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Abstract: Optical Character Recognition has made large strides in the field of recognizing printed and
properly formatted text. However, the effort attributed to developing systems that are able to reliably
apply OCR to both printed as well as handwritten text simultaneously, such as hand-filled forms, is
lackadaisical. As Machine printed/typed text follows specific formats and fonts while handwritten
texts are variable and non-uniform, it is very hard to classify and recognize using traditional OCR
only. A pre-processing methodology employing semantic segmentation to identify, segment and
crop boxes containing relevant text on a given image in order to improve the results of conventional
online-available OCR engines is proposed here. In this paper, the authors have also provided a
comparison of popular OCR engines like Microsoft Cognitive Services, Google Cloud Vision and
AWS recognitions. We have proposed a pixel-wise classification technique to accurately identify the
area of an image containing relevant text, to feed them to a conventional OCR engine in the hopes
of improving the quality of the output. The proposed methodology also supports the digitization
of mixed typed text documents with amended performance. The experimental study shows that
the proposed pipeline architecture provides reliable and quality inputs through complex image
preprocessing to Conventional OCR, which results in better accuracy and improved performance.

Keywords: image pre-processing; handwritten words; machine-printed words; semantic segmentation;
optical character recognition; deep learning; U-Net; handwritten documents; computer vision;
Google Vision

1. Introduction
1.1. Machine Printed and Handwritten Text

Several applications of conventional optical character recognition systems fall into
the category of digitizing some form of printed or handwritten text. On a high-level
basis, invoice imaging, legal industry, banking, healthcare, captcha, institutional repos-
itories/digital libraries, optical music recognition, automatic number recognition and
handwriting recognition are a few of the domains in which the use of OCR is prevalent [1],
and in some cases, pivotal. Further study of some of these domains reveals that out of those
mentioned, invoice imaging [2], banking, healthcare, automatic number recognition and
automatic handwriting recognition are those that were found to apply to data that may
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or may not include handwritten text, and in the cases that do, almost certainly alongside
printed text. Concerning this observation, a distinction between the kinds of text on which
optical character recognition is used can be made, that is:

• Machine printed or formatted text: typed text that follows a given font and format,
most commonly found in printed images. This type of text displays characteristics
such as font, uniform size, varying styles and colors, bolding, italics, etc.

• Handwritten text: text that a human writes. This type of text is variable, non-replicable
non-uniform. It cannot be categorized into different styles and fonts that are minute
enough to capture all of the features that distinguish handwriting from one another.

Many images, regardless of origin, machine-printed, and handwritten text may coexist,
giving way to urgent issues in the recognition pipeline [3]. This, along with the fact that
documents can be understood as physical processes and conditions that occur to a given
text [4], poses a challenge in the seamless digitization of noisy documents wherein the two
types of text defined above coexist. One such instance of coexistence of machine-printed
and handwritten text that is undeniably abundant forms [5].

As common as they are, forms are often filled out in handwriting, where attributes of
forms such as titles along with field names and labels are all machine-printed text. Because
forms are an ideal manifestation of the coexistence of handwritten and printed text, the
methodology proposed in this paper aims to optimize the recognition of text in a form.
Many handwritten documents have scrambled language, sloppy handwriting, and various
writing styles, making it difficult to extract the right information from them.

Handwriting recognition systems get more challenging when there is noise, such as a
bounding box on a form page. These are the parameters that affect recognition accuracy [6].

1.2. An Overview of Optical Character Recognition

Optical character recognition (OCR) is the classification of optical patterns in a digital
image corresponding to alphanumeric or other characters [7]. Different methods of per-
forming character recognition via what is now referred to as optical character recognition
have been prevalent since as early as the 1900s. This means that OCR and many of the
techniques used to achieve it are in no way adolescent, and so, modern techniques may be
leveraged [8]. OCR is used to read the text included in an image, typically a handwritten or
printed document that has been scanned. OCR can also classify different document formats
automatically and arrange them in accordance with predetermined guidelines. Organizing
and monitoring invoices, for instance, according to the type of seller or product.

