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Abstract: Space-air-ground integrated networks (SAGIN) provide seamless global coverage and
cross-domain interconnection for the ubiquitous users in heterogeneous networks, which greatly
promote the rapid development of intelligent mobile devices and applications. However, for mobile
devices with limited computation capability and energy budgets, it is still a serious challenge to meet
the stringent delay and energy requirements of computation-intensive ubiquitous mobile applications.
Therefore, in view of the significant success in ground mobile networks, the introduction of mobile
edge computing (MEC) in SAGIN has become a promising technology to solve the challenge. By
deploying computing, cache, and communication resources in the edge of mobile networks, SAGIN
MEC provides both low latency, high bandwidth, and wide coverage, substantially improving the
quality of services for mobile applications. There are still many unprecedented challenges, due
to its high dynamic, heterogeneous and complex time-varying topology. Therefore, efficient MEC
deployment, resource management, and scheduling optimization in SAGIN are of great significance.
However, most existing surveys only focus on either the network architecture and system model,
or the analysis of specific technologies of computation offloading, without a complete description
of the key MEC technologies for SAGIN. Motivated by this, this paper first presents a SAGIN
network system architecture and service framework, followed by the descriptions of its characteristics
and advantages. Then, the MEC deployment, network resources, edge intelligence, optimization
objectives and key algorithms in SAGIN are discussed in detail. Finally, potential problems and
challenges of MEC in SAGIN are discussed for future work.

Keywords: space-air-ground integrated network; mobile edge computing; resource scheduling;
service framework

1. Introduction

The rapid development of next-generation communication technologies, integrated
with popular information technologies, e.g., Internet, big data and artificial intelligence, has
spawned many new mobile applications, such as mobile payment, online games, telemedicine,
and unmanned driving. Moreover, the communication technologies have also been applied in
industry, transportation, medical care, education, etc., effectively improving informatization
and digital transformation in all aspects of life [1,2]. In addition, with the rapid development of
terrestrial mobile communication, Internet of things (IoTs) with intelligent sensing capabilities
have also undergone unprecedented development. According to Cisco’s estimation [3],
there will be 29.3 billion devices connected to networks worldwide by 2023, of which about
14.7 billion IoT devices will be connected to the Internet, roughly accounting for 50% of
network devices. However, the large-scale IoT devices generate large amounts of data all the
time, resulting in a large burden of real-time connecting and processing on their hosts. In
short, the interaction and transmission of large information put forward high requirements
for reliable and stable communication networks.
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Although the ground communication network can be equipped with powerful re-
sources to provide high-speed communication, it is still unavoidable that the communica-
tion blockage caused by geological disasters or abnormal connectivity, due to harsh natural
conditions, will eventually lead to blind spots in the communication coverage. Therefore,
space and satellite integrated communication with wide-area range and broadband com-
munication capability becomes a prospective technology to provide seamless coverage and
connectivity without geographical restrictions. Both domestic and foreign companies, in-
cluding SpaceX, OneWeb, and China Satellite Network Group, have launched constellation
plans to launch giant low earth orbit (LEO) satellites, and their services will be established
in the future, which is crucial for Internet access [4]. However, bandwidth and energy con-
straints lead to limited computing and communication resources compared to ground base
stations, and periodic orbital flights often require inter-satellite communication to achieve
coverage relays. Therefore, to more effectively meet the application requirements of ground
users, building a multi-level network architecture with multi-domain interconnection and
collaboration is of great significant to provide heterogeneous spatial services.

The space-air-ground integrated network (SAGIN) integrates satellite constellation,
air network, and ground communication as a cross-domain heterogeneous system, pro-
viding flexible node access, high-speed data transmission, and seamless coverage to users’
terminals in various domains. The interconnection performance of SAGIN is beyond the
capability of the traditional single network form, which has abstracted wide attention
from worldwide researchers [5]. For example, the European Space Agency (ESA) recently
announced the first successful trial of intercontinental connectivity between Europe and
Japan through the fifth-generation (5G) telecommunications link via satellites and are also
planning to develop technologies to connect multiple nodes, such as satellites, unmanned
aerial vehicles (UAVs), and high altitude platforms (HAPs), to obtain more ubiquitous
connectivity [6].

Although SAGIN provides users with elastic, flexible, and reliable access and commu-
nication, it still faces some challenges, especially the contradiction between users’ increas-
ingly complex applications and the quality of services. For instance, for emerging network
services, such as intelligent interaction, game rendering, and 4K/8K video transmission,
the limited battery capacity and computing power of local devices result in long-time
task delays and high energy consumption, which is far away from users’ demands. To
solve the above problems, mobile edge computing (MEC) is proposed as a promising
technology to provide users with both satisfactory computing capabilities and task latency.
MEC deploys computing and storage resources at the edge of the mobile network, which
provides cloud computing capabilities for mobile users with largely reduced latency [7].
In view of this, MEC is also introduced into SAGIN, significantly improving the serving
ability of SAGIN for ground users’ computing requirements, reducing the task latency and
energy consumption, and meeting the demands for service of quality.

The terrestrial mobile network brings cloud computing capabilities to the network
edge through MEC, improving the quality of service for multi-tasking of multi-users
and reducing system costs [8]. However, it is worth noting that in the case of ground
communication interruption, such as in oceans, deserts, or disaster environments, it is hard
to deploy terrestrial networks and provide MEC services to ground users. In this case, it
is necessary to build SAGIN to offload computing tasks to space-based MEC or air-based
MEC nodes to realize real-time computation offloading, on-board data processing, and
other network tasks. The deployment of MEC will be explained in detail later.

In summary, according to specific application scenarios and users’ demands, SAGIN
deploys MEC resources to provide fast-response and seamless coverage of computing
offloading to improve the efficiency of network resource utilization in the whole domain,
as well as the quality of users’ complex services, which has become a research hotspot
in the global academic and industrial community and has achieved many representative
results in recent years. However, existing survey papers only provide SAGIN’s network
architecture, protocol and system design, or summarize specific offloading problems or
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optimization algorithms, without comprehensively combing or reviewing the key MEC
technologies for various SAGIN application scenarios. The main contributions of this paper
are summarized as follows:

1. Considering the complex and varying application scenarios of the SAGIN, this paper
presents a three-layer network architecture and service framework, and analyzes its
advantages in solving the following three challenges: inaccessibility, optimization
difficulty, and incompleteness.

2. To the best of our knowledge, we are the first to classify and summarize the MEC
technology of SAGIN from the aspects of MEC deployment, network resources,
optimization objectives and decision algorithms.

The rest of this paper is organized as follows. Section 2 introduces the basic concepts
of edge computing in SAGIN. In Section 3, we present the network architecture, service
framework, characteristics, and advantages, followed by the detailed explanations of
critical technologies in SAGIN, such as network MEC deployments, service resources, user
demand objectives, and related algorithms. Section 5 provides a detailed analysis and
discussion of some open issues and future research directions. Finally, Section 6 concludes
the paper.

The rest of this paper is organized as follows. Section 2 introduces the basic concepts
of edge computing in SAGIN. In Section 3, we present the network architecture, service
framework, characteristics, and advantages. In Section 4, we discuss critical technologies
in SAGIN, such as network MEC deployments, service resources, edge intelligence, user
demand objectives and related algorithms. Section 5 provides a detailed analysis and
discussion of some open issues. Section 6 presents possible research directions in the future.
Finally, Section 7 concludes the paper.

2. Background
2.1. Related Networks
2.1.1. Terrestrial Mobile Network

Since the 1980s, the terrestrial mobile wireless communication network has undergone
tremendous innovation and has now developed to the fifth generation, which is referred to
as 5G. Each generation of mobile wireless networks has unique standards, technologies,
and characteristics compared to the previous generation. For example, first-generation (1G)
uses analog voice modulation technology, which only provides local voice communication;
second-generation (2G) began to use digital communication technology to support text
transmission; third-generation (3G) provides multimedia services along with higher data
rates and greater capacity; fourth-generation (4G) introduced orthogonal frequency division
multiplexing (OFDM) and multiple input multiple output (MIMO) technology, which
significantly improves mobile broadband service capabilities. The first four generations
of mobile communications were all oriented toward human-centric application scenarios.
At the same time, 5G extends the application to people and things, realizing the network
architecture of the Internet of everything. The main communication scenarios of 5G include
enhanced mobile broadband (eMBB), ultra-reliable low-latency communication (URLLC),
and massive machine-type communication (mMTC), which can provide end users with
transmission rates up to 20Gb/s [9]. In addition, 5G provides more flexible services,
greater capacity, and higher efficiency for new network applications, such as virtual reality,
autonomous driving, and smart cities, which have now entered the stage of deployment
and commercial usage. However, due to the small coverage area of base stations, large-scale
5G network deployment requires many infrastructures, such as base stations and backhaul
networks, resulting in high infrastructure costs and maintenance costs. The coverage of 5G
base stations is concentrated within 10 km of the land surface. In the 5G era, more than
80% of the land area and more than 95% of the ocean area are not covered by the mobile
network signal. There are still many communication blind spots for the construction of
network applications covering the world. Therefore, while 5G is accelerating its entry
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into large-scale commercial applications, the IEEE 802.11ax standard for next-generation
wireless networks has gradually become a research hotspot.

Based on 5G, the upcoming sixth-generation (6G) massive IoT network architecture
will consist of space, air, ground, underwater/sea networks, and edge computing [10],
which provides information assurance for any user with access to any subnet. 6G network
performance should achieve greater connection density, transmission bandwidth, lower
end-to-end latency, and higher reliability and intelligence, supporting the deep integration
and long-term development of mobile communication networks and vertical industries [11].
6G is expected to cover about 100% of the Earth’s surface, providing sub-centimeter-level
positioning accuracy and millisecond-level positioning update rates, and will be a hybrid
network of fixed, mobile cellular, high-altitude platforms satellite, and others yet to be
defined [12]. Diverse heterogeneous networks, rich communication scenarios, ultra-high
bandwidth, and other factors will always generate large amounts of data. Therefore, 6G
will realize a series of new intelligent applications with the help of artificial intelligence and
machine learning technologies. They improve network performance in terms of quality of
service (QoS) and security [13].

The International Telecommunication Union has not yet developed a 6G standard.
However, ITU-T 2030, a study group established by the International Telecommunication
Union, believes that 6G networks are designed to provide a revolutionary user experience,
the connection speed on the order of Tb/s, and new sensory information, such as touch,
taste, and smell. It is expected that the application scenarios of 6G include enhanced
applications based on 5G, such as further enhanced mobile broadband (FeMBB) and ultra-
massive machine-type communication (umMTC) in the future, as well as a large number
of new applications that can only be realized under 6G networks, such as holographic
communication, etc.

2.1.2. Air-Ground Network

In recent years, with the sharp increase in mobile users, the original network topology
can no longer meet the communication needs of users. The single-layer macro-cellular
network is evolving into a multi-layer heterogeneous macro-cellular/small-cell network.
This heterogeneous network networking method provides a reference for the combined air-
ground integration network. The air-ground integrated communication network refers to
the introduction of ground-based communication methods within the coverage of UAVs,
HAPs, and other nodes, to strengthen the scope of hotspot areas in a targeted manner and
to form a complex and heterogeneous network structure with overlapping coverage. On the
one hand, through air-to-air communication using heterogeneous radio interfaces, such as
IEEE 802.15.4 or WiFi, air nodes can form mobile ad hoc networks, which are more effectively
used for wide-area coverage, which is beyond the range of ground-based networks. Users are
provided with broadband wireless access services, thereby increasing network capacity [14].
On the other hand, users can independently choose to access the most suitable space-based or
ground-based wireless network to meet their flexible business needs. In addition, the diversity
and complexity of the battlefield environment also make data collection and transmission
extremely challenging. In these unreliable communication environments, in order to enable
these systems to operate in the network to provide reliable and timely information exchange,
it is necessary to study innovative solutions, combining multiple technologies to achieve
network- and information-centric objectives. The full-dimensional battlefield sensor network
system uses the air-ground integrated network as the communication infrastructure to provide
relay communication for sensor nodes of various forms and to organically integrate with all
the sensors installed on satellites and ships.

2.1.3. Space-Ground Network

The space-ground network is between satellites and the ground and, between satel-
lite constellations. It includes the communication network between satellites, terrestrial
infrastructure, and satellite systems with different orbital planes, types, and architec-
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tures [15]. Compared with the traditional network, the space-ground network structure is
more dynamic and three-dimensional, and the links between satellites are more flexible,
enabling more extensive network coverage, including deserts, oceans, deep space, and
other unexplored places. As a result, it can be widely used in navigation, communication,
broadcasting, remote sensing, and other fields, which combine with different needs to
provide safe, fast, and efficient services to different types of users.

According to [16], the current space-ground integrated network can be roughly di-
vided into two categories. One type is based on geostationary earth orbit (GEO) satellite
nodes. Theoretically, three GEO satellite nodes can achieve global coverage. The Interna-
tional Mobile Satellite (Inmarsat) system is the world’s first commercial satellite mobile
communication service operator to provide global coverage. Inmarsat has grown to a
fifth-generation system, with a total of 13 GEO satellite nodes in orbit, 5 fourth-generation
Inmarsat satellite nodes using the L-band, 5 fifth-generation satellite nodes using the
Ka-band, and a few other satellite nodes serving a specific area.

Another type is based on LEO satellite nodes. The LEO satellite constellation has
the characteristics of low delay, strong signal, mass production, and low cost. At present,
many foreign companies have planned low-orbit Internet constellation plans. For instance,
Starlink of the SpaceX Company has entered the stage of large-scale deployment. Currently,
the number of satellites in orbit has exceeded 2750, which is expected to reach 42,000.

The satellite constellation network is the inevitable trend of future network infrastruc-
ture development. A satellite constellation is a system composed of several satellites with
the same functions, distributed in satellite orbits according to specific rules to achieve coop-
eration [17]. Typical constellation designs include the following two categories: polar orbit
constellations and inclined orbit constellations. All satellites in the polar orbit constellation
have the same orbital inclination and orbital height. A constellation consists of multiple
orbits with the same and evenly distributed satellites on each orbital plane. The preference
of satellite orbits in the inclined orbit constellation is less than π/2, does not pass through
the poles, and the ascending nodes of all orbits are evenly distributed within the longitude
of the equatorial reference plane. Under the condition that the satellite orbit height and
coverage are the same, the total number of satellites required by the inclined orbit constel-
lation is usually less than that of the polar orbit constellation. However, the coverage area
of the inclined orbit satellite is irregular, and the changing relationship between the links is
relatively complex.

The future development direction of the space-ground network includes, but is not
limited to, the following:

• Multi-layer constellation networks. The space-based networks that have been built
so far are all single-layer constellations. However, multi-layer constellation networks
have more robust performance than single-layer constellation networks in terms of
all-around performance, network anti-blocking, and survivability.

