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Abstract: Artificial intelligence is a branch of computer science that attempts to understand the
essence of intelligence and produce a new intelligent machine capable of responding in a manner
similar to human intelligence. Research in this area includes robotics, language recognition, image
identification, natural language processing, and expert systems. In recent years, the availability of
large datasets, the development of effective algorithms, and access to powerful computers have led
to unprecedented success in artificial intelligence. This powerful tool has been used in numerous
scientific and engineering fields including mineral identification. This paper summarizes the methods
and techniques of artificial intelligence applied to intelligent mineral identification based on research,
classifying the methods and techniques as artificial neural networks, machine learning, and deep
learning. On this basis, visualization analysis is conducted for mineral identification of artificial
intelligence from field development paths, research hot spots, and keywords detection, respectively.
In the end, based on trend analysis and keyword analysis, we propose possible future research
directions for intelligent mineral identification.
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1. Introduction

Recent years have seen the development of artificial intelligence gaining significant
attention and providing new and effective solutions to problems in many areas, such as im-
age recognition, natural language processing, self-driving cars, and malware identification.
Geosciences is one of the fields in which there has also been a great deal of effort devoted
to the combination of traditional problems and artificial intelligence, such as using artificial
intelligence methods for the identification of rocks and minerals. For traditional methods
of mineral identification, it takes a considerable amount of time and energy, as well as
the use of expensive and specialized instruments to obtain the data needed to ensure the
accuracy of the identification. Artificial intelligence has been shown to have the potential
to contribute to intelligent mineral identification in several early experiments. In spite of
that, it has been difficult to adopt artificial intelligence methods in the identification of
minerals and there has been little progress in that direction. In recent years, breakthroughs
in artificial intelligence, including remarkable advances in deep learning methods and the
development of more and easier-to-use toolkits, have rekindled interest among geosci-
entists in artificial intelligence. Numerous exploratory studies have been undertaken to
identify minerals. Mineral identification is of great importance in the process of mineral
selection, exploration, separation, and related protection of artifacts in archaeology. It is
common to use granite [1,2] as a monument and, in certain conservation activities, such
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as laser cleaning, identifying mineral deposits on the granite surface is of great impor-
tance. By adapting to the effects of the different forming minerals on granite stone, we can
improve processing and prevent damage. Based on this development trend, this paper
summarizes the intelligent mineral identification methods using artificial intelligence and
provides a new division of the intelligent mineral identification methods; then, it analyzes
its development trend with visualization methods, expecting that mineral researchers can
quickly determine the available discriminatory routes and methods and find the most
effective way to solve the problems of different scenarios. Furthermore, it is expected that
researchers in the field of artificial intelligence will be able to comprehend the scenarios in
which existing methods are applied and identify problems and challenges that may arise
during the development of technology in this area.

The most crucial part of intelligent mineral identification is the determination of
mineral species, and there are currently two types of methods: (1) Expert systems for
mineral identification. Expert systems are computer programs that simulate the be-
havior of human experts to solve practical problems related to a specific domain of
knowledge [3]. A mineral identification expert system is essentially a computer system
that contains expertise in mineral identification. The main goal of a mineral identification
expert system is to provide expertise to the user. A well-established expert system solves
the problem of insufficient experts and reduced costs, but cannot identify minerals that
are not available in the expert system. Rule-driven mineral identification expert systems
are classified into five categories in [4]. This approach is beyond the scope of this paper.
(2) Identification method based on artificial intelligence model. This mineral identification
method is the focus of this paper. The method of model-based identification involves
using a large amount of mineral data to develop a model for the identification of minerals
utilizing artificial intelligence. During mineral identification, the data are input into the
model, and the model discriminates the mineral category corresponding to the data. The
artificial-intelligence-model-based identification method uses artificial intelligence to train
the model, i.e., the model “learns” how to identify minerals directly from the mineral data,
and can identify mineral data that are not existing in the system, which effectively im-
proves the identification accuracy. An extension of mineral identification has been greatly
enhanced by the development of this technique. In recent years, most of the scholars per-
forming intelligent mineral identification favor the model identification method; therefore,
many scholars have used this method to carry out exploratory work in mineral-related geo-
logical studies, such as mineral processing [5,6], mineral prediction [4], mineral exploration
mapping [7,8], chemical exploration anomaly mapping, geological mapping, core-drilling
mapping [9-12], and mineral phase segmentation of X-ray microcomputer tomography
data [13]. The use of artificial intelligence for intelligent mineral identification has received
increasing attention and interest from researchers, and significant progress has been made.

The birth and development of intelligent mineral identification methods have greatly
facilitated and simplified the process of mineral identification by learning the characteristic
patterns of mineral samples. The most traditional method of mineral identification is man-
ual identification based on the shape and physical properties of the mineral. This method
is simple and inexpensive, but the identification accuracy is low and time-consuming, and
the identifier requires a high level of expertise. Then, mineral identification based on data
such as X-ray diffraction, electron microprobe, and Raman spectroscopy provides better
identification accuracy, but also requires advanced experimental instrumentation and rele-
vant identification knowledge. The emergence of intelligent mineral identification methods
provides solutions for mineral identification tasks that handle big data for a variety of data
types abovementioned while achieving high accuracy rates. While greatly reducing labor
consumption in the identification process, the intelligent mineral identification method
also makes it possible to identify simpler data types with high accuracy. Typically, photo-
type data about ores can be accurately identified, which greatly reduces the reliance on
specialized instruments for data acquisition.
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Some typical methods of mineral identification using photo-type data are briefly
described in this paragraph. Ref. [14] selected rock, thin sections and segmented the
samples using Goodchild and Fueten’s edge detection algorithm. A standard feedforward
neural network type with three layers with backpropagation error correction is used, and a
genetic algorithm is used to find a near-optimal solution. Ref. [15] captured and selected
images, which were median-filtered for noise reduction and then histogram-equalized.
Experiments were initially conducted using RGB values of pixels, and in the second series
of experiments, RGB images were converted to a hue, saturation, and value (HSV) space
closer to the human conceptual understanding of color. A feedforward MLPNN with
backpropagation training algorithm is used. The activation function f in the hidden layer
is a tangent sigmoid, and in the output layer, f is a logarithmic sigmoid function, and
the neural network is implemented using MATLAB’s neural network toolbox. Ref. [16]
acquired images and marked a random set of points on the analyzed images. For each
point, its position (XY coordinates) was recorded, as well as the classification determined
by the researcher. Based on pattern recognition methods (NN, KNN) and artificial neural
network algorithms (multilayer perceptron—MLP), a multidimensional feature space
was defined to achieve an automatic classification of the structures. Ref. [17] collected
sample image sets; used photo-editing software such as Photoshop to uniformly adjust
parameters, image segmentation, and annotation of rock images; and then applied data
enhancement methods such as mirror flip and random cropping to the images. Based
on the deep learning system TensorFlow, a targeted Unet convolutional neural network
model was designed to effectively and automatically extract the deep feature information
of ore minerals and realize the intelligent recognition and classification of ore minerals
under the mirror. Ref. [18] performed data acquisition with a large amount of data and
diverse features, enhanced it with data, and expanded the original dataset using both
image flipping and image scale transformation. ResNet-18 was selected as the convolutional
neural network and SGD was used as the optimizer to implement a deep-learning-based
intelligent mineral recognition method. Ref. [19] selected the more important and common
rock and mineral images, performed extraction of internal square slices from the raw
rock images, and performed operations to expand the dataset such as image flipping and
rotation. The ResNet-50 model was used as the base model and, on this basis, a python- and
html5-based rock and mineral intelligent recognition tool is developed. This recognition
tool uses a cloud+end service model, which is a front-end service for the user’s browser
and a back-end service for the cloud server, respectively.

