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Abstract: The Internet of Things (IoT) is a fact today where a high number of nodes are used for
various applications. From small home networks to large-scale networks, the aim is the same:
transmitting data from the sensors to the base station. However, these data are susceptible to different
factors that may affect the collected data efficiency or the network functioning, and therefore the
desired quality of service (QoS). In this context, one of the main issues requiring more research and
adapted solutions is the outlier detection problem. The challenge is to detect outliers and classify
them as either errors to be ignored, or important events requiring actions to prevent further service
degradation. In this paper, we propose a comprehensive literature review of recent outlier detection
techniques used in the IoTs context. First, we provide the fundamentals of outlier detection while
discussing the different sources of an outlier, the existing approaches, how we can evaluate an outlier
detection technique, and the challenges facing designing such techniques. Second, comparison and
discussion of the most recent outlier detection techniques are presented and classified into seven main
categories, which are: statistical-based, clustering-based, nearest neighbour-based, classification-
based, artificial intelligent-based, spectral decomposition-based, and hybrid-based. For each category,
available techniques are discussed, while highlighting the advantages and disadvantages of each
of them. The related works for each of them are presented. Finally, a comparative study for these
techniques is provided.

Keywords: outlier detection; event detection; detection efficiency; IoT; QoS

1. Introduction

The IoT can be seen as a collection of technologies that work together and provide
Internet-based services and applications. With the aid of electronic devices connected to
physical objects, heterogeneous sensors can collect data for process control [1]. The IoT
involves many resource-constrained nodes that are deployed to sense, collect, and transfer
data to a base station or a data center. In such a way, the appropriate decision can be taken
in a controlled environment. IoT is utilized in various sectors, including environment mon-
itoring, medical, agriculture, disaster warning, smart city, and manufacturing. However,
the collected data in the real world are vulnerable to outliers, which are data samples that
are considerably different from normal data. In IoT, an outlier may occur due to inherent
characteristics of the sensor device itself, or because of the harsh environment where the
nodes are deployed. Data quality could be affected by a sensor failure, noise, malfunction,
missing or duplicated data values, etc. These outliers can also concern the exchanged net-
work information relative to the network operation (i.e., sending and receiving messages).
So, it is essential to detect these outliers before any in-network processing, like fusion or
aggregated data, to limit the propagation of these incorrect data and conserve the collected
data’s effectiveness to perform a suitable decision. To ensure network QoS, the IoTs must
detect the outliers and take the necessary action to eliminate the degradation of the service.
Moreover, IoT comes with the aspect of a high number of heterogeneous embedded de-
vices that generate big data, which makes the outlier detection more complex against such
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massive data [2]. Furthermore, with the significant advancements in artificial intelligence
(AI) techniques, anomaly tracking has also addressed a new trend in data collection and
maintaining a high degree of confidentiality for the transmitted data. The power of the
AI will have additional resources to protect vulnerable networks and data from faulty
components. Subsequently, AI can then analyse network activities effectively, deduce a
pattern, and identify all sorts of deviations or irregularities in its collected data. With such
an approach, it is much easier to identify network anomalies quickly.

Outlier detection in IoTs and networks is widely used in a variety of real-world ap-
plications, as shown in Figure 1. For example, the Internet of Medical Things (IoMT) [3]
is used widely in the healthcare domain. It monitors patients’ health continuously and
gives remote assistance and alarms in time of any modifications in defined conditions [4].
Furthermore, in the industrial domain, sensors are built into machines to monitor re-
source management, as well as there being many variables, such as temperature, humidity,
and pressure to detect events and trigger suitable alarms [5]. Another example is the
Manufacturing Internet of Things (MIoT) [6] for analysing industrial big data in real-time.
Moreover, in the agriculture domain, sensors are deployed in a harsh environment to
monitor and collect many variables like temperature and humidity in real-time [7]. In the
security domain, the outliers or abnormal values may be an attack that would threaten the
network security [8]. In smart city applications, outlier detection techniques can be used
in many situations, like monitoring water quality. It provides real-time information and
warnings to control water pollution [9]. In the financial domain, it is crucial to monitor the
audit logs for the financial transactions stored in a database, then to report and verify the
abnormal behaviour detected in data [10].

Figure 1. Applications area of outlier detection in IoTs.

Therefore, studying the outlier detection approaches of sensing data in IoTs is both
scientifically and practically valuable. The aim of this work is to provide a comprehensive
literature review of previous and current outlier detection techniques used in IoT. Our
methodology to establish this review is as follows:

• We select papers between 2010 and 2021 (80 papers) from the leading scientific online
databases (MDPI, Science Direct, SpringerLink, IEEE Explorer, ACM Digital Library,
etc.). Moreover, we consider some required and original papers before 2010 (13 papers).
The papers are selected based on the following research keywords: outlier detection,
outlier classification, anomaly detection, anomaly classification, WSN, IoT.

• We take the most relevant articles that focus on the outlier detection techniques in
WSN/IoT.

• We take the most relevant articles that focus on the classification of outlier detection
techniques in WSN/IoT.

The main contribution of this paper can be summarized as follows:
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• The fundamentals of outlier detection in IoT are provided while discussing the dif-
ferent sources of an outlier, the approaches that can be adopted, and how we can
evaluate an outlier detection technique.

• A summary of the challenges that can face the design of an outlier detection solution
for IoT is provided.

• A comparison and discussion of the more recent outlier detection techniques are
presented and classified while:

– The main seven categories of outlier detection techniques are highlighted by
showing the advantages and the disadvantages of each of them.

– The related works of each category are presented.
– The study of the spatial-temporal correlation for outlier detection techniques in

IoT is provided.

The rest of the paper is organized as follows: In Section 2, the fundamentals of outlier
detection in IoT are defined. In Section 2.5, the main challenges of outlier detection in
IoT are discussed. In Section 3, the outlier detection techniques for IoT with the recent
related works are classified and discussed. In addition, comparison tables of the different
techniques are provided. In Section 4, a comparative study of the classified techniques is
summarized. In Section 5, the conclusion is provided while discussing some future works.

2. Outlier Detection Fundamentals in IoT Context

In this section, we will provide some definitions of an outlier in wireless sensor
networks (WSN) and IoT and differentiate the three types of outlier sources. Then, we
will talk about the outlier detection approach, and finally, we will talk about how we can
evaluate outlier detection techniques.

Firstly, let us give some common definitions of an outlier. In WSNs, outliers can
be defined as: “measurements that vary considerably from the typical pattern of sensed
data” [11]. In the context of IoTs “an outlier is data value that is considerably different from
other data values, or does not correspond to the predicted normal behaviour, or conforms
well to a defined abnormal behaviour” [12]. Another definition is provided by [13] where
spatial-temporal outliers are defined as “a spatial-temporal data value whose non-spatial
attribute values are considerably different from those of other spatially and temporally
referenced data values in its spatial or/and temporal neighbours”.

2.1. Sources of an Outlier in IoT

There are three sources of an outlier in data collected in IoT and therefore three
corresponding outlier detection techniques [1]. These sources are error and noise, events,
and malicious attack, as summarized in Figure 2 and described below:

Figure 2. sources of outliers in IoTs and corresponded detection techniques.

a. Error and noise
The sensors are generally deployed in a harsh environment so that they are exposed
to interference such as noise. An error means noisy data measurement or data that
come from a faulty node. This means values that differ greatly from the true state of
the phenomenon being measured. Outliers resulting from errors are more likely to
occur often, while outliers resulting from events appear to have a very low probability
of occurrence [14]. Normally, the error values are represented as a random change
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and are greatly different from other data. These errors may affect the gathered data
quality, and thus must be detected. In addition, if they are faulty or noisy data, they
will be corrected or discarded to keep the energy of the sensor.

b. Event
We can talk about an event while finding the data values that represent a change in the
real environment state, compared to the predefined normal behaviour. Events may
occur due to a gradual or sudden change in the real environment, as a temperature
change caused by air pollution, forest fire, chemical spill, flood, earthquake, volcanic,
etc. It is very important to distinguish between errors and events, because faulty
sensors may give false events, so it is difficult to differentiate them. Thus, the outlier
detection techniques need to depend on the reality that noisy measured data values
and sensor failures are likely to be randomly unrelated to each other. Meanwhile,
event measurements are likely to be geographically correlated [15]. As marked in [16],
an event is a “succession of outliers or erroneous data values in data streaming”. So,
the events must be detected and treated because they have important information.

c. Malicious attack
The third source of an outlier is the malicious attacks, which can be defined as a
security threat to the network. There are many types of attacks on the sensor node.
The attacked node will behave as a normal node and give unreliable data values
in the network. This will affect the whole functionality and the performance of the
system. These attacks must be treated in the intrusion detection techniques, which
are out of the scope of this paper.