• Space-based network expands to multi-function. With the development of technolo-
gies such as communication and satellite payloads, the functions of space-based
networks will be extended from the original single communication function to the
multi-functional expansion of communication, navigation enhancement, earth obser-
vation, and IoT.

• Deep integration of space and ground. It includes the integration of heterogeneous
networks in space and the ground and the smoother inter-satellite link connection
between constellations.

2.2. Mobile Edge Computing

Mobile edge computing is a new computing paradigm developed based on cloud
computing. The characteristic of cloud computing is that the data generated by the network
edge device are centralized on the cloud server for processing. As a result, the edge device
must frequently exchange information with the cloud server; however, the edge device is
usually far away from the cloud server. Hence, it has higher requirements for real-time
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performance. In the scenario of cloud computing, the inadequacy of cloud computing
limits its application. Due to the proposal of mobile edge computing, the tension was
partly alleviated by offloading computation-intensive and delay-critical tasks to edge
servers, which are deployed with powerful computing and energy resources close to
ground users [18].

According to [19], edge computing is a federated network structure that extends cloud
services by introducing edge devices between end nodes and cloud computing. The cloud-
edge collaboration framework is usually divided into the terminal layer, the edge layer, and
the cloud computing layer. The terminal layer consists of all the devices connected to the
edge network, including mobile terminals and IoT devices. The terminal layer is both a data
generator and a data user. The edge layer is the core of the three-layer architecture, usually
including base stations, access points, routers, switches, gateways, etc. The edge layer
supports the access of terminal devices, stores and processes data uploaded by terminal
apparatus, and connects to the cloud computing layer. Since the edge layer is closer to the
user, real-time data processing and intelligent analysis can be performed more efficiently.
The cloud computing layer includes high-performance servers and storage devices with
powerful computing and storage capabilities. The cloud computing layer can permanently
store the data generated by the edge layer. It can also handle the analysis tasks that the
edge layer cannot manage and information processing tasks that involve the entire network.
In addition, the cloud computing layer can dynamically adjust the deployment of edge
layer devices.

3. MEC in SAGIN
3.1. Network Architecture

In previous research, the SAGIN integrated MEC technology has developed rapidly.
Taking advantage of its characteristics such as low latency, high bandwidth, and ubiquitous
coverage, it has begun to be deployed in practical applications. To meet the challenges of
system applications, scientific research institutions and academia have carried out relevant
research. Feng et al. in [20] proposed a flexible network structure regarded as HetNet,
which can effectively integrate heterogeneous satellite-terrestrial networks. It also uses
software-defined networking and network function virtualization technology to improve
the network’s resilience, but the UAV edge nodes in the air segment are not considered.
Lu et al. in [21] considered both the time-varying ground channel and the line-of-sight
air-ground channel and a robust optimization scheme for efficient cooperative double-MEC
resource scheduling between air and ground was proposed. Still, the space-based net-
work nodes are not incorporated into the architecture. However, Pfandzelter et al. in [22]
only focused on the low-orbit constellation edge platform. A simulation and verification
test bed were also designed to evaluate mission migration and space-ground integration.
Many scholars have designed various types of SAGIN edge computing frameworks and
proposed the joint scheduling optimization problem of edge service fusion or cloud-edge
collaboration framework for various user terminals, such as 5G/6G IoT, Internet of vehicles,
and ships, to achieve user service quality requirements, such as minimum total system
energy consumption or minimum delay under power consumption constraints. However,
the proposed network architecture applies to relatively limited application scenarios, and
network performance objectives, for example, reliability and robustness are missing. Key
technologies such as the software-defined network (SDN), network function virtualization
(NFV) and network components have not been considered comprehensively [23–26]. To
solve the application challenges faced by SAGIN and to analyze the differences of network
layers, functions of components at each layer, and application scenarios in a more com-
prehensive and detailed way, this paper designs a heterogeneous cross-domain network
architecture driven by multi-type resource services, which is composed of hybrid orbital
constellation, aerial UAV, ground terminals and other infrastructures. It should be pointed
out that the network architecture and application scenarios concerned in this paper are
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composed of cross-domain nodes in SAGIN, which inevitably include air-ground networks
and space-ground networks. Figure 1 shows the proposed network architecture.
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The composition and functions of each layer network are summarized as follows.
(1) Space segment
The space segment includes satellite constellations of LEO, medium earth orbit (MEO),

GEO and other different orbital heights. Among them, the propagation delay of the GEO
satellite is 120 ms, that of the MEO satellite is 10 ms, and that of the LEO satellite is several
ms or even less than 1ms [27]. With the development of lightweight satellite technology,
phased array multi-beam antenna, onboard real-time processing, inter-satellite links, and
other technologies, LEO satellites have become more economical, miniaturized, and well-
resourced. Many research institutions and academic organizations have carried out LEO
constellation construction and put it into use, including Globalstar, SpaceX, OneWeb, and
so on. LEO satellites can provide round-the-clock global coverage through constellation
design, which cannot be achieved by ground base stations. In the SAGIN system, we use
LEO satellites with sufficient computing power as edge server nodes to provide multiple
types of edge processing services. It is worth noting that the satellite constellation can
adopt the master-slave formation flight mode to ensure the link stability when the network
topology is relatively fixed, or it can adopt the self-organizing Ad-hoc network architecture
to improve the system flexibility and robustness, which serve as an important basis for
satellite mission coordination and resource scheduling. Considering the propagation time
of the satellite and ground, it is more suitable for delay tolerance and large bandwidth
requirements under other similar constraints.

The control function in the SAGIN control layer based on SDN is usually deployed in
the MEO or GEO satellites. As the core component of SAGIN, the control layer is responsible
for controlling and managing multiple resources in the data layer [28]. In particular,
NFV technology pools all types of resources to achieve network resource scheduling and
collaborative management.

(2) Air segment
In the aerial segment, data collection, transmission, and task processing are mainly

carried out by UAVs, HAPs, and other carriers. Their transmission delay is shorter than
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that of satellites, their coverage is broader than that of ground base stations, and they have
the characteristics of flexible deployment, low cost, fast response, and constantly improving
endurance. Flying UAVs, such as the Facebook Aquila, can fly for months without being
charged by solar panels [29]. Furthermore, UAVs can be used as network relay and for-
warding nodes, edge service nodes, or aerial Internet of things nodes. Specifically, UAV can
provide a relay channel for space-ground data transmission and task offloading, realizing
signal enhancement and anti-interference. Also, UAV can directly forward data to the
ground cloud computing center. In addition, the UAV platform loaded with sufficient com-
puting power and storage resources can now be used as an edge computing node to provide
network services without satellite transmission. Finally, in environmental monitoring or
emergency rescue scenarios, UAVs can be used as IoT devices to be dynamically deployed
in the covered area and complete characteristic collection tasks to bring back to the ground
or offload to the satellite for execution. The UAV flies according to the predetermined
trajectory or adjusts the course dynamically according to the optimized target to improve
the system efficiency.

The aerial network can achieve low latency and extensive area coverage, but the
capacity is limited, and the link is unstable.

(3) Ground segment
The broad ground segment mentioned in this paper includes remote areas, disaster

zones, ocean, polar regions, and even underwater. The ground segment includes IoT
devices, user terminals, communication stations, ground base stations, and other infras-
tructure supporting ground services. The ground base station has a strong computing
capacity and sufficient power consumption. The edge server configured in the ground base
station can provide low-latency and high-efficiency nearby services, but it is vulnerable
to terrain limitations and deployment constraints. According to user density, the ground
coverage area is divided into dense and remote areas. In dense areas, with a large number
of people and devices and a large amount of information, resources are usually deployed
at the edge of the cellular network to provide nearby services to reduce task delay and to
improve service quality. However, in the case of saturated flow, network overload will
need to uninstall missions to air or space segment to meet users’ needs. In addition, ground
network edge servers cannot be deployed in remote areas, such as deserts and uninhabited
islands. In this case, specific ground terminals need to access air or space networks to
obtain computing, storage, communication, and other edge services. According to [30],
the ground SDN control center equipped with virtualization pools and other facilities will
also become the control layer components of SAGIN, including a logically centralized and
physically distributed multi-controller system.

SAGIN is a comprehensive network of heterogeneous integration and cross-domain
interconnection of multi-space and multi-network domains, covering space, air, land, sea, etc.,
breaking through the restriction of terrain and surface, and truly realizing the “ubiquitous con-
nection” of the whole world. The three network segments of SAGIN can work independently
or interoperate with each other. Due to the different channel characteristics and network
architecture of each network segment, the three network segments may adopt different access
modes and network protocols. Therefore, cross-domain communication or unified protocol
conversion is required to construct a layered broadband wireless network. For SAGIN, the
actual resource constraints of each network segment are different, and the limited network
resources need to be used to obtain the best performance of data transmission and information
exchange, especially for the interoperation of different network segments. Therefore, its basic
feature is comprehensiveness. Through the unified management of multiple network system
resources, the global resource utilization efficiency is improved, so as to provide global users
with uninterrupted and consistent information services.

In the SAGIN architecture, whether it is the user terminal, IoT, Internet of vehicles
(IoV), the base station on the ground, UAV, hot air balloon, or satellite in space, they can
be abstracted as “nodes”, integrating computing, storage and communication resources.
Constrained by physical and electrical parameters, such as volume, weight, and power
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consumption, network nodes have different resource types and capabilities. Under the
particular scenario when nodes produce computationally intensive, delay-sensitive, multi-
node cooperative tasks, its local implementation may not be able to meet the quality
requirements due to its resource capacity limit. Therefore, according to the decision
policy, edge computing services need to be requested nearby. Therefore, participants were
respectively defined as “service requester” (user node) and “resource provider” (edge node)
in the task-driven SAGIN edge computing scenario. Generally, by loading edge servers
(in general, they have spare resource capacity) to the edge of the end, their affordable
computing, storage, communication, and other resources are provided to the nearest user
to meet the service quality requirements, such as low power consumption and low latency,
in specific task scenarios. It is worth noting that user node QoS requirements may differ
in different business and application scenarios. For example, in the same space-ground
collaboration scenario, the targets such as transmission power and transmission delay are
respectively focused on [19,31,32].

With the cross-domain connectivity of SAGIN, the edge nodes of the traditional
terrestrial cellular network will also be extended to the air and space to provide better
quality, network performance, and resource services. However, despite such comprehensive
coverage of edge computing, it may fail to meet users’ needs due to the lack of maximum
computing power, storage capacity, or communication bandwidth. Therefore, SAGIN
will also introduce a cloud-edge collaboration framework based on a cloud center with
more sufficient resources and powerful capabilities, which will be deployed in MEO/GEO
or ground cloud computing centers and provide sufficient computing and processing
communication resources [33–35]. However, since this paper mainly focuses on edge
computing technology, the cloud-edge collaboration model will not be described in detail.

3.2. Resource Service Framework

Although high-density users have diverse application requirements, the basic process
of edge computing is that edge nodes will serve user nodes in the nearby network domain
under specific scheduling and arrangement of their surplus resources to respond to their
business needs. Therefore, from the perspective of resource supply and acquisition, this
paper abstracts the edge computing service process of SAGIN to form a layered frame-
work [36–38]. The framework consists of the infrastructure, data, control, service, and
application layers, as shown in Figure 2.
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The infrastructure layer is an important guarantee for SAGIN to realize heterogeneous
mobile edge computing with multiple users and resources. The facility can be divided into
the following three types: computing, storage, and communication. Computing facilities are
mainly constructed by various integrated circuits, such as the central processing unit (CPU),
graphics processing unit (GPU), digital signal processor (DSP), field programmable gate array
(FPGA), etc., with different topological forms. For example, a multi-level redundant backup
method can be adopted to improve the reliability and service life of hardware devices and
shield a single point of failure. To further enhance edge intelligence, artificial intelligence
(AI) acceleration modules can also be loaded. For example, the satellite edge platform
supports complex orbital applications, due to its high-performance computing architecture
and functional modules [39–41]. Storage facilities mainly rely on non-volatile flash memory
to achieve large-capacity storage space and support the storage and application of massive
data. To improve the data security, redundant arrays of independent disks (RAID) can
also improve disaster recovery performance. Communication facilities realize SAGIN cross-
domain interconnection, and users can obtain flexible links through the access interface.
Considering the radical goals of the next-generation cellular network in terms of 1000 times the
capacity, 100 times the energy efficiency, and 10 times the delay, new access technologies such
as MIMO and non-orthogonal multiple access (NOMA) could be adopted to improve system
performance [42]. Meanwhile, the communication link always pursues a large bandwidth
and high speed to achieve low-latency data services. For example, according to [43], the
inter-satellite laser communication link can achieve 100 Gbps data rate capability. In addition,
the SAGIN infrastructure is deployed in space, air, and on the ground according to different
network domains. In order to provide high-quality edge services to multi-user terminals,
different edge nodes in each domain of SAGIN are configured with the above heterogeneous
resources. However, due to the limitations of the volume, weight, and energy consumption of
each platform, the resource types and capabilities of each node are different, which leads to
the imbalance of network resources. Therefore, it is necessary to offload and allocate resources
among heterogeneous edge nodes according to the QoS requirements of user tasks to achieve
the optimal overall network performance.

The data layer virtualizes the hardware infrastructure devices of each network seg-
ment using NFV technology, and forms virtual resources of computing resources, storage
resources and communication resources based on the assistance of real-time operating
systems, and finally forms a unified resource pool of the global network. It forwards
information from the control plane through the southbound interface and forwards tasks to
the infrastructure layer. NFV virtualizes the data plane and implements hardware functions
of edge computing node devices in the software. Each virtual machine container can carry
a resource type and will serve as an application under the intelligent orchestration of the
controller. The joint scheduling of distributed parallel resource virtual machines will meet
the specific needs of SAGIN edge computing. Virtualization technology realizes decoupling
from the facility hardware, making resource management and control easier.

The control layer is mainly divided into space-based controllers (including MEO
satellites and GEO satellites) and ground-based controllers. They are the core management
layers of the resource service framework and are responsible for controlling and scheduling
multiple resources in the data layer under global scheduling, as well as the generation of
internal exchange paths and independent planning strategies of the network. In particular,
the control layer can dynamically allocate various resources in the unified resource pool
according to application requirements through the southbound interface. Computation
offloading decisions and resource scheduling schemes can be generated in distributed or
centralized modes. For example, according to the characteristics of application scenarios,
the unified resource scheduling of the whole network can be completed by the space-
based controller. In this case, in order to solve the high mobility problem of low-orbit
satellites, a dynamic resource monitor needs to be added to the orchestrator. In this way,
the monitor can grasp the link status, node resource utilization, terminal service requests
and other information, and quickly complete resource registration and various operations.
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In addition, SAGIN is highly dynamic and resource-limited, so network information is sent
to the MEC server to immediately adjust its policies when the available resources change.

