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Abstract: Future mobile network operators and telecommunications authorities aim to provide
reliable network coverage. Signal strength, normally assessed using standard drive tests over
targeted areas, is an important factor strongly linked to user satisfaction. Drive tests are, however,
time-consuming, expensive, and can be dangerous in hard-to-reach areas. An alternative safe method
involves using drones or unmanned aerial vehicles (UAVs). The objective of this study was to use a
drone to measure signal strength at discrete points a few meters above the ground and an artificial
neural network (ANN) for processing the measured data and predicting signal strength at ground
level. The drone was equipped with low-cost data logging equipment. The ANN was also used
to classify specific ground locations in terms of signal coverage into poor, fair, good, and excellent.
The data used in training and testing the ANN were collected by a measurement unit attached to a
drone in different areas of Sultan Qaboos University campus in Muscat, Oman. A total of 12 locations
with different topologies were scanned. The proposed method achieved an accuracy of 97% in
predicting the ground level coverage based on measurements taken at higher altitudes. In addition,
the performance of the ANN in predicting signal strength at ground level was evaluated using several
test scenarios, achieving less than 3% mean square error (MSE). Additionally, data taken at different
angles with respect to the vertical were also tested, and the prediction MSE was found to be less than
approximately 3% for an angle of 68 degrees. Additionally, outdoor measurements were used to
predict indoor coverage with an MSE of less than approximately 6%. Furthermore, in an attempt to
find a globally accurate ANN module for the targeted area, all zones’ measurements were cross-tested
on ANN modules trained for different zones. It was evaluated that, within the tested scenarios, an
MSE of less than approximately 10% can be achieved with an ANN module trained on data from
only one zone.

Keywords: network coverage; machine learning; drone systems

1. Introduction

People depend more and more on their mobile wireless devices for their daily activities.
Hence, one of the primary goals of modern cellular network operators is to ensure high-
quality coverage in both urban and rural areas. To do so, they regularly evaluate their
services to assess how well the signal is received by the user. This information is required
to better adapt their networks to the needs and demands of their users and to plan for
future deployments. There are several ways to assess signal strength in a specific area, such
as specialized software that uses topological information and network users’ reports or
user complaints. Field measurement campaigns are, however, the most reliable way to
assess coverage quality. Walking or driving through target areas and using specialized
equipment, such as multichannel receivers and GPS trackers, are key methods that can
be deployed for the collection of field measurement data [1]. This approach is, however,
not suitable for remote and hard-to-access areas. An alternative is to use UAVs for this
purpose. This method recently became very attractive due to its efficiency, low cost, and
safety. Drones can be used to reduce human involvement and the risk of accidents during
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measurement campaigns, particularly in difficult-to-reach areas. Drones were primarily
utilized for simple tasks like security, aerial photography, or videography, but they can
now function as flying network nodes. One or two drones acting as network nodes will
increase the system’s capacity and the network’s coverage [2]. The drones’ relatively high-
altitude flying, with respect to the ground base, is one issue to consider when measuring
network coverage. Antennas mounted on towers and buildings are tilted down toward
the ground to improve reception. However, signal strength at higher altitudes differs from
that received at ground level. Machine learning (ML) algorithms have been used as an
efficient solution to this problem [3]. Artificial intelligence (AI) algorithms, which is a
subset of machine learning (ML), can predict signal strength at ground level given signal
strength measurements at high altitudes. ML enables the learning of complex relationships
between variables in complex environments that are difficult to express mathematically.
Deep learning algorithms, one of the many types of machine learning algorithms, have
recently surpassed human performance in a number of engineering applications [4].

Estimating mobile signal strength using ANN and data collected by a drone was
initially investigated in [3]. The multilayer perceptron neural network (MLP-NN) was used
to generate a dense 2D map of mobile signal strength at the ground level.

In this paper, we investigate the use of drone measurements taken from fixed altitudes
above the ground in an open area to predict signal strength at an angle with respect to target
location at ground level. The collected data were also used to estimate the signal strength
within a building in the same area. The use of limited measurement data is also discussed.
Additionally, we used the measurements at different on-campus zones to develop one
ANN module to predict the signal strength with acceptable accuracy at other locations.

The paper is organized as follows. Section 2 reviews the related work. Section 3
explains the methodology and measurement procedures for data acquisition. Section 4
presents the analysis and the structure of the ANN module. The results are presented and
discussed in Section 5. Finally, the conclusion and future work are discussed in Section 6.

2. Related Work

Nguyen et al. [5] studied the quality of mobile coverage in rural areas by collecting
signal strength measurements at varying altitudes using a drone. The authors noticed that
as a drone ascended 120 m above the ground, the signal loss increased from 4.2% to 51.7%,
and that the interference intensified, limiting the coverage quality. The drone experiences
more interference because path loss increases with altitude and approaches free space.

Amorim et al. [6] used an LTE scanner attached to a drone to measure mobile signal
strength. The authors found that the propagation environment is significantly differ-
ent for airborne UAVs and ground-level users. To account for the dependence on the
height/altitude, they proposed a modified a height-dependent alpha-beta (AB) model [7].
The reference signal received power (RSRP) was utilized to indicate the signal strength in a
specific area and estimate the network coverage area. Nekrasov et al. [8] employed various
techniques to collect RSRP readings. Using an application on a mobile phone attached to a
drone at various altitudes was one such technique. The authors found a poor correlation
between measurements collected by a drone and those collected on the ground. In terms of
signal strength, they categorized the RSRP into five classes ranging from excellent to poor.
The results demonstrated that the data collected by the drone were 72% more accurate
compared to the data collected on the ground.