The development of modern optical character recognition systems finds its roots in
the requirement of digitizing text found in images. Initial testing and development of OCR
methods were typically performed using images with machine-printed texts [9], and so
for many of the years wherein research on OCR was at its prime, most methodologies
were optimized to recognize printed text. It was not until the year 2000 that OCR oriented
towards recognizing handwritten text rose in importance, and techniques that included
Artificial Neural Networks (and their expansive domains, such as Deep Neural Networks)
were utilized in order to supercharge OCR methods [10,11]

To distinguish a character or word from the backdrop in an image, pre-processing is
required. It contains:

Binarization: It reduces an image to pixels that are only black and white. A threshold
value is fixed to do this conversion. A white pixel is thought to exist if the value is greater;
otherwise, a black pixel.

• Noise reduction: This technique clears the image of all extraneous dots and patches.
• Text alignment issues: Some text may be skewed. Skew correction aids with text

alignment.
• Slant Removal: This technique is used to eliminate the slant from the text that may

appear in some images in the dataset [12].
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An exhaustive internet search reveals that OCR systems that allow the recognition
of both machine-printed and handwritten text are difficult to find, and if at all, are not
very optimized to do the same. While it is not denied that OCR engines that recognize
both handwritten as well as formatted/machine-generated texts may exist, this paper
proposes a methodology that allows the optimization of one such OCR engine to provide
better-recognized outputs, that, speaking on a high-level understanding basis, can only be
described as applying deep learning-enabled semantic segmentation technique to obtain
blocks of mixed type information and subsequently feeding those blocks individually to an
OCR engine to digitize the text.

Table 1 outlines some conclusive results of tests conducted on some popular online
OCR engines. It can be easily deduced that Google Cloud Vision outperforms the rest due
to its superior recognition capabilities.

Table 1. Comparison of Different Popular OCR Engines.

Provider No. Correct No. Incorrect No. No Result Precision Recall

Microsoft Cognitive Services 142 76 283 65% 44%

Google Cloud Vision 322 80 99 80% 80%

AWS Recognition 58 213 230 21% 54%

1.3. An Overview of Semantic Segmentation Using Deep Learning

Semantic segmentation has infamously been considered the grandest challenge to
achieve and implement in the recent rise of computer vision. It remains one of the most
popular methods of segmentation due to the distinctive characteristic it possesses that sets
it apart from other image classification methods: it does not require prior visual concepts
or knowledge of the objects being classified. While object classification classifies objects for
which it has labels beforehand, dogs and cats, an ideal image segmentation algorithm also
segments unknown objects [12].

Semantic segmentation can be thought of as a method of identifying objects within an
image by classifying each pixel as whether it belongs to that class (or multiple classes) in
the image based on its semantic properties. Due to this similar vast semantic segmenting
prowess that algorithms like U-Nets [13] and FCNs [14] provide, they could be instrumental
in improving OCR results.

To summarize the contribution of this work is as follows:

(1) This research aims to explore an elaborate pre-processing methodology to enhance
the recognition of images containing mixed-type text (i.e., handwritten and machine-
printed text).

(2) The work gives background study, limitations and the new approach for data digitization.
(3) The proposed pixel-wise classification technique to accurately identify the area of

an image containing relevant text, to feed them to a conventional OCR engine in the
hopes of improving the quality of the output.

(4) The proposed methodology also supports the digitization of mixed typed text
documents with amended performance. Experimental study shows that the pro-
posed pipeline architecture provides reliable and quality inputs through complex
image preprocessing to Conventional OCR, which results in better accuracy and
improved performance.

2. Related Work

The idea of using segmentation as a pre-processing step to enhance OCR is not a new
one; the review conducted in Page Segmentation in OCR System—A Review [15] mentions
that segmentation techniques used in OCR Systems can be aptly summarized as top-down,
bottom-up, and hybrid approaches. These approaches employ complex, mathematically-
inclined algorithms to find and segment lines, words, and characters.
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While results from approaches such as these are staggering, they cannot aid in
marginally enhancing the results obtained by OCR while considering images with a com-
bination of machine-printed and handwritten text. Chargrid-OCR: End-to-end Trainable
Optical Character Recognition through Semantic Segmentation and Object Detection [16]
emphasizes a concept that is not dissimilar to the one emphasized in this paper: converting
the task of OCR to a task of object detection and segmentation. The Chargrid-OCR archi-
tecture is a custom-made one that allows for the character-wise semantic segmentation
and classification of text in images. It disregards the need for image pre-processing and
enhancement techniques as its encoder-decoder architecture learns directly from the raw
pixel input that images provide. Apart from the fully custom architecture that Chargrid-
OCR uses, it is essentially a method to perform OCR itself and much less to enhance the
results of existing OCR systems. This is where the similarity between our methodology
and Chargrid-OCR halts.

