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Abstract: Due to the prompt expansion and development of intelligent systems and autonomous,
energy-aware sensing devices, the Internet of Things (IoT) has remarkably grown and obstructed
nearly all applications in our daily life. However, constraints in computation, storage, and commu-
nication capabilities of IoT devices has led to an increase in IoT-based botnet attacks. To mitigate
this threat, there is a need for a lightweight and anomaly-based detection system that can build
profiles for normal and malicious activities over IoT networks. In this paper, we propose an ensemble
learning model for botnet attack detection in IoT networks called ELBA-IoT that profiles behavior
features of IoT networks and uses ensemble learning to identify anomalous network traffic from
compromised IoT devices. In addition, our IoT-based botnet detection approach characterizes the
evaluation of three different machine learning techniques that belong to decision tree techniques
(AdaBoosted, RUSBoosted, and bagged). To evaluate ELBA-IoT, we used the N-BaIoT-2021 dataset,
which comprises records of both normal IoT network traffic and botnet attack traffic of infected IoT
devices. The experimental results demonstrate that our proposed ELBA-IoT can detect the botnet
attacks launched from the compromised IoT devices with high detection accuracy (99.6%) and low
inference overhead (40 µ-seconds). We also contrast ELBA-IoT results with other state-of-the-art
results and demonstrate that ELBA-IoT is superior.

Keywords: Internet of Things (IoT); intrusion detection system (IDS); machine learning; ensemble
learning; botnet attacks; anomaly detection

1. Introduction

Internet of Things (IoT) is one of the most emerging paradigms in the networking realm.
It can be defined as the “interconnection of things” having constrained computational
power and capabilities. It can be used to send and receive data over the internet without
requiring human-to-computer or human-to-human interaction [1]. The word “things”
refers to the IP-enabled, networked devices (both physical and virtual). Things may include
telematics boxes, self-driving cars, printers, surveillance cameras, tablets, smartphones,
ultra-wideband (UWB), infrared data association (IrDA), ZigBee, NFC data centers, and
cellular and Wi-Fi networks. The IoT with all its subtechnologies is considered a network of
numerous physical objects (24.15 billion devices in 2019 jumping to 76.45 billion computing
devices in 2026) [2]. The financial impact of the IoT may be from $3.9 to $11.1 trillion on the
global economy by 2025 [3].

In addition to Internet Protocol (IP), these devices are enabled with several other
important technologies, including radio-frequency identification (RFID) technology, sen-
sors, actuators, GPS services, nanotechnologies, near field communication (NFC), and
cloud computing.

Apart from the traditional IoT, resource-constrained IoT devices are also worth
mentioning. Although these devices involve IoT applications, they are small, low-power,
battery-operated devices with disparate design trade-offs. In addition, they also have
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limited storage and computational capabilities. In a nutshell, resource-constrained
devices are endnotes with sensors used for handling particular application purposes.
These devices are resource-limited in various aspects, such as limited storage and pro-
cessing abilities and limited energy due to energy-prone batteries. In addition, they
are connected via low-power lossy links, via vulnerable radio conditions, and without
human interaction [4].

Despite all the aforementioned facts about the IoT, cybersecurity vulnerabilities are
common in the IoT. Exploiting these security vulnerabilities, hackers can establish a bot-
net and execute commands either remotely or locally. They can also gain unauthorized
access and modify sensitive data, disrupt normal operations of the IoT, or damage the
IoT altogether. The vulnerability can exist in both hardware and software components of
the IoT [5]. Hardware vulnerabilities are difficult to detect and much harder to fix due
to various embedded microprograms in them. The reasons why hardware vulnerabilities
cannot easily be fixed include lack of expertise, cost, interoperability, and incompatibility.
Contrarily, software vulnerabilities exist in the software components of the IoT, such as
OSec, communication protocols, and other applications. According to TechRadar, an IT
security firm, the number of threats against Internet of Things (IoT) gadgets and smart-
phones increased quickly in 2018 [6]. McAfee also believes that malware attacks on IoT
gadgets will continue to occur, as more than 25 million smart speakers or voice assistants
are already in use.

In this work, we specifically pay heed to understanding botnet attack detection in IoT
networks. Before that, we comprehend the concept of the botnet. A botnet is a collection of
thousands or even millions of infected computers, each of them called a bot or zombie. In
simple words, millions of bots collectively form a botnet, which is remotely controlled by
botmasters using a command and control (C&C) server. As per AVG (Anti-Virus-Guard)
Technologies, “at their most basic, botnets are made up of large networks of “zombie”
computers all obeying one master computer” [7]. Bot detection and response have become a
Gordian knot for today’s information security defense systems. Bot herders are significantly
evolving their botnet propagation and C&C technologies to evade the latest botnet detection
techniques from IT security folks. The following figure, Figure 1, shows how a botmaster (a
type of hacker) establishes a botnet network using a C&C server. Several bots which can
be seen in the figure can provide sensitive information to the botmaster. Each bot can be
assumed a separate PC in the organization that includes private information.

