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Abstract: Indoor Positioning Systems (IPSs) are designed to provide solutions for location-based
services. Wireless local area network (WLAN)-based positioning systems are the most widespread
around the globe and are commonly found to have a ready-to-use infrastructure composed mostly of
access points (APs). They advertise useful information, such as the received signal strength (RSS), that
is processed by adequate location algorithms, which are not always capable of achieving the desired
localization error only by themselves. In this sense, this paper proposes a new method to improve
the accuracy of IPSs by optimizing the arrangement of APs over the environment using an enhanced
probability-based algorithm. From the assumption that a log-distance path loss model can reasonably
describe, on average, the distribution of RSS throughout the environment, we build a simulation
framework to analyze the impact, on the accuracy, of the main factors that constitute the positioning
algorithm, such as the number of reference points (RPs) and the number of samples of RSS collected
per test point. To demonstrate the applicability of the proposed solution, a real-world testbed dataset
is used for validation. The obtained results for accuracy show that the trends verified via simulation
strongly correlate to the verified in the dataset processing when allied with an optimal configuration of
APs. This indicates our method is capable of providing an optimal factor combination—through early
simulations—for the design of more efficient IPSs that rely on a probability-based positioning algorithm.

Keywords: access point placement; indoor positioning; localization error; log-distance path loss
model; optimization; probabilistic method; reference points

1. Introduction

Indoor positioning systems (IPSs) are a reality and provide location information of
devices and persons for different applications in the real world. With the appropriate
technology, it is possible to locate products in a warehouse, firefighters in a burning
building, medicines in a hospital, maintenance tools spread over a plant, and so forth [1].
Moreover, with the ascending global need for smart devices and connected networks,
indoor positioning becomes one of the principal enabling technologies for a great variety
of services in the context of the Internet of Things (IoT) [2].

Applications already well established as Google Maps, Waze, and Uber are also
location-based services, except that they are used outdoors. In this case, the most widespread
technology is the Global Navigation Satellite Systems (GNSS), which includes the Global
Positioning System (GPS). Unfortunately, GNSS does not perform well indoors, as it needs,
among other factors, direct line of sight to the satellites and the device whose location one
wants to know [3].

An indoor positioning system must take into account some factors whose effects
compromise the accuracy when estimating the location. Lack of line of sight, the influence
of obstacles and obstructions such as walls and human movement, multipath propagation,
and interference noises are examples of factors that result in the low performance of the
most commonly deployed solutions [4].

J. Sens. Actuator Netw. 2021, 10, 16. https://doi.org/10.3390/jsan10010016 https://www.mdpi.com/journal/jsan

https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0000-0001-8885-5609
https://orcid.org/0000-0001-9777-3947
https://doi.org/10.3390/jsan10010016
https://doi.org/10.3390/jsan10010016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jsan10010016
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/2224-2708/10/1/16?type=check_update&version=1


J. Sens. Actuator Netw. 2021, 10, 16 2 of 25

Most of these systems use wireless technologies such as WiFi or Bluetooth due to
a wide available and accessible infrastructure, which saves time and related costs of
deployment [5]. A common architecture consists of mobile devices, access points (APs),
and a central server. The main goal is to obtain location information of the mobile devices.
To do this, the devices should transmit signals, whose power levels are captured by the
access points which are spread over the environment. The power levels, well-known in the
literature as Received Signal Strength (RSS), are passed on to the central server. After that,
these data are processed using techniques and appropriate algorithms to determine the
location of the devices. Figure 1 better illustrates this situation.

Figure 1. An example of a typical WLAN Indoor Positioning System (IPS) topology.

There is a vast literature of positioning algorithms used for IPSs, which include deter-
ministic and probabilistic methods. The first ones are quite common in fingerprinting-based
localization, which basically consists of two main steps: an offline phase, in which RSS
measurements (fingerprints) are previously collected in the environment; and an online
phase, in which machine learning techniques and algorithms are used for the location
estimation by a comparison between the offline database and the RSS data collected in
real time. One of the first and most traditional systems is the RADAR [6], which achieved
a median error of 2–3 m. The second, probabilistic methods, are much more common in
propagation model-based systems that take into account the random component inherent
to the variability of RSS over the environment. In this case, the employed model is more
likely to describe the indoor area reasonably. One advantage of this method is a better com-
putational efficiency. A well-known probabilistic-based solution is the HORUS [7], which
achieved an error of approximately 2 m during 95% of the time for its particular testbed.
Besides that, many systems provide hybrid solutions taking into account specificities of
the indoor environment, seeking in general to improve accuracy. In this sense, IPS optimal
design is also a hot research topic, since high localization performance can be achieved by
means of a few infrastructure modifications [8].

In this work, we propose a model and simulation based approach to optimize the
deployment of the most relevant design factors that influence the accuracy of an IPS. In our
work, they are restricted to the number of reference points (RPs), the number of samples
collected per test, and the arrangement of the access points (APs) over the environment.
Starting from the model parameters which describe the environment, we address the
influencing factors and analyze their impact on the positioning error. Then, we propose a
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method to improve the system accuracy while keeping the number of RPs and the number
of samples collected per test at minimal levels, followed by the achievement of an optimal
AP configuration. This way, the desired accuracy can be reached by simply adjusting the
values of the factors which compound the positioning system infrastructure.

The rest of the paper is organized as follows. Section 2 reviews the literature. Section 3
details the probabilistic-based model and its mathematical principles. Section 4 presents
the simulation environment, discusses the impact of relevant design factors on system
accuracy, and describes a method to find an optimal combination of factors to achieve a
required accuracy. Section 5 presents a case study and an application based on a real-world
dataset to validate the proposed method. Section 6 concludes the paper.

2. Related Work

The related literature can be divided into two basic domains: the works which some-
what optimized the traditional probability-based positioning algorithms; and the works
that developed methods to improve accuracy by either reducing the necessary number of
APs or optimizing its placement over the indoor environment, which can be classified as
general infrastructure components.