Authors [17] proposes another deep-learning approach, but with specific emphasis
on the recognition of handwritten text. A word-level segmentation is performed, along
with pre-processing steps to allow the smooth final classification of segmented words.
Authors [17] equires a large corpus of words for the accurate classification of the segmented
handwritten words. Like [16,17] proposes a method of performing optical character recog-
nition itself. It seems that the domain of deep learning in OCR, regardless of the type of text,
almost always defaults to the classic coupling of segmentation followed by classification
on a certain level. Dedicated research towards pre-processing techniques for enhancing
handwritten text recognition is lacking; Ref. [18] suggests and discusses pre-processing
techniques such as underline removal and skew correction as priors to recognition; how-
ever, upon closer observation, it is found that a number of these techniques (inclusive of
those listed by [18]) are not properly distinguishable from those used for the conventional
recognition of machine-printed text [19,20].

Table 2 describes the comparison of the U-Net and Mask RCNN architectural models
with respect to the layers used and the advantages and disadvantages of each. Table 3
shows the summary, layers used, and the advantages and disadvantages of object detection
and semantic segmentation. Finding instances of items of a specific class inside an image
is the challenge of object detection. Modern techniques can be divided into two primary
categories: one-stage approaches and two-stage methods. Examples of one-stage algorithms
that emphasize inference speed are YOLO, SSD, and RetinaNet. Whereas, Semantic image
segmentation aims to assign a class of what is being represented to each pixel of an image.
The term “dense prediction” refers to the fact that we are making predictions for each pixel
in the image.

Table 2. Comparison of U-Net and Mask RCNN.

Architecture Model Layers Advantage Disadvantage

U-Net

Built upon the Fully
Convolutional Network
(FCN) which is modified
in a manner that yields
better segmentation in
medical imaging.

Separated into 3 parts:
The contracting/
down sampling path
bottleneck
The expanding/up
sampling path

Combines location
information with
contextual information to
obtain general
information which is
necessary to predict a
good segmentation map.

Instance segmentation
is difficult because the
output is a binary
segmentation mask for
the whole input image.

Mask R-CNN

Built on top of Faster
R-CNN. So, in addition
to the class label and
bounding box
coordinates for each
object, it will also return
the object mask.

Combines the
2 networks—Faster
RCNN and FCN in
one mega architecture.

Efficiently detects objects
in an image while
simultaneously
generating a high-quality
segmentation mask for
each instance.

Although it does not
cost a lot to modify the
Mask RCNN, it still has
the limitation that the
mask generation cannot
completely cover the
edge of the target.



J. Sens. Actuator Netw. 2022, 11, 63 5 of 20

Table 3. Comparison between Object Detection and Semantic Segmentation.

Technique Summary Layers Advantage Disadvantage

Object detection

Classifies patches of an
image into different
object classes and
creates a bounding box
around that object.

There are 2 classes of
object classification-
object bounding boxes
and non-object
bounding boxes.

Acts as a combination
of image classification
and object localization.

Bounding boxes are
always rectangular, so
it does not help in
determining the shape
of the object if it
contains some
curvature part. It
cannot accurately
estimate measurements
such as the area or
perimeter of an object
from the image.

Semantic segmentation

Gives a pixel-level
classification in an
image, that is,
classification of pixels
into its corresponding
classes.

Each pixel is labeled
with the class of the
object (person, dog...)
and non-objects
(tree, road...).

A further extension of
object detection.

This technique is more
granular than
bounding box
generation, hence it
helps in determining
the shape of each object
present in the image.

3. Proposed Idea and Methodology
3.1. Background Issue Overview

The idea proposed in this paper aims to explore an elaborate pre-processing method-
ology to enhance the recognition of images containing mixed-type text (i.e., handwritten
and machine-printed text).

The concept of improving the output of a conventional OCR engine, strictly adhering
to methods that do not contain the actual performance of recognition itself, proved to be a
challenge. Upon study, the conclusion that is drawn time and again while attempting to con-
ceive a method to improve the results of any task related to Computer Vision is undeniably
one that revolves around developing innovative methods of image pre-processing. As was
discussed in 2, a numerous proportion of image pre-processing algorithms already exist, a
sizeable portion of which are enabled with complex mathematics. This begs the rhetoric
of whether image pre-processing algorithms are nearing the boundaries of innovation or
not, and if so, what the essence of the new branch it may grow into is. It is fairly simple
to follow the fact that any given OCR engine in existence is likely only to be as good as
the quality of the data it is fed. In other words, the performance of a given OCR engine is
directly proportional to the quality of input it is fed. Naturally, most of the metrics that
govern the quality of an input image to be recognized about the clarity of the OCR engine’s
data are expected to parse. However, to obtain a deep understanding of the reason behind
the success of the methodology outlined in this proposal, we must first understand the
singular feature of image quality this methodology exploits.