Besides, it is possible to group outliers into three groups as the following:

• Point outliers: an individual data value that is deviated from the standard data values
pattern. Those forms of outliers can easily be recognized.

• Contextual outliers: a data value that deviate from the standard pattern in a particu-
lar context.

• Collective outliers: a group of related data values which deviate from the whole
data set.

2.2. Outlier Detection Approach

This subsection will discuss different existing approaches adopted to design an out-
lier detection solution. As summarized in Figure 3, these approaches allow defining if
an outlier detection is for errors, events, or both, and if it is a centralized/distributed,
online/offline, supervised/unsupervised solution. Furthermore, it considers whether the
solution concerns one or many data-collected attributes, while considering the correlation
between these attributes.

Figure 3. Outlier Detection Approach in IoTs.
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a. Outlier detection and event detection
From Figure 2, we could notice that event detection is part of outlier detection, but
there are some differences between them in the IoT context. These differences can be
listed as follows:

• When detecting outliers, there is no previous knowledge of trigger conditions
or semantic of any event. Meanwhile, there is a trigger condition or specific
event semantic provided by the central node in detecting events.

• Detecting outliers need to compare sensor data values with each other. Mean-
while, detecting events need to compare sensor data values with the trigger
condition or predefined pattern.

• Detecting outliers need to avoid classifying normal data as outliers to maintain
a high detection rate (DR) and low false alarm rate (FAR). Meanwhile, detecting
events need to avoid considering the erroneous data values that conform to the
predefined state or condition of the event to affect the detection’s reliability.

• The sensor nodes must report an event once it happened to the base station
node on time.

b. Distributed detection and centralized detection
Distributed outlier detection techniques detect outliers at the sensor node. Mean-
while, centralized outlier detection techniques identify outliers at the parent node,
cluster head, or base station. With the distributed method, the transfer of raw sensor
data values can be reduced, allowing one not to broadcast the entire data to the base
station. Besides, the node deals with its data values and sends only some parame-
ters, which leads to using network resources, such as power and bandwidth, in a
highly efficient way. However, distributed outlier detection accuracy might not be as
good as centralized detection, due to a lack of appropriate sensor data for modelling
purposes [17].

c. Online and offline detection
The online detection detects outliers in real-time or near real-time. Meanwhile, offline
detection detects outliers after collecting a massive amount of sensed data values
from the sensors. The offline detection is not suitable for WSN because the distributed
streaming data require online processing.

d. Supervised and unsupervised detection
The supervised techniques characterize all the outliers and the non-outliers depend-
ing on the model built using the pre-labelled data in the training phase. These
pre-labelled data mean the need for specific predefined data in the training phase to
create a normal or abnormal data model before detecting outliers. These supervised
techniques may be helpful for intrusion detection applications. However, it is crucial
to notice that these pre-labelled data are not easy to obtain or unavailable in many
real-life IoT applications. In addition to the enormous online streaming data com-
ing, the supervised model may be valid for specific time instances, but invalid for
other time instances. The unsupervised techniques do not require pre-labelled data,
but they utilize specialized metrics to identify outliers. For example, some techniques
use distance measures, while others use a familiar statistical distribution model.

e. Multivariate Data and univariate
In the univariate data, the data value has a single attribute, whereas, in the multivari-
ate data, the sensor data value has many attributes. Thus, we have an outlier if the
data value has abnormal values in its attributes. The outlier detection technique must
be able to deal with the multivariate data and consider their correlations. It must
also consider the complexity of computations of these multivariate data. Otherwise,
the technique will not be suitable for IoT applications.

f. Correlation of Data
In sensor data, two types of correlations can exist:

• Correlation between data attributes.
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• Correlation between the observations of the sensor node itself and its neigh-
bouring node observations.

The sensor data attributes are generally correlated; for example, the correlation be-
tween temperature and height. On the other hand, in densely deployed WSNs, these
collected data appear to be correlated temporally and spatially. The spatial correlation
indicates that data values obtained from geographically adjacent nodes appear to be quite
close. The temporal correlation indicates that consecutive sensor measurements collected
from a single node appear to give similarity in a time interval.

2.3. Sensor Failure Detection Strategies in IoT

As described in Section 2.1, an outlier can be due to a faulty node. There are three
main strategies to identify sensor failure, as showed in Figure 4:

• Network-level strategy: with this strategy, the aim is to monitor the data at the
network level to detect any failure in the sensors. The Markov models can be used to
characterize the behaviour of the normal and the abnormal sensors, where the sensors
can monitor each other in the IoT situation.

• Homogeneous strategy: the aim here is to use many spatially correlated similar sensors
to detect any abnormal sensor behaviours. We use the Auto-Regressive Integrated
Moving Average (ARIMA) time-series model [18], which compares the data value
measured by the sensor with predicted measured.

• Heterogeneous strategy: the aim here is to group different sensors to detect the
sensor’s failure by classifying the sensors data values output. The Outlier Detection
Module (ODM) proposed in [1] is an example of a heterogeneous strategy in IoTs,
where the heterogeneous sensors are connected to this module and to a microcontroller,
and they send their sensed data values to both. The microcontroller will monitor the
data received from the sensors while running the multi-agent deep reinforcement
learning-based and distributed outlier detection on the module to identify the outliers.

Figure 4. Outlier detection strategies in IoTs.

2.4. Evaluation of Outlier Detection Techniques in IoTs

Outlier detection for IoT aims to detect outliers and differentiate with high detection
rate (DR) and low false alarm rate (FAR) between errors and events. The efficient outlier
detection technique must respect the IoT resource constraint devices, such as the compu-
tational cost, memory usage, and communication overhead. The DR is the percentage of
abnormal data values that are considered as outliers correctly. The FAR is the percentage of
normal data values that are considered as outliers incorrectly. Another way to measure the
efficiency of an outlier detection technique is to use the receiver operating characteristic
(ROC) curve [16,17,19], which is a two-dimensional graph that represents the trade-off
between the DR and the FAR. Figure 5 shows a generic illustration of how to interpret
this curve by different fictional approaches. The efficient technique is the one that has
high detection rate and low false alarm rate with a large area under the curve (AUC).
From Figure 5, we can say that approach 1 (ideal approach) realizes the best performance
compared to other ones.



J. Sens. Actuator Netw. 2022, 11, 4 7 of 31

Figure 5. ROC curves examples for generic outlier detection approaches.

There are other ways to evaluate an outlier detection technique, such as the computa-
tional cost, memory and storage usage, battery usage, etc.

2.5. Outlier Detection Challenges in IoT Context

Developing an effective outlier detection technique is more difficult due to the IoT
context and the sensor data nature. The IoT ecosystem encompasses the traditional WSN,
which allows more analysis and processing of the collected data [20]. However, as shown in
Figure 6, there are numerous challenges encountered while designing an outlier detection
system for IoT.

Figure 6. Outlier detection challenges in IoTs.

• Taking into consideration contextual information, which includes the spatial-temporal
correlations of sensed data values and the external context of data [21].

• The majority of the existing techniques are for univariate data. Meanwhile, they
should consider the multivariate data where each data value has many attributes.

• The outlier detection technique in IoTs must consider how reducing the consumption
of the available resources such as memory, energy, and communication bandwidth.

• Due to the nature of sensor devices, they are subjected to failure, missing, duplicated
data or may be affected by noise. So, it is crucial to detect outliers and distinguish
between errors, events, and malicious attacks, while not losing important events by
considering them as errors.