One of the first discussions about optimizing IPS design factors to improve accuracy
was posed by the work of Kaemarungsi and Krishnamurthy [9]. They used a probabilistic
model to represent the RSS variation over the environment in fingerprinting-based systems.
A framework was developed to analyze the influence of the number of APs, grid spacing
between training points, and environment parameters on localization error. Although
the fundamental theory and intuitions behind the design problem are carefully described,
the authors neither propose nor apply a specific method to improve accuracy for real
systems. Wendlandt et al. [10] applied the concept of probability density functions to
a Bluetooth-based IPS, but the work considered only a fixed scenario in regards to the
number of RPs. Le Dortz et al. [11] improved the results of classical positioning algorithms
by using a hybrid probabilistic and nearest neighbor method. The work analyzed the
impact on the system accuracy of the strongest signals from the APs, and the number
of samples collected at the online phase. Nevertheless, the authors do not provide any
general guideline for optmizing these influencing factors. Bisio et al. [12] developed a smart
probability-based method for IPSs, which considerably diminished the computational effort
deployed for estimating the position when one RP only is considered for comparison with
the traditional method. Li et al. [13] proposed an enhanced probability positioning method
by reducing the set of given reference points. Although it does reduce the localization
error if compared to traditional methods, the results are demonstrated over a fixed and
simulated scenario. Wu et al. [14] provided a dynamic probabilistic approach, in which
a guideline for deploying a reasonable number of APs is proposed given the size of the
scenario. Despite the improvements, the arrangement of APs was not considered.

Concerning the optimization of infrastructure components, Hara and Fukumura [15]
proposed an efficient method to achieve a required localization accuracy with the deployment
of a minimum number of access points. They use the maximum likelihood estimation to
determine the location of targets and develop mathematical formulas that relate the variables
involved in the optimization. Although they validate the proposed system experimentally,
they do not take into account the impact of the arrangement of APs over the environment.

The previous consideration of finding an optimal AP placement is explored by
Zhao et al. [16] in which, given a fixed number of APs, a Differential Evolution algorithm is
used to find the APs placement. Furthermore, the results were validated with model-based
simulations and testbed experiments. Nevertheless, the authors do not elaborate on why
the number of possible places for the APs to be allocated was considered fixed, which did
not allow its associated impact—on both system accuracy and computational effort—to be
addressed. He et al. [17] used a genetic algorithm to determine both the minimum number
of APs and the best arrangement of APs over an area to achieve the desired localization
error. They simulate a fingerprinting-based IPS using the Nearest-Neighbors (NN) method
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for the location estimations. Although more complete from a simulation point of view, the
work considered a fixed number for the RPs (or training points in this case) throughout all
the simulations performed. Consequently, the impact of RPs on the system accuracy was
not addressed.

From the 2010s on, most of the works have tried to apply efficient algorithms to
optimize the placement of APs in an indoor area. Farkas et al. [18] used an algorithm
based on simulated annealing to find a minimum number of APs to achieve a required
criterion of AP perceivability. They discretize the area in a reasonable number of points and
indicate that the optimization problem is NP-hard, suggesting a method to approximate
the global optimum solution. With n possible AP location possibilities, they compare their
obtained results for the time complexity—O(n)—with the brute force algorithm—O(2n).
Despite the detailed approach, the work is geared towards localization with triangulation
techniques. Aomumpai et al. [19], on the other hand, worked with a path loss model
considering obstructions and used the Binary Integer Linear Programming (BILP) method
to optimize the number of APs. They compare their results with other approaches based
on the average localization error achieved and do not mention the algorithm complexity
issues. The scenarios and results were all obtained by simulation only.

Rajagopal et al. [20] proposed a toolchain to optimize the number of beacons (APs)
while keeping a sufficient signal coverage over the indoor plan. The metrics used to com-
pare different configurations were an enhanced Geometric Dilution of Precision (GDOP)
and the cumulative distribution function of the localization error. Several floor plans were
used as scenarios and they demonstrated the improvement made by their method. Despite
the promising results, the simulations were based on an ideal ray-tracing model, which
perhaps might not be extended to more complex environments. Furthermore, there is
not any mention relating to the time complexity of the proposed method. A similar work
is presented by Sharma and Badarla [21], except for the use of a Mixed Integer Linear
Programming (MILP) approach and the extension for three dimensional (3D) indoor local-
ization. In spite of the obtained improvements, a real testbed experiment for validation
was not addressed. Jia et al. [22] combined the previous works by proposing a technique to
reduce the possible AP configurations for fingerprinting-based IPSs. They use a lognormal
shadowing path loss model that includes walls and people attenuation, which brings more
reality to the obtained results. Still, the work lacks considerations about the influence of the
number of RPs (or training points simulated) and does not mention the time complexity of
the proposed method. Palacios et al. [23], on the other hand, proposed two algorithms, with
proved effectiveness and scalability, which are robust to sparse environments in regards to
the number of APs needed for computing the accuracy.

As we can see, many authors have tried to address the problem of optimizing the
influencing factors that surround IPSs, mainly for improving localization accuracy. The
majority of the research presented before relies on the construction of path loss models.
However, a more complete performance analysis including the optimization of factors
intrinsic to the deployed positioning algorithm, as well as the optimized arrangement of
APs over an indoor site was not apparently done yet. In contrast, we propose an enhanced
probability-based algorithm with both the number of RPs and the number of samples
collected pert test optimized for a determined accuracy. Moreover, we use of the 95%
interval of cumulative error distribution metric (instead of the classical average error)
for more representative results. Finally, we analyze the time complexity of the proposed
method and its associated impact on the design of efficient IPSs, which can give researchers
some insights for improvements and future work. Hereupon, to the best of our knowledge,
no work has either combined or addressed these listed design factors and optimized their
values for achieving a required localization error.

3. Modeling of the Positioning System

In this section, we present the parameters of the log-distance path loss model, and
how they contribute for the location estimation. We also introduce the Bayes theory and
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its mathematical properties applied to our problem of estimation, as well as the main
references concerning the probability-based approach we use.