The service and application layer provides a wide range of applications to all users in
the network domain, including global remote sensing, environmental monitoring, emer-
gency rescue, intelligent processing, smart city, and so on. The edge computing technology
is extended to the SAGIN, which results in its promotion and improvement for the user
application service guarantee. Each type of application in SAGIN has its own resource
requirements and service quality evaluation criteria. Therefore, the research goal of SAGIN
edge computing is to maximize service coverage efficiency, optimize user service quality,
and maximize service robustness by optimizing the scheduling strategy and allocating lim-
ited network resources [44,45]. However, emerging services and higher QoS requirements
also pose greater challenges to the future development of SAGIN edge computing.

3.3. Characteristics

Compared with the mature application of edge computing in terrestrial mobile net-
works, edge computing in SAGIN is still in the research and exploration stage. However,
it is considered to have new features that are incomparable on the ground, such as easy
deployment, expansive space, and new services. Therefore, it is thought to be the most
prospective technology to solve the new network challenges in the global interconnection
period [46–49].

With regard to resource deployment, although terrestrial base stations can be config-
ured with powerful computing servers and massive storage arrays at the edge of the cell,
the deployment cost leads to limited density. In addition, once the deployment location
is fixed, the resource service mode is also determined. However, this bottleneck can be
alleviated by the flexible deployment characteristics of space/air resources. Considering
users’ requirements, the UAV edge resources can adjust and optimize the track to adapt
to the application. The orbit edge resources can also adjust the satellite attitude to extend
the service time or dynamically switch the power amplifier to obtain more bandwidth to
improve the service quality.

With regard to spatial expansion, SAGIN expands to multiple physical spaces, such
as the space, air, ground, and sea. The edge of the network, which has the characteristics
of geomorphic independence, also breaks through the limitations of traditional physical
distance and area and expands to the air and space. Efficient cross-domain interconnection
ensures that in the scenario of ground communication blocking, space-based, and space-
based access provides fast, flexible, and high-bandwidth access to meet user service quality
requirements. Using the gridded low-orbit constellation coverage capability, SAGIN can
almost realize node coordination and resource scheduling on a global scale.

With regard to emerging tasks, in the air-ground integration network application scenario,
users’ tasks will also generate new challenges. They will no longer be limited to the user’s local
business requests to provide services at the edge, but will also explore new tasks by utilizing
wide-area coverage and seamless connectivity features, such as online information distribution
of remote sensing data, and ocean-going ship status monitoring, etc. The expanded users’
tasks still follow the essence of edge computing, that is, to provide services nearby, but it
grows and supplements the scope of resource scheduling and service deployment.

3.4. Neural Network Progress

Neural networks (NN) have been used as a computational approach to simulate and
solve engineering problems, and are widely studied in the field of MEC in SAGIN. NN
predicts the desired property based on previous learning cycles or training [50]. Multiple
factors need to be considered in SAGIN. Therefore, as shown in Figure 3, the data set is
generally composed of the available energy, generated task, computation resource and other
parameters of each device. The training dataset optimizes the weights of the interconnection
between nodes so that the neural network has the ability to predict accurate output results
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for a given input set, such as whether to offload or not and the number of resources
allocated to each device.
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Neurons or nodes are the essential processing elements of neural networks. In the
mathematical model of a neuron, the connection weight represents the influence of synapses
on the input signal in the form of a matrix, and the nonlinear characteristic of the neuron is
represented by a transfer function. One of the essential steps in building the structure of a
neural network is to select the best dataset for training the network.

The number of hidden layers and nodes in each hidden layer of the neural network
model cannot be obtained directly [51]. There is no rule to estimate the exact number of
hidden layers and nodes. Therefore, the number of hidden layers and nodes is essentially
influenced by the network application. Since the optimization problem in the air-space
integration network is usually complex, it can be solved more easily by using multiple
hidden layers.

There are a variety of algorithms suitable for neural networks. The factors that
determine which algorithm is most appropriate for a given problem are the complexity of
the problem, the number of data training sets, the size of matrix weights and biases, the
maximum error between actual data and neural network predictions, and the ability of
neural networks to predict patterns (regression approximation) [52].

3.5. Advantages

The unique advantages of SAGIN edge computing technology can be analyzed from
the following three aspects.

1. Solving the problem of “Ground edge service inaccessible”

In general, there are two scenarios in which the ground edge service is unreachable; one
is that the ground edge cannot be connected to another ground edge due to the destruction
of geological disasters, deserts, oceans, etc., under the condition of ground communication
interruption, such as beyond the line of sight, and the edge service is suspended. The other
is that the density of user is too low in remote areas. Even if the terrestrial edge resources
can be deployed, the cost would be too high for practical implementation. Faced with
the application scenarios where the above two types of edge services are unreachable, the
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introduction of space/air edge computing nodes has become the only option to solve the
problem. Network architecture that incorporates space-based or air-based edge computing
brings “Qualitative Change” to users. Traditional terrestrial networks have been unable to
meet the global demands for “ubiquitous connection” because it is difficult to fully cover
some complex terrains, such as mountains and oceans. Moreover, the terrestrial network
infrastructure is vulnerable to damage by natural disasters, such as earthquakes and
hurricanes, which can interrupt users’ communications [53]. Edge computing-enhanced
IOV is a network that relies heavily on connectivity and interaction between vehicles and
transitional engineering infrastructure, and will break down in some remote areas that
lack infrastructure, such as deserts, isolated islands and disaster areas. SAGIN solves this
problem with ubiquitous links and global area coverage [54].

Cross-domain connectivity is a prominent advantage of the SAGIN. However, users
can still choose to offload the satellite directly, or directly offload the UAV, remotely collect
and forward the satellite by the UAV, or bring it back to the ground for processing, even if
the ground network is not visible.

2. Solving the problem of “Single service pattern unoptimizable”

The development of network technology always seems to be driven by decreasing
the user cost and improving service quality, and the two objectives are not opposed. The
demand for traditional telecom services is not high. Even if the network communication
bandwidth is insufficient, the execution of services on the local terminal still meets the
requirements. Therefore, edge services do not demonstrate key capabilities in addressing
users’ demands. With the emergence of 5G emerging business applications, the user
experience, such as delay, cannot be satisfied, and the computing power of the cloud center
is sunk to the edge of the cell to satisfy users’ requirements. Unfortunately, in the face of
the rapid development of increasingly complex users’ emerging applications, even a single
edge resource such as the cell edge of a terrestrial cellular network can barely provide
services, but it still cannot guarantee users’ QoS due to its high cost (such as excessive delay
or power consumption).

The introduction of space-air edge service to realize joint resource scheduling and
node coordination will produce a “Quantitative Change” effect on the resource service. In
Internet of vehicles (IoV), architectures only with terrestrial networks and existing resource
allocation strategies may not provide satisfactory and real-time quality of service due
to the deployment, coverage, and capacity issues of the roadside units. Therefore, it is
necessary to use emerging technologies and improved resource allocation strategies to
enhance users’ experience. SAGIN (including satellite networks, aerial networks, and
terrestrial networks) can tackle the problems of network coverage and data transmission
in IoV. SAGIN in IoV can provide flexible and reliable services for vehicles by taking
advantage of different networks [55]. For example, UAVs and satellites provide wirelessly
powered edge computing and cloud computing services for user devices, respectively.
The UAVs regularly fly on a predetermined orbit and hover at several locations within a
fixed time to provide communication and computing services for the covered user devices,
which can effectively reduce the delay of user devices. Unlike the discrete connectivity
provided by UAVs, LEO satellites considered in the space layer can provide continuous
services, which can effectively reduce the computational overhead of user devices [56].

For example, adopting SAGIN with MEC will lead to the following applications:

• For users with high cell users’ density and saturated ground edge services, SAGIN
edge servers will replace remote cloud computing centers to provide services with
low latency, which is suitable for delay-sensitive service types;

• When local resources are limited or communication is blocked, space-based or space-
based edge services are used to optimize user quality of service.

3. Solving the problem of “System optimization objective incompleteness”.

Although introducing edge computing services improves system efficiency, the opti-
mization objectives may not be complete due to different scenarios. This will also include
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the aspect of SAGIN’s continuous enhancement of advantages. For example, terrestrial
terminal users ignore the particular purpose of the application and do not consider the
reliability, security, and fairness requirements. For example, the bottleneck of multi-service
saturation of users occurs, and fairness under limited resources will be the primary issue
that needs attention. For example, the traction of network security and data privacy issues
must rely on the distributed deployment of SAGIN with MEC, which reduces the concen-
tration of user information data in the network and the chance of data exposure, thereby
reducing the risk of private data loss or leakage. There are also optimization objectives,
such as service reliability and low error rate, which should also be the research focus. For
example, MEC can provide abundant cloud-like services and resources in closer proximity
to IoT devices. MEC can not only reduce communication latency but also mitigate the
computational burden of aerial computing network, which serves as an effective method
to optimize objectives, including reducing energy cost, time cost, and improving resource
utilization for IoT devices [57].

Furthermore, the optimization objectives proposed by the traditional network architec-
ture cannot be solved purely on the ground, or the user nodes themselves are in the air or
space. Therefore, such users will focus on optimization objectives in special services, such as
data fusion decisions, space-ground collaborative observation, and orbital mission planning.
Usually, this can only be achieved by relying on network resources provided by multi-orbit
satellite constellations or aerial clusters. In [58], a satellite edge computing (SEC) method with
computing resources placed in low-Earth orbit satellite constellation is proposed to study how
to achieve robust knowledge service coverage with limited resources.

To sum up, compared with the edge computing of terrestrial networks, SAGIN features
can solve three-dimensional problems in which services may not be able to be accessed,
may not be necessarily optimal when accessed, and may not be necessarily complete when
optimal, which highlights its application advantages.

4. Key Technologies
4.1. Deployment of MEC

Mobile edge computing, with its key feature of providing computing, storage, com-
munication, and other service capabilities to users nearby, meets increasingly complex
application tasks and service quality requirements. However, how to effectively deploy
edge servers in heterogeneous networks, flexibly and conveniently provide resource ser-
vices, and achieve the balance between resources supply and demand of users is still a hot
research issue in academia.

In various application scenarios of the SAGIN, there are MEC deployment modes with
different network domains and edge numbers for multiple user needs and optimization
objectives. Therefore, it can be found that the differentiated deployment schemes and
effect characteristics will generate a multi-style network resource service framework, which
affects system performance. In this section, the relevant applications of three application
modes, i.e., single-edge computing, double-edge computing, and multi-edge computing in
SAGIN, are combed and analyzed in detail.

4.1.1. Single MEC

UAV serves the edge nodes. Considering the application scenarios in remote areas,
the work [59] has provided seamless communication coverage and computing services
for power IoT (PIoT) devices. UAVs provide high transmission rates and sufficient power,
with the support of edge servers and computing ability. A learning-based queue-aware
task offloading and resource allocation algorithm is proposed to minimize the long-term
average power consumption of all PIoT devices. The Lyapunov optimization method
is used to decompose the joint optimization problem. The simulation results show that
compared with the two existing algorithms, the energy consumption of this method is
reduced by 22.36% and 23.13%, respectively. In the complex and changeable oceans,
the service quality of marine IoT delay-sensitive applications with limited computing
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resources is challenging. The authors in [60] proposed a new type of marine-oriented
SAGIN architecture with limited resources. Marine IoT devices can offload computing
tasks to nearby UAVs equipped with edge servers, thus meeting the QoS requirements of
computing-intensive marine IoT devices in high-traffic hotspots. The multi-armed bandit
machine learning algorithm is introduced to optimize the edge offloading strategy, which
can minimize the system energy consumption and delay. The work [61] enhances the
computing power of remote IoT devices in a three-layer SAGIN through the MEC server
deployed on the UAV. It proposed a random resource online algorithm that combines
CPU cycle frequency, power control, and UAV trajectory planning, which maximizes
the total computing rate of the system. Although UAVs that deploy MEC servers can
provide broadband connections and sufficient computing power, edge services may also
be unavailable due to their mobility and trajectory uncertainty. Therefore, in a seamlessly
connected, stable, and visible SAGIN, users can also offload computing tasks to a remote
cloud computing center through a low-orbit satellite backhaul link. This mode is most
suitable for time-tolerance scenarios but has high computing power requirements.

LEO satellites have a wide coverage area and use their onboard computing capabili-
ties to provide edge services (orbit edge computing or satellite edge computing), which
has become the focus of non-terrestrial networks (NTN), and especially large-scale and
broadband-connected ultra-dense LEO constellations will be more advantageous. Although
the processing capacity is not as good as that of an excellent-performance ground base
station, the communication payload and computing unit (edge server) equipped on the
satellite can still provide fast and distributed computing services to the ground or air nodes.
The work [62] considers constellation scenarios with 4 orbital parameters and deploy-
ment scales of 66, 180, 360, and 1584. It uses round-robin (RR), full offloading (FO), and
fuzzy strategies to analyze and calculate the impact of delay, CPU utilization and bit rate
caused by mission satellite offloading. The inclusion of a satellite communication network
truly makes SAGIN edge computing possible. The layered space-ground collaborative
network architecture of [63] consists of the following three network nodes: remote cloud
center, satellite edge computing server, and data node. This paper takes advantage of
satellite edge computing, and low-orbit satellite network communication to deal with
the coordination problem of the parameter transfer process. An asynchronous adaptive
collaborative aggregation algorithm (AFLS) is proposed, which achieves 95% accuracy in
image classification scenarios when the nodes are in good collaboration. The satellite-based
orbital edge computing framework is also developed with users’ needs. The work [64]
proposes a space-based cloud-fog computing architecture, which consists of an essential
resource layer, a lightweight virtualization layer, and an edge service layer. Satellite or
multi-satellite collaboration provides cluster service capabilities and supports business
applications, such as computing offloading, task coordination, and content distribution,
in space-based information network systems. In the 5G wireless communication scenario,
the system architecture proposed in this paper can improve the primary network with
60%~70% throughput. In addition, considering the limited transmission power or energy
of ground users, UAVs can also be used as data collection and forwarding nodes in SAGIN
to offload computing tasks to satellite edge servers or base dtation (BS) for execution or to
transfer the execution results back to ground users [65].

4.1.2. Double MEC

Although SAGIN directly provides edge services through cross-domain interconnec-
tion, the edge terminals such as ground-based MEC, air-based MEC, and space-based MEC
still have limitations, such as high mobility, limited resources, and unstable connectivity.
Moreover, the lower edge service is unavailable and even needs to be forwarded to the
remote ground cloud computing center through the bend-pipe, thus affecting the QoS
of users. Therefore, the pattern of deploying double edge computing nodes in different
network domains has also been studied by many scholars.
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As an essential supplement to space-based MEC or air-based MEC, in the SAGIN edge
computing architecture, the computing and communication service resources of ground
base stations are introduced to form a double-edge computing paradigm of space-ground
and air-ground. In a wide-area complex environment, SAGIN also plays a crucial role in
search and rescue [66,67]. To improve the execution efficiency of edge computing at sea
under the constraints of latency and energy consumption, in complex marine search and
rescue missions, the computationally intensive tasks generated by the IoT of sea surface
sensors need to be offloaded to nearby edge servers, such as large ships or UAVs [66]. An
intelligent task offloading algorithm based on reinforcement learning (RL) is proposed
in [66]. The simulation results show that the algorithm has advantages in terms of time
delay and energy efficiency.