• Because of the lack of previous knowledge about data distribution, the outlier detection
technique should be non-parametric.

• The prelabeled data is not always available or not easy to obtain, so the outlier
detection technique should be unsupervised.
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• Sensors are susceptible to environmental changes such as humidity and tempera-
ture. In addition, they are also vulnerable to dynamic network topology changes,
communication failures, and the non-stationary of streaming data.

• It is essential to process data as soon as possible to take the necessary decision. So,
detecting outliers should be in a distributed manner or fog computing manner. As a
result, unnecessary communications will be reduced, which will lead to low energy
consumption and extend the network lifetime.

• Another challenge facing the design of an outlier technique is to be an online one.
Offline detection can be applied to the past recorded collected data. Meanwhile,
the online detection runs on data as they arrive in real-time, so that outliers can be
detected directly, which will reduce the detection time. Thus, the outlier detection
technique should operate online to deal with distributed real-time streaming data (or
near real-time) applications. We notice that some techniques start to work offline to
build the right model to work after in an online manner. The techniques which work
totally in an offline mode are not suitable for sensor data.

• Because of the large amount of coming streaming data values, it is efficient and easier
for analysis to deal with data using incremental windows instead of dealing with the
whole data set.

• Because of the large number of sensor nodes deployed in the environment, the outlier
detection technique in IoT needs to scale well to process a considerable amount of
coming streaming data values in an online manner.

• The different types of malicious attacks add a significant challenge to the design of
outlier detection techniques in IoT.

• Each technique is suitable for a specific application and it may not be possible to reuse
it in other domains. Thus, the outlier detection technique should be generalized to be
easily reused and deployed for many applications.

• Another challenge is to make the appropriate choice of threshold, sliding windows
size, the neighbourhood threshold, and the cluster radius during the design of the
outlier technique.

• They should be simple to implement, with low computational cost and high energy
efficiency.

3. Outlier Detection Techniques in IoT

In the literature, many related works are proposed for classifying outlier detection
techniques. For example, authors in [11] classify the techniques based on application
domains, problem characteristics, and different research domains; for example, statistics,
data mining, machine learning, etc. In [17], authors classify outlier detection techniques in
a taxonomy suitable for WSN as the following: statistical, nearest neighbour, clustering,
classification, and spectral decomposition. In [1,22], authors present a classification for
outlier detection techniques in WSN, which is like the one presented in [17], but they add
the artificial intelligence-based category. In [23–25], authors present a taxonomy of machine
learning techniques for outlier detection in IoTs. They classified the existing techniques into
four categories: clustering, classification, dimensionality reduction, and hybrid algorithms.
In [26], the authors proposed a global classification review about the progress of outlier
detection techniques. They provide the performance, the pros, the cons, and the challenges
which face these techniques. However, it is a general survey about outlier detection
techniques and not specified for IoTs or WSN.

In addition to the classification of the outlier detection techniques, authors in [27]
proposed a methodology for outlier detection in IoT through a systematic analysis of the
data set based on five stages. The first stage is to define a scenario of generating a labelled
dataset using mathematical modelling on a real IoT system. Then, in the second stage,
the aim is to capture data packets and inject anomalous packets by modifying some of them.
The third stage is to reinsert these packets into the network. After that, the fourth stage
concern sniffing the data to study, analyse and generate a model to show the behaviour of
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outliers in the network. Finally, we must apply a machine learning algorithm such as K
nearest neighbours (KNN), support vector machine (SVM), linear discriminant analysis
(LDA), tree-based methods, or logistic regression to analyse and detect anomalies.

From all listed surveys, we can say that none of them discuss all the outlier detection
techniques categories. Some surveys concentrate on some categories while occulting others.
So, there is a need for a global classification that includes all categories. In addition, com-
pared to existing surveys, we have added more recent works that present new techniques.
In Table 1, we highlight the importance of our survey compared to already existing ones.
So, as shown in Figure 7, we adopt a classification of the outlier detection techniques in
IoTs context into seven main categories that could cover all previous works in the liter-
ature. These categories are statistical-based, clustering-based, nearest neighbour-based,
classification-based, artificial intelligence-based, spectral decomposition-based, and hybrid-
based. In what follows, we will describe each category while discussing some recent works
belonging to it.

Table 1. Comparative table of our survey versus already existing ones.

Surveys Categories
Number

Technique
Type

Outlier
Detection
for WSN

Outlier
Detection
for IoT

Outlier
Detection
for General
Fields

Comparative
Study
of All
Categories

Pros/Cons Related
Works
Discussion

Our Work 7 all X X - X X X

[1] 2020 5 partially - X - - partially partially

[11] 2009 6 partially - - X - X X

[17] 2010 5 partially X - - partially partially partially

[22] 2017 6 all X - - partially X X

[23] 2020 4 machine
learning

- X - partially partially partially

[24] 2018 4 machine
learning

X - - partially partially X

[25] 2019 5 machine
learning

X X - partially - partially

[26] 2019 6 outlier
detection
progress

- - X partially X X

Figure 7. outlier detection techniques for IoTs.

3.1. Statistical-Based Techniques

From the first techniques for outlier detection problems, we find those based on the
statistical approaches. These techniques assume or estimate a statistical model (probability



J. Sens. Actuator Netw. 2022, 11, 4 10 of 31

distribution) that captures the data distribution and test how data values match the model.
A data value is considered as an outlier if the probability generated by this model is very
low. The statistical-based techniques are divided into two sub-categories [17]:

• Parametric techniques: include methods with knowing data distribution, which means
that data is generated from a well-known model, for example, a normal distribution
model. In this case, the distribution parameters are estimated based on available data.
When a data value is highly different from the data model, it is considered an outlier.

• Non-parametric techniques: include methods with no known data distribution, which
means that they are depending on a distance measure between the new data value
and the statistical model. Then, define a threshold on this distance value to decide if
the observed value is an outlier or not. In these techniques, it is not easy to define or
to choose this threshold.

The histogram and the kernel function are the most commonly used approaches
in this category. The Histogram technique [28] includes counting and estimating the
occurrence rate of different data values by calculating the possible occurrence of a data
value. Furthermore, the histogram technique includes comparing the test data value with
histogram categories to check if it corresponds to one of them. Kernel functions [29]
calculate the probability distribution function (PDF) for the normal data values. If the new
data value has a low PDF, then it is considered as an outlier. In what follows, we present a
brief discussion of some recent works that match this category.

In [30], authors proposed a distributed fault detection (DFD) algorithm for WSN,
where each sensor node cooperates with its neighbours to send and receive data to detect
and identify the faulty nodes. This technique is called the neighbouring coordination
technique. After that, a statistical z-test will analyse collected data at each node to decide
on its soft outliers and predict those of its neighbours. This test uses a normal distribution,
and its accuracy is high if more data are collected. As a result, they have less communication
overhead, with high DR and low FAR.

In [31], authors proposed a distributed methodology for outlier detection in real-
time series WSN. It considers the spatial-temporal correlation to identify data values’
normality and to distinguish between errors and events. Each node detects temporal
outliers based on the Autoregressive and Moving Average (ARMA) prediction model.
Then, it communicates with its neighbours to see if those detected outliers are also spatially
outliers. This methodology is called temporal and spatial real data-based outlier detection
(TSOD), and it has some unavoidable communication overhead.

In [32], authors proposed an online and distributed approach for estimating outliers
in hierarchical WSN based on a histogram, with no need for a verification procedure to
identify outliers. They prove through a theoretical study that the error of a new estimate is
minimal. Their approach is efficient and has low complexity.

In [33], authors proposed an approximation adaptive kernel density estimator (AKDE)
approach. They calculate the PDF based on the kernel density estimation (KDE) method for
online outlier detection in data streams. They prove that their algorithm is better than KDE.

In [34], authors proposed an online adaptive algorithm based on the ARMA model,
which can detect and replace outliers dynamically. In addition, this algorithm can achieve
the demand of the real-time radar’s healthcare application. Their algorithm can analyze
the correlation of neighbourhood information to model them using ARMA. Their model
has speed modelling and predicting on comparison with SVM and neural networks.