Although geometrical approaches for indoor positioning are vastly used, the high RSS
variability is still a problem to handle. One reasonable choice is to use statistical models
to deal with uncertainty [24]. More specifically, the log-distance path loss model is a well
established one to represent indoor signal propagation [25], as shown in Equation (1):

PL(dB) = PL(d0) + 10α log
(

d
d0

)
+ Xσ (1)

where PL(d0) is a constant which represents the path loss in dB at a distance d0 used as a
reference, α is the path loss exponent, and Xσ is a normal random variable with zero mean
and standard deviation σ in dB, that is, X ∼ N (0, σ2). All these parameters are determined
for each environment and describe on average the distribution of RSS at a point distant d
from a transmitter. They are often obtained by collecting and processing RSS measurements
with linear regression techniques or maximum likelihood estimation [24]. The use of this
probabilistic model for simulation purposes is convenient due to its reasonable approxima-
tion to real indoor positioning systems and the very efficient usage of computational effort
in the process of localization.

For simplicity, we consider an IPS topology consisting of transmitters fixed over the
room and receivers which one wants to locate. The first ones are known as APs, and the
last ones are usually smart devices that can receive RSS information provided by the APs.
This way, the goal is to simply collect and process RSS data to estimate the device location.
The model presented before can be slightly modified to describe the distribution of RSS at
each point over the area:

r = Pt − PL(dB) = {Pt − PL(d0)} −
{

10α log
(

d
d0

)
+ Xσ

}
(2)

where r is the perceived power in the receiver device and Pt is the AP transmission power.
It is important to notice that r is also a random variable, which can be represented by
r ∼ N (µr, σ2), in which µr is the expected value of the RSS for a point in the environment:

µr = Pt − PL(d0)− 10α log
(

d
d0

)
(3)

The equations listed above describe the distribution of RSS given a point distant d from an
AP, which is known in the literature as the likelihood function, whose probability density
function (p.d.f) is given by:

p(r|l) = 1√
2πσ

exp

{
−1

2

(
r− µr

σ

)2
}

(4)

where l is such that d = ‖l− lAP‖, with l and lAP being the test point and the AP coordinates,
respectively.

On the other hand, the main interest is to know the distribution of l given the RSS
information, which is obtained by the collected data. In this case, the posterior function
contains the necessary information to estimate the location coordinate l. According to
Bayes’ rule:

p(l|r) = p(r|l)p(l)
p(r)

(5)

where p(l) is the prior function and p(r) is a normalizing factor given by the total probabil-
ity theorem:
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p(r) =
∫

p(r|l′)p(l′)dl′ (6)

Equation (6) refers to the continuous case, in which l′ represents each possible coordinate
uniformly distributed over the area. Although it is computationally unfeasible to calculate
this integral analytically, an approximation to the discrete form can be done [26]. That
is, the area can be divided into many discrete coordinates as possible, treated here as the
reference points (RPs). Likewise, the likelihood function is computed for each RP given.
Thus, Equation (5) can be rewritten as:

p(li|r) =
p(r|li)p(li)

m

∑
j=1

p(r|lj)p(lj)

(7)

where m is the number of RPs and p(li|r) is the posterior function that relates the measure
of RSS r with location li, in which i ∈ {1, 2, ..., m}.

The equations we have seen so far take into account one RSS sample from one AP
only. However, n > 1 APs are considered in practical situations to improve accuracy, as it
generates fewer ambiguities among the candidate RPs for the estimated location. In this
case, the n-dimensional RSS vector r is adopted instead of the one-dimensional r. Another
strategy to improve accuracy is to collect a sufficient number of RSS samples and take their
mean for the estimation. According to the strong law of large numbers, the sample mean r̄
tends to its true value µr̄, as well as the Tchebycheff’s condition states that the variance of
the estimator of the mean σ̄n

2 tends to zero as n→ ∞ [27]. Thereby, as variance diminishes,
accuracy is improved due to fewer ambiguities in the estimation calculus.

Considering the multivariate Gaussian distribution [28], the likelihood function al-
ready presented in Equation (4) can be rewritten as:

p(r|li) =
1

(2π)
n
2 |Σ| 12

exp

{
− (r− µ

(i)
r )TΣ−1(r− µ

(i)
r )

2

}
(8)

where Σ is the covariance matrix, and µ
(i)
r the vector with expected values for the RSS

at location li. The exponential term of Equation (8) is known, when its root is taken, as
the Mahalanobis distance. However, we consider the RSS data provided by different APs
as statistically independent, and a natural consequence is that the covariance matrix be-
comes diagonal. This way, the Mahalanobis distance reduces to the well-known Euclidean
distance, becoming then:

p(r|li) =
1

(2πσ2)
n
2

exp

−
n

∑
k=1

(rk − µ
(i)
rk )

2

2σ2

 (9)

Equation (9) represents the likelihood function of a vector containing n elements that
correspond to the RSS from each of the n APs. Next, the posterior function of Equation (7)
can be finally presented in its vectorial shape:

p(li|r) =
p(r|li)p(li)

m

∑
j=1

p(r|lj)p(lj)

(10)

By knowing how to compute the probabilities for each RP, the final step is to find an
estimator ˆ̀ for the position `. In our work, we use the maximum a posteriori estimate
ˆ̀MAP, which simply gives the RP coordinate li that maximizes p(li|r) in Equation (10):
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ˆ̀MAP = argmax
li

p(li|r) (11)

In other words, we seek for the RP coordinate li in regards to which the sum presented
into the exponential term in Equation (9) is minimized. This estimation is usually easy to
determine [29] as well as it needs less computational effort.

4. Analysis of the Impact of Design Factors on the System Accuracy via Simulation

In this section, we first describe the simulation environment used for analyzing the
accuracy of using the probabilistic approach described previously by varying the main
design factors of the positioning system. The localization error is calculated by taking
the distance between the ground-truth position of each test point and the corresponding
estimated location. Furthermore, the metric chosen for evaluating the overall performance
is the 95% interval of cumulative error distribution,

The use of the error at 95% is particularly interesting because of its representative
character along the entire area of study. The average error, in contrast, can instill a false
notion that the error calculated is sufficiently small. An example of a concrete case occurs
when most of the error is concentrated in a central part of the area, and the error at the
borders is considerably large. This way, the average error is expected to represent the
central area but not the entire room.