Figure 1. Botnet operation via C&C server.

In this paper, we make use of an ensemble learning model to detect botnet attacks in
IoT networks. Ensemble learning involves multiple algorithms to obtain better predictive
performance, rather than using a single algorithm of its constituent algorithms [8]. More-
over, the ensemble learning model can deal with data heterogeneity or class imbalance
problems that are often faced during anomaly detection [9]. This paper is based on the
N-BaIoT2021 dataset [10], which is a network-based anomaly detection approach in en-
semble learning. N-BaloT2021 identifies abnormal network behavior to detect anomalous
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network traffic from the compromised IoT [10]. The N-BaIoT2021 dataset includes different
botnet attacks belonging to the two most common IoT botnet vectors, Bashlite and Mirai.
The dataset was prepared for comparative analysis of anomaly detection using five IoT
devices: a doorbell, thermostat, baby monitor, security camera, and webcam. In addition to
the 611,359 samples of normal traffic, the N-BaIoT2021 dataset includes 7737 samples of
botnet traffic (malicious) distributed as follows: Bashlite (4737 samples) and Mirai (3000
samples) against the five mentioned IoT devices. Specifically, our contributions in this
paper can be stated as follows:

• We present a comprehensive efficient detection/classification model/architecture
with detailed preprocessing operations that can classify the IoT traffic records of the
N-BaIoT2021 dataset into binary classifier (2-class), ternary classifier (3-class), and
multiclassifier (10-class).

• We characterize the performance of four machine-learning-based decision tree models:
AdaBoosted decision tree, RUSBoosted decision tree, bagged decision tree, and their
ensemble learning model.

• We provide an inclusive experimental evaluation to gain more insight into the system
efficiency and solution approaches, such as the confusion matrix, model precision,
model sensitivity, and others.

• We contrast our best performance results with state-of-the-art works employing several
supervised learning algorithms in the same area of study.

The remaining part of this paper is structured as follows: Section 2 provides a litera-
ture review with a summary of the most recent surveyed papers. Section 3 presents the
system model and architecture with a detailed explanation for each underlying subsystem.
Section 4 reports extensive experimental outcomes and performance trajectory as well as a
comparison with existing models. Finally, Section 5 concludes the presented work.

2. Related Work

A significant number of studies have been conducted to understand the nature of
IoT cyber-attacks. IoT security professionals have used various detection methods and
techniques to detect attacks on IoT networks. In the meantime, attackers have always
been sophisticated and fast in their operations. These attackers also developed the
latest attacking techniques to counter safeguarding mechanisms. Much research has
been conducted to accurately detect anomalies in the IoT. Most IoT-based studies reveal
botnet attacks that are based on command and control (C&C) servers. In this scenario,
zombies or bots, infected computer s, act as clients to communicate with a C&C server
that passes instructions to each zombie computer. If the control of the central server is
gained, the entire botnet can be broken down. This is also known as client–server model.
Another approach used by hackers against the IoT is the peer-to-peer model. Instead
of connecting with a central server, zombie computers in this model are connected via
the internet. This model comes into place to fix weaknesses of the client–server model,
as removing one or more bots will not ease the problem due to the huge botnet of
independent bots. Several IDSes were proposed and developed during the last couple of
years; examples can be found in [11–15].

Previous studies also shed light on the types of botnet attacks that hackers used in the
face of the IoT. For example, dial-up bots compromise dial-up modems to force them to dial
phone numbers for malicious purposes. A “click fraud” is an illegal act of clicking on pay
per click (PPC) advertisements or banner ads to increase the number of clicks for advertisers
or bot herders. They design automated online bots to create click frauds. Spyware can
be used to secretly gather sensitive data, such as credit card numbers or login details, in
the victim’s IoT device. They can be beneficial for botmasters because they can sell such
data on the black market. In addition, a DoS attack is used to compromise a target, such
as a server, using multiple compromised computers (botnet) to cause a denial of service
for the victim. Botnets are widely used to launch massive DoS and DDoS attacks. The
Mirai botnet was utilized in 2016 to attack the domain name service provider Dyn, based
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in Manchester, and attack volumes were gauged at over 600 Gbps. Lastly, a spambot is a
malicious machine that is used to distribute automated spam emails.