Combining the advantages of edge computing technology and artificial intelligence
technology, the authors in [68] designed a satellite-terrestrial double-edge intelligent com-
puting system architecture, including terrestrial MEC servers and satellite MEC servers.
Among them, the MEC server deployed in the cellular base station can sense the envi-
ronment and context, cache popular local files, and process data and other intelligent
management functions, while the MEC server as a satellite payload device also provides
satellite edge smart management, senses global traffic and network conditions, caches
popular files and on-orbit real-time processing. Simulations based on the Iridium constella-
tion network show that the network architecture proposed in this paper performs better
in cache distribution and task offloading. The work [69] has introduced edge computing
technology in the high-speed space-ground network as an essential means to improve
QoS. Based on the offloading location and satellite-ground link, computation offloading
in SAGIN may have the following possibilities: no edge computing, proximal terrestrial
offloading, satellite-borne offloading, and remote terrestrial offloading. A collaborative
computing offload (CCO) model is proposed to realize parallel computing in the space-
ground network. The simulation results show that the proposed model can significantly
reduce the user-perceived delay and system energy consumption. Satellites also have
multiple roles in double-edge computing architecture. For example, the work [70] has
proven that satellites have both task relaying and on-board computing capabilities, and
MEC servers deployed on low-orbit satellites can not only complete the offloading tasks
of ground users by themselves, but it is also possible to transfer tasks to base stations in
adjacent areas when resources are insufficient. That paper believes that the space-ground
cooperation double-edge architecture has broad prospects.

However, ground base stations are usually unreachable in vast natural spaces, such as
deserts and oceans, or emergency scenarios of ground communication blocking. Therefore,
considering the UAV’s characteristics of easy deployment and flexible access, as well as the
advantages of extensive satellite coverage and broadband access, a space-aerial double-edge
computing pattern is designed to improve the service efficiency of the system. As a result,
the characteristics and application scenarios of space-based MEC and air-based MEC are
different [71], and the double-edge will play a more significant role. The work [72] designed
two new types of satellite and UAV frameworks in the space-ground network, namely
intelligent enhanced satellites (ieSat) and intelligent enhanced UAVs (ieUAV). Satellites’
seamless coverage characteristics with UAVs’ enhanced processing capabilities provides
edge computing power for IoT devices in complex ground networks. That paper designs
the following three different types of application scenarios and double-edge collaborative
architecture in detail: (1) long-term wide-area surveillance-type delay-sensitive IoT tasks,
in which data collection is completed by flexible UAVs and forwarded to satellites to
complete the task offloading; (2) computing-intensive IoT tasks in sudden hotspot areas,
and delay-sensitive and delay-tolerant offloading by neighboring UAVs and neighboring
satellites, respectively; (3) delay-tolerant tasks for highly reliable and secure networks
and the aviation network composed of dense UAVs to realize fast-response collection and
calculation and to provide edge services that meet mission requirements.
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The authors in [73] designed a new satellite-UAV double-edge architecture based on a
time-slot system. To minimize the average task processing delay within a specific period,
the delay was subdivided into transmission, wait, and computation, and the optimization
problem was modeled as Markov decision process (MDP). However, due to the dynamics
and complexity of the multi-user generation task on the ground per slot, an algorithm
based on curriculum reinforcement learning was proposed to obtain the optimal offloading
strategy. The extensive simulation results show that the algorithm can effectively utilize
the satellite-UAV edge resources. The work [74] expands edge computing nodes to HAPs
and LEO satellites in SAGIN. High-altitude platforms and low-orbit satellites, equipped
with on-board computing resources, provide edge computing services for ground users’
devices. The edge node has multi-channel antennas to realize communication offloading,
and its performance is better than the single-antenna transmission method to improve the
offload efficiency. To minimize the total weighted energy consumption of the system, this
paper proposes a joint scheduling algorithm of joint ground equipment allocation, multi-
user multiple-input multiple-output (MU-MIMO) transmission precoding, computing task
allocation, and resource allocation. However, that paper only considers single satellite and
static offloading scenarios.

4.1.3. Multi MEC

Although the static deployment of MEC in fixed or dual specific network domains
can enrich computing resources and improve service quality, due to the rapid growth of
user equipment and ubiquitous application requirements in the SAGIN heterogeneous
space with huge physical boundaries and huge information capacity, it also makes the
ubiquity and robustness of edge services critical. To alleviate the co-channel interference
caused by the multi-user multi-edge irregular topology sharing spectrum in the marine
network of SAGIN, the work [75] proposes a system that can not only sense the spectrum
state, but also identify the ship’s position information in the cognitive framework to op-
timize the inter-cluster/intra-cluster power allocation strategy and obtain considerable
benefits. The authors in [76] designed a collaborative service framework with the follow-
ing three modes: fine-grained, medium-grained, and coarse-grained. In the scenario of
space-ground ubiquitous edge server deployment, a service coordination method based
on pre-selection and threshold update was proposed to achieve low effectiveness of cost
reduction in service delay, which was verified by an emergency search and rescue example.
Although ubiquitous multi-edge computing provides services for universal applications,
the complex network environment poses severe challenges to essential equipment, such
as communication terminals and antennas. Therefore, the authors in [77] introduced the
reconfigurable intelligent surface (RIS) antenna to enhance wireless coverage and improve
the wireless communication environment, transmission, and computing quality. In the
network scenario of cloud-edge collaboration, the work [78] deploys ubiquitous edge ser-
vices in big cyberspace composed of heterogeneous subnets, such as space, air, ground, and
sea. It provides a personalized intelligent network service through brilliant orchestration
and task-oriented networking methods. The work [55] builds an edge cloud computing
cluster based on SDN and NFV, providing edge services that can be reached anywhere and
anytime. In addition, this paper proposes an improved Two_Arch2, algorithm using an
angle-based diversity measurement strategy to meet application requirements in the high
security and real-time performance of the Internet of vehicles environment.

Table 1 provides a summary of MEC deployment. The analysis shows that from the
relative logical relationship between service requests and resource provision, any node
or combination of nodes in SAGIN may provide edge services in specific scenarios. Edge
deployment solutions can meet differentiated user service requirements.
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Table 1. Summary of related works on MEC deployment.

Deployment Type Objective Considered
Factors Advantages Disadvantages Ref.

Single MEC

UAV

Minimizing the
latency and

energy
consumption

Complex marine
environment

Flexible
deployment in

hot spots

Lower height, less
resource [60]

Maximizing
computing

performance

Frequency
division

duplexing, CPU
cycle, power
control, UAV

trajectory, joint
stochastic scheme

Wide coverage for
remote IoT

Limited computation
capacities, high mobility [61]

Satellite

Better exploit the
overall available

distributed
resources

Orbital edge
offloading,
mega-LEO

satellite
constellations

Better
exploitation,

more
homogeneous
distribution

More complex among
different layers, long

propagation delay
[62]

Minimize the
long-term delay

of all tasks

UAV collect and
relay, task
scheduling

Wider coverage,
low delay under

energy
constraints

Path loss, high mobility [65]

Double
MEC

UAV-BS

Minimizing
energy and delay

consumption

Maritime IoT,
intelligent task

offloading

Low delay,
flexible

deployment

Unstable link, finite
resouces, intermittent

service
[66]

Minimizing
power

consumption

SAGIN resource
allocation

Seamless
coverage, high

rate

Dynamic topology,
uncertainty link [67]

Satellite-BS

Minimizing delay
and energy,
maximizing

efficiency

Satellite MEC,
high-speed

network

Multi cooperative
computation

offloading

Not suitable for high
cost task [69]

Minimizing the
completion delay
of all users’ tasks

LEO edge server,
or BS server sent

by LEO

More flexible
edge decision,

global coverage

Rare inter-satellite
cooperation [70]

Satellite-UAV

Enhancing edge
service capbility

Intelligent-
enhanced UAV,

intelligent
enhanced
satellites

Flexible
offloading

options, seamless
global coverage

High dynamic, unstable
interactionlink [72]

Minimizing delay
of all tasks

Propagation time,
transmit time,
compute time

High data rate,
less delay Finite energy [73]

Minimizing the
weighted sum

energy
consumption

Transmit
precoding, task

assignment,
resource

allocation

MIMO, more
users, higher

efficiency
Doppler effects [74]

Multi-MEC

Minimizing
overall service
delay and cost

Service
coordination

Flexibly
integrates and

manages services

High allocation
complexity [76]

Maximizing data
rate

SAG MEC,
double benefits of
comp. and comm.

More flexible
offloading

options
More security risks [77]

Four kind of
objectives

Edge–cloud
resource

scheduling, SDN,
NFV

Rich resources,
joint optimization

Higher optimization
difficulty [55]
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4.1.4. Offloading Schemes

In addition to providing global ubiquitous connectivity for mobile users, SAGIN also
provides a variety of computing services. Usually, mobile users can offload computing tasks to
other nodes with abundant computing resources for processing to compensate for the limited
computing and storage resources of mobile user devices [79]. In general, the most important
issue of mobile edge computing is how to decide task offloading, i.e., whether to offload,
how much to offload, and the offloading destination. For offload destinations, the distance
between cloud data center and mobile users is often far apart, and cloud center forwarding
via satellites can be achieved over the ultra-visible distance through SAGIN, regardless of
geographical restrictions. The downside is the large latency, which leads to the processing of
mobile services needing to experience large latency, making it difficult to meet the needs of
emerging applications for end-to-end latency down to the millisecond level.

The destination of task offloading can be local devices, edge servers, or cloud centers.
First of all, the task can be executed on the local terminal device without offloading to
the edge or cloud. However, this is limited by the energy consumption and computing
capability of the device, which has many constraints in practical applications. Second, tasks
can be considered offloaded to edge (e.g., UAV, LEO) execution, which is the focus of this
article. This section describes where edge servers can be deployed in the SAGIN. Thirdly,
when the edge resources still cannot meet the user’s QoS, the tasks can also be offloaded
to the cloud. However, this paper does not focus on how the cloud data center performs
computation tasks. It is also worth mentioning that since the SAGIN is not restricted by
a region, it can also use satellites, UAVs or HAPs to relay tasks to the cloud center for
execution [80–82].

In terms of the single task offloading ratio, the offloading scheme can be 0/1 pattern or
partial pattern. In order to simplify the model of computation task offloading, the strategy
of 0/1 offloading is usually considered in SAGIN’s application scenario [83,84]. In addition,
to improve the efficiency of task execution, sometimes the task can be arbitrarily partitioned
into serval parts, where the data are bit-wise independent and can also be partially offloaded
to different edge servers for simultaneous execution [85,86]. For example, Yu et al. in [54]
divide the computational task into fine-grained slices, according to constraints on delay
and energy consumption. However, it also leads to the process of task reconfiguration
and migration, which increases the system complexity. The multi-task offloading schemes
can be divided into all-local execution, or all-edge execution, or optimization offloading
decisions based on the channel quality, resource constraints, users‘ QoS and other variables,
or random offloading.

4.2. Network Resources Services

Due to advanced communication technologies, such as interface protocol conversion,
dynamic sensing routing, and multi-beam phased array antennas, accessing and efficiently
interconnecting nodes in different domains in SAGIN is possible. However, physical
and electrical performance constraints, such as weight and power consumption, result
in additional resource capabilities. To meet the business and service requirements of
user equipment in an unbalanced and unequal network resource environment, a SAGIN
edge computing technology is proposed to evaluate the resource level of network nodes,
schedule global network resources, respond to user application requests, and provide
services nearby to realize the efficient coordination of the entire network nodes in the
SAGIN. Network nodes are loaded with various resource capabilities, such as detection
sensors, signal processing, transmission, store-and-forward, etc., to serve user nodes under
unified scheduling control. Furthermore, there are particular types of network resources.
For example, in [61], UAVs provide computing offloading, while wirelessly transmitting
energy to ground remote IoT devices through radio frequency energy transmitters. As
is the case in most edge computing research, this paper focuses on the scheduling and
offloading of three types of network resources, including computing, communication, and
storage between nodes.
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4.2.1. Computation Offloading

The task offloading of computation and signal processing is the most common edge-
end node collaboration scenario. Based on the differentiated system models in SAGIN, the
computation offloading problems are optimized to satisfy different QoS, such as scheduling
virtualized network resources to minimize energy consumption [81]. As a result, many
scholars have conducted in-depth research on edge computing tasks of typical computa-
tion offload. In this paper, it is summarized as a “4W1H” five-dimensional computation
offloading decision problem of “Whether to offload,” “Where to offload,” “How many to
offload,” “When to offload,” and “in What order.”

Different domain nodes of SAGIN have potential requirements for offloading comput-
ing tasks. Chen et al. in [79] use UAVs as the computational offloading decision-making
object. UAVs are deployed flexibly and are not restricted by ground traffic. Ground IoT
data can also be collected in remote areas without cellular networks. However, due to
their limited computing power, appropriate offloading decision-making is required. The
computing tasks are offloaded to the ground BS or sent back to the cloud center through
satellites. To avoid unnecessary system overhead or higher task abandonment rates, the
work [79] proposes a distributed robust delay optimization algorithm, which gives deci-
sions such as where to offload and the proportion of offloaded tasks to make sure that
the delay in the expected energy constraint system is minimized under the worst-case
probability distribution.

Based on satellite IoT, Wei et al. in [87] proposed a novel inter-satellite edge computing
offloading architecture, which uses remote sensing satellites integrated with visible light
camera loads to perform on-orbit real-time image processing as a scene. To solve the
data transmission bottleneck caused by the high delay, due to satellite-to-ground trans-
mission and the surge of raw data, the need for real-time processing of remote sensing
satellite images in orbit is increasingly urgent [88,89]. However, in-orbit processing, such
as identification, classification, and reasoning of payload raw data based on deep learning-
based satellite edge intelligent computing, usually requires gigabit floating point arithmetic
or even higher computing power, in which single-satellite resources cannot cover. The
work [87] chooses to deploy the deep learning framework on the satellite IoT cloud node
cluster with more robust computing power. It selects part of the processing or offloads to
nearby satellites for cooperative processing according to their status. Then, the authors
present the performance of different neural network models in the satellite edge intelligent
computing architecture. The simulation shows that the lightweight neural network model
is more suitable for satellite IoT scenarios.

Considering the time slot allocation system with different priorities, Wang et al. in [90]
introduced a time slot allocation scheme based on customized service priority in the space-
ground collaborative double-edge computing architecture and analyzed the time slot alloca-
tion of computing task offloading. By showing the performance of co-simulation of three-level
time slot allocation and three-priority service scheduling in a 66-satellite constellation and
ground coordination, the results show that the new network structure and offloading scheme
can effectively improve the service efficiency and reduce service delay.