4.1. Construction of the Simulation Environment

The simulation environment is a tool to generate samples of RSS according to the log-
distance path loss model. The extraction of environment parameters is the first step to build
a consistent model. For WLAN-based systems, the technology often deployed is either
WiFi or Bluetooth. In the next simulations for analysis, we chose the parameters based
on some experiments of our research group, whose scenario is composed of Bluetooth
Low Energy (BLE) devices, channel diversity, and high RSS variability. However, these
values could be set to any reasonable interval, and are not constrained to the deployed
technology [30–32]. Specially, log-distance path loss models eventually fit better with BLE
technology, although it can be also applied to WiFi or any other wireless technologies. The
work presented by Zhao et al. [33] highlights that RSS measurements relate better to range
for BLE devices than for WiFi in the context of a log-distance path loss model. In order
to be coherent to the results we shall verify further, the model parameters used for these
preliminary simulations are very similar to the ones extracted from our real-world dataset,
which is also BLE-based.

By using MLEs, the extracted parameters α, σ and PL(d0) used throughout this section
in the next simulations are listed in Table 1. Furthermore, the area is set to 100 m2 and the
transmitted power by the APs is set to −12 dBm.

Table 1. Environment parameters.

Parameter Value

α 1.8
σ 4.4 dB

PL(d0) 60 dB
Area 100 m2

Pt −12 dBm

From the point of view of the infrastructure components of the IPS, we consider, for
simplicity, two-dimensional rectangular areas, and RPs uniformly distributed over the
entire environment. The APs have also discrete and pre-determined possible locations,
but not necessarily all of them are occupied. Next, the model parameters are specified.
For more representative results, one often sets the parameters according to the propagation
characteristics of the environment. The transmitted power Pt, in spite of being treated as
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a constant, is an important parameter for the accuracy computation. Generally, the more
powerful an access point is, the more available APs for building the RSS vector we have,
once the maximum range is relaxed, according to Equation (2). Moreover, as we have more
powerful APs, we naturally tend to need fewer of them to achieve a required accuracy.
The value used in the next example is set to −12 dBm, which is typical for BLE devices.
The other model parameters, represented by Equation (1), are often obtained by means
of regression techniques and maximum likelihood estimates (MLEs) from RSS databases.
The parameter PL(d0) is a constant dependent on the deployed radio-frequency hardware,
α is the coefficient that represents how much the signal decays with distance, and σ is a
measurement of dispersion of RSS around its expected value. It is important to notice that
a simulated scenario following the log-distance path loss model does not entirely represent
the propagation features of an indoor environment. The parameters are highly dependent
on the considered site, the hardware, and they can be even correlated, as pointed out by
the work of Vallet García [34]. However, although our simulation tool does not consider
the variability (individually or jointly) of the model parameters, the simulated results are
proved throughout the paper to be sufficiently representative and useful for the design of
the type of IPS we propose.

As for the simulation environment itself, we begin with a simple example with
parameters that represent a possible indoor scenario. The fundamental point is to show
how the estimation is computed in practice, thus we do not intend to extrapolate the
obtained results for any existing type of environment. The scenario is built according to
Figure 2. There is one AP only and two RPs. In summary, the signal received by a device
located in some part of the room is used to compute the probability for each represented RP.
If the probability of one RP is higher than the other one, the first is chosen as the estimated
location. This is how the MAP estimation works.

In terms of the simulation process, a signal with transmission power Pt is transmitted
by the AP and values of RSS are registered into the variable r described in Equation (2)
concerning test points (1) and (2). The random component extracted from the model σ
is used to generate the RSS measurements artificially with an adequate function from
Octave [35]. Furthermore, the test points are generated by the use of an inbuilt function
that replicates uniform distributions. In the example, the test points coordinates in meters
are TP(1) = (2.74, 9.77) and TP(2) = (6.22, 4.00). The vectors r generated are r1 = −100
(dBm) and r2 = −94 (dBm), which corresponds to the TPs (1) and (2), respectively. Next,
these values are used to compute the posterior functions described in Equation (10) for
each RP. The results for TP(1) were p(l1|r1 = −100) = 0.69 and p(l2|r1 = −100) = 0.31.
For TP(2), it followed that p(l1|r2 = −94) = 0.41 and p(l2|r2 = −94) = 0.59. Finally,
from Equation (11), the estimated locations for the tests (1) and (2) were ˆ̀MAP(1) = (2.5, 5)
and ˆ̀MAP(2) = (7.5, 5), respectively. As expected, the estimations correspond to the RP
locations given in Figure 2. Indeed, it can be visually verified that TP(1) is closer to RP(1)
whereas TP(2) is closer to RP(2). Thus, for this specific example, the tests were classified
correctly in terms of the RPs neighborhood, although the localization error can be still
considered large.

Another way to observe how locations are estimated is to see the values of p(l|r)
distributed over the environment. A new proposed scenario is described in Figure 3a, in
which only one test point is analyzed. Figure 3b,c depict the probability that a RSS vector r
is associated with each RP by means of surface and contour plots, respectively. As one can
verify, the test point located at coordinates (5, 5) is estimated as the RP with coordinates
(4.5, 5.5), whose probability p(l|r) associated is the maximum found among the other RPs.
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Figure 2. Example of scenario: 1 access point (AP), 2 reference points (RPs) and 2 test points.
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Figure 3. Simulated scenario with 4 APs, 100 RPs and 1 test point.

4.2. Impact of Reference Points

Figure 4a illustrates what occurs with accuracy in different scenarios concerning
different number of RPs uniformly distributed. For the listed parameters in Table 1, the
curve has this descending pattern.
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Figure 4. Variation of 95% cumulative error with (a) number of RPs and (b) number of samples. The “X” symbols indicate
the average errors and the bars the mean standard deviation.

As one can observe, the error does not vary much from 16 RPs onwards. As the
distance between closer RPs decreases to a certain point, the probabilistic-based positioning
algorithm begins to have difficulty in estimating more precisely the RP closer to the
true location of the test. Nevertheless, one cannot extrapolate these results for different
combinations of model parameters, although we can assume that a limited set of RPs
can surely have one element—approximately 25 according to Figure 4a—that leads to the
minimum localization error.

In terms of computational efficiency, the simulation is faster as the number of RPs
decreases, once fewer comparisons are executed to cover all the requested tests.