In [35], authors proposed an IoT architecture for detecting errors and events based
on four statistical models. Their models depend on the spatial-temporal correlation. They
use the Classification and Regression Trees (CART) model to divide the data, and build
a prediction model of each partition. Then, they have a decision tree as a result of this
classification. They also consider the prediction error for correct classification. After that,
they use the Random Forest (RF) model to obtain multiple trees. The Gradient Boosting
Machine (GBM) is also used as another classification and regression model. Finally, the Lin-
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ear Discriminant Analysis (LDA) model is also used as a linear classifier that distinguishes
between classes based on features or parameters.

In conclusion, we can say that the statistical techniques perform well if the distribution
model is rightly defined and there is no need for the data used in building the model. As we
mentioned before, this previous knowledge of data distribution is not always available or
not easy to obtain. The outliers with temporal correlation in the data set can be detected
using statistical techniques. The change in data distribution will reduce this correlation and
help detect outliers in streaming data. The parametric techniques are not suitable for the
sensor data of IoTs applications. The non-parametric techniques are not efficient to work
with multivariate data because it is computationally very costly.

3.2. Clustering-Based Outlier Detection Techniques

Clustering techniques are frequently used in the data mining field. These techniques
group similar data values into clusters with similar behaviour. Data values are considered
as outliers if they do not belong to clusters or if their clusters are much smaller than other
clusters. The identification of outliers depends on the assumption that normal values
belong to a large cluster. Meanwhile, outliers belong to small clusters or do not belong to
any cluster. These techniques use metrics to measure the similarity between the data values
(for example, the Euclidean distance). Moreover, they use inter-/intra-cluster distance
thresholds and the cluster width. These parameters are not easy to choose and must be
correctly selected to have efficient results. The clustering techniques gather similar data
values into clusters and merge some clusters to reduce the communication cost. In what
follows, we present a brief discussion of some recent works that match this category.

In [36], authors proposed an unsupervised approach for outlier detection and clus-
tering (ODC) based on a modified K-means algorithm. They consider a data value as an
outlier if the average distance is p times far from its centroid. Then they remove the outlier
data values from the data set to enhance the clustering process.

In [37], authors proposed an outlier detection algorithm for IoT based on big data
processing and k-means algorithm. Their approach uses the Hadoop framework and
MapReduce to deal with distributed big data and use the Mahout machine learning library.
They also extend the middleware LinkSmart of IoT architecture. They implement and
integrate their algorithm with this middleware which is a part of the Hydra middleware
project [38].

In [39], authors proposed a new algorithm based on the Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) clustering algorithm. They implement their
modified algorithm of DBSCAN using SCALA programming language over Apache Spark.
Their algorithm also uses a Resilient Distributed Dataset, which is called RDD-DBSCAN.
Their distributed algorithm can deal with two-dimensional data set. It overcomes the
limitation of the normal DBSCAN and MapReduce model in dealing with massive data set.

In [40], authors proposed two algorithms for outlier detection and removal using an
outlier score. The first one is distance-based, which operates with the Euclidean distance
to determine data value similarity. The second one is cluster-based, which operates with
the k-means and Euclidean distance. They use two outlier scores, F-score and likelihood
ratio, to evaluate clusters quality and remove outliers. They utilize the health care dataset
founded in the statistical computing project R. They prove that the second algorithm has
better accuracy than the first one when choosing the correct outlier score.

In [41], authors proposed an online approach for density-based outlier detection on big
data. This approach includes two steps and is based on computing the Local Outlier Factor
(LOF) [42]. During the first step, the Grid-Based Partitioning (GBP) algorithm divides the
data into grides and allocates them to the distributed nodes in the network. In the second
phase, the Distributed LOF Computing algorithm (DLC) detects density outliers in parallel.
Their algorithm can overcome the high complexity when dealing with a high dimensional
data set, and it is efficient to save the network resources.
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In [43], authors proposed a new outlier detection method in the time series data
set. Their approach combines DBSCAN and a soft sensor modelling process to solve the
problem of choosing DBSCAN input parameters. It also uses the training errors and the
testing errors to adjust these parameters. Their method has better performance than the
traditional DBSCAN.

In [44], authors proposed a new distributed outlier detection algorithm for WSN based
on clustering and segment-based manner. Their algorithm uses the Kullback–Leibler (KL)
divergence and kernel density function. This algorithm detects the outliers which remain
for a long period in the network. It reduces the communication overhead but still suffers
from the computational cost of the high dimensional data.

In [45], authors proposed a new fog computing outlier detection method in IoT. Their
method overcomes the high latency of multi-hop transmission of centralized approaches
and the high energy consumption of the distributed ones. All data values directly go to
the fog nods to detect outliers. They proposed two algorithms, the Ellipsoidal Neighbour-
hood Outlier Factor (ENOF), which is based on LOF, and the hyperellipsoidal clustering
algorithm (HyCARCE). The first one detects outliers with high efficiency and low cost of
computation. The second one solves the problem of prior knowledge of cluster parameters
by choosing them automatically.

In [46], authors proposed a new process for outlier detection in WSN based on the
DBSCAN algorithm. They use two modules; the first one for parameter computations
such as the minimum radius of accepted cluster threshold (Eps), and the second for class
identification in a spatial-temporal dataset. Their method gives better accuracy for detecting
outliers with small FAR compared to [31].

In [47], the authors proposed an algorithm for outlier detection based on clustering
in real big data. Their algorithm decreases the compactness of clusters while increasing
separation from each other based on the distances between their centroids. Their algorithm
detects outliers with higher accuracy than the k-means algorithm for different multivariate
real datasets.

In [48], authors proposed an algorithm for outlier detection based on k-means cluster-
ing and outlier removal (KMOR). Their algorithm creates an additional cluster to group all
the outliers inside naturally during the clustering phase. The extended k-means algorithm
can cluster the data and detect outliers simultaneously, with good performance better than
the ODC algorithm in [36].

In [49], authors proposed a solution for anomaly detection in IoT smart city applica-
tions. Their approach was based on fog computing and used the Low Power Wide Area
Network (LPWAN) technologies. They use Antwerp’s City of Things testbed to develop
and evaluate their solution. They find a similar performance of Birch clustering and robust
covariance (RC) techniques with fog computing.

In [50], authors proposed a new model for outlier detection in IoT big data. Their model
is based on DBSCAN and uses a multi-dimensional resilient distributed dataset (NRDD-
DBSCAN). They proved that their model is suitable for IoT applications in comparison
with the normal DBSCAN algorithm. They also confirmed that their model is better than
the RDD-DBSCAN [39] in dealing with multi-dimensional data set.

In conclusion, we can say that these techniques do not require any previous knowledge
of data distribution. They are suitable for increment data, since new data values can be
added to clusters and tested for outliers after learning the clusters. Furthermore, the testing
phase is fast because the number of clusters is a small constant that needs to be compared
with each test data value. Finally, determining the distance between two data values in a
multivariate data set adds significant computational overheads.

3.3. Nearest Neighbour-Based Techniques

These techniques are frequently used in data mining and machine learning to evaluate
a data value concerning its KNN. They use many well-known distance notions to calculate
the distance (similarity measure) between two data values. If a data value is placed far
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from its neighbours, it is declared as an outlier. There are many examples of these distance
notions, such as:

• Euclidean distance, which is suitable for univariate data.
• Mahalanobis distance (MD), which is suitable for multivariate data.
• Hamming distance.

In what follows, we present a brief discussion of some recent works that match
this category.

In [51], authors proposed a neighbour-based algorithm for incremental outlier detec-
tion in streaming data. Their algorithm is based on the property of the sliding window,
which is called “predictability”. It is applied to the expired data values, to discover which
data value may become an outlier or not. Their algorithm achieves minimal CPU and
memory costs.

In [52], authors proposed a Micro Cluster-Based Continuous Outlier Detection (MCOD)
algorithm in continuous data streams. Their algorithm is based on the sliding window
and micro cluster to decrease the number of distance calculations. They consider that the
data values are grouped in a micro-cluster. Its radius is the half radius of the containing
cluster, and these values could not be outliers. Their techniques minimize the storage cost,
and they are faster and have good flexibility in comparison with [51].