This paper attempts to introduce the research advances in this field, analyze the
research methods and basic paths of identification of minerals based on artificial intelligence,
show the existing specific research works, summarize these works, and provide an outlook
on the research in this field in an attempt to provide a reference for scholars to carry out
relevant research.

Our contributions are shown below.

*  In this paper, artificial-intelligence-based mineral identification models are classified
into three categories. (1) Artificial neural network. Mineral identification models
based on artificial neural networks are accurate and have a potential advantage over
other methods when, for example, Raman spectroscopy datasets are used for mineral
identification, without the need to remove fluorescence. However, artificial neural
networks require too much mineral expertise and experience to avoid overtraining
and undertraining. (2) Machine learning. In this paper, machine learning is divided
into statistical-based machine learning and rule-based machine learning. The model
is given the ability to identify minerals in the process of training the model. In the
process of training the model, certain rules are adopted to improve efficiency by
influencing the training of the model i.e., rule-based machine learning. Statistical-
based machine learning, on the other hand, requires little mineral expertise, relies
mainly on the quality of the dataset, and requires large amounts of data for training.
(3) Deep learning. The emergence of deep learning breaks the deadlock of artificial
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intelligence and is an extension of artificial neural networks. Deep learning models
have deeper hidden layers to achieve results that are as close to reality as possible;
so, deep learning has more learning power and better performance. However, the
accuracy of deep learning is highly dependent on data, and the larger the amount
of data, the higher the accuracy. In addition, the nonlinear function mapping capa-
bility is applied to the deep learning model. As a result, it reduces the computation
time for extracting features from images and improves the accuracy of the deep
learning model.

*  Visualization analysis is performed to explore the panorama of developments in
the field based on literature related to intelligent mineral identification. Specifically,
we first analyzed the development paths of the field to obtain information on the
evolution of academic hot spots and themes over time. Then, recent literature was
analyzed to explore what topics are of concern to recent scholars. Finally, based
on the taxonomy established above, we perform keyword detection analysis on the
literature related to each of the three intelligent identification methods and summarize
the focus and development trend of the research of different identification methods.
The visualization results show that a wider range of application scenarios with more
accurate identification results become the main goal pursued by scholars.

The rest of the paper is organized as follows. In Section 2, some works related to
artificial intelligence for mineral identification are given. In Section 3, the basic process of
intelligent mineral identification and the main models that are applied are presented. In
Section 4, three main models for intelligent mineral identification and other selected models
are presented. In Section 5, we collect field-related literature and perform visualization
analysis. We conclude the paper in Section 6.

2. Related Work

In this section, some of the work related to the mineral intelligence identification
survey is presented.

To present, there have been several reviews of work on mineral identification for
specific dataset types. For example, Ref. [20] summarized automatic analysis systems for
minerals based on scanning electron microscopy. Ref. [21] found that when targeting soot
identification, ultrasonic and electromagnetic wave detection techniques had the lowest
bureau limits and infrared imaging identification techniques had the highest bureau limits,
where the working environment had the most obvious limitations on infrared imaging
identification and coal rock characteristics had the most obvious limitations on reflection
spectrum identification and process signal monitoring identification. However, these works
are limited to the form of scanning electron microscopy data and do not detail how the
dataset is preprocessed by the automated mineral analysis system and what type of classifier
is used.

A further discussion of which identification methods and techniques are most appro-
priate for different forms of mineral datasets is presented. Ref. [22] discusses the application
of machine learning to intelligent mineral identification and does not further divide the
methods based on the differences and commonalities of methods such as machine learning,
nor does it address the application of other technical approaches of artificial intelligence
to mineral identification. Ref. [6] describes mineral processing challenges that may be
addressed by artificial intelligence, including increased productivity, minimal ecological
impact, and identification in mineral flotation.

In this paper, we innovatively propose to classify artificial intelligence methods and
techniques for mineral identification into three categories—artificial neural networks, ma-
chine learning, and deep learning—where machine learning is divided into statistical-based
machine learning and rule-based machine learning. It involves Raman spectroscopy, laser-
induced breakdown spectroscopy, X-ray fluorescence logging, spectral images, grayscale
images, etc.
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3. Preliminaries
3.1. Basic Process of Intelligent Mineral Identification

Despite the variety of research methods used to carry out intelligent identification of
minerals, the basic process is broadly consistent and can be summarized in four stages:
(1) Acquisition of mineral datasets. Instruments are used to acquire descriptive data of
minerals, including images, graphics, and physical data. Multiangle photographic images
of minerals, microscopic images of thin sections, and spectral images of minerals all become
important datasets for intelligent identification. (2) Preprocessing of mineral datasets.
Preprocessing the dataset by partitioning SEM images, dimensionality reduction, and image
noise reduction to improve the accuracy of the classifier in the next step. (3) Training the
mineral identification model. Artificial intelligence is used to train the discriminative model
for mineral identification. Despite the short-term development of artificial intelligence, it
has been widely used in the exploration of intelligent mineral identification and important
milestones have been achieved (see Section 4). (4) Validate the accuracy of the mineral
identification model. The model is used to discriminate the data to be identified and
obtain the category of minerals. According to the different mineral datasets, different
discriminative methods are used, the current discriminative models are also diverse, and
the accuracy rate varies greatly.

3.2. Network Architecture Overview

In this paper, we mainly classify the models used for intelligent mineral identification
into three categories. Artificial Neural Network (ANN) is a simplified model based on the
abstraction of human brain neural network. Machine Learning (ML) can find patterns in
the data, which in turn enables decision-making for uncertain scenarios. Deep Learning
(DL) can learn features directly from the data without human intervention and interpret
the data by simulating human brain mechanisms.

There are some differences between the three models in accomplishing the task of
mineral identification. ANN has good self-learning and associative storage functions
and has the ability to find optimized solutions at high speed. However, it requires large
amounts of mineral image data and can only perform accurately on trained tasks; so, it
cannot generalize well. Meanwhile, the neural network is opaque, and it is difficult to
determine the logic behind its decisions. The main use of ML in mineral identification
is supervised learning, where statistical learning, neural networks, and linear regression
are all important methods applied in the field of mineral identification. However, at the
same time, ML is still in the early exploration stage in the field of mineral identification,
and there are relatively few mature methods with high accuracy and wide acceptance. DL
can analyze a large amount of mineral data, but the generated models are very difficult to
interpret. Moreover, when the amount of data for mineral identification is limited, deep
learning cannot provide unbiased estimation of data patterns; thus, good accuracy can only
be guaranteed when the amount of data is large enough.

3.2.1. Artificial Neural Network (ANN)

An artificial neural network (ANN) is a set of multilayer perceptrons/neurons consist-
ing of three layers: an input layer, a hidden layer, and an output layer—essentially, each
layer tries to learn certain weights.

