out by Chan et al. [35] concluded that
there is a negative correlation between Ba/Ca and salinity. Moreover Caragnano et al. [31] showed
no correlation between precipitation and Ba/Ca ratio. Another possible explanation of our finding
can be related to the higher sulphate ion activity in seawater compared to freshwater [57]. Since no
analyses were carried out on the barium concentration in the Cetina River waters, we cannot exclude
that the low Ba/Ca ratio could be related to an unusually low barium concentration in the Cetina River.

4. Materials and Methods

4.1. Sample Collection

Specimens of Pneophyllum cetinaensis were collected in the Cetina River (southern Croatia) at
a depth of 0.5 m in December 2013 at Otok Ljubavi (43◦26.180′ N–16◦45.785′ E). The Cetina River is
a typical permanent karst river discharging into the Adriatic Sea. Pneophyllum cetinaensis is present
throughout almost the entire length of the Cetina River from 0 to 300 m above sea level, reaching about
75 km from the river mouth. The Cetina River physico–chemical characteristics at the site of collection
were: pH = 8.21 ± 0.02 SD (NBS scale), salinity < 0.5, temperature: 10.20 ± 0.08 SD ◦C (annual average;
12.9 ± 3.3 SD ◦C), Mg = 7.52 ± 4.11 SD, mg/L, Ca = 68.86 ± 6.18 SD mg/L.

Prior to the mechanical properties and trace elements analysis carried out at the University of
Portsmouth, nine specimens were embedded in epoxy resin (EpoFix Kit, batch no: 8134-01, Struers
ApS, Ballerup, Denmark) and gently polished (Micropolish Alumina, Buehler, Esslingen, Germany).
Analyses were carried out on the internal layers of the algae (Figure 5d). The LA-ICPMS spots size and
the Nano indentation grid allowed us to analyse the entire layers.

4.2. SEM Analysis

Two different SEM were used to create Figure 1. SEM images of Figure 5a,b,d were taken at
the University of Portsmouth with an SEM suitable to analyse uncoated samples (EVO MA10 with a W
filament electron source, Zeiss, Oberkochen, Germany). This SEM was used to allow the transfer of
samples between the LA-ICP-MS and SEM preventing interferences from sample coating. Prior to
cleaning with isopropanol, each mount was fixed on a stab using double coated carbon conductive
tabs. Samples were placed into the SEM and a variable pressure (VP) vacuum of 28 Pa was applied.

Images were taken at 20 kV electron high tension (EHT), and a working distance (WD) of ~7 mm,
using a probe current of 200 pA, a scan speed of 20.5 s, a magnification of 1–2 K and a line average
noise reduction in the Backscatter (HDBSD) mode.

SEM images of Figure 5c,d were taken at the University of Trieste. Fragments were mounted on
aluminium stubs and coated with gold/palladium (with S150 Sputter Coater, Edwards, Crawley, UK)
prior to viewing with a LEICA Steroscan 430i (Cambridge, UK) at 20 kV.
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Figure 5. Structure and sample preparation of Pneophyllum cetinaensis (a–c). Pneophyllum cetinaensis
layered thallus, arranged in superimposed flattened or curved fragile branches. (d) Example of thallus
layer used for the analysis. (e) Stub with polished Pneophyllum cetinaensis thalli (black arrows), ready to
be measured.

4.3. XRD/Phase Identification

For XRD evaluation, the sample was slightly crushed with an agate mortar and prepared into
a special single-crystal silicon cavity sample holder via front loading method. Due to the limited
amount of sample, only one preparation was possible.

The XRD measurement was performed at a D8 Advance with DaVinci design diffractometer
(Bruker AXS, Karlsruhe, Germany) with the following parameters: angle range 10–70◦ 2θ; step size
0.0112◦ 2 θ; integration time 0.3 s; divergence slit 0.3◦; radiation: Cu Kα; generator settings: 40 mA,
40 kV. Rietveld refinement was conducted with software TOPAS V5 (Bruker AXS, Karlsruhe, Germany).
For the refinement of calcite, the structure ICSD #80869 [58] was applied together with a Chebychev
polynomial of 3rd order for the background. Refined parameters were scale factor, lattice parameters,
cry size (Lorentz contribution) and microstrain (Gauss contribution).



Plants 2020, 9, 1089 9 of 14

4.4. Mechanical Properties

Nanoindentation was performed at the University of Portsmouth using a depth sensing indentation
instrument (Nano Test Platform 3, Micro Materials Ltd., Wrexham, UK). This pendulum-based
nanoindentation system is extensively explained elsewhere [59,60]. Indentations were performed
using a Berkovich diamond indenter in load-controlled mode. Maximum loading force was set to
5 mN, loading and unloading rates were kept constant, with loading and unloading rates each set
to 0.01 mN s−1, and a dwell time of 30 s was selected at maximum load to reduce the influence of
creep. A matrix of 60 to 120 indents with a 50 µm space between each indent was imprinted onto
the algal surface to map the distribution of mechanical properties within each specimen. The defined
number of indents allowed us to measure properties over the whole or half of the algal sample,
depending on its size. Before and after indentation, all samples were imaged using an integrated
optical microscope to identify the position of an indent. During nanoindentation experiments, a series
of force vs. displacement curves were recorded. The analysis was performed using analytical software
provided by MicroMaterials, where the unloading portion of the curve was fitted to a power law
function [61] to determine the hardness and elastic modulus of algae samples.