Botnet detection techniques for the IoT are either network-based or host-based [16–20].
However, the host-based approach is less realistic. For instance, in [16,17], the authors
developed a comprehensive architecture for IoT instruction detection and classification
at the network layer of the IoT paradigm. Six different supervised ML methods were
employed to develop the IoT-IDS: three ensemble learning methods, two neural network
methods, and one kernel method. They evaluated their models using two well-known
IoT attack datasets, distilled-Kitsune-2018 and NSL-KDD. Their best results were better
than any prior art by 1~20%. In [18], the authors proposed port scanning attack detec-
tion for IoT networks by characterizing the performance of several machine learning
techniques. However, their best empirical results were recorded for the best logistic
regression model, which scored 99.4% and 99.7%, registered for accuracy and F-score
with low detection overhead. In [19–22], the authors’ studies barely used the latest tech-
niques, such as autoencoders, which are a part of our proposed technique in ensemble
learning—known as N-BaIoT. This means that IoT attacks often remained undetected
and unnoticed due to a lack of modern security defense mechanisms. However, now,
autoencoders are being used in this paper to provide more accurate and useful results.
Autoencoders are mostly used for anomaly detection in wireless sensor networks (WSNs)
that are embedded in IoT devices. The algorithm used for detection purposes involves
two components—one is located in the IoT cloud, while the other is placed within sensors.
During the evaluation, it was seen that the autoencoders’ unsupervised learning features
enabled adaptation to unexpected changes in IoT network environments. Attempts have
also been made to compare many deep learning models for network intrusion detection
(NID), including the recurrent neural network (RNN), self-taught learning (STL), and
vanilla deep neural net (DNN). Machine learning (ML)-based autoencoders provided
efficient outcomes, as they met even the unique constraints of the IoT environments.
These constraints included small storage capacity and shortage of computing power
due to the IoT’s tiny size. Nevertheless, autoencoders provided useful results in detect-
ing botnet attacks. More importantly, some previous studies also relied on statistical
approaches that only worked on some predefined values. Unfortunately, cybersecurity
threats and attacks on the IoT are accelerating by leaps and bounds, and bot herders are
developing the latest attacking techniques. Therefore, statistical approaches could not
work against the latest techniques. This is the reason the researcher preferred behavioral-
based N-BaIoT, which is dynamic and efficient and provided more accurate results. The
proposed method has several advantages. For example, it uses online processing, so it is
deployable even in low-memory IoT. This ensemble learning approach is scalable and
lightweight across various IoT devices. Furthermore, detection accuracy is very high,
and computational load on devices is very low.

The number of false positives is also negligible. Moreover, the unsupervised learning
feature facilitates adaptability to dynamic environments.

L. Yang et al. [23] proposed an adaptive IoT streaming data analytics framework—namely,
“LightGBM and Drift Adaptation”—to detect anomalies in IoT data streams without
the involvement of human beings. R. Qaddoura et al. [24] recommended an approach
that was based on three stages: the reduction stage, the support vector machine and
synthetic minority oversampling technique (SVM-SMOTE), and the single hidden layer
feed-forward neural network (SLFN) stage. The outcomes of this research demonstrated
that the SLFN technique and SVM-SMOTE with a ratio of 0.9 and the k value of 3 for the
k-means++ clustering method gave better results than other classification techniques
and other values. Another study conducted by Wan-Chen Shi et al. [25] showed that
the behaviors of network traffic from network packets were inspected through DeepBot,
a deep learning method, to detect botnets and classify them into disparate categories.
Huy-Trung Nguyen et al. [26] also conducted research for Linux IoT botnet detection. It
was based on PSI graph and DGCNN classifiers. In this experiment, the researchers used
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10033 EFL files that further included 6031 benign files and 4002 IoT botnet samples. The
results showed that PSI graph and DGCNN classifiers achieved an F-measure of 94%
and an accuracy of 92%. In addition to the aforementioned studies, the researcher added
another work in this paper. Christopher D. McDermott et al. [27] used the BLSTM-RNN
detection model to detect botnets within consumer-based IoT devices and networks.
Researchers used the word embedding technique to recognize text and convert attack
packets into a tokenized integer format. They detected four attack vectors used by Mirai
botnet malware and evaluated them for loss and accuracy. According to researchers
of this study, the bidirectional technique added overhead to each epoch and increased
processing time. However, it proved to be a better progressive model over time. Finally,
authors in [28] proposed a detection system for a Ping flood attack in an Internet of
Things (IoT) network using a k-means algorithm. Their proposed system exhibits high
accuracy results, scoring a 99.94%, with very low false negatives (0.00%) and false
positives (1.38%). To sum up, Table 1 summarizes some facts and figures about some
recent research in this regard below.

Table 1. Summary of reviewed related work research from the last five years.