Artificial neural networks are capable of learning any nonlinear function. Therefore,
these networks are commonly referred to as Universal Function Approximators (UFAs).
Artificial neural networks have the ability to learn the weights that map any input to an
output. One of the main reasons for universal approximation is the activation function.
The activation function introduces nonlinear properties into the network. This helps the
network to learn any complex relationship between inputs and outputs.
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3.2.2. Convolutional Neural Network (CNN)

CNN is a deeply structured feedforward neural network and one of the representative
algorithms of deep learning. The research on convolutional neural networks started as
early as last century. The first convolutional neural networks that appeared were time-delay
networks and LeNet-5. Later, with the continuous improvement of technology and the
proposal of deep learning theory, CNNs developed rapidly and were gradually applied
to natural language processing, computer vision, and other fields. The main principle of
CNN is to obtain the spatial features of relevant images by convolutional kernel; adjust the
parameter size of convolutional kernel by backpropagation algorithm; and finally, obtain a
model that can obtain effective information on images. The structure of a convolutional
neural network can be mainly divided as follows: input layer, convolutional layer, pooling
layer, fully connected layer, and output layer. The structure of a CNN network is shown in
the following Figure 1.

Tl
— - — - —— — - )
Full
mm\;\\?m!
layer

| Kernel Convolution  Pooling Pooling Vectorization
ae :
mage bank laver operation layer and
- conctanation

Figure 1. CNN network structure [23].

Input Layer: As convolutional neural networks use gradient descent algorithm for
learning, their input data need to be normalized, which can effectively improve the learning
efficiency of convolutional neural networks.

Hidden Layer: The hidden layer of convolutional neural network mainly includes the
convolutional layer, pooling layer, and fully connected layer. Among them, the convolu-
tional layer is mainly used to extract the features of the image, the pooling layer is mainly
used for feature selection and information filtering, and the fully connected layer is mainly
used for classification.

e Convolutional Layer: As the central layer of the convolutional neural network, the
convolutional layer extracts different features of the input data by convolutional
operations, and it also reduces the number of parameters to prevent overfitting caused
by too many parameters. The convolutional layer can have multiple convolutional
kernels, and each element of each convolutional kernel also has corresponding weight
coefficients and deviations. When the convolutional kernel slides to each position,
it performs an operation with the input image and projects the information in its
field of perception onto the feature map. The parameters of the convolution layer
mainly consist of the convolution kernel size, padding, and step size. The size of the
convolution kernel needs to be smaller than the size of the input image, and as the
convolution kernel gets larger, the input features that can be extracted become more
and more complex. The padding process is to artificially increase the size of the feature
map before it passes through the convolution kernel to counteract the negative effects
of size shrinkage during the computation. The step size of the convolution mainly
defines the distance between two adjacent positions of the convolution kernel during
the scanning of the feature map. When its value is 1, the convolution kernel scans
every element of the entire feature map; when its value is n, it skips n-1 pixels after
each scan to continue scanning.
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The dimensionality of the convolution layer can be calculated from the filter of size
(K1,Kp,¢), the input image of fixed size (H,W,C), the step size Z;, and the number of
zero padding Z,. The calculation formula is as follows:
Dim, (Hy, Wy, Dy) = (H“Zv—kl + 1>, (w+22,,—k2 +1>,KD (1)
Zs Zs
The convolutional layer usually has an activation layer, which is usually combined
with the convolutional layer and called the “convolutional layer”. The activation layer
is a nonlinear mapping of the output of the convolutional layer, and the activation
function used is usually the ReLU function.

*  Pooling Layer: The pooling layer is in the middle of the successive convolutional
layers, which is mainly used for feature selection and information filtering. Feature
selection is mainly used to reduce the number of training parameters, thus reducing
the dimensionality of the output feature vector of the convolutional layer, while
information filtering is performed to retain only useful information, so as to reduce
the transmission of noise and also effectively prevent the generation of overfitting
phenomena. Usually, pooling layers are inserted periodically between successive
convolutional layers. The two main pooling methods are Max Pooling, which picks
the maximum value of the sliding window, and Average Pooling, which picks the
average value of the sliding window. The dimensionality of the pooling layer can be
calculated as

Hl—k+1,W1—k

D1mp(H2, Wz, Dg) = Zs Zs

+ 1/ D?‘l (2)

®  Fully Connected Layer: The fully connected layer is located in the last part of the implicit
layer of the convolutional neural network and only passes signals to the other fully
connected layers. The role of the fully connected layer is to perform a nonlinear
combination of the extracted features to obtain the output for classification, i.e., the
features obtained from the convolutional and pooling layers are classified by the fully
connected layer. The fully connected layer mainly obtains the weight of each neuron
feedback based on the weights, and then adjusts the weights and the network to obtain
the final classification results.

Output Layer: The output layer has a loss function similar to the categorical cross-
entropy, which is used to calculate the error of the prediction. Once the forward propagation
is completed, the backward propagation starts updating the weights and biases to reduce
errors and losses. For image classification problems, the output layer uses a logistic function
or a normalized exponential function to output the classified labels. For the image semantic
segmentation problem, the output layer can directly output the classification results for
each pixel.

3.2.3. Difference between ANN and CNN

ANN has only an input layer, output layer, and hidden layer. The hidden layer data
depend on the need. Each layer neuron is fully connected to the next layer neuron, and
there is no connection between the same layer and across layers. Under the condition
that the incoming data are images, ANN can only process smaller images because the
whole image is considered as a whole to learn patterns. As the image size increases, the
number of parameters to be trained increases dramatically. In addition, ANNs do not
possess translation invariance, which means that if the image is rotated or shifted, we need
to retrain the image.

In contrast, each neuron in CNN is connected to only part of the neuron in the previous
layer and only perceives the local rather than the whole image. In addition, each neuron
can be considered as a filter, and the same neuron uses a fixed convolution kernel to
convolve the whole image. Then, the CNN extracts multiple features by using multiple



J. Sens. Actuator Netw. 2022, 11, 50

8 of 24

convolution kernels. Once the CNN learns to recognize patterns in one location, it can
recognize patterns in any other location. In short, the learning (weights) can be reused even
if the image is rotated or shifted.

4. Mineral Identification Method Based on Artificial Intelligence

The development of artificial intelligence technology will lead to a new round of
industrial and technological changes with machine learning as its core technology. Machine
learning learns and recognizes complex patterns and relationships from empirical data,
extracting implicit knowledge and the ability to make inferences. For decades, scientists
have been using machine learning methods to try to solve the problem of intelligent
identification of rocks and minerals. Early experimental results validate that machine
learning holds some promise for mineral identification, but progress has been slow in
adopting machine learning methods for intelligent mineral identification more broadly.
This situation has been changing rapidly as breakthroughs in machine learning methods
on multiple levels, including tremendous advances in deep learning methods and the
emergence of more and easier-to-use toolkits, have rekindled the interest of geoscientists in
machine learning, and a growing number of exploratory studies of mineral intelligence
identification methods have emerged. This paper presents a summary of machine learning
methods applied to the intelligent identification of minerals, with the expectation that
mineral researchers can quickly identify the discriminatory paths and methods available
for adoption and find the most effective ways to solve problems in different scenarios.
Likewise, it is hoped that researchers in the field of machine learning can understand the
scenarios in which existing methods are used and identify problems and challenges that
are likely to arise from technological developments in the field.

In this paper, artificial intelligence techniques in intelligent mineral identification are
divided into three main categories, namely, artificial neural networks, machine learning,
and deep learning. Among them, machine learning is divided into statistical-based machine
learning and rule-based machine learning, as shown in Table 1.

Machine learning techniques in mineral intelligence identification are mainly rule-
based machine learning where training data class labels (classification) or target predicted
values (regression) are available and models are developed for predicting new observation
classes or values. Machine learning methods applied to intelligent mineral identification
contain several mainstream methods, including principal component analysis (PCA), partial
least squares regression (PLS), decision trees, random forests (RF), and distance metric
models. Each of them is briefly described below.