In [53], authors propose a framework called KNN-LEAP for outlier detection in
streaming data. Their framework is based on the minimum search of neighbours and
the priority of processing the data values on their arrival time. They consider that the
data values received later are more important than data values received earlier. Their
framework could reduce the CPU consumption and the space cost in comparison with the
work presented in [52].

In [54], authors present an evaluation of their method for unsupervised outlier detec-
tion in WSN data based on the KNN algorithm. This approach is called data nearest for
outlier detection (DNOD). The algorithm analyzes the learning data collected from sensors.
It uses the neighbourhood data without considering the parameters of KNN to distinguish
the abnormal from the normal values. They prove that the DNOD algorithm has fair DR,
good accuracy, and low FAR.

In [55], authors proposed an algorithm for outlier detection. It determines the outlier
score, which is called the Relative Density-Based Outlier Score (RDOS). Their algorithm
uses the KDE method to estimate the density distribution of each node locally, based on
modified KNN of the node. They try to test many neighbourhood methods such as KNN,
reverse nearest neighbour, and shared nearest neighbour. Their approach gives better
performance than LOF [42].

In [56], authors proposed a distributed online unsupervised anomaly detection in
sensors data. It is based on local neighbourhood information fusion. Using many real-life
datasets, they study and evaluate the neighbourhood size and spatial-temporal correlation
on their approach. They prove that their system improves outlier detection under the
assumption of data correlation.

In [57], authors proposed a novel Grid-based Approximate Average Outlier Detection
(GAAOD) framework based on the KNN algorithm in IoT streaming data. Firstly, they
used a self-adapted grid index file based on a sliding window to manage streaming data
by filtering data values that are not outliers. After that, they used the min-heap algorithm,
which is based on the index file, to calculate the approximate distances between data values
and their KNN. Finally, they use the k-skyband method to maintain the data values which
become outliers in the window. Their framework solves the problem of the proper selection
of distance threshold, with low computational cost and better performance in comparison
with the KNN-LEAP algorithm [53].

In conclusion, we can say that the nearest neighbour techniques need a distance metric
to express data similarity. These techniques do not assume any previous knowledge of data
distribution. Furthermore, they are straightforward and could be applied to different data
types, but they have high computational costs while computing the distance measure in a
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multivariate dataset. These techniques have the problem of choosing the appropriate input
parameters. Thus, the incorrect choice of the threshold will give a high false-negative rate
of outlier detection.

3.4. Classification-Based Techniques

The classification-based techniques define a classification model (classifier) by using
some data values as training values. The classification comprises two phases: the training
phase, in which a classifier learns from the values in the available data set, and the testing
phase, in which the data values are classified into normal or abnormal (outlier) groups.
Additionally, new training is needed for the new arrival data values. In what follows, we
present a brief discussion of some recent works that match this category.

In [58], authors proposed an adaptive online One-Class Support Vector Machine
(OCSVM) outlier detection algorithm for WSN. They consider the spatial-temporal corre-
lation between sensor’s data values. Their algorithm has better accuracy and a low FAR
compared to earlier algorithms for WSN.

In [59], authors proposed two approaches: the first one is Centered Hyperellipsoidal
Support Vector Machine (CESVM). The second one is a distributed hyperellipsoidal one
class Quarter-Sphere Support Vector Machine (QS-SVM) for WSN. The two approaches
have high DR and accuracy rates for different real-life and synthetic datasets. The QS-SVM
extends the SVM to be an unsupervised learning algorithm. It has less communication
overhead and a comparable accuracy compared with the CESVM centralized approach.

In [60], authors proposed an approach for outlier detection in WSN based on Spatial-
Temporal-Attribute one class Quarter-Sphere Support Vector Machine (STA-QS-SVM). They
did not only consider the spatial-temporal correlation between sensor nodes, but they also
used the attributes correlation of sensor nodes to detect errors and events. Their approach
has better performance than QS-SVM [59] and ST-QS-SVM approaches. This performance
increases as the number of attributes increases, since this will affect the training quality of
SVM. As a result, this will increase the DR and decrease the FAR.

In [61], the authors proposed two online techniques based on hyperellipsoidal OCSVM
for outlier detection in WSN. They consider the spatial-temporal correlation and the corre-
lation of data attributes to detect outliers. They update the hyper-ellipsoid SVM model to
overcome the problem of FAR, and have good outliers identification. Their algorithms give
better DR and FAR than the other SVM models.

In [62], authors present a new outlier score scheme named Hyperellipsoidal Neigh-
bourhood Outlier Factor (ENOF). They also proposed a distributed mechanism for outlier
detection and scoring the outliers in WSN, based on ENOF with multiple hyperellipsoidal
clusters. This mechanism is suitable for networks with constrained resources such as WSN
and IoT. Their approach has better performance than the centralized mechanism.

In [63], authors proposed an Adaptive Distributed Outlier Detection (ADOD) approach
for WSN. Their proposal is based on probabilistic inference on Bayesian networks. It
enhances the classification accuracy, execution time, and communication cost.

In [64], authors proposed a Distributed Bayesian Algorithm (DBA) for fault detection
in WSN. They use the Bayesian networks to calculate the fault probability by exchanging the
data values between the neighbouring nodes. After that, this probability will be adjusted.
If the fault probability of the sensor node exceeds a certain level of probability threshold,
they consider this node a faulty node. Their approach has better performance than the
originally distributed fault detection (DFD) discussed in [65] with low FAR and high DR.

In [66], authors proposed an online outlier detection algorithm based on Least Squares
One-Class Support Vector Machine (LS-OC-SVM) classifiers. These classifiers detect outliers
in large power grid streaming sensor data. They implement their algorithm using the IEEE
14 bus test system and prove that it has low computation cost and memory usage.

In [67], authors proposed a new threshold-free error detection (TED) approach for
industrial wireless sensor networks (IWSN). They get rid of the selection of the correct
predefined threshold. In addition, they use the temporal correlation between the data
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values of the sensor node and the spatial correlation between the neighbouring nodes.
This approach is based on two phases; the first is the training phase, and the second is the
diagnosis phase to build the OCSVM model. This model is transferred to the base station
to detect outliers. Their approach improves the DR and reduces the FAR.

In [68], authors proposed an algorithm for outlier detection in IoT big data. Their
method is based on the One-Class Support Tucker Machine (OCSTuM) algorithm. They
also proposed another Genetic Algorithm (GA-OCSTuM) for parameters optimization and
selection of features and to solve the problem of the time-consuming iterative method.
These two algorithms extend the OCSVM to solve the problem of high dimensional data.
The previous vector-based algorithms with big data may destroy the correlations and the
structural information among data and thus may have low DR and loss of some outliers.
Their algorithms have better DR, but they have higher execution times than the previous
ones due to the iterative steps of the algorithm.

In [69], authors proposed a Distributed Outlier Detection algorithm (DODS) in WSN,
based on considering the temporal correlation of data values. They achieve their approach
using a Bayesian classifier in an interesting region (IR). Their algorithm is energy efficient,
and it reduces the communications between neighbours, while achieving higher DR and
lower FAR compared to [70,71].

In conclusion, we can say that most of these techniques are unsupervised, which
means that they do not need previous knowledge of labelled training data. Moreover, they
do not have an explicit statistical model or estimated parameters. These techniques have
optimal detection of outliers, but their computation cost is greater than that of statistical
and clustering techniques.

3.5. Artificial Intelligence Techniques

Artificial intelligence techniques are the recent approaches for the identification of
outliers in IoTs. Neural networks (NN) and fuzzy logic are examples of these techniques.
They are based on decision-making theories. The NN is a logical model that provides
a global overview and makes decisions using the entire data set. The fuzzy logic is a
technique used to distinguish between the normal data values using distinction values
such as (yes/no, right/wrong), which can be helpful in outlier detection issues. In what
follows, we present a brief discussion of some recent works that match this category.