4.3. Impact of Samples Collected per Test Point

Because of the high RSS variability, a technique usually employed for improving
localization systems accuracy in practice consists of collecting more than one RSS sample
during a determined time window [36,37]. This way, by taking the mean of these samples,
for instance, the uncertainty in estimations is decreased, as mentioned before. Figure 4b
shows this situation, in which the error is decreased as the number of samples increases.
It can be visually verified that the improvement in localization error is minimum from
twenty-five samples per test on. In this case, the error decreasing rate also diminishes
with the number of samples. These results indicate that one must choose a value for the
“samples” variable that is optimal from the point of view of both accuracy and real-time
positioning applications.

4.4. Impact of Access Points Placement

The APs placement is another factor that plays a relevant role when accuracy is a
measure of performance. In what follows, three different AP configurations, represented
by Figure 5a–c, are proposed and their accuracy analyzed.

The simulation results are depicted in Figure 6. It can be verified the difference in
terms of localization error caused by the different AP configurations. The way the APs are
arranged in the environment can generate more or fewer ambiguities when estimating the
location of a test point. In this case, specifically, the triangular format of Configuration 1 is a
much more accurate choice than the placement proposed by Configuration 2. On the other
hand, Configuration 3 has an intermediate accuracy compared to the others. The results
show the impact a simple arrangement of APs has on the accuracy of IPS. In principle,
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there is not an evident pattern that can produce smaller errors, which reinforces the need
for simulating each given scenario extensively.
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Figure 5. Simulated scenarios with different AP arrangements.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Localization Error (m)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n
 (

C
D

F
)   4.39   8.02  4.98

Configuration 1

Configuration 2

Configuration 3

95% of Cumulative Error (m)

Figure 6. Variation of localization error under the perspective of three different configurations.

4.5. Method for the Best Design Choice

The analysis retracted previously indicates that it is possible to optimally combine the
number of samples collected per test and the number of RPs to keep the localization error
at a minimum level.

First of all, a reasonable number of APs is necessary to make the simulations feasible
for analysis. In general, one has to guarantee that the RSS measurements from at least
three APs are available for the location estimation [38]. Regarding an area covered by the
intersection of the achievable range R for each AP, it would be sufficient to collect RSS from
three APs to get position information unambiguously. Consequently, at least four devices
with a range of a m each and located at the corners of a square of side a are sufficient to
cover most of the corresponding area of a2 m2. This is the premise we consider in this work,
as the number of APs is fixed. The range, in turn, can be estimated given the environment
parameters PL(d0), α and σ, the AP transmission power Pt, and the sensitivity S of the
receiving device, after some manipulation of Equation (2):

R = 10
Pt − PL(d0)− S

10α (12)
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However, Equation (12) does not consider the RSS variability represented by the
parameter σ for a more pessimistic scenario. In this sense, we estimate the maximum range
from what we call the effective range Re f f . It can be computed considering that the weakest
signal, represented by S, comes from a deviation of 2σ around its expected value. We
assume that there is an effective sensitivity Se f f = S + 2σ which determines the maximum
distance a receiver device can be from the transmitter so that the RSS measurement is
still reliable (95% of the time) from the point of view of a normal distribution. This way,
Equation (12) can be modified to express the effective range Re f f :

Re f f = 10
Pt − PL(d0)− Se f f

10α (13)

From the results of Equation (13), it is possible to allocate 4 APs at the corners of a
square with an area of R2

e f f to get reasonably accurate positioning information. This can be
expanded for a general case of a rectangular plan with dimensions a and b. In this case, we
adopt the convention to distribute the APs uniformly with the maximum distance among
neighbors equals to their effective range Re f f . The total number of APs can be expressed,
thus, by:

n =

(⌈
a

Re f f

⌉
+ 1

)
×
(⌈

b
Re f f

⌉
+ 1

)
(14)

Regarding the number of samples collected per test, there is a vast literature on indoor
positioning addressing the benefits of a good choice for this factor. Faragher and Harle [36]
prove experimentally that taking the median or the mean of a batch of RSS measurements
can significantly smooth the high variability of the data. This allows the system accuracy
to be improved. Moreover, the authors demonstrated that a collection of 10 samples per
test is sufficient, considering the beaconing rate of their employed devices (10 Hz) and the
speed of the user as limiting factors. On the other hand, a lower bound of three samples
per test in fingerprinting-based systems is proposed in the work of King et al. [39] as a
reliable number to achieve good accuracy results. The upper bound, however, must take
into account the limiting factors already mentioned. If there is no real-time positioning
requirement, 20 samples would be sufficient, considered here as the number of the collected
fingerprints per point ideally proposed in [39].

With the knowledge of how the factors relate to the localization error, a natural path is
to find the best factor combination which achieves a determined accuracy given as input.
In other words, a method that seeks to achieve the localization error requested with a
minimum number of RPs and samples collected per test.

Our proposed method, in this case, consists of some basic steps and is represented by
the flowchart depicted in Figure 7. Given the environment lognormal path loss model pa-
rameters and its area, the number of APs, and the required positioning error, the proposed
simulation sequence can be developed as follows:

1. Establishment of limits for the number of samples and RPs. As we know that there
is little gain in accuracy with considerably large values for these factors, superior
limits can be set to restrict the possible combinations. For the number of samples, it
depends on the application and the technical features of the employed devices . As a
rule of thumb, a reasonable interval can be set up between 3 and 10 samples collected
per test, but it is not mandatory. For the number of RPs, a low density regarding
this factor can produce several poor localization accuracies. A high density, on the
other hand, might not be necessary. Intuitively, the distance between neighboring RPs
must reflect, to some degree, the required localization error based on the probabilistic
model described. Adding to this, what is frequently observed in real IPSs, a reasonable
interval would be 1–4 m.

2. Establishment of the combination possibilities, keeping the number of RPs as
small as possible. As we shall verify later, the number of RPs has a higher im-
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pact on the simulation run time than the number of samples collected per test. Thus,
it should be the last variable to change (if necessary).