Table 1. Comparison of different machine learning methods for intelligent identification of minerals.

Identification Model Algorithm Type Main Advantages and Disadvantages

Perceptron [1,2],
Autoencoder [24],
BP neural network [13,25],
multilayer perceptron network [26]

It is possible to fit complex patterns and solve
linearly nonseparable problems.
User expertise and experience are required.

Artificial Neural Networks

The principle is relatively simple, easy to
implement, and the convergence speed is fast.
It is easy to fall into a local optimum.

Statistical-based Statistical learning [27],
machine learning clustering [8,28,29]

Any dataset can be used as input to the principal

Principal component analysis [29] component analysis algorithm.

Rule-based
machine learning Partial least squares regression [30-32], Easy to understand, requires a small amount of
decision trees [33], data to work with, can handle both numerical
random forests [10,34] and categorical data, and has strong robustness.

Transfer learning [5,11,35,36],
Convolutional Neural Networks
Deep Learning [5,9,12,37-45],
Inception-v3 [35,46,47],
ResNet [18,38,48]

Complex structured data can be represented and
end-to-end learning can be achieved.
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4.1. Artificial Neural Network

Artificial Neural Network (ANN) is an artificial network composed of a large number
of simple processing units extensively connected, which is an abstraction and simulation
of some basic features of the human brain or biological neural network. Neural network
theory has provided new ideas for the study of many problems such as machine learning,
and has been successfully applied in intelligent mineral identification. Artificial neural
networks are able to outperform decision tree classifiers by extracting features from the
data and mimicking the structure and function of biological neural networks to identify
mineral species. They demonstrate that an average accuracy of 83% can be achieved when
classifying based on mineral groups and 73% when classifying based on individual min-
erals. The technique is also very attractive when Raman spectroscopy is used for mineral
identification, as there is no need to remove fluorescence, and it is shown that its presence
actually improves classification performance. However, ANN implementation requires the
expertise and experience of the user in order to avoid overtraining and undertraining. In
addition, ANNs must be retrained for data obtained on different spectrometers (due to
expected differences in noise, background/fluorescence levels, Raman peak line shape, and
spectrometer resolution) or any new spectra that have been added to the database, which
can be a major inconvenience.

The models of artificial neural networks involved in the intelligent identification of
minerals are perceptron, Autoencoder, BP neural network, Kohonen (also called SOM)
network, multilayer perceptual neural network (MLP), and feedforward network structure.
Each of them is described below and shown in Table 2.

Perceptron: Ref. [7] trained a multilayer perceptron based on single polarized and
orthogonal polarized image texture features to identify 23 test minerals in igneous rocks.
Compared with other networks, artificial neural networks [14] are ideal for applications
requiring repetitive identification of a limited number of minerals because they are less
susceptible to changes such as lighting. This work can reach 90% accuracy for the identi-
fication of colored and colorless minerals, and it is more accurate when the training set
has a larger amount of data. Reference [1] used a backpropagation algorithm with mean
square error minimization to optimize a conventional three-layer perceptron to identify the
mineral types contained in granite images. It was experimentally verified that the artificial
neural network with 10 neurons hidden was the best network performance when used
as a recognition model for granite minerals, which reached a success rate of 90%. In [16],
two artificial-intelligence-based approaches are compared. One is based on the pattern
recognition method—more precisely, on the nearest neighbor (NN) method; the other is
based on the artificial neural network (multilayer perceptron—MLP) algorithm. The results
from the experiments show that both Al methods have a high correct classification rate and
that the pattern recognition method has a great potential to be applied to the identification
of coal microfraction groups, and the results of the study also show that the best results can
be obtained with the most classical pattern recognition method, i.e., the neural network
method. Reference [2] proved the ability of a laboratory-scale hyperspectral reflectance
imaging system combined with an artificial neural network to accurately identify the
constituent minerals of Hessian granites in Haixi.

Autoencoder: Nonlinear mixing of minerals is a common phenomenon in geologi-
cal scenarios. A large number of mineral spectral unmixing methods have been devel-
oped by scholars for mineral identification and quantitative analysis. Zhou Qiu et al.
(2022) [24] designed a self-coding neural network containing dropout noise reduction and
sparse strategy, resulting a sparse fully connected neural network.

BP Neural Network: The method of interpretation of stratigraphic elements is based
on optimization algorithms that use core analysis data to identify minerals by determin-
ing a mineral model that reflects the distribution of mineral content. However, min-
eral identification in coreless wells becomes very difficult, and artificial neural networks
can solve this problem with their unique sample learning capability. Wang Q et al.
(2021) [13] trained and optimized a BP neural network for mineral identification, and



J. Sens. Actuator Netw. 2022, 11, 50

10 of 24

a BP neural network trained from a known well successfully predicted another unknown
well; however, due to the diversity of elements in the XRF measurements, elemental anal-
ysis had to be performed before training the BP neural network. Reference [25] used the
spectral angle mineral mapping method for identification and BP neural network technique
for different iron ores, both of which have their own advantages. Reference [13] used XRF
to analyze the elemental content of rock chips and the BP neural network (BPNN) model
to identify the rocks to construct a neural network evaluation system based on accuracy,
kappa, recall, and training speed, and the improvement made the model have significant
advantages in recognition performance and training speed.

Reference [260] designed multilayer perceptron, applied 5-fold cross-validation, and
performed artificial neural network identification for each image after clustering mineral
pixels using the properties of RGB and HSI color spaces of mineral pixels and the proposed
clustering algorithm of the new ART algorithm design. This intelligent system has high
accuracy and precision for mineral identification.

Table 2. Comparison of different artificial neural network models for intelligent identification
of minerals.

Algorithm Pros Cons

Cannot handle linearly indistinguishable training
data perfectly.

The final number of iterations is strongly influenced
by the hyperplane results as well as the data in

the training set.

The goal of the loss function is only to reduce all
misclassified points with the hyperplane.
Eventually, it is likely that some of the sample points
will be very close to the hyperplane; in a way,

such a classification effect is not particularly good,
and this problem will be well-solved in the support
vector machine.

Perceptron [1,2] The model is simple and easy to implement.

Tt is lossy, and the decompressed output is degraded

Generalization is strong and it is unsuperv-

compared with the original input.

Autoencoder [24] ized learning, so no data labeling is required. It is data-dependent and can only compress those
data that are similar to the training data.
With local miniaturization problem.
Strong nonlinear mapping capability. Slow convergence rate.
BP Neural Network nghly 'S('elf—learmng and self-adaptive S’fructurg selection varies. o
[13,25] capabilities. Paradoxical problems with application examples and
e With some generalization ability. network size.
Fault-tolerance capability. Paradoxical problems with predictive and training
abilities.
High parallelism. . e
Multilayer perceptual ~ High nonlinear generic effect. The number of parameters makes training difficult.

The spatial information between pixels is lost and

Good fault tolerance and associative . .
only vector input is accepted.

memory function.

networks [26]

4.2. Machine Learning

Machine learning is part of artificial intelligence, a field of computational science that
specializes in analyzing and interpreting patterns and structures of data for the purpose of
learning, reasoning, and decision-making without human interaction. In brief, machine
learning means supporting users to feed large amounts of data to computer algorithms, and
then allowing the computer to analyze that data and give data-driven recommendations
and decisions based on the input data alone. If the algorithm identifies any corrections, it
will integrate the corrected information and improve future decisions. Intelligent mineral
identification methods based on machine learning are shown in the Table 3.