The physical aspects of nanoindentation analysis are explained in detail by Beake [59,60], and
therefore will not be repeated here. Sample hardness (H) was calculated from the maximum load
(Fmax) and the projected area of contact (Ac), determined through a series of indentations at different
loads on a calibration sample of fused silica, using the equation:

H =
Fmax

Ac
(1)

Young’s modulus (or elastic modulus), E, of the sample can be determined using the equation:

1
Er

=
1− v2

E
+

1− v2
i

Ei
(2)

where ν is the Poisson’s ratio of the sample, Er is the reduced modulus of the sample derived from
the load vs. displacement curves [61], νi is the Poisson’s ratio of the indenter (0.07) and Ei is the Young’s
modulus for the indenter (1141 GPa). As Poisson’s ratios of the algae are not known, the reduced
indentation modulus (Er) will be reported in this paper instead.

Maps of elastic modulus and hardness were generated to determine the distribution of
the mechanical properties. These maps were further processed by eliminating values obtained
on epoxy resin as well as where surface defects interfered with points of measurement. For statistical
analysis, histograms of modulus and hardness were also obtained and values for each indent were
averaged across the individual specimens for each treatment.

4.5. Element Analysis

Instrumentation, Operating Conditions and Data Reduction

Trace element analyses were conducted in two sessions at the University of Portsmouth. The first
analytical session was carried out using an Agilent 7500cs Quadrupole ICP-MS coupled with a Nd:YAG
213 nm New Wave solid-state laser ablation system. The second session utilized a RESOlution 193 nm
ArF excimer Laser with a Laurin Technic S155 Ablation cell (Australian Scientific Instruments, Canberra,
Australia) coupled to an Analytic Jena Plasma Quant MS Elite ICP-MS. Background and signal counts
were integrated, time-drift corrected and reduced to concentrations using the SILLS [62] and Iolite 3.4
software packages [63], respectively, for the first and second sessions (Table S1). Synthetic silicate glass
reference materials NIST SRM 610 as well as NIST SRM 612 were used for instrumental calibration and
as primary and secondary standards (Table S2). Synthetic calcium carbonate USGS MACS-3 was also
used as secondary standard and analysed in the same conditions as the unknowns. Detection limits
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(99% confidence) of the NIST glasses for spot measurements were: Mg = ~3 ppm for session 1 and
~28 ppm for session 2, Ca = ~30 ppm for session 1 and ~100 ppm for session 2. The internal standard
element used for normalization of the data was 43Ca. All reference materials were ablated prior, in
the middle, and after sample ablation. Following every 6th sample analysis, one analysis of NIST SRM
610 was added to correct for time-dependent drift of mass discrimination and instrument sensitivity.

Final elemental composition ratios in this study were calculated as a “mean count rate” including
standard deviation of five drift and background corrected single ablation spot analysis for each of
the nine replicates. This method is commonly used for LA-ICP-MS data reduction [64]. Magnesium
contents obtained throughout the course of this study are reproducible within 10%, of the GeoReM
database recommended values (reproducibility: Table S1, accuracy: Figures S1 and S2).

4.6. Statistical Analysis

All analyses were run in SPSS statistic 24 (IBM Corp., Armonk, NY, USA, 2016) and data sets
were tested for normality and homogeneity prior to further analysis. All data sets lacking normal
distribution (elastic modulus, Hardness, Mg/Ca and Sr/Ca) were analysed using a non-parametric test
(Kruskal–Wallis H). The Ba/Ca data sets were analysed using multiple single comparisons of one-way
analysis of variance (ANOVA).

5. Conclusions

With the low-Mg calcite (~10 times lower than seawater coralline algae) thallus of Pneophyllum
cetinaensis the family of the Corallinaceae has the highest and the lowest concentration of Mg among
calcifying red algae living in temperate regions. The low-Mg calcite of the thallus is likely to be an
adaptation to Cetina River carbonate chemistry. The adaptation of Pneophyllum cetinaensis to live in
a low Mg/Ca environment reveals the likely capability of coralline algae to maintain the low-Mg calcite
polymorph (less susceptible to dissolution at lower pH) as a strategy to cope with seawater acidification
due to climate change. Although there is a positive correlation between Mg and hardness in biogenic
calcite, hardness and elastic modulus in Pneophyllum cetinaensis are within the same range of values
measured in different marine coralline algae species which could be explained by the presence of
biogenic impurities. The Sr/Ca and Ba/Ca ratios in Pneophyllum cetinaensis are roughly two orders
of magnitude lower than average Sr/Ca and Ba/Ca ratios in marine coralline algae. The explanation
for the lower Ba/Ca of Pneophyllum cetinaensis should be investigated, focusing on the analysis of
Ba concentration in the Cetina River and on the mechanism of Ba incorporation in the low-Mg
calcite skeleton.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/9/1089/s1,
Table S1: Laser and ICP-MS operation parameters, Table S2: Reproducibility of reference materials USGS MACS-3
and NIST SRM 612 for each element measured and analyzed in this study. Figure S1: Accuracy of the reference
material USGS MACS-3, Figure S2: Accuracy of the reference material NIST SRM 612. Table S3: Element ratios of
the nine specimens of Pneophyllum cetinaensis.
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