In [72], authors proposed an algorithm for Fault Detection and Isolation (FDI) in
WSN using the Fuzzy Knowledge-based Control (FKBC). Their algorithm detects faulty
communications between nodes using a clustering framework. The cluster heads exchange
the challenge-response messages with nodes to see if they are faulty or healthy. Their
algorithm also adopts the Bayesian approach to observe and estimate the reputations of
nodes in the network.

In [73], authors proposed a Heterogeneous Fault Diagnosis (HFD) protocol for WSN.
It includes three phases: a clustering, fault detection, and fault classification. Their protocol
is based on a time-out mechanism for complex faulty node detection. It is also based on a
statistical method called the Analysis of Variance (ANOVA) test for soft faulty detection.
The classification phase compares the data values of faulty sensors with the data values
of normal sensors and classifies them based on the Probabilistic Neural Network (PNN).
Their approach performs better than the DSFD algorithm according to [74].

In [75], the authors proposed a two-part algorithm. The first part is a Distributed
Anomaly Detection Autoencoder on Sensor node (DADA-S). The second part runs in IoT
Cloud (DADA-C) for detecting outliers in WSN or, more broadly, in IoT. They used an
autoencoder neural network which is a deep learning model. The detection process is dis-
tributed on the sensors directly without communicating with other sensors or turning back
to the cloud. Thus, the communications, computations cost, training tasks are transferred
via the cluster head and reduced in the IoT cloud with low overheads on sensors. In addi-
tion, Their algorithm uses the feature of unsupervised learning of the auto-encoder neural
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networks. Thus it could be adaptive to dynamic changes in the environment, and achieve
high DR and low FAR.

In [24], authors present the advantages and the disadvantages of some ML approaches
for WSN. They concentrate on Bayesian algorithms which are supervised machine learning
algorithms, and can be used to calculate the missing data values and detect outliers in
WSN. They suggest using the Bayesian Belief Network for classification, which compares
the data value behaviour characteristics with other data values. Furthermore, they use the
COMIS (Component Oriented Middleware for Sensor network) to solve the problem of big
data sensors.

In [76], authors present a distributed soft fault detection scheme for non-linear stochas-
tic systems based on IT2 T-S fuzzy models filters for WSN. They assess the performance
of the Lyapunov functional approach of the fault detection system. Their approach can
reduce the computational cost with fewer decision variables.

In [20], authors propose an algorithm that used three input fuzzy inference systems
(FIS) with 27 developed fuzzy rules which help in decision making. Their algorithm
detects sensor hardware faults such as battery, transmitter, and receiver circuit errors in
IoT. The conditions of these hardware elements are measured and used as input to the FIS
system. Their approach gives high accuracy and low FAR compared to the Faulty Detection
WSN (FDWSN) approach [77].

In [78], authors proposed a Distributed Fuzzy Logic-Based Faulty Node Detection
(DFLFND) algorithm for heterogeneous WSNs. Their scheme used the spatial-temporal
correlation and can detect and isolate faulty nodes and discover interesting events. Each
node has a fuzzy logic controller (FLC) to weight its sensed data values with the data values
of its neighbours. The nodes use a voting algorithm based on weights to detect the faulty
node. If the neighbouring nodes have sensed data values that are different from the data
values of the tester node, it is considered as a faulty node and goes to sleepy mode.

In [79], authors proposed a distributed green fault detection scheme for IoT-enabled
WSN based on a vague set, which is a further generalization of a fuzzy set. It depends
on interval-based membership instead of point-based membership. So, this vague set
has more power to detect the vagueness data. Their algorithm diagnoses sensor fault,
battery fault, receiver fault, transmitter fault, and microcontroller fault. They prove that
this model achieves better detection accuracy and low FAR than DFD [30], DSFD [74]
HFD [73], and DFLFND [78].

In [80], authors investigate the prediction-based and the pattern recognition-based
outlier detection techniques. These techniques are for IoT cloud-based indoor climate
control vertical plant walls systems. They prove that the autoencoder neural network is
better than other methods in detecting point outliers. They also confirm that the long
short-term memory encoder-decoder (LSTM-ED) is better at detecting contextual outliers.

In conclusion, we can say that techniques based on artificial intelligence could work
with fragmented, noisy, or limited data, and they are capable of generalizing with such
data. They hardly build the model because of the need for more fine-tuning before working
in real applications. When adding new data or rules, there is no need for further training
for the system. They are rule-based techniques, so for example, when dealing with the
spatial-temporal correlation of data, this will increase the number of rules needed. As a
result, it will not be suitable for the resource-constrained sensors. The rules number will
add more computational cost, consume more memory, and finally affect the DR.

3.6. Spectral Decomposition Techniques

In these techniques, the principal component analysis (PCA) is used to simplify and
reduce the dimensions of the data set. It generates a new uncorrelated subset of data
(components) which reserves the maximum variance to find the normal behaviour of data
before detecting outliers. The data values that are not well reconstructed or deviated from
the variability of the top few principal components are considered as outliers. In what
follows, we present a brief discussion of some recent works that match this category.
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In [81], authors develop an online outlier detection model for WSN. It is based on mea-
suring the variation of sensor data values using the principal components space. This tech-
nique is distributed over the network, and it achieves high DR and low energy consumption.

In [82–84], the authors proposed a new outlier detection technique based on kernel
principal component analysis (KPCA). They use the MD for outlier detection in WSN and
compare it with a predefined threshold to separate the outlier values from the normal ones
instead of comparing with the reconstruction error (RE). The outlier value is a measured
data value that deviates from the principal subspace of the normal data. If the MD is
more significant than their specific threshold, they consider the data value as an outlier;
elsewhere, it is a normal data value. They prove that this approach (KPCA-MD) is better
than the KPCA with a training set (KPCA-RE) and OCSVM algorithms regarding the
accuracy rate and FAR.

In conclusion, we can say that PCA-based techniques can be used with a vast amount
of data with multiple attributes. It is not easy to find suitable components that capture the
regular data pattern and need high computational cost.

3.7. Hybrid Techniques

The hybrid techniques are coming to combine more than one solution to overcome the
disadvantages of previous solutions. By this merging, we can obtain good results, as we
will see in the following works.

In [85], authors proposed a distributed approach for outlier detection in WSN based
on fixed-width clustering algorithm and KNN. They reduced the communication overhead
and balanced the load by clustering the data values locally at each node. Then, the clusters
summary of each node is sent to the parent node to merge similar clusters based on
the cluster width. They repeat this until reaching the main station, which will detect
the outliers by calculating the inter-cluster distance using the KNN parameters. Their
distributed algorithm has better performance than the centralized algorithm.

In [86], authors proposed a hybrid outlier detection technique named SVM-KNN
for WSN. Their approach is based on SVM and KNN. The SVM benefits from the spatial-
temporal correlation between sensor nodes. However, this will add more overhead to
the training phase. Thus, the KNN reduces the training samples scale to optimize and
reduce the training time in SVM. Then they use a kernel function to map the samples into
the future space. Their technique has good performance and reduces the overhead of the
spatial-temporal correlation in large scale data set.

In [70], authors proposed a hybrid cluster-based and nearest neighbour-based ap-
proach for outlier detection in WSN. However, they consider the advantage of spatial-
temporal correlation to classify the outliers and distinguish between errors and events.
Their experimental results have higher accuracy and DR for identifying outliers and in-
teresting events than [71]; which is an event detection method based on a distributed
collaboration among neighbour nodes.

In [87], authors propose a new algorithm for anomaly prediction in data streams based
on PCA, information entropy theory, and support vector regression. The data feature and
the entropy feature matrixes are generated from a sliding window, then the PCA analyses
and treats the matrixes. Finally, the support vector regression model will predict anomalies
by comparing components and newly coming data values.

In [88], authors proposed a Recursive PCA (R-PCA) algorithm based on k-means
clustering for outlier detection in IoT systems. The clustered data is gathered and sent to
the cluster heads where the R-PCA will be applied considering the spatial correlation and
the dynamic changes in IoT data. For these changes, the parameters of R-PCA are updated
recursively. This algorithm gives better performance than PCA regarding the FAR and the
low power consumption. However, both use the Gaussian distribution of noisy data, which
will affect the detection of outliers in big data.