J. Sens. Actuator Netw. 2022, 11, 50

11 of 24

Table 3. Comparison of different statistical-based machine learning algorithms for intelligent identifi-
cation of minerals.

Algorithm Pros Cons

The iteration speed is slow, the number of
Statistical Learning [27] ~ Simple and stable. iterations is high, and it is easy to fall into
local optimum.

The mean value must be defined.

The number of clusters needs to be specified.
The value of the number of clusters affects
the clustering effect.

High impact on outliers.

Simple, direct, and efficient.
Fast convergence.

Strong interpretability of results.
Good clustering effect.

Clustering [8,28,29]

Statistical-based machine learning will be introduced first. Statistical-based machine
learning is machine learning based on data rules, which includes statistical learning and
clustering.

Statistical Learning: Statistical learning is used to discriminate the class of a mineral
by calculating the magnitude of the probability of the measured mineral. Aligholi et al.
(2015) [27] selected seven mineral optical properties in the CIELab color space, calculated
the probability that the test sample was a specific class, and used a majority voting scheme
to determine the class of the mineral.

Clustering: To detect minerals using unsupervised classification, we use the concept
of clustering, where similar spectral features are grouped into one class of minerals. The
main idea of unsupervised learning is to extract useful information from unlabeled data.
The clusters are classified into soft and hard clusters according to their formation. Hard
clustering makes each data point belong to only one cluster. However, in soft clustering,
each data point can belong to more than one cluster, usually with membership associated
with each cluster. Prabhavathy P et al. (2019) [8] used principal component analysis to
downscale the frequency bands to achieve dimensionality reduction, and then used hard
and soft clustering algorithms to classify the hyperspectral data to identify minerals in
the hyperspectrum. Reference [28] using KSOM for training, with clustering centers as
input, enabling the system to identify six classes of minerals and to give the number of
possible occurrences in each class. Reference [29] used the K-means clustering algorithm
for classification via Matlab with a known number of clusters of interest and the FCC-
K-means method for unsupervised mineral identification with significantly improved
performance. Reference [8] performed unsupervised training and used PCA algorithm
as a band selection technique for dimensionality reduction of HSI dimensions, and hard
clustering (K-means) and soft clustering (PFCM) algorithms were used to classify the given
data, and the performance of PFCM was found to be better than K-means for both original
HSI images and reduced bands by DBI values.

Rule-based machine learning is introduced in the following. Rule-based machine
learning is statistical machine learning based on rules, which includes principal component
analysis (PCA), partial least squares regression (PLS), decision tree, random forests (RF),
and distance metric models, as shown in the Table 4.
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Table 4. Comparison of different rule-based machine learning algorithms for intelligent identification

of minerals.

Algorithm

Pros

Cons

Principal component analysis [29]

Greater ease of use of datasets.

Reducing the computational overhead of the algorithm.
Removing noise.

Making the results easier to understand.

Complete absence of parameter restrictions.

If the user has some a priori knowledge of the observed
object and has mastered some features of the data, but is
unable to intervene in the processing process through
methods such as parameterization, the expected results
may not be obtained and the efficiency may not be high.
The decomposition of eigenvalues has certain limitations.
In the case of non-Gaussian distribution, the resulting
principal elements may not be optimal.

Partial least squares regression [30-32]

The regression of multiple dependent variables on multiple
independent variables can be performed simultaneously,
which is also applicable when the sample is small, and the
exact regression equation can be obtained.

The degree of influence of independent variables on depen-
dent variables can be quantified when the number of variables
is suitable.

It is possible to control and predict more effectively.

The regression coefficients are difficult to interpret.
Not applicable when the number of independent variables
is small.

Decision Tree [33]

Easy to understand and simple to explain the mechanism.
Can be used for small datasets.

Less time complexity.

Can handle numbers and classes of data.

Can handle multiple output problems.

Insensitive to missing values.

Can handle uncorrelated feature data.

High efficiency, requiring only one construction and repeated
use, with the maximum number of calculations per prediction
not exceeding the depth of the decision tree.

More difficult to predict for continuous fields.

Prone to overfitting.

When there are too many categories, the error may incre-
ase faster.

Does not perform too well when dealing with data with
strong feature correlation.

For data with inconsistent sample sizes in each category,
the information gain results in favor of those features
with more values in the decision tree.

Random Forest [10,34]

Training can be highly parallelized.

When the sample features are of high dimensionality, the
model can still be trained efficiently.

After training, the importance of each feature for the output
can be given.

Due to the use of random sampling, the variance of the
trained model is small and the generalization ability is strong.

On certain sample sets with more noise, it is easy to fall
into overfitting.

Features that take more divided values tend to have a
greater impact, which affects the effectiveness of the
fitted model.

The implementation is relatively simple.
Insensitive to partial missing features.

PCA: Principal component analysis is often used to reduce the dimensionality of
a dataset while maintaining the features of the dataset that contribute the most to vari-
ance. Reference [29] grouped mineral regions into different classes based on the K-means
clustering method of hue saturation value (HSV) principal component analysis (PCA).

PLS: PLS overcomes both the undesirable effects of multiple correlation of variables in
system modeling and considers the correlation between inputs and outputs. PLSDA is a
commonly used chemometric technique for statistical regression of high-dimensional data.
Remus et al. (2012) [49] used this method to identify obsidian provenance with over 90%
accuracy in the Coso Volcanic Belt, Bodie Massif, and other obsidian-producing areas of
north-central California, USA. El Haddad et al. (2019) [32] tested 10 minerals in rocks using
SEM/EDS instruments and applied multivariate curve-resolved-alternating least squares
(MCR-ALS) to the resulting LIBS data for training and building prediction models, by
predicting the test data and comparing with quantitative mineral analysis (QMA). The root
mean square error of the primary minerals is less than 10%, which is in good agreement
with the QMA results.

PCA and PLS extract latent variables from a system to represent the system in a system
of variables with reduced complexity. Ideally, the extracted latent variables respond to the
physical properties of the model. PLS differs from PCA in that in addition to extracting
variables, it also performs regression on the expected response of the system for a defined
set of inputs. In order to extract values for mineral phase presence/abundance, PCA
and PLS use systematic latent variables that must be classified and/or calibrated. When
performing classification of high-dimensional data such as spectra, for example, PCA and
PLS have the unique advantage of not requiring data downscaling techniques prior to
classification [31].

Decision Tree: A decision tree is a predictive model that represents a mapping relation-
ship between object attributes and object values. The data are identified by classification
from top to bottom based on the distinguishability of the attributes, with leaf nodes rep-
resenting specific categories and the paths experienced from the root node to that leaf
node forming specific classification rules. It is easy to understand and interpret, can han-
dle both numerical and categorical data, and is highly robust in large or noisy datasets.
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Reference [33] used decision trees to extend applications in the optical identification of
common opaque minerals.

Random Forest: A random forest (RF) is a classifier containing multiple decision trees,
where a random subset of candidate features is selected during the learning process to
train the decision trees, and the output class is determined by the plurality of the output
classes of the multiple decision trees. It can handle a large number of input variables and
produce highly accurate classifiers, as well as reduce the classification error of category-
imbalanced datasets. Xuefeng Liu et al. (2022) [50] used a random forest model to train a
classifier for SEM grayscale anomaly image segmentation. Ref. [10] used linear discriminant
analysis (LDA) in an attempt to project the dataset into a space with fewer dimensions and
maximum separability between classes by maximizing the relationship between intraclass
variance and interclass variance. Unlike other classification methods such as LDA, where
SVM classification relies only on observations located at or beyond the edges, random
forest classification, a development of classification trees, introduces two modifications,
either by constructing a collection of n trees (without pruning) or by using only a subset of
m descriptors. Three classification methods—linear discriminant analysis (LDA), SVM, and
random forest (RF)—were used and the results performed similarly, with random forest
producing slightly higher accuracy results. Ref. [34] developed a random-forest-based
model to classify different stages of kerogen (organic component) and minerals (inorganic
component).