Paper Attack(s) Detection Approach Deployment Level Assumed Environment Data for Evaluation

[11] DoS attacks, probe attacks,
root-to-local (r2l) attacks,
user-to-root (u2r) attacks

CNN Layered approach Platform independent NSL-KDD dataset

[12] OS Scan attack, Fuzzing attack,
video injection, ARP attack,
active wiretap attack, SSDP

flood attack, SYN DoS attack,
SSL renegotiation attack,

and Mirai attack

Ensemble-
learning-based
Boosted Trees

Network - Distilled-Kitsune-2018 dataset

[13] Port scan attack Logistic regression Network Windows environment Port scanning dataset 2017
[14] - DeL-IoT Network - -
[15] DoS attack, spam,

and data theft
Ensemble learning Network - Network traffic

[16] Mirai-infected IoT devices scan
for further devices

Dynamic updating
of flow rules

“Thin fog” Critical infrastructures Emulated IoT nodes,
simulated data

[17] Worm propagation, code
injection, tunneling attack

Deep learning Host - Two real devices

[18] - LightGBM model and
drift adaptation

- - IoT data streams

[19] - SLFN, SVM-SMOTE Network - IoT network data
[20] - DeepBot-deep

learning model
Network - Network packets

[21] Botnet IoT malware scan PSI graph and
CNN classifier

Host Linux environment 10033 ELF (4002 IoT botnet
samples and 6031 benign files)

[22] IoT-based DDoS BLSTM-RNN
detection model

Host/
Network

- -

[23] Ping flood attacks K-Means Network - IoT network data

3. ELBA-IoT Model Development

ELBA-IoT is an anomaly-based intrusion detection system developed to autonomously
build profiles for normal and malicious (botnets’) behaviors and then provide detec-
tion/classification for the traffic communicated through the IoT network. In this research,
the proposed system is decomposed into three distinct modules, where each module is
implemented via a number of operations. These modules are responsible for processing
the input (N-BaIoT 2021 dataset) through a series of consecutive operations to provide
the final output (anomaly-based detection). Specifically, the proposed ELBA-IoT system is
composed of a data preparation (DP) module, learning process (LP) module, and evaluation
process (EP) module, as illustrated in Figure 2.
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Figure 2. The three main modules of the proposed ELBA-IoT system: (a) top view diagram, (b) de-
tailed architecture. DP: data preparation, LP: learning process, EP: evaluation process.

3.1. Implementation of the Data Preparation (DP) Module

The data preparation (DP) module concerns the preprocessing operations for the raw
IoT traffic data of the N-BaIoT 2021 dataset and the transformation of preprocessed data
into a table of labeled features that can be fed into and trained by the machine learning
part of the LP module. The implementation phases of this module include the following
consecutive operations:

3.1.1. Data Hosting Process (DHP)

The data hosting process (DHP) is the process of keeping the data on a stable and
accessible platform that remains persistent and highly reliable. In this research, we use the
MATLAB computing platform as a system to host, train, and evaluate the data and the
model. Therefore, this stage is responsible for accepting the collected data records in its
CSV format (comma-separated values) and importing the data using MATLAB tables that
can be used for further preprocessing operations. By this hosting, every IoT traffic record is
formatted as raw in the table, while the data features are represented as columns.

3.1.2. Data Cleansing Process (DCP)

The data cleansing process (DHP) is the process of exploring the dataset to obtain
a deeper understanding of the underlying dataset and provide correction for the misin-
terpreted data. DHP deals with detecting and removing errors and inconsistencies from
data in order to improve the quality of data [29]. In this research, we conducted several
DHP processes over the imported data, including missing value checks (searching for
null-value cells and replacing with zero numerical), corrupted value checks (searching for
misinterpreted data and removing them), fixing the attribute names for the main features
(the imported data from CSV usually have no names for their attributes), maintaining an
atomic representation of the data (make sure all attributes are simple and filled with a
single value for each cell), duplicate data checks (make sure all data samples are respected
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once with no redundancy of specific data records), and label encoding (the target feature is
indeed encoded using integer encoding). The output classes are given the values 0 and 1 for
the binary classifier and values from 0 to 9 for the multiclassifier. Table 2 below summarizes
the encoding process for the target labels and fixes all typos and incorrect data records.

Table 2. Label encoding for the target classes (output labels).

Classifier Normal Botnet(s)

Binary Classifier 0 (normal) 1 (anomaly)

Ternary Classifier 0 (normal)
1. Mirai botnet
2. Bashlite botnet (Gafgyt)

Multiclassifier 0 (normal)

1. MIRAI_DANMINI_DOORBELL
2. MIRAI_ECOBEE_THERMOSTAT
3. MIRAI_PHILIPS_BABY_MONITOR
4. MIRAI_PROVISION_SECURITY_CAMERA
5. MIRAI _SAMSUNG_WEBCAM
6. GAFGYT_DANMINI_DOORBELL
7. GAFGYT_ECOBEE_THERMOSTAT
8. GAFGYT_PHILIPS_BABY_MONITOR
9. GAFGYT_PROVISION_SECURITY_CAMERA