3. Search for the best AP configuration. For “best” we mean the configuration with
minimum localization error (95% of cumulative error for most of our simulations).
Then, with combinations set up, the arrangement of APs becomes the variable of
interest. For each combination of RPs and samples per test, the localization error
is computed for every possible AP placement. If the result that gives the smallest
error is either smaller than or equal to the required, then the best AP configuration
was achieved. In other words, no more simulations are needed, once the influencing
parameters involved are already optimized.

Start

Define intervals

for number of

RPs and samples

Combine

minimum of both

RPs and samples

Simulate and

find best AP

configuration

Error Desired

End

No

Yes
Set next optimal

combination, 

beginning with

samples

Figure 7. Steps to find the best configuration for a given environment.

5. Performance Evaluation

In this section, we apply the method described before on a simulated case study,
as well as we analyze the time complexity intrinsic to the proposed solution. Next, a
BLE-based testbed experiment from a known dataset is used to validate our hypothesis
that the method can improve the accuracy of a real IPS.

5.1. Preliminary Case Study

To evaluate the performance of our probabilistic-based approach, as well as our
method for finding the best design choice, a preliminary case study is proposed. To
simplify, the same environment parameters in Table 1 is used. Furthermore, the sensitivity
of the devices represented by each test point is set to −100 dBm.

Considering that the indoor area has 100 m2, and that the expected indoor range
for BLE devices is close to 10 m, three to four APs would be sufficient to provide a good
coverage over the area. In this example, we choose three APs and 1000 test points for
analysis. Furthermore, the desired localization error is set to 3.0 m, considering the 95%
point of the cumulative distribution function for the error.

Concerning the set of possible combinations of the number of RPs and samples, the
first is restricted to #RP ∈ {4, 9, 16, 25}, and the second to #SMP ∈ {1, 5, 10}. As can be
seen, the total number of possibilities is 12. For each possible combination, a simulation
is executed to find the AP placement which gives the minimum error. The optimization
algorithm employed at this point is the brute force just to demonstrate the improvement in
accuracy by the method described here. By taking the possibilities of AP placement over
the environment as nc uniformly distributed coordinates, it is possible to allocate and test
n APs given as input. The total possible configurations to analyze is the choice of n out
of nc possibilities. To find a suitable value for nc, one can think of the average distance
among neighboring APs on a possible configuration. According to the experimental results
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reported by the work of Wu et al. [14], there is no significant improvement in accuracy
when adjacent BLE iBeacons are distant less than 3 m from each other. This, somewhat,
gives us support to fix the value for the number of possible AP allocation spaces. In this
case study, nc is set to 16 and n has the value of 3. Thus, the total number of combinations
τ is given by:

τ =

(
16
3

)
= 560 (15)

According to Equation (15), the simulation environment is run 560 times and outputs
the configuration with minimum localization error.

In Table 2, the results for each parameter combination are shown. As one can verify,
the combination which better fits the requirement of 3.0 m for the localization error is the
one with 16 RPs and 10 samples per test, illustrated in Figure 8a. A deeper analysis about
this configuration is seen in Figure 8b,c, in which different AP placements can produce
even great differences in errors among each other. The “x” axis represents a map of indexes
to the possible coordinates for the given scenario, generated by the function nchoosek in
Octave. At this point, it can be verified that the results from the 95% of cumulative errors
were quite more dispersed than the results from the usual average. This shows that the
first metric mentioned, besides promoting a better picture of the error distribution, can also
provide a clearer contrast among the tested configurations.

Table 2. Ninety-five percent of cumulative error results obtained for different configurations of 3 APs.

Sequence #RP #SMP
Localization Error (m)

Best Worst

1 4 1 5.96 8.72
2 4 5 4.01 8.75
3 4 10 3.60 8.75
4 9 1 5.86 9.38
5 9 5 3.65 9.87
6 9 10 3.06 9.65
7 16 1 6.00 9.57
8 16 5 3.50 10.13
9 16 10 2.86 10.20
10 25 1 6.00 9.70
11 25 5 3.44 10.01
12 25 10 2.71 10.38

In addition, it was observed that the configurations whose simulations processed only
one sample per test gave very different AP placement patterns for the best accuracy found.
Similar results were obtained when four RPs were used in simulations. On the other hand,
from nine RPs and five samples per test onwards, all configurations which resulted in a
minimum localization error have the same pattern of what is depicted in Figure 8, being
different from each other by a simple rotation of the room. One could argue, though, that
this configuration is somewhat unexpected. The test points located at the upper left of the
room, for instance, could have their estimations worsened due to the quite large distances
among them and the APs. However, the results for the cumulative error show that the
estimations are surprisingly accurate, which could be explained by the fact that the entire
room reliably receives the transmitted signals by all the three deployed APs. Indeed, the
worst possible scenario would be an AP and a test point located at opposite corners in
regards to a diagonal of the squared room. In this case, the expected RSS would be then
µr = −12− 60.5− 18 log(10

√
2) = −93.2 dBm. Considering the variability represented by

σ, the 95% confidence interval for the RSS r would be µr− 2σ/
√

10 < r < µr + 2σ/
√

10, i.e.,
−96 dBm < r < −90.4 dBm, where the term

√
10 arises from the number of samples. This
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way, even the lower bound of −96 dBm is larger than the sensitivity S of −100 dBm, which
is sufficient for an effective and reliable estimation all over this particular environment.
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Figure 8. Simulation results in a scenario with 3 APs, 16 RPs and 10 samples per test: (a) Configuration with minimum
localization error (95%); (b) Results of 560 possible AP placements (95%); (c) Results of 560 possible AP placements (average).

From another perspective, we can compare the localization error obtained with the
configuration proposed in Figure 8 to more intuitive configurations represented as X and Y
in Figure 9a,b, respectively. For each arrangement of APs, the simulation was run 100 times,
and the results are presented in Figure 9c. One cannotice the improvement in choosing the
configuration obtained by using the optimization method. In this case, the results were, on
average, 2.94 m for the 95% of cumulative error with a mean standard deviation of 0.14 m.
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That is, a localization error of (2.94± 0.14) m, which constitutes a befitting value around
the required of 3.0 m.
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Figure 9. Simulated scenarios (3 APs, 16 RPs and 10 samples per test) with different AP arrangements: (a) APs at the corners of
the room—X; (b) APs in a similar format to an equilateral triangle—Y; (c) Error comparison among best, X, and Y configurations.