4.2.2. Communication Traffic Offloading

Traffic offloading and network capacity allocation are essential forms of communica-
tion resource scheduling for SAGIN to provide edge services. It is common in end-to-end
inter-satellite and satellite-to-BS scenarios or UAV relay and forwarding scenarios. Finally,
it realizes ultra-reliable communication (URC) [91], energy efficiency [92], reduced packet
loss, and enhanced communication in wireless networks with low latency [93,94].

Unlike the basic offloading strategy adopted in traditional fixed communication state
networks, the traffic offloading workflow cannot guarantee the bandwidth continuity of for-
warding hops and drop hops in SAGIN with high mobility, resulting in potential risks of traffic
accumulation. Furthermore, there is no guarantee that offloaded targets will remain visible
within the communication range, so a traffic offloading model with state intelligence aware-
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ness must be considered. Tang et al. in [95] proposed a traffic offloading method based on
the double Q-learning algorithm and an improved delay-sensitive replay memory algorithm
(DSRPM), which considers the high dynamics of network nodes and frequently changing
network traffic and link states. Local and adjacent historical information continuously trains
nodes to decide on traffic offloading strategies, and the algorithm obtains advantages in
signaling overhead, dynamic adaptation, packet loss rate, and transmission delay.

Due to the extended distance from the base station, Lyu et al. in [96] proposed an
algorithm for offloading cellular network traffic to solve the performance bottleneck of
mobile terminals at the edge of traditional terrestrial cellular systems in the air along the
cell edge by using UAV. The work [96] jointly optimizes the UAV flight trajectory, the
bandwidth allocation between the UAV and the base station, and the user division to
maximize the minimum throughput of all mobile terminals in a single cell to achieve the
most significant degree of users’ fairness. The simulations show that this hybrid network
with optimized spectrum sharing and cyclic multiple access design significantly improves
communication throughput. Combining space-based UAV-assisted communication with
MEC is a prospective paradigm for enhancing space communication. To cope with the surge
in application data in the UAV-assisted IoT, Guo et al. in [97] designed a joint optimization
problem of QoS and energy consumption, in which the block coordinate descent method
and successive convex approximation techniques effectively improve the network’s overall
energy consumption and communication performance.

Although satellite network construction has been accelerated with the rapid devel-
opment of the reusable space transportation system and mass satellite manufacturing
technology, inter-satellite communication resources are still precious, meaning that the
transmission capacity is still limited. Therefore, it is necessary to improve network sys-
tem performance through inter-satellite capacity allocation and scheduling. Jiang et al.
in [98] proposed a low-complexity inter-satellite capacity calculation method based on
time-expansion graphs in the three-layer heterogeneous satellite network model of the
high, medium and low orbits. According to the communication needs of users, the capacity
is allocated among satellite users. Then, the authors design a long-term optimal capacity
allocation algorithm based on Q-learning to improve the long-term utility of inter-satellite
capacity allocation. At the same time, to obtain better system performance, satellites
are usually equipped with multiple antennas to cover omni-directional space to achieve
inner-orbital and inter-orbital communication, which is considered as a new trend.

4.2.3. Cache Resource Distribution

Content caching and file distribution at the edge nodes of SAGIN are prospective
technologies that can effectively reduce data traffic and improve user experience. In
particular, remote sensing satellites use their wide-area coverage characteristics to broadcast
sensor detection result cache far beyond the line-of-sight to end users on the ground or in
the air, which can realize the user’s global awareness. Mobile edge caching can improve the
quality of service for end users on this basis. Extensive data analysis shows that in the case
of limited cache size, active caching can provide 100% user satisfaction, while offloading
98% of backhaul traffic [99]. Mobile edge caching will also reduce the traffic load on the
backhaul link. Chen et al. in [100] propose a multi-base station agent cooperative edge
caching algorithm based on deep reinforcement learning, in which nodes make caching
decisions based on local and global states. This algorithm improves the cooperation
between edge caches and the hit rate of edge caches.

Li et al. in [101] introduced LEO satellites with storage capabilities into the radio access
network (RAN) and proposed a cooperative cache distribution architecture to respond
to user requests. In [101], a request of file user and satellite/access point (AP) distribu-
tion model based on Zipf probability distribution is designed in detail. Considering the
limitations of satellite energy, a nonlinear fractional programming problem for the joint
optimization objective of traffic offloading and energy efficiency is proposed. Numerical
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simulations show that the space-ground coordinated data distribution scheme significantly
improves energy efficiency.

The distributed content in the satellite-to-ground cache distribution scenario is pro-
posed in [102] and includes IoT gateway configuration information, new docker appli-
cations, and edge computing scripts. Since satellite bandwidth resources are limited, to
save space-air-ground communication resources and to reduce frequent communication
between satellites and gateways, ground nodes are clustered based on the idea of Node2Vec,
and ground nodes communicate with satellites to obtain tasks or files based on the sorting
results. The clustered edge cloud dispatching task collaboration method can effectively
improve the data transmission efficiency by comparing the performance of four groups of
test data with different task sizes. This advantage will become more evident as the number
of nodes increases.

Jia et al. [103] proposed a file distribution architecture to collaborate between LEO
satellites and the high-altitude platform HAP to achieve full coverage and to provide data
services in remote areas. HAP collects data and forwards it to satellites, and satellites
distribute data to the ground data center through inter-satellite links or by themselves.
A Benders decomposition optimization algorithm is proposed to solve the mixed integer
linear programming problem based on the time expanding graph (TEG) joint optimization,
with limited complexity to maximize the total distribution of LEO to the ground data center.
The simulation results of the suboptimal solution obtained by this accelerated algorithm
show that the method proposed in this paper has obvious advantages in the total data
performance under various network parameters.

The space-ground edge cache system should consider reliability issues, such as un-
stable transmission under high dynamics or data errors under complex link conditions.
Gu et al. in [104] proposed a SAGIN mobile edge caching IoT system composed of satellites
and UAVs. The satellites distribute the cached data to the ground IoT storage sensors.
In order to reduce the potential risk of loss or error of unstable ground sensors when
receiving broadcast data from LEO satellites, fault-tolerant coding with intelligent opti-
mization parameters is adopted to improve data reliability. Compared with maximum
distance separable (MDS) codes and regeneration codes, the adaptive minimum memory
regeneration (AMSR) code proposed in this paper can significantly reduce the system’s
total communication cost and maintain the system’s availability.

4.2.4. Joint Resource Service

Similar to the ground system using joint resource scheduling to better adapt to the
growing demand for data caching and computing services [105], user nodes in SAGIN
usually have computing offloading and cache acquisition, network communication, and
other task requirements to improve the business experience. Therefore, the SAGIN edge
nodes can use 3C (computing, caching, communication) combination resources to realize
joint scheduling optimization and converged services.

SAGIN’s large information throughput, scattered users, and complex resource re-
quirements led to a novel multi-resource management system architecture [106]. Different
from other scholars who focus on maximizing system throughput, the objective of [106] is
balancing multi-user fairness and improving data security, based on the three-step work-
flow of data perception acquisition, block-chain computing, and wireless transmission
between the satellites and the ground. A 3C allocation joint optimization model of the
Nash negotiation game is proposed and solved by dual decomposition. A large number of
numerical simulations verify the performance advantages of the proposed system archi-
tecture. Fu et al. in [107] also pay attention to the integrated management of 3C resources
caused by the surge of network data traffic, which considers the intermittent periodic
characteristics and network dynamics of satellite communication. In [107], the downlink
relay forwarding model of a terrestrial relay (TR) and air relay (AR) is introduced, and
the optimization problem of minimizing transmission power consumption is proposed.
Many simulation results verify the improvement of system throughput performance and
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the joint scheduling effect of 3C resources. Performance and multi-user experience are also
significantly improved.

The future objective of 6G advanced networks is to build a seamlessly integrated
network to fill the large coverage gap on a global scale and to solve the bottleneck problem
of mission-critical services [108]. Therefore, 6G networks are also committed to jointly
optimizing communication, computing, and cache of multiple types of resources. The
authors of this paper design a service-centric ultra-reliable and low-latency edge intelligent
architecture for mission-critical scenarios with diverse requirements and propose several
critical technologies for efficient 3C resource scheduling. The service decomposition strat-
egy of dividing each service into multiple micro-services for distributed processing can
significantly improve the system’s resource efficiency and experience quality. To solve the
high dynamics of network topology, a multi-semantic addressing method is adopted to
decouple users, content, and resources from the network topology, which reduces the delay
and reliability challenges brought by traditional addressing methods. Finally, considering
the whole life cycle of services, a service-centric 3C resource scheduling method is pro-
posed. A dynamic adaptive resource scheduling framework based on a knowledge graph
and real-time monitoring is designed, which utilizes the diverse computing and storage
resources at the edge of the network to support critical services and improve the three
challenges of heterogeneity, time variability, and reliability.

Table 2 provides a summary of the service resources provided by the network edge.
Common types of edge resources include (1) computing resources, (2) communication
re-sources, and (3) cache resources. In addition, the joint service of multiple resources
is of-ten investigated. Different papers have analyzed the performance improvement of
the SAGIN brought by the differentiated service resources provided by the edge server,
including network communication enhancement, high system reliability, service guarantee,
etc. Since the target of the scenario we are dealing with is the “nearby service”, this article
focuses on edge side resource services rather than remote cloud center resources.

Table 2. Summary of related works on network resources services.

Resource Types Objective Key Issues Advantages Disadvantages Ref.

Computation
offloading

Minimizing system delay
under energy constraint

Data-driven
approach describes
the uncertainty of

task arrival

High robustness of
application
completion

High energy
consumption [79]

Minimizing inter-satellites
process delay

Distributed
intelligent on-board

computing

On-board realtime
image process

High inter-satellite
link dependence [87]

Maximizing resources
allocation efficiency

Double-edge,
customized service

priority

High space-ground
services efficiency

Uncertainty of
connectivity [90]

Communication
traffic offloading

Improving end-to-end energy
efficiency

Stochastic geometry,
interference/no

interference scenario

Cross-domain
communication

enhacing
Large path loss [93]

Maximizing the network
transmission rate

Dual timeslot
cooperative

communication
scheme

High space-ground
signal quality

Complex inter-node
interference [94]

Maximizing all
users’throughput

Double Q-learning
traffic offloading

Better load balancing
capability Higher link dynamic [95]

Minimizing overall energy
consumption

Joint optimization of
QoS and energy

consumption

Higher overall
network performance

Multi-layer
unbalancedness [97]
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Table 2. Cont.

Resource Types Objective Key Issues Advantages Disadvantages Ref.

Cache distribution

Minimizing the cost of
acquiring content

Cooperative content
sharing, multi-agent

data exchange

Higher data
utilization of MEC

Excess
communication load [100]

Maximizing system content
availability

Caching system with
fault-tolerant codes

Higher data
reliability Higher network cost [104]

Joint resource service

maximizing joint objectives Information-centric
virtualized resources

Higher network
overall utility

More optimization
constraints [105]

Maximizing link time,
minimizing energy cost

Block-chain, data
security, double MEC

Higher throughput
fairness

More difficult
optimizations [107]

Improving the service’s
reliability

Adaptive resource
scheduling
framework,

mission-critical
services

More complete
service guarantee

More complex
channel effects [108]

4.3. Edge Intelligence

Another kind of important computation resources in networks is artificial intelligence
(AI), which is now developing rapidly due to recent advances in models, algorithms, pro-
cessing, power, and big data. AI has made substantial breakthroughs in a wide spectrum
of applications, ranging from computer vision, natural language processing to automatic
driving and robotics. It is widely recognized that these intelligent applications are sig-
nificantly enriching people’s lifestyle, as well as science. In the traditional architecture
for AI, the input data generated by mobile devices are sent to the cloud for processing,
and results are then sent back to mobile devices. However, with such a cloud-centric
approach, large amounts of data are uploaded to the remote cloud via a long wide-area
network data transmission, resulting in high end-to-end latency and energy consumption
of the mobile devices. Considering the necessity of quick analysis, there exists a strong
demand to integrate AI and edge computing, which gives rise to edge intelligence (EI).
With a large number of concepts and technologies interwoven together, the subject of EI is
enormously sophisticated. Generally, EI could be distinguished into AI for edge and AI on
edge [66,108–110].

4.3.1. AI for Edge

AI for edge aims to provide a better solution to optimization problems in edge com-
puting with the help of AI. A typical example about AI for edge is edge caching.

With the rise of various smart terminal devices, services such as multimedia applica-
tions, mobile games, and social applications have also grown rapidly. This trend brings
a new characteristic that the same content is often repeatedly requested by devices in the
same area, which leads to the demand for edge caching. The core idea of edge caching is
to cache and reuse the task results at the network edge, reducing the querying latency of
EI application. Two problems are important in edge caching [111]. On the one hand, the
distribution of popular content within the coverage of edge nodes is difficult to estimate
and may vary with space and time. On the other hand, the complex heterogeneous network
makes the design of content caching strategy more difficult. Applying deep learning to
accurately predict the future popularity of cached contents is now the focus of edge caching.
Deep neural networks (DNN) consist of an encoder for data regularization and a hidden
layer behind it, which can be trained and deployed with solutions generated by optimal or
heuristic algorithms to determine the caching policy, and thus avoid online optimization
iterations [112,113]. Recurrent neural networks (RNN) can predict the user’s preference.
Based on the preference, the contents are then prefetched and cached in advance to each
predicted edge node at each predicted location. Deep reinforcement learning (DRL) can
learn key features from raw observations and can optimize cache management policies for
EC networks directly from high-dimensional observations [99,114,115].
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4.3.2. AI on Edge

AI on edge refers to the circumstance of running AI models on edge, which performs
training and inference of AI models with device-edge-cloud synergy to extract insights
from massive data. AI on edge could be divided into model training, model inference and
processor acceleration [40].

The frameworks of model training include federated training (FL) and knowledge
distillation. FL is a practical deep learning training mechanism between the end-edge-
cloud [116]. In the framework of FL, mobile devices are considered as clients performing
local training. Meanwhile, end devices, edge nodes and servers in the cloud can be equiv-
alently considered as clients in FL under certain conditions. FL does not need to upload
data to the central cloud for training, and edge devices only need to train local mod-
els using local data and then upload the updated model parameters. There are usually
three types of training approaches in FL, which are as follows: (1) end-edge coopera-
tion, where the edge nodes replace the cloud as the server and the end side as the client;
(2) edge-cloud cooperation, where the edge side participates in FL as the client, while the
cloud acts as the aggregation server; (3) end-edge-cloud cooperation, where both sides
of the end side participate in FL as the client, while the cloud acts as the aggregation
server, and this approach can combine the advantages of the former two approaches [117].
Another important strategy in model training is knowledge distillation, which is a method
of transferring knowledge from complex AI models to compact AI models [118]. In general,
complex AI models are powerful, while compact AI models are more flexible and efficient.
Knowledge distillation can use a complex AI model to train a compact AI model with
similar performance to a complex AI model. These methods can be applied to different
types of DNNs or combinations to optimize complex edge AI models [119].