3.1.3. Feature Selection Process (FSP)

In feature selection, we aim to select the features which are highly dependent on the
response. The feature selection process (FSP) is the process of selecting all features that
positively contribute to the performance of the machine learning model and avoid other
features that may negatively impact the model performance. In this study, we employed
the correlation coefficient score approach (CCS) to define the most prominent features to be
used for ELBA-IoT. The CCS method chooses all the possible feature combinations and then
calculates the linear relationship between features and the target. The logic behind using
correlation for feature selection is that the good features are highly correlated with the target.
Accordingly, the CCS method finds the best features that can be used later in developing
the ML model. Consequently, the computationally intensive problem can be overcome
by running the algorithm with fewer features for detecting botnet attacks. The Pearson
correlation coefficient score [30] used in this research is given by the following formula:

ρX, Y =
cov (X, Y)

σXσY
where : cov (X, Y) =

1
N

N

∑
i=1

(X − mean (x))(Y − mean(Y))

where Pearson’s correlation coefficient (ρX, Y) is the covariance of two variables divided
cov (X, Y) by the product of their standard deviations (σXσY). It is valued between −1 and
1, negative values meaning inverse relation and positive meaning the reverse case.

3.1.4. Data Standardization Process (DSP)

The data standardization process (DSP) is a fundamental step in the data prepro-
cessing stage that is mainly used to provide a feature scaling to make sure features are
on almost the same scale so that each feature is equally important. The DSP makes data
easier to process by most ML algorithms [31]. In this research, we applied the process of
standardization (Z-score normalization) where all features are rescaled to ensure the mean
and the standard deviation are with a distribution value between 0 and 1, respectively. The
Z-score normalization applied in this research is given by the following formula:

Xstand =
X − mean (X)

Standard Deviation (X)
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Z-score normalization is useful for several optimization algorithms such as gradient
descent (GD), which is extensively employed by machine learning algorithms. Standardiza-
tion aims to increase the accuracy of ML models and mitigate/avoid bias of ML classifiers.

3.1.5. Data Shuffling Process (DSH)

The data shuffling process (DSH) is a fundamental step in the data preprocessing
stage that is mainly used for masking confidential numerical data of the target dataset
prior to being trained/validated through machine learning models. Shuffling is basically
redistributing the data points/records throughout several execution processes (or even
through several computing machines). In this research, since we are about to train/test
splitting, we performed a uniform shuffle at every epoch, which guarantees that every
item has the same chance to occur at any position [32]. The data shuffling applied in this
research is performed using the following procedure:

3.1.6. Data Distribution Process (DDP)

The data distribution process (DDP) is an essential operation in every machine-
learning-based project. The DDP is basically responsible for dividing the utilized dataset
into different subsets to be used for machine learning model training and testing pro-
cesses. In this research, to ensure optimum data splitting, we employed the random
division approach (dividerand) to divide the targets into training, validation, and testing
datasets using random indices. Specifically, the dividerand algorithm works as illustrated
in Figure 3 below.

Figure 3. The basic idea of random division of the dataset into three datasets.
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In addition, to ensure optimum validation/testing process, we also applied k-fold
cross-validation [33] during the learning process. In this approach, the dataset is arbitrarily
split into k laminated folds, with each fold used as a test/validate dataset once while
the other folds are consolidated together for use as a training dataset for the machine
learning model generation. For every fold, the performance measures of the test dataset are
computed and saved. Once all folds are processed, the overall performance measures are
then calculated from all the measures stored for all k-folds. Figure 4 shows the schematic
overview of k-fold cross-validation.

Figure 4. The basic idea of k-fold cross-validation for the employed dataset.

3.2. Implementation of the Learning Process (LP) Module

Hitherto, the implementation phases of the DP module have been investigated and
analyzed. The DP module has distributed datasets that are ready for the learning process
(learning includes training and testing), and thus, the next step is to process the prepro-
cessed distributed datasets using an LP-module-based machine learning system. The main
objective of this module is to train/test the developed IDS-based machine learning models
along with their ensemble model, aiming to obtain the optimal performance trajectory
recording maximum detection accuracy with the least detection error. In this research, the
proposed solution approach evaluates the performance of three supervised machine learn-
ing methods (AdaBoosted decision tree [34], RUSBoosted decision tree [35], and bagged
decision tree [36]) in order to provide more inclusive experiments and gain more insight
into the solution approach. In addition, the ensemble learning model, making use of the
three supervised machine learning methods, is developed to profile the behavioral features
of IoT network traffic and identify the anomalous network traffic launched through the
compromised IoT devices. We summarize specifications for the implemented machine
learning models in Table 3.

Table 3. Specifications for the implemented machine learning models.