Figure 1a depicts a random image of a hand-filled form courtesy of [21]. Figure 1b
represents the same image but highlighted with blocks about text data discovered upon
feeding the unadulterated original image to the tool available at [18] powered by Google
Cloud Vision API. Including the fact that not all the blocks are properly distinguishable,
some of these also blocks do not capture continuous handwritten text. Figure 2a depicts
the result of the same.
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However, when the same image is cropped down to highlight just a singular block
wherein handwritten text is present, and when the same unadulterated version of this block
is run through the same OCR engine, the results are catastrophically different. Not only are
the blocks highlighted more pronounced, but the result of the recognition service itself is
also marginally improved. (Figure 2b).

It is not difficult to fathom that given an input, the output of any OCR engine would
benefit from being provided specific areas of the image in a one-by-one. This paper proposes
a methodology that employs the pixel-wise classification quality of semantic segmentation
algorithms to accurately identify which areas of the image contain relevant text, crop these
areas and then iteratively feed them to a conventional OCR engine improving the quality
of the output.
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Not only is D-Rex a methodology to enhance the results of conventional OCR, but it
also houses modules related to the automatic digitization of the forms used for this project.
This firstly requires a method to distinguish between field labels and the handwritten
data that has been filled out, respectively, and then an algorithm to format and clean the
extracted data.

3.2. Overview of Pipeline and Components

The Figure 3 image flow of input starting from entering the pipeline to obtaining the
results is as follows:

1. An image of a hand-filled form of (3, 512, 512) pixels dimensions is input to the Image
Pre-Processing Component. (3, 512, 512) are three dimensions of an input of a sample
image. Various image processing techniques are applied to enhance the image and
make it suitable for prediction during the segmentation phase.

2. The processed image enters the Block Identification and Isolation Module, where
first it is used as an input to the semantic segmentation algorithm. The output of the
semantic segmentation algorithm is a segmentation map. This segmentation map is
used in the Block Cropping component to reference crops and store the relevant areas
of the text identified by the segmentation algorithm.

3. The blocks of relevant text are sent to the Text Processing Module as well as the Label
Isolation Component.

4. The Label Isolation component erases any handwritten text present in each block and
outputs blocks with the only machine-printed text present.

5. The OCR Engine in the Text Processing Module accepts the collection of blocks
containing all relevant text and the collection of blocks containing only labels. It uses
Optical Character Recognition to recognize the text in all the blocks it has received
regardless of the type of text present.

6. The recognized text, Label/Info Separation component, separates the labels from the
respective information filled.

7. The post-processing component accepts both types of text and processes them to be
suitable for further use.

3.3. Modules in Detail

Figure 4 shows the stepwise flow of processing a form document to extract the infor-
mation from a form image. It includes an image preprocessing step, image segmentation,
that is, masking of an image, Image processing using an OCR engine and, at the end,
extracted digitized information as output.

(1) Dataset Generation Module

Before the modules listed in the pipeline diagram are discussed, it is important to
highlight the data that would be used in the training of the segmentation module, as the
segmentation algorithm would only work as well if the training data are diverse and of
quality. Due to the fact that this methodology has been optimized to extract data specifically
from forms, the natural type of image present in the training dataset should be those of
hand-filled forms. Unfortunately, an easily available open-source dataset consisting of
thousands of hand-filled forms was not available and so, custom dataset generation was
chosen as a resort.

The major shortcoming related to creating a custom dataset is that the data must
essentially be sourced from reality. Sourcing data from reality poses its challenges, and
the problems that follow from doing the same are mirrored in the lack of quality of the
dataset that usually results from it. This issue then propagates forward and manifests itself
eventually in an unreliable and poorly performing deep learning algorithm.
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The creation of a good distribution of forms to suffice the requirement of 800+ images
was incredibly difficult, the physical act of first creating and then hand-filling out these
forms was unwise. Instead, the IAM Dataset, an open-source data repository containing
thousands of individual handwritten sentence images put together by The Research Group
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on Computer Vision and Artificial Intelligence INF, University of Bern, was used. This
dataset provided a source of handwritten text that did not have to be self-made and could
be leveraged to create a dataset of forms.