5.2. Time Complexity and Simulation Run Time Analysis

Although the method can achieve the goal of finding the combination with minimum
localization error, there is a clear need to analyze the simulation time performance, mainly
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if we think of scaling the method for larger indoor areas. This includes, firstly, a general
analysis about the time complexity regarding the variables given as inputs to the system
for optimization.

For each location estimation, the computation for the error is proportional to both the
number of samples collected and the number of RPs. The time complexity, thus, grows
linearly as these two variables of interest increase. Asymptotically, the process of estimation
is a linear time algorithm.

With respect to the number os possible AP allocation spaces nc, as it increases, the
total possible configurations that must be run increases with (nc

n ), in which n is the number
of APs. Once both nc and n should increase proportionally to the increase of the indoor
area, the asymptotic behavior of the optimization algorithm is exponential. This is notably
important for the method, as nc becomes the most restricting variable if we simply use a
brute force algorithm for larger environments.

Next, one can verify the influence of each factor on the simulation run time in Figure 10.
The scenario is the same as the one provided in Table 2. For this analysis, the simulation
environment was developed using Octave-5.2.0 on a Sony Vaio laptop (Windows 10, 64-bit
operating system, 2.70 GHz Intel i7-7500U Processor and 8 GB RAM). Furthermore, the
time metric considered was the CPU time.
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Figure 10. Time elapsed for each sequence: (a) Influence of samples per test; (b) Influence of RPs.

The influence of samples per test on the simulation time is negligible compared to
the number of RPs. Indeed, the contribution from the number of samples is just a single
calculation mean of RSS values for each test. On the other hand, the amount of additional
time spent due to the number of RPs is considerably larger. This evidences the priority in
changing the number of samples per test firstly, as it has little influence on the simulation
run time.

It is important to highlight that all of these previous simulations consider a fixed
number of AP location possibilities. However, as commented before on the time complexity
analysis, this variable also affects the simulation run time, as the more possible locations
available to be allocated, the more configurations one has to simulate. For the same scenario
depicted in Figure 8a, simulations ranging from 4 to 64 AP allocation spaces were run, and
some important results can be seen in Table 3.
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Table 3. Ninety-five percent of cumulative error results obtained for 3 APs, 16 RPs and 10 samples
per test. Different values for the AP allocation spaces are simulated.

AP Allocation Spaces (nc) * τ = (nc
3 )

Localization Error (m)

Best Worst

4 4 3.06 3.23
9 84 3.04 9.93
16 560 2.92 10.14
25 2300 2.79 10.00
36 7140 2.75 10.16
49 18,424 2.73 10.20
64 41,664 2.70 10.29

* AP Allocation Spaces (nc) represents the number of possible places (or coordinates) that the APs can assume
over the environment. In this case, we consider them to be uniformly distributed from the area limits.

Although the localization error decreases as nc increases, the total possible config-
urations that must be run increases with (nc

3 ). In this case, there has to be a trade-off
between the goal of reducing localization error and the computational effort to be deployed.
Figure 11 better depicts this situation. As can be seen, the results make the method feasible
for the relatively small area we consider of 100 m2. For larger areas, it is probably not
practical to use the brute force algorithm due to the eventually high value obtained with
the binomial relation between nc and n.
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Figure 11. Influence of the number of AP allocation spaces on 95% of cumulative error (solid line)
and CPU time elapsed (dashed line). Scenario considered: 3 APs, 16 RPs and 10 samples per test.

One way to set a fixed value for nc is to use the rule of thumb presented previously.
The spacing of around 3 m among possible neighboring APs is equivalent to choose nc = 16
or nc = 25, with spacings equal to 3.3 m and 2.5 m, respectively. These values follow what is
verified graphically. From 25 possible AP allocation spaces onwards, the error is supposed
to reach a threshold value around which there is no significant improvement. In this case,
more allocation spaces possibilities would then overload the simulation unnecessarily.

5.3. Evaluation Using Real-World Data

Another question that may arise is the applicability of the proposed method on a
real system. Although the simulation environment seen previously gives us some hints
about the overall behavior of the system accuracy, it might not hold precisely in practice,
especially if a practical requirement as the localization error is given as the objective
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function, or the stop criterion. Still, with adequate inputs, this type of previous simulation
can anticipate overall trends or issues in real experimentation.

In this section, we divide our analysis into two parts: the use of the floor plan and the
components (APs, RSS data for building the log-distance path loss model) of a real-world
environment for the construction of one entirely simulated IPS; and the use of a set of
figerprints from the dataset itself as test points to verify the localization error of our method
in practice. After that, we compare the results obtained from the simulated environment
with the obtained results by applying our method directly to the testbed experiment.

The database we use is presented in [40] and described in detail in the work of
Mendoza-Silva et al. [41], who are also the owners of the dataset. It is basically composed
of the BLE RSS measurements collected on 34 points physically distributed over the Geotec
room in two rounds, and each point has stored 26 fingerprints (13 for each round of
collection performed) in regards to the 22 APs spread over the area. In our evaluation,
we choose from the entire dataset the devices with transmission power of −12 dBm. This
choice is made due to the availability of accuracy analysis provided by [41] for this specific
parameter. Thus, it is useful for us to compare the performance of our proposed method
with what has already been presented in the literature regarding this dataset. We also
choose the number of AP allocation spaces nc to be 14 due to constraints of useful data for
testing and spacing among the APs (in this case, 4 m). A simplified and adapted view of
the scenario is depicted in Figure 12.
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Figure 12. Geotec scenario with 14 possibilities for the APs to be allocated and 34 fingerprint
collection points.

The environment parameters were extracted by employing linear regression to fit the
log-distance path loss model. The results are shown in Table 4. It is important to address that
the data used for the model fit were the fingerprints stored at the first round of RSS collection.
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Table 4. Environment parameters for the Geotec room.

Parameter Value

α 1.79
σ 5.55 dB

PL(d0) 60.5 dB
Area 151.07 m2

Pt −12 dBm
S −100 dBm

Firstly, a reliable number of APs must be initially set up. Being the receiver sensitivity
S equal to −100 dBm, it is possible to estimate the effective range Re f f of the BLE devices
according to Equation (13). In this case, R ≈ 9 m. From Equation (14), a reasonable number
of APs would be around nine for the indoor area considered.