In [89], authors present an algorithm to detect outliers in WSN, based on DBSCAN
and SVM named HSE. Their algorithm tries to solve the problems of selecting the input
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parameters of the DBSCAN algorithm by considering the advantages of coefficient corre-
lations (CC) and enhancing the accuracy detection by using the SVM. They perform the
algorithm after selecting the suitable DBSCAN input parameters. So, the clusters with high
density are considered normal, and those with low density are judged abnormal and thus
labelled. Finally, the SVM will be trained from the normal data to classify and separate the
outlier data values from the normal data values.

In [90], authors proposed an algorithm for fault detection in WSN. It uses SVM to
classify sensor data values and detect faults based on statistical learning. The SVM is
executed at the cluster head or the sink node based on a kernel decision function to
detect faulty nodes. So, their technique, like the cloud technique, is suitable for resource-
constrained sensors. It differs from other techniques such as (Bayes, HMM and SODSEN),
where the algorithm runs on both cluster head and sensors.

In [91], authors proposed an approach for detecting abnormal data values in smart
homes IoT devices. It is based on statistics and machine learning techniques. In their
process, they sniff and collect the sensed traffic data, which is exchanged between sensor
IoT devices and the gateways. Then, they try to classify these data into different behavioural
templates according to a set of features predefined statistically. These templates will be
used later to detect the anomalies that deviate from the expected behaviour according to a
specific threshold. The selection of a bad threshold can affect the rate of FAR.

In [92], authors propose a scalable outlier detection approach for IoT time-series data.
Their method works on passing the time series data into a noise filter, then performing two
steps. The first step is offline and starts by using the PCA to reduce the recorded time series
data dimensions. Then, it uses hierarchical clustering to find the clusters and the correlated
sensors data values. The second step starts offline by segmenting the time series data into
segments to minimize the data distribution effect. Then, it uses the ARIMA model for time
series data analysis to build the Long Short-Term Memory (LSTM) neural network trained
from known data set. Also, they use the statistical analysis M-estimator, and the result is
entered in the outlier detector module to detect outliers in an online manner.

In [93], the authors proposed a new anomaly detection algorithm based on deep
learning techniques. They perform their approach on their proposed Industrial IoT (IIoT)
framework called Stack4Things (S4T). Firstly, they used the data gathered from the sensors
by the S4T for training the algorithm by using two neural networks autoencoders. The two
autoencoders are responsible of first dimension reduction, they attempt to learn an efficient
encoding of the input data, and the resulting data will be stored in a specific layer, called
code layer. Secondly, they use PCA to reduce data dimensions better and and transform
them to get the few principal components. Finally, they use the k-means clustering to detect
the outliers as their distance from the centroids.

In conclusion, we can say that these hybrid techniques can take advantage of two or
more techniques to achieve the requirements of an optimal outlier detection technique.
The merging of different operations may increase the computational cost and consume the
sensor resources.

4. Comparative Study of Outlier Detection Techniques in IoT:

In what follows, we provide a summarizing comparative table for each category.
In each table, we compare works that present techniques belonging to the same category.
For each work, we mention the year of the publication, the keywords contribution, the na-
ture of data used by the algorithm, the adopted approach as discussed in Section 2.2,
and finally, which application type the work is suitable for (IoT, WSN, streaming data, etc.).
In all tables, we note by ’-’ the fact that the used approach is not well mentioned or defined
in the concerned work.

We can see from Table 2 that all listed works share some same approaches like being
online (except the last one), dealing with univariate data and focusing on outlier detection.
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Table 2. Comparative Table of Statistical Based Techniques.
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[30] 2012 z-test, neighbour-
ing coordination

Simulation X x X x X x x X x X x WSN

[31] 2012 TSOD, ARMA
model

Experiments on real
data

X x X x X x X x X X X WSN

[32] 2012 Histogram Experiments on real
data

X x X x X x x X x X x WSN

[33] 2015 AKDE–kernel,
PDF

Experiments on real
and synthetic data

X x - - X x x X x X x Streaming data

[34] 2015 ARMA model radar’s health obser-
vations

X x x X X x X x x X x -

[35] 2018 4 Statistical mod-
els: CART, RF,
GBM, LDA

Simulation on real col-
lected data

x X x X X x X × X X X IoT

We can see from Table 3 that all listed works share some same approaches, like being
unsupervised and focusing on outlier detection.

Table 3. Comparative Table of Clustering Based Techniques.
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[36] 2013 K-means Experiments on real
and synthetic data

- - - - x X x X x X x -

[37] 2015 K-means, Bigdata,
Hadoop, Mahout,
MapReduce

Implement on Real
data

x X - - - - x X x X x IoT Big Data

[40] 2015 Cluster-based K-
means, Distance-
based, Euclidean
distance

Simulation on R x X - - X x x X x X x -

[39] 2015 RDD-DBSCAN Synthetic data set - - X x X x x X x X x -

[41] 2016 Clustering LOF Experiments on real
data

X x X x x X x X x X x Big Data
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[43] 2016 DBSCAN, Soft
sensor modeling

Experiments on real
data

- - - - X x x X x X x Time Series Data

[44] 2016 KL divergence,
Kernel density
function

Experiments on real
data

X x X x x X x X x X x WSN

[46] 2017 DBSCAN Experiments on real
and synthetic data

X x X - X x x X x X x WSN

[45] 2017 Clustering, ENOF,
Fog computing

Experiments on real
and synthetic data

X x x x x X x X x X x IoT

[47] 2017 Clustering Experiments on real
and synthetic data

- - - - x X x X x X x Big Data

[48] 2017 K-means, KMOR Experiments on real
and synthetic data

- - - - x X x X x X x -

[49] 2018 Birch Clustering,
RC, Fog comput-
ing, Air quality
monitoring

Antwerp’s City of
Things testbed

- - x x x X x X x X x IoT

[50] 2020 NRDD-DBSCAN synthetic data set - - X x x X x X x X x IoT

We can see from Table 4 that all listed works share some of the same approaches, like
being unsupervised and focusing on outlier detection.

Table 4. Comparative Table of KNN Based Techniques.

Work and
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[51] 2009 neighbour-based
sliding window,
monitoring

Experiments on real
and synthetic data

- - - - x X x X x X x Streaming Data

[52] 2011 MCOD Sliding
window

Experiments on real
and synthetic data

- - - - X x x X x X x Streaming Data

[53] 2014 KNN-LEAP Experiments on real
streaming datasets

- - - - x X x X x X x Streaming Data
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Table 4. Cont.
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[54] 2016 DNOD Experiments on real
and synthetic data

x X - - X x x X x X x WSN

[55] 2017 RDOS, KDE Experiments on real
and synthetic data

- - - - X x x X x X x -

[56] 2017 neighbourhood
information

Experiments on real
data

X x X x x X x X X X X WSN

[57] 2020 GAAOD,
neighbour-based

Experiments on real
data

- - - - x X x X x X x IoT

We can see from Table 5 that all listed works share some same approaches like focusing
on outlier detection. Furthermore, all of them are suitable for WSNs or IoTs applications.

Table 5. Comparative Table of Classification Based Techniques.

Work and
Year
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Key Words Nature of Data
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[58] 2009 OCSVM Experiments on real
and synthetic data

X x X x - - x X X X x WSN

[59] 2010 QSSVM Experiments on real
and synthetic data

x X X x x X x X x X x WSN

[60] 2012 STA-QS-SVM Experiments on syn-
thetic data

X x X x x X x X X X X WSN

[61] 2013 hyper-ellipsoid
OCSVM

Experiments on real
and synthetic data

X x X x x X x X X X x WSN

[62] 2014 ENOF Experiments on real
and synthetic data

- - X x x X - - x X x WSN

[63] 2015 Bayesian Experiments on real
and synthetic data

X x X x - - X x - X x WSN

[64] 2015 Bayesian Simulation - - X x X x X x x X x WSN

[66] 2016 LS-OC-SVM Experiments on two
dimensions synthetic
data

X x - - X x x X x X x Power
Grid
Sensor
Data
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Table 5. Cont.