Classifier Model 1 Model 2 Model 3 Model 4

Model Preset Decision trees Decision trees Decision trees Ensemble learning
Learner Type AdaBoosted RUSBoosted Bagged Bagged, AdaBoosted, RUSBoosted
Maximum Number of Splits 20 20 20 1–611358
Number of Learners 30 30 30 10–500
Learning Rate 0.1 0.1 0.1 0.001–1

Summary of General Implementation Specifications
Feature Selection Validation Shuffling Process
CCS Approach 5-fold cross-validation Uniform shuffling at every epoch
Data Distribution Standardization Process Computing Platform
Divide-Rand Z-score normalization Windows 11/MATLAB2021/GPU+CPU

3.3. Implementation of the Evaluation Process (EP) Module

The evaluation process (EP) is an essential activity to measure and regulate the quality
metrics that check the compliance of the system with its requirements and objectives. To
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validate the efficiency of the ELBA-IoT system, we used the standard evaluation metrics [37]
over the k-fold datasets to measure the performance of the ELBA-IoT system using the four
aforementioned variants of machine learning models: the AdaBoosted decision tree (ABDT)
model, RUSBoosted decision tree (RBDT) model, bagged decision tree (BGDT) model,
and ensemble learning model (ELBA-IoT). Figure 5 recapitulates the overall system of
measurements employed in this research to validate the system performance and compare
the quality of several models [17].

Figure 5. System evaluation: summary of performance indication factors.

According to the figure (Figure 5), the performance of the developed models was
evaluated in terms of confusion matrix analysis to discuss the number of positive and
negative samples (predicted as true or false), the number of correctly classified samples
(NCS#), the number of misclassified samples (NMS#), the number of correctly-classified
samples (NCS#), the detection accuracy proportion (DAC%), the detection precision pro-
portion (DPR%), the detection sensitivity proportion (DSN%), the detection harmonic score
(DHS%), the detection inaccuracy error (IAE%), the detection imprecision error (IME%),
and the detection insensitivity error (INE%). In addition, for IoT applications, the func-
tional time is a crucial factor for such energy-aware devices; therefore, we evaluated the
proposed system in terms of inference overhead, represented by two factors: (1) the pre-
diction speed (PRS), which measures the number of samples predicted within a time unit
(1 time unit = 1 s), and conversely, (2) the prediction time (overhead/PRT), which measures
the amount of time needed to provide the detection for single-sample traffic.

4. Results and Discussion

ELBA-IoT is a defense system that can be used for botnet detection and classifica-
tion. In this section, we provide the results obtained for the performance evaluation of
ELBA-IoT and the other ML models at three levels of defense (using three classifiers):
the binary classifier, which is used to identify the IoT traffic as either normal or anomaly
(botnet); the ternary classifier, which is used to classify the IoT traffic into normal, Mirai
botnet, or Bashlite (Gafgyt) botnet; and the multiclass classifier, which is used to classify
the IoT traffic into normal, Mirai_Doorbell, Mirai_Thermostat, Mirai_Baby_Monitor,
Mirai_Security_Camera, Mirai_Webcam, Gafgyt_Doorbell, Gafgyt_Thermostat,
Gafgyt_Baby_Monitor, Gafgyt_Security_Camera, or Gafgyt_Webcam.

To begin, Table 4 presents the results of performance evaluation metrics obtained for
the binary classifier (normal vs. anomaly) using the four aforementioned botnet detection



J. Sens. Actuator Netw. 2022, 11, 18 11 of 15

models: Model 1 (ADA-IoT), Model 2 (RUS-IoT), Model 3 (BAG-IoT), and Model 4 (ELBA-
IoT). According to the table, all binary-class models exhibited an outstanding detectability
of botnets, scoring accuracy rates of 99.5–100%, with explicit superiority for ELBA-IoT,
which was able to detect all IoT botnet traffic with a 0.0% inaccuracy error rate.

Table 4. Experimental outcomes for the performance of binary classifier using Model 1 (ADA-IoT),
Model 2 (RUS-IoT), Model 3 (BAG-IoT), and Model 4 (ELBA-IoT).

DAC DPR DSN DHS IAE IME INE NMS# NCS#

ADA-IoT 99.9% 99.7% 99.5% 99.6% 0.1% 0.3% 0.5% 611 610748
RUS-IoT 99.5% 99.3% 99.3% 99.3% 0.5% 0.7% 0.7% 3056 608303
BAG-IoT 99.7% 99.5% 99.4 99.4% 0.3% 0.5% 0.6% 1834 609525
ELBA-IoT 100% 100% 100% 100% 0.0% 0.0% 0.0% 13 611346

Moreover, Table 5 presents the results of performance evaluation metrics obtained
for the ternary classifier (normal, Mirai, or Bashlite) using the four aforementioned botnet
detection models: Model 1 (ADA-IoT), Model 2 (RUS-IoT), Model 3 (BAG-IoT), and Model
4 (ELBA-IoT). According to the table, all ternary-class models exhibited an outstanding
detectability of botnets, scoring accuracy rates of 99.5–100%, with explicit superiority for
ELBA-IoT, which was able to detect all IoT botnet traffic with a 0.0% inaccuracy error rate.