The dataset was to contain hand-filled forms, and upon condensing the concept of
hand-filled forms, it was discovered that they could be represented as a sporadic distribu-
tion of handwritten sentences across a sheet of paper. With this point at the forefront, an
algorithm was written to randomly pick 4–5 sentences from the IAM Dataset and append
them to a blank image in a random fashion to mimic the fact that hand-written data is
distributed across the page like in forms. The size of the images was decided to be kept
(3, 512, 512) pixels throughout the dataset.

Semantic segmentation also requires the existence of a parallel mask for every image
in the dataset. A mask is a binary image, not unlike a ‘label’ in typical machine learning
datasets, wherein the pixels that are of the class to be segmented are highlighted in black,
and the rest of the image is kept white. Generating these masks for every image required
writing an algorithm that would append a box of black pixels precisely the same dimen-
sions of a sentence to another blank image at the exact location that the sentence is being
appended to in its image.

This method allowed us to generate 900+ images and masks for training seamlessly.
Figure 5 shows one such image and its corresponding mask.
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(2) Image Processing Module

Image Processing Algorithms—This module houses various algorithms that are essen-
tial to pre-processing an input image of a form. The pre-processing techniques used are:

• Line Removal
• Gray Scale Conversion
• Gaussian Blurring
• Thresholding
• 3-Channel Re-Conversion

These techniques were used consecutively to enhance the image. Figure 6 depicts a
sample input image and the image resulting from the application of these pre-processing
methods. Label Isolation Component.
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Figure 6. (a) Original Form, (b) Processed Input Form.

Another component included in the image processing module is the label isolation
component. This is a simple thresholding algorithm that accepts the input image as a Tensor
variable, replaces each pixel with a Boolean value checking whether or not that pixel’s
value is equal to 0.0 or not, and then converts each pixel back to a float value (wherein
the floating equivalent of “True” is 1.0 and “False” is 0.0). This algorithm hinges on the
assumption that all machine-printed text that appears in images of forms contains black
pixels, while all other pixels are not relevant. This allows us to retain only those black
pixels in color, thereby coloring any other white pixels. In effect, the machine-printed text
has been retained while all other data in the image as been removed (Figure 7).

J. Sens. Actuator Netw. 2022, 11, x FOR PEER REVIEW 11 of 21 
 

 

 
(a) (b) 

Figure 6. (a) Original Form, (b) Processed Input Form. 

Another component included in the image processing module is the label isolation 

component. This is a simple thresholding algorithm that accepts the input image as a Ten-

sor variable, replaces each pixel with a Boolean value checking whether or not that pixel’s 

value is equal to 0.0 or not, and then converts each pixel back to a float value (wherein the 

floating equivalent of “True” is 1.0 and “False” is 0.0). This algorithm hinges on the as-

sumption that all machine-printed text that appears in images of forms contains black 

pixels, while all other pixels are not relevant. This allows us to retain only those black 

pixels in color, thereby coloring any other white pixels. In effect, the machine-printed text 

has been retained while all other data in the image as been removed (Figure 7). 

 
(a) (b) 

Figure 7. (a) Original Raw Image (b) Isolated Printed Text. 

(3) Relevant Block Identification and Isolation Module 

This module is by far the most important in the entire pipeline. It is here that the 

algorithms that crop relevant sections of the input image have been written. This module 

contains two main components: 

(a) Image Segmentation using U-Net: 

For the application of the pipeline, the segmentation task was to identify which areas 

of a form pertain to relevant text. To achieve this, it was decided that the U-Net algorithm 

is a suitable option, as it produces better outputs compared to another segmentation algo-

rithm with a scarcity of data, and also that the output of the net is the same size as the size 

Figure 7. (a) Original Raw Image (b) Isolated Printed Text.

(3) Relevant Block Identification and Isolation Module

This module is by far the most important in the entire pipeline. It is here that the
algorithms that crop relevant sections of the input image have been written. This module
contains two main components:

(a) Image Segmentation using U-Net:

For the application of the pipeline, the segmentation task was to identify which areas of
a form pertain to relevant text. To achieve this, it was decided that the U-Net algorithm is a
suitable option, as it produces better outputs compared to another segmentation algorithm
with a scarcity of data, and also that the output of the net is the same size as the size of
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the input. The U-Net was developed by Olaf Ronneberger et al. for Bio-Medical Image
Segmentation [9]. The architecture contains two paths; the encoder path and the decoder
path in parallel. The left side is known as the contraction path (Encoder), where we apply
regular convolutions and max-pooling layers. Here, the size of the image gradually reduces
while the depth gradually increases. The encoder path (also known as the contraction path)
is used to capture the semantic context and features in the image.