The frameworks of model inference include model optimization and model split-
ting [110]. Model optimization is used to handle AI tasks that require a large memory
footprint. At the edge, there are not enough resources to support raw large-scale AI models.
Optimizing AI models and quantifying their weights can reduce resource costs. Some
researchers have optimized AI models for parameter pruning and sharing, caching inter-
mediate data between adjacent layers to reduce data movement [120]. Another way to
optimize the parameters is to design specially structured convolutional filters, which is
only applicable to convolutional layers. Model splitting can decompose a large number of
computational tasks into different parts, and different devices can work together to solve
the problem. One of the most commonly used segmentation methods is to segment AI
models horizontally, i.e., along the end-edge-cloud. The process of data analysis is usually
divided into two parts, one is processed at the edge while the other one is processed in the
cloud, reducing the network traffic between the edge and the cloud [121]. Another model
partitioning method is vertical partitioning, especially for CNNs. As opposed to horizontal
partitioning, vertical partitioning fuses the layers and partitions them vertically in a grid
fashion, dividing each CNN layer into independently distributed computational tasks.

4.4. Optimization Objective

In the SAGIN cross-domain network system, even if the network resource types
of MEC service deployment and scheduling are the same, due to the difference in QoS
requirements and working modes of user nodes, different optimization objectives will
still be pursued. For example, in time-sensitive task scenarios with relatively sufficient
computing power and energy, application services pay more attention to the impact of delay
characteristics on system tasks and usually regard minimizing delay as the optimization
objective of edge computing.

This section mainly focuses on optimization objectives such as power consumption,
delay, and their combined states and analyzes their application scenarios and constraints in
detail. At the same time, with the continuous expansion of the network scale, the network
environment becomes more complex, and network security has gradually become the focus
of many researchers, which is more critical for cross-domain SAGIN. Therefore, this section
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will also provide the research progress of particular optimization objectives, such as privacy
communication, security perception, and anti-jamming.

4.4.1. Minimized Energy Consumption

With the proliferation of IoT devices, many computing-intensive applications are
bound to be generated. Despite the rapid development of lightweight energy technologies,
high-efficiency energy utilization is still required to prolong the run time of instruments,
due to the limitations of battery capacity and device weight [122,123]. Meanwhile, SAGIN
has a vast physical space and a relatively long communication distance, which brings
additional transmission power consumption, posing a severe challenge to minimize system
power consumption. In terms of optimization objects, the power consumption minimiza-
tion of different roles of the network system may be a concern for different application
scenarios. For example, the ground service offloading task mainly pursues the lowest
energy consumption of ground IoT or terminal equipment. At the same time, it involves
air-based data collection, data-forwarding, and traffic offloading tasks focused on obtaining
the optimal UAV power consumption and performance. Some scholars have studied the
lowest sum of computing and transmission energy consumption in terms of quantitative
values. At the same time, the work [101] takes the ratio of data throughput to total power
consumption as the optimization target to highlight the efficiency.

In the scenario of air-borne MEC, to reduce energy consumption, the computationally
intensive tasks of ground mobile user terminals can be offloaded to UAV or BS for execution.
Lu et al. in [124] proposed a joint optimization problem to minimize the computational tasks of
UAVs and terminals, as well as the energy consumption caused by sending data. Considering
the time-varying, random ground channels, and line-of-sight air-ground channels, a weighted
robust iterative optimization method, combined with the mean square error method and S-
process, is proposed to solve this problem. The numerical results show that, by adjusting and
optimizing power allocation, CPU frequency, and offloading data volume, the algorithm can
effectively reduce energy consumption under computationally intensive tasks compared to
other schemes and is more conducive to air-ground collaborative MEC. In addition, compared
with the non-robust algorithm, the algorithm can reduce the energy consumption of the
combined air-ground system more stably.

Jia et al. in [125] proposed a SAGIN scenario based on UAV sampling carrying or
offloading satellite backhaul. However, since the UAV’s energy capacity is minimal, while
its flight and data transmission require a lot of energy, they focused on minimizing the
total energy consumption of the UAV, while meeting the needs of ground equipment and
various constraints. Then, the authors divided the total energy consumption into take-off
power consumption, flight propulsion power consumption, descent power consumption,
and power consumption for sending data to satellites. Finally, a joint optimization problem
of typical UAV trajectory and data transmission is proposed to solve this problem efficiently.
The algorithm’s effectiveness, shown by the numerical simulation, verifies the LEO-assisted
UAV trajectory design and data transmission advantages.

The SAGIN hybrid communication network enhances coverage by deploying flex-
ible and maneuverable UAVs, which shows excellent prospects in random communica-
tion. However, UAV-assisted air edges are not self-contained, relying on existing satel-
lite/terrestrial systems for spectrum sharing and efficient backhaul. Li et al. in [126]
introduced a dedicated automatic identification system, denoted as AIS, to obtain ship
position information as a priori knowledge, so that only the large-scale channel state infor-
mation (CSI) related to the position is considered available. In [126], the joint optimization
problem of UAV flight trajectory and in-flight transmit power was proposed. The numerical
solution of the UAV data rate proportional to share passion is carried out through problem
decomposition and successive convex optimization. The simulation results show that the
algorithm will obtain better UAV system performance under total energy limitations. The
UAV can achieve better mobile user service according to the optimized trajectory and
launch power.
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Considering the importance of a good resource allocation strategy for solving the contradic-
tion between the sudden increase in the needs of disaster victims and the shortage of wireless
resources in emergencies, the space-air-ground heterogeneous system is considered as a prospec-
tive candidate system to meet the communication needs of emergency rescue. Moreover, the QoS
requirements of users in emergency scenarios are fully assembled, and energy efficiency (EE) is a
better design criterion for evaluating the performance of hybrid networks.

The work [127] has studied the problem of maximizing energy efficiency (the ratio of
system communication rate to energy consumption) in an orthogonal frequency-division
multiple access (OFDMA)-based emergency communication SAGIN hybrid cooperative
network. In [127], the problem of joint relay selection and power allocation is studied under
various total power constraints, quality of service requirements, and backhaul capacity
constraints. To solve this complex optimization problem, relaxation of binary variables
and dual decomposition methods are used. The simulation results illustrate the impact of
total power constraints and backhaul capacity on energy efficiency and system capacity. In
addition, the choice of the relay will also affect the system’s performance.

4.4.2. Minimizing the Delay

In disaster-stricken areas, e.g., medical IoT, autonomous driving intelligent computing,
4K/8K high-definition video transmission, forest fire monitoring, etc. [128,129], most
emergency and intelligent application scenarios are delay-sensitive, and it is necessary to
propose optimal target solutions with minimum delays. The time of computing task at the
edge of the SAGIN is mainly divided into the following four types: computing processing
time, propagation time, transmission time, and waiting for non-value-creating time (queue,
slot gap, and so on). To analyze the influence of different time types on the system in
detail, many scholars have conducted optimization research on various time types. For
example, in [130], the time for coordinated offloading of the space-ground network is
subdivided into nine segments for evaluation. The inter-satellite propagation delay is
regarded as the main communication delay in the highly dynamic satellite network system.
Some pioneering routing mechanisms ensure the minimum end-to-end transmission delay
between satellites [131]. The intelligent edge computing of satellite networks will also exert
on-orbit real-time processing capabilities. For example, in the task of satellite Internet of
things remote sensing image target detection, the deep learning method proposed in [109]
can reduce the delay of satellite image acquisition and target detection, thereby making it
easier to shorten the processing delay.

Mao et al. in [132] proposed a cloud-edge collaboration SAGIN framework, which
uses the flexible deployment of UAVs and wide-area satellite coverage characteristics to
give full play to the computing resources of each node in a heterogeneous network to
meet the needs of delay-sensitive emergency applications. In [132], the time models of
local execution, UAV offloading, and satellite offloading are designed in detail. Under
the constraints of power consumption and maximum tolerance time, the problem of
minimizing the time overhead of the top delay user in the ground terminal is derived.
Descent and successive convex approximation, an alternating optimization algorithm with
a convergence guarantee, is proposed to solve this problem, and the simulations show that
this algorithm can significantly reduce the delay.

By deploying edge computing servers at satellite and terrestrial gateways, efficient
offloading of compute-intensive tasks is achieved, resulting in significant performance im-
provements in network computing power, at the expense of complex resource management
and high mobility. In [133], a weighting coefficient is defined for the delay of each user
to ensure the fairness of multiple users. Latency is subdivided as calculations that can
be performed locally or offloaded to satellite or terrestrial gateways. Then, the authors
proposed an approximate optimal solution based on game theory and matching theory.
The numerical results show that this method can obtain almost the same weights and delay
as the Brute-force method at the cost of lower complexity.
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To improve the parallel ability of multi-user utilization of edge resources in remote
areas, a specific virtual machine is deployed for each computing task in the UAV edge server
scenario [134]. The computing resources of the UAV are virtualized as virtual machines,
and each virtual machine is used for a specific application [135]. Quan et al. in [135]
propose a joint resource allocation and task scheduling method to allocate computing
resources to virtual machines in order to pursue better latency performance. In [135],
the offloading decision is formulated as a Markov decision process that considers the
network dynamics in the system state. The computational offloading method based on
deep reinforcement learning is used to learn the optimal offloading strategy in real-time.
The simulation results show that the proposed edge virtual machine allocation and task
scheduling method can achieve near-optimal performance with extremely low complexity.
In addition, the convergence speed is faster, and the total cost is lower.

If only the system cost caused by transmission delay is considered, it can also be converted
into the pursuit of maximizing system throughput and transmission rate. To maximize the
average throughput among users, the work [136] proposes a space-ground scenario, where
multiple UAVs and BSs are deployed under the premise of a satellite-ground link. Considering
different constraints and QoS, the authors in [136] proposed a joint optimization problem of
user association, transmission power, and UAV flight trajectory. By decomposing this iterative
problem and solving it sequentially, the proposed scheme outperforms different benchmark
schemes in terms of the average users’ throughput.

4.4.3. Multi-Dimensional Joint Optimization

Due to the complexity and constraints of SAGIN networks, a single optimization
objective may lead to insufficient system performance improvement. Therefore, many
scholars consider the possibility of multi-dimensional system cost optimization objectives,
including the two weighted metrics (delay and energy consumption, security and power
consumption) and the three weighted metrics (reliability, energy efficiency, and load bal-
ancing) [57,137]. According to users’ requirements, the weights of different targets may
be continuously adjusted, thereby improving the adaptability of multi-user differentiated
service applications. However, pursuing multi-dimensional optimization objectives of
the system will bring mixed problems with high computational complexity. Therefore, to
reduce the difficulty of solving, the problem is usually decomposed without losing the
accuracy in the numerical simulation.

Li et al. in [138] propose a cloud-edge collaborative on-orbit edge computing architec-
ture, in which indivisible tasks can be performed locally, whether on satellite edge servers,
or forwarded to ground cloud centers. To minimize the energy consumption and delay
weighted total cost of the ground terminal under the joint optimization of offloading decision
and resource allocation, the collaborative satellite-terrestrial network distributed offloading
algorithm based on a parallel neural network is designed to speed up computation and
convergence. Similar application scenarios and two-dimensional optimization objectives have
been proposed in [82]. However, the authors relax the binary variables of the optimization
problem based on linear reconstruction technology, transforming the original non-convex
problem into a convex problem, and also achieve an excellent result of minimization of the
joint optimization of the delay and energy consumption of ground terminals.

Zhu et al. in [139] consider new application scenarios, such as industrial automation
and environmental monitoring deployed in remote areas. Resource-constrained terminals
cannot meet the delay requirements without experiencing the local execution mode. The
work [139] proposes a novel offloading cost, which is accumulated by all ground users and
cloud edge nodes in the system. The offloading cost consists of two parts, delay and energy
consumption, and considers multiple constraints, such as offloading location, current
channel state, and bandwidth allocation. In addition, to speed up the optimization, the
deep reinforcement learning-based task offloading (DRTO) algorithm is proposed in this
paper continuously to adjust the number of candidate positions for space-ground networks
with fast fading channels, thereby achieving near-optimal offloading performance with less
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time consumption. In some specific scenarios, resource services may be multi-faceted. For
example, the work [140] roughly divides resource services for high-speed rail into secure
and non-secure services according to reliability requirements. Different services will also
pursue other optimization objectives. For example, safety services related to operation
control and scheduling of high-speed trains have high requirements on bit error rates and
end-to-end delay performance. In contrast, non-safety services, such as video surveillance
and passenger information systems (PIS), usually require higher data rates. Under the
architecture of diversified network resources in [140], a safety-oriented resource allocation
scheme is proposed to deliver security services, which can always meet the multi-objective
application requirements of high-speed rail security services.

4.4.4. Specific Optimization Objectives

Under the complex network environment and multiple time-varying constraints, many
scholars also pay attention to particular types of system objectives, such as high security,
high reliability, and low cost-effectiveness ratio, to cope with the diverse needs of the user.

In the complex environment of SAGIN, data communication security has received
attention due to its unpredictability and aggressiveness. It must be protected by methods
such as physical waveform processing, encryption and decryption, and trusted transmis-
sion. Although mobile edge computing provides nearby resource services to improve user
service quality, it is still challenging to provide edge computing customized services to
meet the various personalized needs of vehicles for computing-intensive applications in the
heterogeneous Internet of vehicles, to ensure the QoS of vehicle customization quality of
experience. Hui et al. in [141] analyzed the attack model, including malicious edge nodes
and malicious vehicle nodes, in detail, designed a new secure edge computing service
framework based on the computing resources of different network infrastructures, and
introduced the Nash game equilibrium to guide the network deployment. The collaborative
computing resource scheduling algorithm, based on the optimal bidding strategy between
the network nodes, can satisfy the individual experience of different users. In particular,
the security analysis verifies that the scheme can effectively defend against attacks. In some
terrestrial or maritime edge computing service scenarios with uneven distribution density
and surges in data volume, such as military applications, it is usually necessary to pay more
attention to high-security data transmission and traffic offloading, in addition to the basic
requirements of high speed, low latency and comprehensive coverage [142]. Especially
when the satellite or airborne network is connected, the challenges in the complex network
environment are more severe. To solve the security problems caused by cross-domain data
interaction and frequent link switching, this paper uses the block-chain of the high-trust
mechanism to realize distributed and lightweight node authentication, as well as informa-
tion transmission of heterogeneous network nodes, to obtain a higher security level, lower
computational and communication costs.