Distance Metric Model: The distance metric model determines the similarity of test
data to other minerals based on a distance function (metric) between elements in the set.
The metric model is simple and scalable but the classification features need to be highly
distinguishable. Baklanova et al. (2014) [51] classified the dataset into categories based
on similarity through the clustering analysis of the K-means algorithm used for mineral
identification, which is calculated by a distance, such as the Euclidean distance.

4.3. Deep Learning

Deep neural networks are extensions of neural networks, which at their core contain
multiple hidden layers to extract features of complex structured data in layers. Deep
learning does not represent a single algorithm, but an approach with different network
architectures, and several deep learning frameworks exist to date, such as convolutional
neural networks, residual networks, and Siamese networks. The intelligent mineral identi-
fication methods based on deep learning are shown in Tables 5 and 6.

Convolutional Neural Networks (CNNs): CNNs consist of one or more convolutional
layers and a fully connected layer at the top. This structure allows convolutional neural
networks to take advantage of the two-dimensional structure of the input data and provide
better results in image and speech recognition. As CNN models are applied to the field of
semantic segmentation of spectral images, repeated convolution and pooling operations
reduce the feature map resolution, resulting in the loss of detailed structure and edge
information of spectral images. Tian et al. (2022) [43] addressed this problem by introduc-
ing dilated convolution, and proposed a mineral spectral classification method based on
one-dimensional dilated convolutional neural network (1D-DCNN), which extracts spectral
features using null-dilated convolutional neural network, adjusts model parameters using
backpropagation algorithm combined with stochastic gradient descent optimizer, and
outputs spectral classification results to achieve end-to-end detection of mineral categories.
Latif, G. et al. (2022) [38] first applied a simple linear iterative clustering (SLIC) method
to SEM images of mineral particles smaller than 50 um for high-quality segmentation,
and then employed a convolutional-neural-network-based model, ResNet, to overcome the
gradient disappearance problem in deep learning networks with hundreds or thousands
of layers, thus improving their performance and reducing the associated training errors.
Cai Y. et al. (2022) [42] constructed a specific multiscale expanded convolution attention
network for Raman spectroscopy to identify unknown minerals. To extract multiscale fea-
tures from mineral spectrum, expanding convolution is used, and the field of perception for
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feature extraction is broadened by expanding convolution. In order to increase the sensitiv-
ity of the convolutional network to informative features, a squeeze-and-excitation block (SE
block) and a multiscale expanding convolution module are combined to form a channeled
attention mechanism. Zeng, X. et al. (2022) [44] proposed a method to identify minerals
by combining mineral photo image features and mineral hardness features, in which the
deep convolutional neural network EfficientNet-b4 was used to extract image features.
Reference [5] proposed an automatic mineral identification system that can identify mineral
types prior to the mineral processing stage by combining hyperspectral imaging and deep
learning. Reference [41] developed and evaluated a new method for automated mineral
identification that combines measurements with two complementary spectroscopic meth-
ods, using CNN for Raman and VNIR (Visible and Near Infra-Red) and cosine similarity
for LIBS. Reference [45] used convolutional neural network techniques to automatically
extract optical features of minerals for mineral identification. Reference [11] explored the
use of CNN as a tool to accelerate and automate microphase classification, which utilized
migration learning based on a robust and reliable CNN model trained on a large number
of nongeological images.

Inception-v3: Zhang et al. (2019) [46] extracted four mineral image features of potas-
sium feldspar, feldspar, plagioclase, and quartz based on the Inception-v3 architecture, and
used machine learning methods of logistic regression (LR), support vector machine (SVM),
random forest (RF), k-nearest neighbor (KNN), multilayer perceptron (MLP), and Gaussian
Naive Bayes (GNB) to build the identification models. The results show that LR, SVM,
and MLP are the more prominent single models for high-dimensional feature analysis,
and the LR model is also set as a metaclassifier in the final prediction, which also shows
that the fusion of models effectively improves the performance of the models. Peng et al.
(2019) [47] studied 16 common types of mineral crystal images to build the mineral identifi-
cation Inception-v3 model; the overall accuracy of minerals was around 86%; and the top-5
accuracy reached 99% and showed strong robustness in the final results. Ref. [35] selected
the Inception-v3 model as a pretraining model for rock mineral image identification.

ResNet: Guo et al. (2020) [18] successfully trained a more accurate mineral identifi-
cation model based on five mineral images—quartz, hornblende, black mica, garnet, and
olivine—using the ResNet-18 neural network model as the basis, and achieved an accuracy
of 89%, realizing the intelligent mineral identification based on deep learning. Ren et al.
(2021) [48] reached the highest accuracy when using the ResNet-50 model as the base model
for intelligent identification of rock mineral image samples. Reference [38] achieved a
validation accuracy of 90.5% using a 47-layer ResNet-2 architecture.

Transfer learning: Zhang et al. (2021) [52] proposed a multiproduct coal image classifi-
cation method combining convolutional neural network and Transfer learning, constructed a
deep learning model based on the convolutional neural network Inception-v3 of Tensorflow,
Keras framework, and applied the Transfer learning method to train and test different coal
product image datasets until the loss values and accuracy of the training process con-
verged. They concluded that the test accuracy and validation accuracy of the deep learning
model reach more than 90%. Ref. [53] used a combination of Transfer learning and Siamese
neural networks to improve the ability to extract multielement geochemical anomalies
and tried using multiscale geochemical data to improve the model performance. The
accuracy of the model using both Transfer learning and Siamese neural networks reached
85%, indicating that the improved deep learning approach can greatly improve the abil-
ity of the model to identify anomalies. Reference [36] used a Transfer learning technique
that uses pretrained parameters trained on a larger ImageNet dataset as initialization
of the network to achieve high accuracy and low computational cost. Reference [11] ex-
plored the use of CNN as a tool to accelerate and automate microphase classification using
Transfer learning based on a robust and reliable CNN model trained on a large number of
nongeological images.

Zhou et al. (2022) [24] proposed the research idea of combining neural networks
with physical models to address the common problem of learning from few samples in
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hyperspectral remote sensing geological investigations by using a domain-knowledge-
based data augmentation method, i.e., by combining the classical Hapke radiative transfer
model with a small number of ground truth points for training label data augmentation
followed by a sparse, fully connected neural network for mineral content assessment.

Reference [39] proposed hierarchical spatial spectral feature extraction with long- and
short-term memory (HSS-LSTM) to explore the correlation between spatial and spectral
features and to obtain hierarchical intrinsic features for mineral identification.

Table 5. Intelligent mineral identification methods based on Transfer learning and convolutional
neural networks.

Algorithm Pros Cons

Transfer learning
[5,11,35,36]

Requires less training data and can
make more efficient use of existing data.
Better generalization of the model

by migration learning.

The training process is more stable

and easier to debug, increasing the
robustness of the model.

Makes deep learning easier.

Enables customization.

Although it can be quantified, it has an upper
limit and is not suitable for solving all problems.