Table 5. Experimental outcomes for the performance of ternary classifier using Model 1 (ADA-IoT),
Model 2 (RUS-IoT), Model 3 (BAG-IoT), and Model 4 (ELBA-IoT).

DAC DPR DSN DHS IAE IME INE NMS# NCS#

ADA-IoT 99.8% 99.7% 99.7% 99.7% 0.1% 0.3% 0.3% 672 610687
RUS-IoT 99.4% 99.4% 99.2% 99.3% 0.6% 0.4% 0.8% 3655 607704
BAG-IoT 99.5% 99.5% 99.4% 99.4% 0.5% 0.5% 0.6% 3117 608242
ELBA-IoT 100% 100% 100% 100% 0.0% 0.0% 0.0% 30 611329

Moreover, Table 6 presents the results of performance evaluation metrics obtained
for the multiclassifier (normal, Mirai_Doorbell, Mirai_Thermostat, Mirai_Baby_Monitor,
Mirai_Security_Camera, Mirai_Webcam, Gafgyt_Doorbell, Gafgyt_Thermostat,
Gafgyt_Baby_Monitor, or Gafgyt_Security_Camera) using the four aforementioned bot-
net detection models: Model 1 (ADA-IoT), Model 2 (RUS-IoT), Model 3 (BAG-IoT),
and Model 4 (ELBA-IoT). According to the table, all multiclass models exhibited an
outstanding detectability of botnets, scoring accuracy rates of 96.2–99.6%, with explicit
superiority for ELBA-IoT, which was able to detect all IoT botnet traffic with a 0.4%
inaccuracy error rate.

Table 6. Experimental outcomes for the performance of multiclassifier using Model 1 (ADA-IoT),
Model 2 (RUS-IoT), Model 3 (BAG-IoT), and Model 4 (ELBA-IoT).

DAC DPR DSN DHS IAE IME INE NMS# NCS#

ADA-IoT 97.3% 95.5% 92.2% 93.9% 2.7% 4.5% 7.8% 16506 594853
RUS-IoT 97.7% 96.9% 95.7% 96.3% 2.3% 3.1% 4.3% 14061 597298
BAG-IoT 96.2% 92.4% 90.6% 91.5% 3.8% 7.6% 9.4% 23231 588128
ELBA-IoT 99.6% 98.4% 97.1% 97.7% 0.4% 1.6% 2.9% 2445 608914

In addition, due to the importance of ELBA-IoT for the multiclassifier, we traced
its performance trajectory in terms of minimum classification error (MSE) vs. training
iterations. Therefore, Figure 6, below, illustrates the performance progression for ELBA-
IoT with the multiclassifier by tracing the MSE factor during 30 iterations. To optimize
the performance of the ensemble learning model, the Bayesian optimizer was used with



J. Sens. Actuator Netw. 2022, 11, 18 12 of 15

acquisition function based on the expected improvement per second plus. Moreover, the
ensemble learner employed three powerful ensemble methods (RUSBoosted, AdaBoosted,
and bagged), utilizing 10 learners with maximum splits number of 15 splits, number of
predictors to sample of 1–116, and optimized learning rate of 0.192. Accordingly, the best
point minimum error was recorded after 11 iterations; the classifier recorded the minimum
classification error of 3.8 × 10−3 MSE (~3.8%) before becoming fixed and stable over the
remaining iterations.

Figure 6. Performance progression of ELBA-IoT optimized using 30 iterations.

Furthermore, to gain more insight into the inference overhead, Table 7 provides the
time complexity results for the developed multiclass inference systems characterized into
two aspects: the prediction speed (PRS) and the prediction time (overhead/PRT) for single-
sample traffic. According to the table, ELBA-IoT recorded the maximum prediction speed
and, thus, it has the least inference overhead, recording a prediction time of 40 µ-Second.
Such a reasonable amount of time (at the micro scale) permits the ELBA-IoT model to be
efficiently applied at the IoT systems (as gateway devices) to provide botnet classification
for IoT traffic at earliest time and low overhead.

Table 7. Experimental outcomes for the performance of multiclassifier using Model 1 (ADA-IoT),
Model 2 (RUS-IoT), Model 3 (BAG-IoT), and Model 4 (ELBA-IoT).

ADA-IoT RUS-IoT BAG-IoT ELBA-IoT

PRS (Samples/Sec) 12,000 13,000 12,000 25,000
PRT (in µ-Second) 83.33 76.92 83.33 40.00

Finally, Table 8 presents the comparative analysis of our ELBA-IoT system with other
present state-of-art IoT-based botnet detection schemes utilizing machine/deep learning
approaches in the same area of study. The table compares our best empirical results
recorded for ELBA-IoT with the respective factors reported in existing studies. The reported
comparison metrics include the detection model (learning model), the attack categories
involved in the detection system, the number of output classes of each detection model,
and the validation accuracy proportion for the detection models.
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Table 8. Comparison with other existing ML-based IoT-IDS Systems.