The space-ground joint edge computing network faces many challenges, such as high
user service quality requirements, high mobility coordination, multi-task scheduling, etc.
For instance, the work [143] analyzes the satellite-ground coordination failure mode and
fault recovery in detail. In computing offloading and collaborative processing, the FDIR
policy is introduced to improve system reliability to reduce the impact of faults caused
by dynamic channel state changes, insufficient resources, and data corruption. Multiple
fault recovery mechanisms are established, including computing task migration and task
re-instantiation. The probability of failure of SAGIN edge computing is relatively high
risk for applications with high-reliability requirements, such as aviation and aerospace.
Therefore, the work [57] focuses on the problem of computing offloading for delay-sensitive
applications under reliability constraints and designs a two-stage reliability-aware compu-
tational offloading method. Different from the task migration or reconstruction after failure
in the previous paper, the reliability constraint defined in [57] is the dual constraint of the
maximum time consumption constraint and the maximum energy consumption constraint,
and an improved lazy shadowing scheme is designed to further enhance the reliability of
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the application. Future satellite networking collaborative edge offloading will also further
study the above strategies.

In addition, many scholars also use the ratio of two target variables (which can be
called the “efficiency-cost ratio”) to measure the capability of edge service systems, such
as the ratio of power consumption rate, the ratio of error rate, the ratio of data volume
to power consumption, etc., which can be defined as efficiency objectives. For example,
to realize the efficient utilization of spectrum resources by IoT devices in SAGIN, Ruan
et al. in [144] comprehensively consider the energy efficiency and security requirements of
satellite communication and propose a ratio of achievable secure communication rate to
total power consumption to maximize energy efficiency to solve the optimization problem
of the target. A cooperative cognitive beam-forming scheme is designed to facilitate secure
and energy-efficient IoT communications. The simulation results verify the superiority of
the collaborative resource management algorithm’s implementation efficiency priority in
this field.

When the users’ object under consideration is tens of billions of IoT devices, improving
user service density per unit area will become the objective pursued [145]. To make up for
the shortage of ground network communication blockage and inability to deploy, adding
SAGIN of satellites and UAVs to provide seamless coverage has excellent advantages.
Meanwhile, when the perspective turns to the space-based edge server of the giant low-
orbit constellation, the more stable visibility and lower inter-satellite distance will also
bring system performance improvements to satellite edge computing, so that access users
can obtain better real-time services [146]. Based on the sensitive quantity matrix of access
user delay, communication rate, and visible time, the work [146] uses an extended graph
model and an improved BFST algorithm to establish an inter-satellite link to achieve a
highly stable and robust space-based edge server network.

Table 3 summarizes the optimization objectives for different user QoS requirements
in different application scenarios. Lower energy consumption and lower latency are the
most common optimization pursuits, which come from the basic requirements of the user
terminal equipment for energy and time. Combining multi-dimensional optimization
goals can lead to better performance improvements, but it can also lead to complex system
models. In addition, special edge service objectives, such as high reliability, personalized
service and network security, are also discussed in this paper.

Table 3. Summary of related works on SAGIN objectives.

Resource Types Objective Key Issues Advantages Disadvantages Ref.

Minimum energy
consumption

Minimizing
computation energy of

UAVs and UEs

Efficient and
robust

optimization
problem

More stable energy
reduction

performance

Time-varying and
random link channel [124]

Minimizing energy
consumption of UAVs

Joint optimization
of UAV trajectory

and data
transmission

Lower ground
equipment

requirements

High mobility, more
constraints [125]

Maximizing the
energy efficiency

Joint relay
selection and

power allocation

Better
collaboration
performance

More complex
connections [127]
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Table 3. Cont.

Resource Types Objective Key Issues Advantages Disadvantages Ref.

Lowest latency

Minimizing on-board
image processing

delay

Orbital edge
intelligent

framework, remote
sensing

Lower backhaul
load, higher
bandwidth

utilization of
inter-satellite link

Limited application
scenarios [109]

Minimizing the total
weighted delay of

uesrs

Joint computing
and

communication
allocation

Higher fairness of
multi users Uncertain energy factor [133]

Maximizing the
average inter-user

throughput

Joint user
association, power
optimization and
trajectory control

Higher users’
throughput

More susceptible to
interferences [136]

Joint optimization

Minimizing weighted
power consumption

and latency

LEO edge
computing system,
joint computation

offloading and
resource allocation

Lower system
average cost

Limited on-board
resources, low versatility [137]

Improving reliability,
energy efficiency, and

load balancing

A two-stage
reliability-aware

offloading method

Higher network
services reliability

More constraints, higher
complexity [57]

Maximizing the
normalized value of
weighted data rate,
error rate and delay

Resource
allocation

priorities, network
handover costs

High safety, more
suitable for delay

sensitive
applications

Larger state space [140]

Specific objectives

Optimizing the overall
scheduling

An optimal
bidding strategy
by Nash game

Higher
personalized

service experience

Worse environmental
impact [141]

Improving robustness
and security

Using high trust
mechanism to

realize data
transmission

Higher security
level, lower

network cost

More complex channel
state information [142]

Maximizing the
number of users in the

coverage area

Wide area
connection,

increasing user
density

More stable
continuity of

service

Not suitable for high
bandwidth applications [145]

4.5. Key Algorithms

SAGIN MEC can improve user service quality and network resource utilization effi-
ciency. Many scholars use different algorithms to conduct in-depth research on achieving
the optimization objective. For example, the deep reinforcement learning method that
integrates neural networks and reinforcement learning can use the high-dimensional state
and operation space to solve the complex system analysis problems of caching, offloading,
network and transmission coupling in MEC scenarios, which effectively promotes the
research of mobile edge computing technology [147].

4.5.1. Reinforcement Learning

In the edge computing of SAGIN, energy consumption is a significant constraint.
Xu et al. in [148] propose a joint resource allocation problem of a satellite-ground-sea
network and use the classical reinforcement learning algorithm deep Q-network (DQN) to
solve this collaborative communication and computing resource allocation problem and
provide a better QoS guarantee. The algorithm defines the state space and action space.
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The state space stores the channel quality state and computing capability state. The action
space stores the selection of access points that provide users with network access services
and the choice of MEC servers that provide computing assistance services. The computing
offloading scheme proposed in [124] only considers the state of computing resources,
without considering the constraints of communication resources. To address this issue,
the works [56,149] proposed a new strategy. Luis et al. in [149] offer a power allocation
scheme for multi-beam satellite systems based on deep reinforcement learning and use
the near-end proximal policy optimization algorithm (PPO) to optimize the allocation
strategy that does not meet the system requirements’ lowest power. Optimizing the
power allocation for each beam while keeping other satellite resource parameters fixed,
the algorithm uses a pessimistic estimate of the policy’s performance, which does not
allow it to make continuous significant changes. In this way, it prevents the strategy’s
performance from deteriorating significantly in some cases, making the implementation
process more stable and less volatile. In [56], a deep learning-based offloading strategy
optimization strategy is proposed, which considers the dynamics of energy consumption
performance, using a long short-term memory (LSTM) model to predict future energy.
Then, the system uses the available energy information of the next time slot to optimize the
computing offloading strategy for different IoT devices. The optimization algorithm can
improve the computational performance of the system, considering the energy dynamics
and other communication conditions, and maximize the completed computational tasks,
while experiencing the energy and latency constraints of IoT devices. The algorithm
proposed in [149] can minimize the power consumption but does not consider the delay
problem in edge computing. Gao et al. in [150] propose a new offloading algorithm to
take into account both the delay and energy consumption, providing edge computing
services for ships on the ocean. Under the framework of the multi-armed bandit, which
considers the choice of the UAV offloading to the edge server and takes into account the
delay demand and energy consumption, a new optimal edge server offloading decision
algorithm is proposed. Considering the changing marine environment, ship IoT users may
not understand relevant prior information. Through the history of the algorithm, IoT users
can analyze the reward and cost of each selected UAV to decide which UAV to choose next
time to offload the mission.

Considering the delay and energy consumption in the above literature, Yu et al. in [54]
divided the tasks into fine-grained slices. Fine-grained space-ground coordination-based
joint offloading and caching algorithms were proposed to minimize the task completion
time and satellite resource usage. Since the action space grows exponentially with the
number of subtasks, it is difficult to obtain the optimal solution in polynomial time, so the
optimization algorithm adopts a pre-classified offloading and caching scheme, as well as a
decision-making scheme based on deep imitation learning. While significantly reducing the
action space, this algorithm makes fine-grained offloading and cache placement decisions
for tasks to minimize task completion time and satellite resource usage. However, fine-
grained division of duties will inevitably lead to increasing loads. Therefore, Tang et al.
in [151] proposed a cooperative offloading algorithm for LEO satellite networks based on
a three-tier computing architecture. First, considering that LEO satellites can exchange
information through inter-satellite links, this network’s offloading strategy of inter-satellite
cooperative computing is designed. Under this framework, the computing tasks of heavy-
load LEO satellites can be forwarded to other light-load LEO satellites for processing, which
can balance the computing load of the LEO satellite network and achieve better resource
utilization. Second, a distributed deep learning-based collaborative computing offloading
(DDLCCO) algorithm is proposed for the real-time computing offloading problem of the
LEO satellite network in a time-varying environment. The algorithm can dynamically
adjust the offloading decision according to the needs of ground users. Compared with the
traditional optimization algorithm, the algorithm has low computational complexity and
is more suitable for computational offloading in the actual network environment. Again,
to make full use of the computing resources of the LEO satellite network, not only the
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horizontal cooperation between LEO satellites but also the vertical cooperation among
ground users, LEO satellites and cloud servers are considered. Some scholars conducted
research based on such algorithms for different scenarios and optimization objectives, such
as in the high-speed rail safety business field [140].

4.5.2. Mathematical Programming

In addition to reinforcement learning, some other algorithms can play a role in SAGIN
MEC. The work [53] proposes a three-layer computing architecture hybrid cloud and edge
computing LEO satellite network to provide terrestrial users with heterogeneous comput-
ing resources, to enable terrestrial users to access computing services on a global scale.
Based on the architecture, satisfying each LEO satellite’s coverage time and computing
capability constraints, the offloading calculation decision of the minimum ground user
total energy consumption is studied. The problem is discrete and non-convex because
both the objective function and conditions contain binary variables, making the problem
difficult to solve. The authors transform the original non-convex problem into a linear
programming problem, using a binary-variable relaxation method to address this chal-
lenging problem. Then, a distributed algorithm using the alternate direction method of
multipliers is proposed to approach the optimal solution with low computational complex-
ity. Unlike other MEC solutions, this paper fully uses the powerful resources of cloud and
edge servers to provide heterogeneous computing services for ground users. In addition,
the limited computing power and coverage time of each LEO satellite are also considered.
For MEC-enhanced satellite IoT networks with multiple satellites and satellite gateways,
we need joint optimization of coupled user association, offload decisions, computing, and
communication resource allocation to reduce latency and energy costs. Therefore, the
work [152] defines the delay and energy optimization problem of MEC-enhanced satellite
IoT networks as a dynamic mixed integer programming problem, where it is difficult to
obtain an optimal solution. To solve this problem, the complex problem is decomposed
into two sub-problems. One is computing and communication resource allocation based on
fixed user association and offloading decisions, and the other is user federation association
and offloading based on optimal resource allocation. For the sub-problem of resource
allocation, the optimal solution to the problem is proved by using the Lagrange multiplier
method. On this basis, the second sub-problem is further formulated as a Markov decision
process. A joint user association and offload decision with optimal resource allocation,
based on deep reinforcement learning, is proposed. The simulation results show that this
method can achieve better long-term latency and energy consumption returns. When the
optimization problem is non-convex, Lagrangian duality theory is a good solution.

Therefore, the work [153] mainly studies the resource allocation problem of cells in the
space-air-ground integrated vehicular networks (SAGVN), considering user association to
optimize the connection between the BS and the vehicle. A low-complexity user association
method is designed, and the car selects the base station connection that can obtain the
maximum channel gain for reference. Since the objective function is non-convex, one
can relax the constraints of the sub-channel allocation index and convert the objective
function into a convex function. On this basis, a sub-channel and power allocation method
is designed, considering the QoS of aircraft in the cell and the interference of UAVs and
satellites. The proposed sub-channel allocation scheme ensures that the user obtains the
maximum gain on the sub-channel. The Lagrangian duality theory is introduced to solve
the power allocation problem. To reduce the delay in the offloading process, the delay time
as a constraint can optimize the communication performance and ensure the low-latency
QoS of vehicles in SAGVN.

4.5.3. Game Theory

The competition of users’ equipment for computing resources in SAGIN edge com-
puting can be considered as a classic game theory problem. Game theory is a powerful
tool for designing distributed mechanisms that allow mobile device users in a system to
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make local decisions based on policy interactions and to achieve mutually satisfactory
computational offloading solutions. This helps relieve the heavy burden of complex cen-
tralized management, such as collecting vast amounts of information from mobile device
users for cloud operators. Furthermore, since different mobile devices are often owned by
other individuals who may pursue different interests, game theory provides a practical
framework to analyze the interactions among multiple mobile device users to their benefit
and to design incentives that are compatible with computing loading mechanisms, so
that no mobile user has an incentive to deviate unilaterally. Wang et al. in [80] propose a
game-theoretic approach for computing offloading strategy optimization in satellite edge
computing. A satellite edge computing offloading system model is established, and the
intermittent problem of ground-satellite communication caused by satellite in-orbit op-
eration is considered. A computational offloading game framework is set, and queuing
theory is used as the optimization indicator to calculate task response time and energy
consumption. Each device selfishly chooses the strategy that minimizes its cost. The re-
sponse time and energy consumption of the task are calculated based on queuing theory.
They are indicators of optimization performance, theoretically prove the existence and
uniqueness of Nash Equilibrium, and propose an iterative algorithm. The game-based
offloading strategy can significantly reduce the average cost of equipment. Under actual
network conditions, satellites will have not only intermittent communication, but also
cause mutual interference between multiple channels. Based on this, Chen et al. in [154]
study the multi-user computing offloading problem of mobile edge cloud computing in the
multi-channel wireless interference environment. The optimal solution is NP-hard in the
computational set, so game theory methods are used to achieve efficient distributed offload
computation. The distributed computing offloading decision problem among mobile device
users is formulated as a multi-user computing offloading game. The decision’s structural
properties are analyzed, and it is proved that the decision has a Nash equilibrium and
limited improvement properties. A distributed computing offloading algorithm that can
achieve the Nash equilibrium is designed, the upper bound of the convergence time is de-
rived, and its efficiency ratio relative to the centralized optimal solution is quantified from
two essential performance indicators. The Nash game equilibrium method also achieves
performance gains in multi-user customized service requirements, such as in [141].