The simulated environment and the experiment are run by considering the same
34 test points coordinates. For the simulated environment, the test points are generated
artificially according to the parameters of Table 4. For the experiment itself, the data
concerning the second round of collection of fingerprints were used for tests, i.e., they
made the role of the test points for our system when we apply the method. This way, the
subset of data used for fitting the parameters has no intersection with the subset of data for
test points, except that they have the same coordinates.

The set of RPs is chosen to be #RP ∈ {12, 15, 24, 40, 60}, due to a restricted spacing
interval of 1.5–3.2 m, and the set of samples to #SMP ∈ {3, 4, 5}, to a fair comparison
with the results reported in [41]. Furthermore, in this regard, the metric used for the
error was the 75th percentile of the cumulative distribution function to better compare the
obtained results in this work with [41]. Table 5 shows the localization error obtained by
the simulation and the real testbed experiment for each combination of RPs and samples,
considering nine APs.

Table 5. 75% of cumulative error results–simulated and experimental–obtained for different configu-
rations of 9 APs.

Sequence #RP #SMP
Best Localization Error (m)

Simulation Experiment

1 12 3 2.43 3.25
2 12 4 2.38 3.15
3 12 5 2.35 3.15
4 15 3 2.22 2.92
5 15 4 2.18 2.78
6 15 5 2.12 2.92
7 24 3 1.95 2.84
8 24 4 1.86 2.65
9 24 5 1.80 2.50
10 40 3 1.69 2.56
11 40 4 1.60 2.52
12 40 5 1.53 2.44
13 60 3 1.58 2.42
14 60 4 1.46 2.42
15 60 5 1.42 2.40

To fairly compare the simulation with the testbed experiment, the same process was
also repeated to 8 and 10 APs. We use the Pearson correlation coefficient ρ as the metric for
evaluation, whose results are described in Table 6. The correlation is calculated based on
the errors from each factor combination.
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Table 6. Pearson correlation test between simulated and experimental results for the localization error.

Number of APs 8 9 10

ρ 0.80 0.96 0.88
p-value 0.0003 ≈0 ≈0

The obtained results show that there is, indeed, a strong correlation between the simula-
tion and the practice. Moreover, this correlation is statistically significant, which is indicated
by the very small p-values found. In other words, the trends observed by simulation are likely
to be verified in practice. This way, a simulated setup with an optimal combination of RPs
and samples would probably work satisfactorily in a real positioning system.

In Figure 13, for each set of RPs allied with the best AP configuration found, the
simulated scenario was run 100 times. It is possible to verify a similar decreasing rate
tendency concerning the error between the simulation and the experiment. That similarity
is stronger when nine APs are used, which is in accordance with the very high and
significant value for the correlation reported.
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Figure 13. Simulated and experimental errors obtained with 5 samples per test.
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As can be seen, an analysis of the trends regarding the error results obtained by
simulation can serve as a reliable basis for the optimal design of the positioning system in
practice. Although the errors found for the simulation and experiment differ substantially,
the concrete contribution of an IPS simulated in advance is that an optimal combination
of the number of samples per test and the number of RPs can be reasonably deployed
in practice. Furthermore, the difference between simulation and practice is somewhat
expected, due to the high loss verified in the dataset concerning the RSS values—which
naturally worsens the performance of the algorithm.

With the appropriate pre-tuning of RPs and samples, the search for an optimal arrange-
ment of APs can be performed using the data from the fingerprints to produce a real im-
provement in accuracy. By considering nine APs, for instance, the best accuracy reached by
simulation was the localization error of 1.42 m, concerning the combination of 60 RPs and five
samples per test. This best result obtained by simulation was also reflected experimentally,
in which the error reached the value of 2.40 m at 75%. Figure 14 depicts the corresponding
configuration.
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Figure 14. Best AP configuration obtained experimentally for the Geotec scenario considering 9 APs,
60 RPs and 5 samples collected per test.

Moreover, our experimental result of 2.40 m is even better than the reported in [41] for
both the k-NN and the Weighted Centroid methods with data from all 22 APs available.
The errors found by Mendoza et al., in this case, were 3.34 m and 2.48 m at 75%, respectively.
Thus, this is another strong indication that our proposed method can be efficiently deployed
for a real IPS.

6. Conclusions

In this paper, we propose a method that is rooted in a probabilistic modeling approach
to optimize the use of the most relevant factors that have an impact on the accuracy of
indoor positioning systems. From the reasonable assumption that a log-distance path loss
model can represent, on average, the RSS variation over an indoor area, we analyze the
impact of the number of reference points, the number of samples collected per test, and the
access points arrangement on the system accuracy by using a probability-based positioning
technique and a simulation-based approach.

Throughout the analysis, we provide some general guidelines on how to set up the
simulations by establishing reasonable intervals for the number of samples collected per
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test and the number of RPs. Then, a simple algorithm to go through the combinations
of these factors and find the configuration with minimum localization error is proposed.
Moreover, a detailed analysis regarding the time complexity of the method is discussed
from a simulated case study, which highlights that the number of allocation spaces for the
access points is the most limiting variable for scaling the method for larger sites.

To demonstrate and validate the proposed method, we perform tests by using a known
dataset from the literature in regards to a real-world indoor scenario. The obtained results
show that the combination set of design factors can be fairly reduced and can reason-
ably have its behavior predicted through early simulations. Besides, when restrictions
of computational cost and real-time applications are relevant, the method can provide
more efficient usage of the system’s inputs. Finally, the positioning accuracy obtained by
our proposed method reduced the localization error up to 28% when compared to the
positioning algorithms presented in the work related to the fingerprint dataset we use,
which evidences our proposed solution can be an efficient alternative for the design of a
real IPS.

For future work, we plan to develop an efficient algorithm to help optimize the
proposed method in order to reduce its current time complexity. In this sense, the method
can be scalable to larger indoor areas. In addition, we expect to improve the log-distance
path loss model by considering the effects of obstructions to the model as an important
variable to deal with more complex environments.
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