Work and
Year

Contribution
Key Words Nature of Data
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for
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[67] 2018 TED-OCSVM, Moni-
toring

Experiments on real
data and simulation
data

x X x X - - X x X X x IWSN

[68] 2019 OCSTuM, GA-
OCSTuM

Experiments on real
data

x X x X x X x X x X x IoT Big
Data

[69] 2019 DODS, Bayesian clas-
sifier

Experiments on real
and synthetic data

x X X x X x X x T X x WSN

From Table 6, we can see that all listed works share some same approaches like dealing
with univariate data (except the third one) and focusing on outlier detection. Moreover, all
of them are suitable for WSNs or IoTs applications.

Table 6. Comparative Table of AI Based Techniques.
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Key Words

Nature of
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[72] 2012 FKBC, clustering
framework

Simulation - - x X X x - - x X x WSN

[73] 2017 HFD, PNN Simulation and
testbed experiments

x X x X X x - - x X × WSN

[24] 2018 Bayesian Belief
Network, COMIS

Simulation - - - - - - X x x X x WSN

[75] 2018 Autoencoder Neu-
ral Network

Experiments on WSN
testbed

- - X x X x x X x X x IoT-WSN

[76] 2019 IT2 T-S fuzzy
models

Simulation on truck-
trailer system

- - X x X x - - x X x WSN

[20] 2019 FIS, fuzzy rules Simulation - - x X X x - - x X x IoT-WSN

[78] 2020 DFLFND, FLC Simulation - - X x X x - - X X X WSN

[79] 2020 Vague set Fuzzy
logic

Simulation - - X x X x - - x X x IoT-WSN

[80] 2020 Autoencoder,
LSTM

Simulation X x - - X x x X x X x IoT



J. Sens. Actuator Netw. 2022, 11, 4 23 of 31

Both works listed in Table 7 share some of the same approaches, like being un-
supervised and focusing on outlier detection. Moreover, both of them are suitable for
WSNs applications.

Table 7. Comparative Table of PCA-Based Techniques.

Work and
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Nature of
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Approach Suitable for

O
nl

in
e

O
ffl

in
e

D
is

tr
ib

ut
ed

C
en

tr
al

iz
ed

U
ni

va
ri

at
e

M
ul

ti
va

ri
at

e

Su
pe

rv
is

ed

U
ns

up
er

vi
se

d

C
or

re
la

ti
on

S/
T

O
ut

li
er

D
et

ec
ti

on

Ev
en

tD
et

ec
ti

on

[81] 2013 PCA Experiments on real
data

X x X x X x x X x X x WSN

[84] 2015 KPCA, MD, RE Experimental on real
data

x X x X x X x X x X x WSN

We can see from Table 8 that all listed works share some same approaches like be-
ing focusing on outlier detection. Moreover, all of them are suitable for WSNs or IoTs
applications.

Table 8. Comparative Table of Hybrid-Based Techniques.

Work and
Year
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Key Words

Nature of
Data
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[85] 2006 DAD, K-NN,
Clustering

Simulation based on
real data

x X X x x X x X T X x WSN

[86] 2012 KNN, SVM, Inci-
dent monitoring

Experiments on real
data

x X x X x X x X X X x WSN

[70] 2013 K-NN, Clustering Experiments on real
data

x X X x X x x X X X X WSN

[87] 2016 PCA, information
entropy theory
support vector
regression

Experiments on real
data

x X - - x X X x x X x Streaming data

[88] 2017 RPCA, K-means Experiments on real
data

- X x X x X x X S X x IoT

[90] 2018 Statistical learn-
ing, SVM based
on Kernel func-
tion

Experiments on real
data

- - x X x X X x x X x WSN
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Table 8. Cont.
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[89] 2018 DBSCAN, SVM Experiments
on real data

x X x X x X x X x X × WSN

[91] 2019 statistic,machine
learning

Real smart
home dataset

- - x X - - X x x X x IoT

[92] 2020 Hierarchical
clustering,
LSTM Neu-
ral Network,
M-estimators

Experiments
on real data

X

(Step 2)
X

(Step 1)
x X X x x X x X x IoT

[93] 2020 Deep learning,
Neural Net-
works, PCA,
K-means

Industrial S4T
framework
created data
and synthetic
data

- - x X X x x X x X x IoT

Summary of Outlier Detection Techniques

Table 9 summarizes the discussed outlier detection techniques categories, while high-
lighting the advantages and disadvantages of each one:
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Table 9. Comparative Table of Pros and Cons of Outlier Detection Techniques.

Technique Pros Cons

Statistical
Based 1. Can be used with temporal correlation to detect outliers.

2. Detect outliers efficiently if the correct probability distribu-
tion model is defined well.

3. The basic information used to build the model is not
needed later.

1. In real life no previous knowledge of data distribution, so
the parametric models are not helpful.

2. It is challenging to choose a proper threshold for evalua-
tions.

3. High computational cost for dealing with a multivariate
dataset.

4. Non-parametric models are unsuitable for real-time and
big data IoTs situations.

5. Non-parametric models are unsuitable for the multivariate
data.

Clustering
Based 1. Require threshold metric choice to express data similarity.

2. Suitable for IoTs temporal data.
3. Unsupervised.
4. The testing phase is fast because the number of clusters

value is a small constant, which needs to be compared with
each test data value.

5. Can easily be adaptable to an incremental data mode where
new data values can be added to clusters and tested for
outliers.

1. High computational cost with outlier detection in multi-
variate data.

2. Unsuitable for resource-constrained sensors due to the
computation cost

3. Cannot handle changes in the IoT data over time.

Nearest
neighbour
Based

1. Simple to apply to different types of data in IoTs situations.
2. Need distance metric to be defined to express data similar-

ity.
3. Do not need supervised learning.
4. No assumptions need about the data distribution.

1. High computational cost for calculating the distance in a
multivariate dataset.

2. The detection accuracy is variable and unpredictable.
3. Lack of scalability in the context of IoT.
4. Suffer from determining the appropriate input parameters.
5. An incorrect threshold will give a high FAR

Classification
Based 1. No need for an explicit statistical model or estimated pa-

rameters.
2. Suitable for a multidimensional data set.
3. Offer an optimum classification solution of outliers.
4. Independent of specific threshold choosing.

1. High classification accuracy but needs more computational
effort than the statistical and clustering techniques.

2. New training is needed for the newly arrived data values.



J. Sens. Actuator Netw. 2022, 11, 4 26 of 31

Table 9. Cont.

Technique Pros Cons

Artificial
Intelligent
Based

1. No need for new training for the system when adding new
data or rules.

2. Ability to work and generalize even if the sensors have
limited, fragmented or noisy data.

3. Building the model requires more fine-tuning and more
testing before working with real applications.

4. When the number of variables of sensor’s data values in-
creases, the number of rules will increase.

1. High memory consumption with increasing the number of
rules.

2. High increase in the rules number when the decision needs
for considering the spatial-temporal correlations.

PCA Based
1. It can be used with a considerable amount and multivariate

data.
2. It is challenging to capture the few suitable components.

1. High computational cost.

Hybrid
Based 1. Benefit from the advantages of one or more techniques to

implement an optimal solution for a specific application.
2. Overcome the disadvantages of one or more techniques.

1. Using many techniques may increase the computational
cost and consume the limited sensor resources.
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5. Conclusions

Outlier detection is a significant issue in IoT. With the actual growth in IoT use in
different applications, traditional data analysis methods are inefficient. Therefore, IoT needs
creative energy-efficient solutions for outlier detection that overcome specific limitations
and constraints. Many outlier detection strategies for IoT have been proposed in recent
years. In this paper, we highlight the outlier detection fundamentals while discussing the
different sources of an outlier, the existing approaches, how we can evaluate an outlier
detection technique, and the challenges facing designing such techniques. After that, we
provide a comprehensive literature review of the existing outlier detection techniques used
in IoTs and their classification. We adopt a classification based on seven main categories
that cover all previous works in the literature while highlighting the advantages and
disadvantages of each of them. Then we discuss and compare works according to their
detection efficiency, energy consumption, and communication overhead.
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