Paper/
Year

Detection
Model

Attack
Categories

Number
of Classes

Validation
Accuracy

[38]/2017 HAEs DOS, PROBE, R2L, U2R 5 Classes 88.65%
[27]/2018 BLSTM-RNN MIRAI, UDP, ACK, DNS 5 Classes 97.5%
[26]/2018 DG-CNN PORT SCANNING, MIRAI, QBOT, DICTIONARY 2 Classes 92.0%
[39]/2019 kNN TELNET, HTTP_POST, HTTP_GET 3 Classes 94.45%
[40]/2019 SVM DOS, PROBE, R2L, U2R 5 Classes 81.00%
[41]/2019 Hybrid-ML DOS, PROBE, R2L, U2R 5 Classes 85.20%
[25]/2020 LSTM + RNN MIRAI AND ITS VARIANTS 2 Classes 99.30%
[42]/2020 S-CNN DOS, PROBE, R2L, U2R 5 Classes 98.20%
[43]/2020 D-CNN MIRAI HAJIME, BRICKERBOT, MASUTA, SORA 4 Classes 90.00%
[44]/2021 SL-BMM-CE MIRAI + BASHLITE 7 Classes 99.20%
[45]/2022 ADA-DT DDoS, INJC, MITM, PSWD, SCAN, XSS, BKDR, RNSM 10 Classes 98.60%
ELBA-IoT EL-DTs MIRAI + BASHLITE 10 Classes 99.60%

Consequently, the comparison table (Table 8) contemplates 11 different intrusion/botnet
detection models for the IoT environment, spanning from 2017 to 2022, in addition to our
proposed ELBA-IoT, which is based on ensemble learning of decision trees (EL-DTs). The
considered models include HAEs-2017 (hybrid autoencoders model, comprising autoen-
coders and denoising autoencoder) [38], BLSTM-RNN-2108 (cascade model, comprising
bidirectional long short-term memory and recurrent neural networks) [27], DG-CNN-2018
(deep graph convolutional neural networks model) [26], kNN-2019 (k-Nearest-Neighbor-
based IDS model) [39], SVM-2019 (support-vector-machine-based IDS model) [40], Hybrid-
ML-2019 (hybrid machine learning model composed of the decision tree, random forest,
kNN, and deep neural networks) [41], LSTM-RNN-2020 (long short-term memory and
recurrent-neural-network-based IDS model) [25], S-CNN-2020 (shallow-convolutional-
neural-network-based IDS model) [42], D-CNN-2020 (deep-convolutional-neural-network-
based IDS model) [43], SL-BMM-CE-2021 (statistical-learning-based beta mixture model
(BMM) and correntropy-based IDS model) [44], and ADA-DT-2022 (AdaBoosted-decision-
tree-based IDS model) [45]. Based on the comparisons provided in the table, we can
undoubtedly conclude that our ELBA-IoT model is conspicuously superior, as it provides
the top detection accuracy performance for a multiclassifier with 10 labeled classes at the
output layer with low inference overhead (40 µ-seconds) that can be adapted effectively
with the time-aware and low-power devices of the IoT system. In addition, our ELBA-IoT
improved the accuracy of identification of attacks by 1% over the 10-class classifier, 1.4–
18.6% over the 5-class classifiers, and 0.3–7.6% over other lower-class classifiers (2-, 3-, and
4-class) for the identified IoT-IDS models in Table 8.

5. Conclusions and Future Directions

An autonomous, lightweight, intelligent, and accurate intrusion detection system for
IoT networks—called ELBA-IoT—was proposed, developed, and evaluated in this paper.
ELBA-IoT makes use of supervised ensemble learning methods to profile the behavioral
features of IoT network traffic and identify the anomalous network traffic launched through
compromised IoT devices. In addition, the proposed solution approach evaluated the per-
formance of three supervised machine learning models (AdaBoosted, RUSBoosted, and
bagged) in order to provide more inclusive experiments and gain more insight into the so-
lution approach. Moreover, the N-BaIoT-2021 dataset—a comprehensive and contemporary
dataset comprising real-world IoT network traffic—was used to evaluate the performance
of ELBA-IoT. Eventually, the empirical outcomes demonstrated the superiority of ELBA-IoT
over other existing solutions, scoring a high detection accuracy (99.6%) with low inference
overhead (40 µ-seconds). As for future work, one recommended extension of this work is to
deploy ELBA-IoT using physical IoT gateway devices to provide real-time botnet detection
facilities for IoT networks (this may include deploying IoT-enabled devices, such as the
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IoT-based Raspberry Pi, ARM Cortex, or Arduino). Such deployment can be accompanied
by further investigation on the different low-power IoT nodes’ concerns, such as energy
consumption, memory usage, and communication complexity. We may also aim to produce
a new dataset for IoT botnets using this investigation at several peak times and several IoT
applications of interest.
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