Convolutional Neural
Network
[5,9,12,37-45]

Need to normalize the dataset; difficult to
train with different sizes mixed together.

Shared convolutional kernel, which No memory function.

can handle high-dimensional data. Physical meaning is not clear enough.

No manual feature selection and Need to tune the reference; need a large num-
good feature classification. ber of samples; training is best to use GPU.

Natural language processing capability for
video speech.

Table 6. Intelligent mineral identification methods based on Inception-v3 and ResNet.

Algorithm

Pros Cons

Inception-v3
[35,46,47]

Fast calculation speed.

Increased network depth.

Increased network width.

Decomposing into small convolutions

is effective to reduce the number of
parameters, mitigate overfitting, and
increase the expressiveness of the network
nonlinearity.

Making spatial structured, transforming
spatial information into higher-order
abstract feature information.

Having higher expressiveness of the
rich network.

The problem of information loss due to infor-
mation compression cannot be solved without an
increase in computational volume.

It is not possible to increase the topology of the
model to improve its expressiveness without
increasing the computational volume.

ResNet
[18,38,48]

Enables feedforward/feedback propa-
gation algorithms to proceed smoothly
and with a simpler structure.

Constant mapping increase basically
does not degrade the performance of
the network.

Long training time.

4.4. Other Models

In addition to the three main models mentioned above, there are some other models
that are worth being introduced.
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The Unet model used in [17] is different from the general convolutional neural network,
which gradually becomes smaller for the input image data after one layer of pooling and
convolutional operations, and finally enters the fully connected layer for training, while
the Unet model adds an upsampling layer after the fully connected layer to restore the
image to its original size. Therefore, the Unet convolutional neural network model has
the advantage of requiring less training sets and high segmentation accuracy compared
with other convolutional neural networks. By comparing with AlexNet, VGGNet, and
GoogleNet, ResNet [18] has significantly improved both in accuracy and efficiency due
to the inclusion of residual units in the ResNet network that can calculate the weights
between different layers in a connected manner, preserving the integrity of the information.
It is able to reduce the parameter settings with the same accuracy as other networks and
achieve the desired effect by fewer iterations, which greatly improves the model training
efficiency. Meanwhile, unlike GoogleNet, ResNet [38] has satisfactory accuracy by training
a deeper network to overcome the model complexity and gradient disappearance problems.
Compared with other networks [14], artificial neural networks are ideal for applications
requiring repetitive identification of a limited number of minerals because they are less
susceptible to changes such as lighting. It can reach 90% accuracy for the identification
of colored and colorless minerals, and it is more accurate when the training set has a
larger amount of data. In the developed 1D-CNN [42], the multiscale features in mineral
spectra are extracted using multiscale dilation convolution, which extends the conventional
convolutional operation strategy and increases the spacing of points in the convolutional
kernel. The ResNet-18 model, as a type of CNN network, performs poorly in mineral
spectrum classification, and the classification accuracy of AlexNet, which has a shallower
depth and more direct structure, is much higher than that of ResNet-18. In addition, in
deep learning, the LSTM-based hierarchical spatial spectral feature extraction method
(HSS-LSTM) [39] outperforms many other learning methods by considering the correlation
between the main spatial features and the spectral features. Many other deep learning
methods exist, mainly the following: five-layer CNN utilizes too few spatial statistical
features to obtain enough complete features; spectral-spatial feature-based classification
method (SSFC) does not have a unified objective function for optimization; recurrent neural
network (RNN)-based model does not consider spectral features when obtaining spatial
spectral features; convolutional long short-term memory (ConvLSTM) method pays less
attention to the recognition of image element spectra and cannot obtain the correlation
between spatial and spectral features; the spectral-spatial unified network (SSUN) does not
further explore the correlation between spatial and spectral features to obtain hierarchical
features; multiscale CNN greatly reduces the focus on recognizing pixels.

5. Visualization and Analysis
5.1. Data and Visualization Tools

We searched the academic literature through Scopus, selected the search condition
“TITLE-ABS-KEY” in the advanced search box, and searched all the relevant literature on
intelligent mineral identification up to 19 June 2022, using the search formula (“mineral”
OR “ore”) AND (“identification” OR “recognition”) AND (“learning”). By filtering arti-
cles including “Article”, “Conference Paper”, “Conference Review”, and “Review”, and
manually filtering the content of the literature to eliminate irrelevant literature, we finally
obtained 201 literature records. The obtained literature records were published between
1975-2022, with 142 literature sources (Journals, Conferences), including 693 authors from
28 countries and regions.

VOSviewer [54] is a scientific knowledge visualization software developed by the
VAN ECK and WALTMAN team at Leiden University in the Netherlands, which is com-
monly used for large-scale data analysis and has a strong visualization mapping capability.
Bibliometrix [55] is a scientific bibliometric software based on R language developed by
Italian MASSIMOA, which can perform complete scientometric and visual analysis of
the literature exported from the Scopus database, including statistical analysis of relevant
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scientific literature indices, construction of data matrices, cocitation, coupling, coauthorship
analysis and coword analysis, etc., with excellent visualization performance.

This paper focuses on the visual analysis of the retrieved literature records using a
combination of VOSviewer and Bibliometrix in order to explore the development path, hot
spots, and trends in the field of intelligent mineral identification and to further analyze the
development of taxonomy-based mineral identification approaches.

5.2. Field of Mineral Identification

In this section, we first analyze the development path of the field of intelligent mineral
identification; then, we explore the emergence of field keywords, and analyze and discuss
the present field keywords.

The thematic development path in the field of intelligent mineral identification is shown
in Figure 2. In the figure, we can observe the thematic development and the thematic evolution
in different periods clearly. Based on the retrieval information available to us, Pooley et al.
first proposed that pure mineral powders of known chemical composition could be used as
standards to calibrate detection equipment, and the calibration results could be used to obtain
the chemical composition of unknown particles for the identification of unknown minerals.
As a possible pioneer of intelligent mineral identification, Pooley et al. [56] attracted the
research interest of the academic community, but the number of research literature on mineral
identification was only 10% (21 papers) of the total literature records as of 2006. Basic mineral
identification was studied before 2006, including the works on more efficient algorithms for
mineral identification, with a main focus on the color characteristics of minerals [57] and related
research aimed at more efficient mineral exploration of unknown rocks [58]. Since 2007, more
attention has been paid to the use of spectroscopic information obtained by X-ray diffraction
[59,60] for precise mineral identification. After 2012, academic research attempted to use
mineral image processing [61] and hyperspectral remote sensing [62] for mineral identification,
and focused more on the textures [63] of minerals. At this stage, mineral types such as calcite
and feldspar [64] were given major attention because their samples are easy to collect and
their datasets are rich and reliable for further research. From 2017 to the present, intelligent
mineral identification based on deep learning has become a major direction in academic
research, and different ways of mineral identification such as remote sensing and scanning
electron microscopy [65] have been actively explored, while more ore types are targeted for
mineral identification.
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Figure 2. Thematic evolution diagram for the field of intelligent mineral identification.
In order to better explore the hot spots of intelligent mineral identification research in

recent years, we detected the emergence of field keywords and plotted them as shown in
Figure 3.
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Figure 3. Keyword emergence detection results.