The right side is the expansion path (Decoder), where we apply transposed convo-
lutions along with regular convolutions. In the decoder, the size of the image gradually
increases, and the depth gradually decreases. The parallel decoder path (also known as
the symmetric expanding path) enables precise localization using transposed convolu-
tions. Intuitively, the Decoder recovers the “WHERE” information (precise localization) by
gradually applying up-sampling or transposed convolutions [22,23]. To get better, precise
locations at every step of the decoder, skip connections are used by concatenating the
output of the transposed convolution layers with the feature maps from the Encoder at the
same level. After every concatenation, we again apply two consecutive regular convolu-
tions so that the model can learn to assemble a more precise output. This is what gives the
architecture a symmetric U-shape, hence the name U-Net. The architecture is essentially an
end-to-end fully convolutional network (FCN), and in essence, it only contains convolu-
tional layers and no dense layers, enabling it to be used with images of varying sizes [24].
In Figure 8 given input of an image of a hand-filled form, a trained semantic segmentation
algorithm can output a segmentation map, a blank image wherein only the areas of interest
(in this case, relevant text) are highlighted in black [25].
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Figure 8. U-Net Architecture [26].

This segmentation map is crucial in understanding which areas of an image pertain
to the major class in consideration. Figure 9 showcases the details of the architecture; the
types of layers, their order and sequence, the shape of the output after each step, and the
number of parameters at that step (trainable and non-trainable).

Figure 10 depicts the convergence of the loss in the range of 80–90 epochs. It shows the
network performance loss curve during the model training process. Figure 11 showcases
the segmentation map that was output for a given test image.
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Table 4 shows the details about the parameters used in U-Net Architecture in terms of
total parameters used, trainable parameters, Non-trainable parameters, input parameters,
parameters size, estimated total size used. An interesting observation was made during
the intermittent testing of the model prior to the finalization of the model for pipeline
production. Upon experimenting with different types of training data, the model seemed
to behave in unexpected manners. Namely, when trained with a training set consisting of
only machine-printed text, the model understandably could not recognize and segment
hand-written text, as it had not learned the specific features of hand-written text to be able
to converge well enough. When a fresh model was trained on a training set consisting
of images that contained a mixture of machine-printed and handwritten text (i.e., mixed
text types), the model could not properly converge and accurately segment handwritten
and machine-printed text. The deduction made at this point was that because now the
model faced twice the number of features, it required a larger number of epochs to reach
satisfactory convergence. However, when the model was presented with a training set that
consisted exclusively of handwritten text images, convergence was met quite a sizeable
number of epochs before the full 100. A fitting explanation of this phenomenon was that
while it is difficult to converge using data with twice the number of separate learnable
features, it is simpler to converge on data that includes a single type of text, but whose
features are similar to the other type as well. This means that the features of the handwritten
text are strikingly similar to machine printed text, which is why convergence was possible.

Table 4. Details about the Parameters of the U-Net Architecture.

Total Params 7,760,353

Trainable Params 7,760,353

Non-Trainable Params 0

Input Size (MB) 3.00

Forward/Backward Pass Size (MB) 178,256,520.00

Params Size (MB) 29.60

Estimated Total Size (MB) 178,256,552.60

The algorithm is a simple one:

1. Create an active flag and set it as False. This flag is used to indicate the first time a
row containing black pixels has been encountered and indicate when the parsing of a
single block is finished before starting the next one.

2. For every row in the segmentation map image, check whether that row contains one
or more black pixels.

3. If it contains one or more black pixels, it means that that row has a part of the
segmented class in it. Append the values of the entire row of the segmentation map
to one list and the same respective row of the original image to another list. These
lists represent a single continuous box. Set the active flag as True.

4. If the row does not contain any black pixels, and if active is True, append the above
lists to two other lists that house entire boxes. Empty out the lists that represent single
boxes. Set active to False and continue.