4.5.4. Other Algorithms

In addition to the above three types of classical algorithms applied to SAGIN edge
computing, some other algorithms can also solve the problem of SAGIN edge offloading.
Wang et al. in [155] studied the resource scheduling problem in edge computing satellite
networks. Considering the resource allocation strategy of edge computing satellites and
the establishment of edge server collaborative networks in emergencies, and taking the
different sensitivities of terminals, i.e., delay, bandwidth, and connection time, as resource
allocation factors, a K-means algorithm is proposed to guide resource partitioning in edge
servers. The spanning tree algorithm based on the breadth-first search is improved, and
data transmission links are established to realize the dynamic scheduling of information
and resources in emergencies. This dramatically reduces the need for the edge server to
reallocate computing resources and realizes continuous terminal control based on dynamic
adjustment. Although the work [155] can directly learn continuous control of the terminal
based on dynamic adjustment, the memory consumption of the spanning tree based on
the breadth-first search is significant. Therefore, the work [58] adopts an online learning
method to study how to effectively deploy services on satellite edge computing nodes
to achieve robustness-aware service coverage under limited resources. The problem can
be formulated as a stochastic optimization problem with a long-term average objective
function and constraints. Facing the challenges of space-time system dynamics and service
coverage-robustness conflicts, a new online algorithm is proposed, which uses Lyapunov
optimization theory, Markov approximation method, and Gibbs sampling algorithm to
transform the long-term averaging problem into a real-time online optimization problem for
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each time point. The algorithm can converge to a near-optimal result, and the optimal gap
has a theoretical boundary. Although online learning is in real-time, the training process is
unstable and tends to go in the wrong direction. Therefore, to minimize the weighting and
energy consumption of mobile devices, the work [156] decomposes the problem into the
problem of reducing the delay of the space segment and the problem of minimizing the
uncertainty of the ground side. The sequential fractional programming algorithm is used to
solve the underlying sub-problem of the minimum space segment delay, and the first-order
optimal solution is obtained. The upper sub-problems are decoupled and solved using
convex structures and Lagrangian dual decomposition methods. Based on solving these
two hierarchical sub-problems, an energy-efficient computation offloading and resource
allocation algorithm (E-CORA) is proposed. In addition, the work [146] uses the extended
graph model and the breadth-first search-based spanning tree (BFST) algorithm to realize a
satellite edge service collaborative network.

Table 4 is a summary of common algorithms of SAGIN MEC. Because the optimization
goal of edge computing is often achieved by finding the optimal offloading and scheduling
decisions, deep reinforcement learning, Nash game equilibrium and other algorithms
are often used. In addition, the particle swarm algorithm [144], fine-grained heuristic
algorithm [44], spanning tree and other methods are also used in SAGIN to pursue better
service guarantee.

Table 4. Summary of related works on SAGIN key algorithms.

Algorithm Types Objective Key Issues Advantages Disadvantages Complexity Ref.

Reinforcement
learning methods

Minimizing the delay of
computation and

transmission

Edge-cloud
collaborate, ratio

of the service
reward to the

resouces renting
cost

Easier to solve
high-dimension

problems

Slow convergence
rate N/A [148]

Improving dynamic
energy Distribution of
multi-beam satellites

Interaction with
the environment

to alternate
sampling data

More stable
policy

implementation

Uncertain
optimal strategy N/A [149]

Minimizing the
cumulative regret value

of marine users

The reward and
cost of decisions,
upper bound of
the confidence

interval

Better
performance

under different
QoS

Harder to solve
huge state space

problems
N/A [150]

Minimizing mission
completion time and

satellite resources

Learning optimal
policies through

behavioral
cloning

Less action space,
lower energy

consumption for
training

High
requirements for

training data

o
(

4|V|
)

|V| : task
number

[54]

Mathematical
programming

Minimizing the overall
energy consumption

Relax binary
variables, the

alternating
direction method

of multipliers

Low
computational

complexity

Large
communication

overhead

o
(

I3)
I : user
number

[53]

Maximizing the sum
rate of IoVs

Optimize using
the Lagrangian
duality theory

Low system
complexity

Low sample
efficiency N/A [153]
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Table 4. Cont.

Algorithm Types Objective Key Issues Advantages Disadvantages Complexity Ref.

Game theory

Minimizing the
value of cost

function

A computation
offloading game

framework, Nash
equilibrium

Lower average
energy

consumption,
high resource

utilization

High balancing
complexity O(KMN(log(I/ε))) 1 [80]

Improving
offloading

performance under
interference
environment

Distributed Nash
equilibrium
offloading

Higher
computational

efficiency

More complex
with high
mobility

O(CM log M) 2 [154]

Others

Minimizing the
maximum standard

deviation of all
clusters

Euclid distance,
advanced

K-means, breadth-
first-search-based

spanning tree

Stable continuity
of control

Large memory
consumption N/A [155]

Improving service
coverage and

robustness

Lyapunov
optimization,

Gibbs sampling

Online fast
optimization

Unstable training
process O(I L maxi∈S|Xi |) 3 [58]

1 K is the number of iterations, M is the number of satellites, N indicates the number of mobile devices, I represents
the maximum iteration length, ε indicates the precision requirement. 2 M stands for the wireless channel, C
indicates the number of slots that terminate the algorithm. 3 I denotes the iteration required for the outer loop to
converge, L represents the number of iterations in the middle loop; maxi∈S|Xi | represents the greatest number of
iterations in each satellite edge computing node.

5. Challenges

It has become the consensus that SAGIN is the most prospective technology to provide
users with edge services with low latency, comprehensive coverage, and high-reliability
system characteristics. Many scholars have explored various application schemas based on
their respective scenarios [157,158] and use different algorithms, such as deep reinforcement
learning, the Lagrange multiplier method, and Nash game equilibrium to verify their
feasibility for optimization problems. However, to fully exploit the advantages of SAGIN
edge services and promote practical applications, some potential challenges and research
issues still need to be further explored [143], which are summarized as follows.

5.1. High Dynamicity

The introduction of multi-layer heterogeneous constellations and aerial drone clusters
in high, medium, and low orbits makes SAGIN more dynamic, which also brings more
uncertainty to the user service experience, and can be mainly divided into the following
three aspects: (1) uncertainty visibility, (2) unsecured resources, and (3) discontinuous
services. First, although the satellite flies according to the preset orbit, considering factors
such as inter-satellite communication, payload tasks, and on-orbit failures, the satellite’s
attitude may be adjusted to affect the satellite-ground link. Any position of the mobile user
within the satellite coverage area will also constitute the uncertainty of the satellite-ground
visibility. In addition, the trajectory of UAVs also involves dynamics. In conclusion, there
is an emotional problem of connection between the two sides of the edge service in the
SAGIN network. Second, although the development of large-scale processor circuits and
lightweight memory chips has improved the resource capabilities of UAVs and satellites,
compared with the almost unlimited power and resources of edge base stations in cellular
networks, the edge service resources they can provide are still limited, and they may
migrate to other satellites or backhaul to the remote cloud center. Therefore, there is
still service uncertainty in the edge computing of the SAGIN network. Third, UAVs or
satellite nodes with wide-area coverage will inevitably have multi-user access requirements.
However, due to antenna layout and frequency constraints, it is usually necessary to use
time-division multiplexing and multi-user methods to share frequencies and channels,
which means that the service time at the edge of the SAGIN network is also different and



J. Sens. Actuator Netw. 2022, 11, 57 37 of 46

discontinuous. It is also challenging to ensure user fairness and service density in a highly
dynamic network [159–162].

5.2. Random Access Requirements

In traditional satellite-to-ground communication links, satellites and ground stations
usually know the location and direction information, and the access process is predictable.
At the same time, conventional terrestrial wired networks also have fixed connection
characteristics, and network status changes are controllable. However, the SAGIN envi-
ronment is constantly changing, and the number and types of users within its coverage
are also evolving. To improve the system performance, users always seek the optimal
offloading strategy, which leads to changes in the communication topology. Furthermore,
in the face of emerging business applications and the emergency needs of multiple users,
it is necessary to build flexible user access capabilities to edge end nodes (such as LEO
satellites or UAVs) [163,164]. However, how to ensure flexible and reliable access for a
large number of users, while maintaining a stable high-speed bandwidth after entry to
ensure the reliability of edge computing services, and solving the global shortage of spatial
telemetry, tracking, and command (TT&C) resources and the high complexity of planning
and scheduling remain the focus of further research, which involves multi-user access and
exit management, secure access authentication, global user uplink policy and downlink
addressing policy and so on.

5.3. Task Relay and Migration

Based on the inter-satellite link technology, the gridded low-orbit mega-constellation
can better maintain continuous coverage and communication with terrestrial users to
achieve edge services in high mobility environments. However, it is limited by the degree
of mission saturation, the number of users, and services. Influenced by factors such as
resources, the highly dynamic satellite network topology and sudden changes in node
access traffic will significantly impact the quality of on-orbit service. Therefore, carrying
out mission relay and migration to meet users’ needs is still a research challenge [165,166].
It includes the following two aspects: first, problems such as excessive computing tasks
or discontinuous visibility cause a single edge computing node to be unable to be fully
executed, and the remaining tasks or slices need to be transferred to the next pair of user-
visible nodes for continued execution to achieve task relay. For example, the LEO satellite
that undertakes the edge computing task offloaded by the user is about to leave the visible
arc, and the remaining functions can be handed over to the backward satellite in the same
orbit, which will complete the computing task and send the result to the user. Second, due
to the imbalance of the network state, the space/air edge nodes in the connectable area
are saturated with tasks and cannot execute user requests. The lessons can be migrated
to low-load nodes. For example, if the satellites or UAVs visible in the hotspot area of
the ground service are saturated with computing power, the application can migrate to
adjacent low-load nodes for execution.

5.4. Network Security and Reliability

SAGIN is a wide-area open network with a wireless connection. The network covers
a wide range of airspace and ground. In addition, the network covers are vulnerable to
frequency interference and network attacks. Therefore, while the edge server provides
flexible and convenient edge services to network users, it must be highly concerned with its
anti-interference ability and information security to prevent illegal intrusion or malicious
attacks from causing users’ information leakage, data tampering, or edge service interrup-
tion. However, SAGIN challenges network security due to its complex and heterogeneous
network composition. Many scholars mainly focus on communication interference and
data security [167–170]. The SAGIN network environment is complex, which means that
unintentional or malicious frequency interference from other devices will affect the MEC
optimization objective [171]. Therefore, interference management and network scheduling
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are important research issues. In addition, malicious nodes’ interception or eavesdropping
of communication links will also challenge user information security. From the perspective
of network reliability, the satellite-ground link has weather effects, such as rain attenuation,
which leads to the deterioration of the channel quality and becomes more obvious with
the increase in frequency bands. Therefore, the adaptive capability of the channel must be
considered to obtain maximum communication quality. In addition, the single event flip-
ping effect caused by space radiation will lead to data errors and even abnormal functions.
Therefore, in the edge services of space-ground and space-air computation offloading and
traffic scheduling, the reliability challenges brought by space environment radiation should
also be paid attention to.

6. Future Research Directions

Combined with the introduction of the research branches of the key technologies and
challenges of edge computing for SAGIN, the future trend of this research direction mainly
includes the following aspects.

6.1. Wider Range of Emerging Businesses

Global ubiquitous users will generate large amounts of data and various service
demands in real time, which will put greater operational pressure on traditional terrestrial
cellular mobile networks. With the construction of national low-orbit satellite constellations,
space-air cross-domain interconnection, multimode communication terminals, and other
infrastructure, the integrated SAGIN with edge computing will drive the development of
large user applications and complex new services, including space-air information services,
space situational awareness, and real-time processing, with its seamless global coverage
and user-access-on-demand characteristics.

6.2. Space-Air Information Service

The huge amount of network users will generate huge information data, which will
bring unprecedented pressure on traffic control. Meanwhile, in the application scenario of
SAGIN, the task is usually intensive, delay-sensitive and requires faster communication
rates and higher information distribution efficiency, which is undoubtedly a greater chal-
lenge to network traffic management. In traditional network architectures, traffic generated
by user terminals accesses the core network and further accesses cloud servers through
satellites, UAVs or other access devices. If these services can be catered to at the network
edge, the burden on the core network can be greatly reduced, thus improving channel
bandwidth utilization. Not only telecom network operators, but also cloud application
service providers face the same challenges. For example, if the data generated by IoT sen-
sors (e.g., smart homes) are processed at the nearest edge node, the demand for computing
resources at the remote data center is reduced. Therefore, edge computing in the SAGIN
can effectively address the traffic pressure and congestion in the core network and data
centers. Since space-air edge nodes in the SAGIN network are necessary for traffic transfer
and offloading, attention is also paid to areas such as long propagation delay, link selection,
and channel assignment [47].

6.3. Better Guaranteed QoS of Users

Space-air edge nodes gives SAGIN networks a stronger guarantee of users’ QoS, but
in the face of more access and more complex applications in the future, continuously
improving users’ QoS guarantee is still a research trend and a goal. The key point is to
focus on the delay characteristics and energy consumption. On the one hand, it remains a
problem of how to effectively allocate computing resources, reduce computing waits, and
match users’ computing demands for numerous users in a specific region at the remote
end, so as to achieve the goal of multi-user total latency optimization. On the other hand,
it is still necessary to consider the balance between communication overhead and edge
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computing in space-air scenarios, which concerns the strategy of selecting the appropriate
edge nodes and performing task allocation in space-air dual mobility scenarios.

6.4. Satellite Networks Assistance

Undoubtedly, the construction of satellite network infrastructure will greatly promote
the development of edge computing in the SAGIN and realize the task collaboration
and efficient scheduling of the whole area network. Software-defined networks, network
function virtualization, resource pooling characterization, inter-satellite dynamic routing
and other related research are also advancing rapidly, which is an important guarantee
and support for edge computing technology. Compared with a single satellite, satellite
star cluster, same orbit ring satellite network, etc., a multi-layer multi-orbital satellite
network has the advantages of high spatial spectrum utilization, low link congestion and
high robustness. However, due to the rapid change in multi-satellite network topology
and complex topology, QoS guarantee, dynamic migration, switching management, load
balancing and other issues among the orbiting satellites remain key research directions.

6.5. Higher Security

Through edge computing in SAGIN, computation and traffic are distributed at the edge
of the network for storage and processing. The distributed architecture is less susceptible
to network attacks, thus improving the reliability of the entire network. At the same
time, edge computing provides proximity services, which also shortens the in-network
transmission time of information and reduces security risks. However, the large number
of users, emerging services, access to multiple heterogeneous terminals, and application
network deployment all pose new challenges to the subsequent SAGIN network security
and reliability [172]. Systems integrated with military applications generate and deliver
large amounts of sensitive data, and resources require security, reliability, and real-time.
Therefore, there is an increasingly urgent research trend to effectively resist interference,
message tampering and malicious attacks.

7. Conclusions

SAGIN edge computing technology is regarded as the most prospective technology by
researchers worldwide, due to its low latency, high bandwidth, and ubiquitous coverage
characteristics. As a result, it is gradually being pushed into practical applications. This
paper aims to study the MEC architecture, key technologies, and challenges of SAGIN
heterogeneous networks. First, we briefly review the development of related network
technologies in detail, design SAGIN network system architecture and service framework,
and analyze the characteristics and advantages of SAGIN edge computing. Then, we de-
scribe the critical technologies of SAGIN, including MEC deployment, resource scheduling,
edge intelligence, optimization objectives, and critical algorithms. Finally, we discuss some
problems and challenges that exist in SAGIN edge computing technology, hoping to put
forward some new ideas for future applications in this field.
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