As we can see from the Figure 3, image analysis and image classification of mineral
data have been studied for years. As time passes, the network form of intelligent mineral
recognition has evolved from artificial neural network to machine learning to deep learning
neural network. In recent years, the convolutional neural network [66,67], which mainly
focuses on image data, has gained much attention and achieved excellent recognition
performance. It is evident from the study of mineral species recognition that scholars have
shifted from studying mainly silicate minerals [68] to studying a wider range of minerals,
indicating that intelligent mineral identification research is growing towards a wider range
of uses. Color, spectroscopy, and other information become the main training content for
the acquisition of mineral features.

Then, we perform a detailed keyword detection analysis for the existing literature,
which is used to explore the current research hot spots in the field, plotted as shown in
Figure 4.
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Figure 4. Field keyword detection.

In this keyword map, the node size represents the frequency of the keyword, the
connection between the nodes represents the co-occurrence between two keywords, and
more connections represent that the node has higher centrality. From the figure, we can
obtain 4 clusters. The orange cluster is characterized by “mineral identification”, “machine
learning”, “deep learning”, and “support vector machines”, which represent the existing
ideas of network choices in the field of intelligent mineral identification and constitute

a complete and effective learning system. In the learning process, the model pays more
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attention to the texture of the ore and the pixels [69] of the image. The blue cluster consists
of “minerals”, “mica”, “silicate minerals”, and “sedimentary rocks” [70], which represent
the main mineral types that are currently of interest for mineral identification. So far, the
identification of common rock and mineral species is still the goal of most scholars. The
green cluster is represented by “remote sensing”, “spectroscopy”, “infrared radiation”,
and “hyperspectral”, indicating that the current academic research mainly relies on the
information of spectral and remote sensing results as the main discriminatory basis for
mineral identification, and uses the results to predict the potential mineral exploration.
Finally, the yellow cluster represented by the keywords “image processing”, “color”,
“reflection”, etc. mainly means the image-based mineral identification method, which is
becoming popular now. In image-based identification methods, the main focus is on image
features such as color, reflection, and illumination [71], and is used for model training, thus

relying less on the use of specialized instruments.

5.3. Mineral Identification Methods Based on Taxonomy

In this section, we detect and analyze keywords for intelligent mineral identifica-
tion methods based on artificial neural networks, machine learning, and deep learning,
respectively, and discuss the development preferences and trends under different methods.

Figure 5 represents the keyword detection results of the intelligent mineral iden-
tification method related to artificial neural networks. In terms of classification, linear
discrimination [71] of minerals occupies a part of this research, and the main models
are perceptron, etc. However, the perceptron cannot handle the linear indistinguishable
case and, for this problem, the multilayer network structure has been focused on, such
as “BP Neural Network” [72], “Multilayer Perceptron” [2], etc. The main ways to obtain

V7 i

identification data include “remote sensing”, “hyperspectral imaging”, “spectroscopy”,
“chemical composition”, “thermal infrared spectrum”, etc. These data acquisition meth-
ods usually require more specialized experimental instruments to assist in the process.
Although “cluster analysis” is not classified in this taxonomy, it can be seen that some
scholars are still clustering the data during network training [73], which indicates that
different mineral identification taxonomies are not completely distinct from each other, and
scholars will combine different optimization methods to achieve the targeted identification
goals. In the process of training the model, the global optimal solution is usually obtained
by optimization algorithms based on derivatives as evidences such as gradient descent
and Newton’s method. To achieve convergence of the algorithm, many scholars have
attempted to convert the problem into a convex optimization problem due to the presence
of local minimums in practice. In addition, through the identification of minerals—mainly
“sedimentary rocks” and “petrology”—scholars have tried to put their research results into
applications, such as mapping.
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Figure 5. Keyword detection of artificial-neural-network-based methods.
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Figure 6 represents the keyword detection results of the intelligent mineral iden-
tification method related to machine learning. Statistical-based machine learning,
represented by clustering, and rule-based machine learning, represented by principal
component analysis [74] and decision tree, are the main research directions of this type
of mineral identification method. Similar to artificial neural-network-based identifi-
cation methods, data acquisition methods based on spectroscopy and remote sensing,
such as the use of infrared devices, Raman spectroscopy [75], atomic emission spec-
troscopy, or laser-induced breakdown spectroscopy [76], are also dominant in this type
of identification method. The selection of identifying minerals is more diverse, mainly
including mica, silicate mineral, tungstate mineral, and other mineral types [77]. In
addition, due to the increase in the number of layers in the network, the machine-
learning-related methods are more capable of handling sample data with more features
such as image type, for example, focusing on information such as the “pixel” of the
image, and using algorithms such as normalized cross correlation [78] to calculate the
correlation between sample data (pixels). In general, machine-learning-based mineral
identification methods use more algorithms and methods to obtain more data rules
for mineral samples than artificial-neural-network-based methods in order to better
increase the variety of mineral identification and improve the classification accuracy.

atomic emissiop.spectroscopy

laser-induced break@@wn spectroscopy clustering
silicate minerals
normatlized-cr@ss correlation

spectral-angle-mappers
principal-componentanalysis tungstate minerals

mir}?‘gals Hyper-spectral imageries | THNCa
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sSpectroscopy
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decisionitrees remote sensing
infrared devices

classification
neural networks

Figure 6. Keyword detection of machine-learning-based methods.

Figure 7 represents the keyword detection results of the intelligent mineral identi-
fication method related to deep learning. From the figure, we can clearly see that deep
neural network, represented by convolutional neural network, is an important compo-
nent of this type of recognition method. When performing hierarchical feature extraction
of complex structured data, often, not a single algorithm is used, but rather, a learning
system with different network architectures and complemented by different optimization
strategies [79]. Similarly, this type of identification is also concerned with the extraction
of sample data by traditional mineral identification aids, such as infrared devices, remote
sensing, etc., to obtain spectroscopy information. The effectiveness of convolutional neural
network architectures in image processing has, however, led more attention to the recogni-
tion of mineral images, which are less costly and more versatile, and the attempt to perform
image segmentation in a single image in order to identify minerals of different pixel sizes
due to the effectiveness of convolutional neural network architectures in image processing
tasks. Additionally, given that there are insufficient training data for some minerals due
to scarcity, the transfer model is employed to solve the problem of only a few samples.
Due to the good accuracy and range of minerals based on deep learning, academia is also
committed to the application of intelligent mineral identification in industry to achieve the
automation of mineral identification and mineral exploration [38].
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6. Conclusions

Mineral identification is a fundamental task in geology, mining engineering, and other
related fields. Intelligent identification of minerals reflects the frontier needs of scientific
research and industrial demands. The combination of computer science and earth science
is the current trend, and the application of artificial intelligence related to the background
of digital earth science in deep time has gained widespread attention. It is important to
pay close attention to the powerful potential demonstrated by the method in the intelligent
identification of minerals, since it represents an important direction for future development.

While there is still a huge gulf between the subjects of geology and artificial intelligence,
artificial intelligence identification processes and criteria are often difficult to interpret
directly and there is a lack of recognized, unified, benchmark mineral datasets, pending
progressive foundation building.

In this paper, we provide an in-depth and comprehensive summary of intelligent ore
recognition. We summarize three types of taxonomies. Based on this, we visualize the
relevant domain literature and perform a trend analysis using keyword detection in order
to better explore the trends in the field. Some suggestions are made for possible future
research directions.

It is our intention in this paper to provide guidance to researchers in the fields of
computing and earth sciences involved in the study of intelligent mineral identification.
Due to the limitation of the scope of the study, the way to preprocess the dataset, the
different scenarios, scientific questions, data, and applications corresponding to different
objectives and others are not fully analyzed and await to be completed in the future.
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