5. If the row does not contain any black pixels, and if active is False, continue.
6. End parsing when all rows have been parsed.
7. For every box within the lists that represent entire boxes, perform steps 1–6 with

transposed boxes as input. Figure 12 depicts some sample results of this algorithm on
the given segmentation map.

8. Re-transpose all the boxes obtained from 7.
9. End.
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(4) Text Processing Module

(a) Optical Character Recognition Engine

The function of this methodology hinges on having a conventional OCR engine whose
results are to be optimized using the D-Rex pipeline. A thorough internet search reveals
that, as mentioned previously, OCR engines dedicated to recognizing mixed text types are
not widely available. Therefore, online OCR engines were considered as the resort.

The selection of a reliable and accurate OCR engine was a tough one. Table 1 depicts a
comparison of different online OCR engines that were taken into consideration. Google
Cloud Vision API outperformed the rest [23]; however, the reasons for selecting this engine
extend beyond accuracy. It was found that Google Cloud Vision API offers a dedicated
handwriting recognition service that was observed to perform to the same caliber on
machine-printed text simultaneously [27,28]. This ensured that any disparity between
handwritten text recognition from machine printed text was gapped as the same OCR
engine would be applied in both instances.

(b) Label/Info Separation Component

The Label/Info Separation component was a mandatory implementation to distinguish
between the labels of a field and the actual information that was hand-written into them.
When two instances of strings, one about just the label names and the second about the label
names and the info, are passed to this component, it uses a simple word-level substring
replacement algorithm to remove the presence of labels in the information strings. This has
the effect of separating the labels and the respective information from each other. It outputs
two series of strings; labels recognized and respective information. Before these strings can
be used as recognized data from hand-filled forms, the final step is running them through
the post-processing algorithms. Several bugs were detected upon observing the output of
the Label/Info Separation component, namely;

(1) Instances of printed text that did not correspond to any handwritten data. This
included machine-printed texts like titles and serial numbers, etc.

(2) Instances where there are actual labels, but there was no corresponding handwritten
data text (the missing text was usually in the line below).

(3) Substring replacement had to be done on a word-by-word basis and not on an entire
sentence basis to avoid stray words staying behind.

(4) Instances where the removal of binary option labels (e.g., “Yes/No”) removed the
actual data filled in for that label correspondingly.

(5) Instances where random blank spaces appeared.

The post-processing algorithms are then just a series of simple algorithm and code
changes made to the OCR module to ensure that the bugs listed above are not encountered.

4. Results, Observations and Discussions
4.1. Defining Instances for Evaluation

As shown in Figures 13 and 14, the D-Rex pipeline was able to accept a form image
as input and output labels and their respective information relatively well. However, to
properly assess the functionality of the pipeline, two cases must be recognized wherein
opportunities for result and performance observations were possible:
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CASE I—Post Semantic Segmentation Step (assessment of the performance of the
segmentation algorithm)

CASE II—Post Complete Text Extraction (assessment of text extracted using OCR).
Performed against two sub-cases:

(a) the actual handwritten text translated manually by a human being, and
(b) text that is extracted by Google OCR without using our pipeline for the same input.

4.2. Results

All results and evaluations performed in this section and at any phase of the pipeline
were performed using the same set of testing images to ensure fairness and uniformity.
Although this, some alterations to the raw output of CASE—II, part b had to be made
to clean the output to make it suitable for result generation. These alterations have been
outlined in the respective sub-section and were made sure not to compromise the integrity
of the tests in any way.

CASE—I (Post Semantic Segmentation):
Figure 13 shows one pass of the segmentation and block extraction algorithms ob-

tains conclusive results for the two most important fundamental issues addressed by
this methodology:
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Evaluating the performance of the U-Net was undoubtedly amongst the most impor-
tant evaluations that had to be made, as a large portion of the pipeline depends on the
accurate output of the net. Quite a few metrics were chosen to ensure that the segmentation
net was working well. Table 5 shows the performance results of the network.

Table 5. (a) Confusion Matrix Results, (b) Complex Metrics Results.

(a) Predicted Positive Predicted Negative

True Positive True Positive: 245194.68888888 False Negative: 296.6111111111111

True Negative False Positive: 198.422222222222 True Negative: 16454.277777777777

(b) Sr. No. Evaluation Metric Score

01. Average Accuracy 0.9981115976969401

02. Precision 0.9991914107884944

03. Recall 0.9987917652841012

04. F1 0.9991914107884944

05. Jaccard Index 0.9980515790200687

CASE—II (Post Complete Text Extraction):
An evaluation of the results of this phase essentially pertains to a general evaluation

of the entire pipeline, as the output of this phase is the final output of the pipeline. Two
types of evaluations had to be made to

(a) Are the D-Rex pipeline output results of a good enough level to be used for produc-
tion? and,

(b) Did the D-Rex pipeline enhance the results of a conventional OCR Engine on mixed-
type data?

The first sub-case was performed due to the D-Rex pipeline measured against the
true strings (as donated and verified by a human being). The second sub-case was per-
formed with the slightly processed output of running the raw image through the same
Google Cloud Vision API OCR engine without first running it through the D-Rex pipeline.
The result of this evaluation is indicative of the success of the methodology provided in
this paper.

A. D-Rex Pipeline Results measured against True Strings

Figure 14 denotes the results of the D-Rex pipeline for the input form image from
Figure 13a. Table 6 contains the Jaccard Index for String Similarity and the Jaro-Winkler
Score, both calculated by applying these metrics to compare the output and the True Strings.
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Table 6. Metric Scores for Case II—A.

Sr. No. Metric Result

01. Jaccard Index for String Similarity 0.6892857142857143

02. Jaro-Winkler Score 0.8248173731109226

B. Google Cloud Vision API’s OCR Engine Results measured against True Strings.
Upon giving the same OCR engine the same image without first running it through
the D-Rex Pipeline, the results are displayed in Table 7.

Table 7. Metric Scores for Case II—B.

Sr. No. Metric Result

01. Jaccard Index for String Similarity 0.254951690821256

02. Jaro-Winkler Score 0.8248173731109226

4.3. Observations and Discussions

As can be observed from Table 5a, the number of pixels that were predicted true and
turned out to be positive (i.e., true positive) and those that were predicted to be false and
turned out negative (true negative) far outweigh the other features. This means that the net
performs well in predicting whether a given pixel belongs to a class or not, as compared to
it making a mistake and misclassifying the pixel.

Figures 15 and 16 show the variation of all components of the confusion matrix over
all the samples included in the testing dataset. This is an important factor to consider,
as visualizations such as this one reveal important observations that may otherwise be
overlooked. For example, while depicting what seems to be rapid ascents and descents in
all of the graphs, these graphs still show that the general range for the number of pixels
identified is within an acceptable range with respect to the conditions portrayed in the last
paragraph. However, the most important observation with regards to the topic of this paper
is the vast difference in Jaccard Index for String Similarity scores between using raw OCR
and using the D-Rex pipeline to pre-process the image. This is a clear indication of the fact
that given an image, a conventional OCR engine would benefit by a magnitude of almost
2.7 times by segmenting and cropping the relevant areas of text beforehand. This proves
that the use of D-Rex produces reliable and much better results, but this also portrays the
fact that the improvement of the results of an OCR need not require incredibly complex
image pre-processing concepts and custom OCR designs.
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5. Conclusions

In an effort to enhance the quality of the output, authors have presented a pixel-
wise classification technique to precisely identify areas of an image containing pertinent
text in this paper. The suggested methodology also facilitates the improved digitization
of mixed-typed text manuscripts. An experimental investigation demonstrates that the
suggested pipeline design gives conventional OCR dependable and high-quality inputs
through intricate picture preprocessing, improving performance and accuracy.

The main takeaway from this methodology should not be that cropped images can
help OCRs produce better results; rather, it should be understood that the key to improving
OCR is not a complex methodology involving cutting-edge technology, but rather a clear
understanding of the factors that make it simpler to recognize text in images. It will be
helpful for researchers to work in this domain of research.

6. Limitations and Future Scope

Perhaps the most crucial limitation of the D-Rex pipeline was the need to re-initialize
the model every time the data filled in the form has to be extracted. Model initializations are
heavy in terms of computation, and amongst other things, frequently redundant. Another
important shortcoming is the quality of the input form image. Testing with images that were
deliberately made to be noisy or with images that were intentionally taken at the wrong
angles revealed that the quality of the output dropped. To remedy this, the consideration
of using image pre-processing techniques such as skew correction was made; however, it
was decidedly out of the scope of this discussion.

However, a key takeaway from this methodology should not be the fact that OCRs may
output improved results if fed in cropped images, on the contrary, it is that the solution for
the hole in the heart of OCR lies not in complicated methodology that employs impressive
technology, but in the simple understanding of what allows for the easier recognition of
text in images.
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