The authors of [9] examined various estimation techniques used to enhance network
connectivity and quality of service (QoS). One of these techniques applied an ANN to
enhance the receiver and transmitter designs. The link distance, altitude, frequency, and
path loss were the inputs to the ANN. The output provided an estimate of the received
signal strength on the ground from the flying drone. The results demonstrated that the
ANN produced accurate predictions of the received signal strength. This result was also
confirmed by [10]. In [11,12], an ANN was used to predict the signal strength. The authors
trained the ANN using measurements collected from a UAV. The primary objective of the
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work was to design an optimal model of the strength of the signal received by the drone.
The input to the neural network includes the latitude, longitude, the elevation of both the
drone and the cell building, and the antenna mast’s height. The output was the estimated
signal strength at the location of the drone. In an urban setting, the signal strength data
and elevation were used as inputs to an ANN. The output was a vector indicating the type
of environment in which the measurements were taken, and the environment’s channel
parameters were accurately estimated using this information.

3. Measurement Methodology

A layout of the measurement system procedures is shown in Figure 1. A phone
equipped with the application is attached to the drone. The drone path was defined by
the drone controller, and the measurement application was set to record the required
information. The drone started the mission, and after returning back to its set location, the
recorded data were used for post-processing. The post-processing includes several steps,
such as data cleaning, normalization and classification. The post-processed data were used
to train the selected ANN. Then, new data from the same drone path or from other paths,
zones, and buildings were applied to the trained ANN for testing.

     Define Drone Path

    Set        
         application
         parameters

         ANN settings

Fly the drone 
and record 

measurements:
Location,

RSRP, 
Download 

Speed, Upload 
Speed, Delay

Training Phase

Trained ANN

Target from 
Ground 
Measurements

Testing Phase 
with new 
location 
information

Estimated RSRP 
and class at 
ground level

Measurements at new 
location (Path, Zone, 
Building)

Post-Processing, 
Normalization, 

Classes, 
Regression

Figure 1. Measurement procedure.

The measurements were conducted in 12 areas within Sultan Qaboos University’s
campus. Figure 2 depicts a map of SQU campus, with the targeted zones highlighted by
yellow pushpins. Some of these regions were open spaces with fewer obstacles (Zones 1, 7,
9, 11, and 12), streets (Zone 10), near or between buildings (not shown on the figure), some
agriculture areas (Zones 2, 3 and 8), and parking lot areas (Zones 4, 5 and 6). The path
loss is generally proportional to distance d according to d−n, where the path loss exponent
n is ≈2 in open areas and ≈4 near streets and buildings. The procedure for collecting
measurements was similar across all sites. In this section, we present the methods used to
collect the data at various altitudes and on the ground.
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Figure 2. Location of the measurement locations within the SQU campus.

Air/Ground Data Measurement

A drone is a remotely piloted flying robot that follows a predetermined flight path.
Drones are able to cover large geographic areas that traditional drive or walk tests cannot [13].
They can be used to assess signal strength in rural and urban areas at higher altitude and to
transmit collected data to a processing center to check the service quality of the signal [8].
The DJI Matrice 200 V2 quadcopter was used in this study. It is a high-quality commercial
drone. The Matrice 200 V2 has 17-inch propellers that are attached to powerful motors to
ensure stable flight, even in strong winds. Moreover, it has a dual-battery setup for longer
flight time. Due to its adaptability and durability, it has been used in various applications.
The drone weighs 3.8 kg and has a maximum payload of 2.3 kg and a maximum flight time
of 24 min. Its flight maximum range is 7 km. An off-the-shelf smartphone was used to
record the signal strength and GPS coordinates. The smartphone was equipped with an
application that can read a variety of mobile network parameters. G-NetTrack, a driving
test and network monitor application for 2G, 3G, and 4G networks able to detect multiple
LTE channels, served as the mobile receiver in cases where there was no LTE network
connection. The measured parameters were logged during the test time and kept in a
file for post-processing. The smartphone was mounted on the drone, and the application
was configured to measure the signal strength, network delay, and upload and download
data speeds, along with the location information. In this work, we used only the signal
strength and location information for prediction. Before each flight, the application was
set to start recording manually and measure new reading sets of parameters every second.
This could be changed in the application settings to record more readings in smaller areas.
The drone’s altitude remained constant throughout each flight to estimate signal strength
on the ground using data recorded at high altitudes. The desired height was measured
relative to the ground at the point of takeoff. Using the drone controller, the altitude was
fixed to a certain height, and with autopilot mode, the drone had such high stability that it
could fly horizontally along the path. The drone maintained constant altitudes (10 m, 18 m,
and 24 m) throughout its different flights.
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According to [14], a back-and-forth pattern, which is subdivided into parallel and
creeping lines, is preferable when the covered area is large and the likely target meeting
point is unknown. The path followed by the drone is depicted in Figure 3. The yellow
location pin indicates the takeoff and return points of the drone. The blue and white circles
indicate the selected targeted area, which is approximately 50 × 52 m2 in size. The green
circle is the point where the drone starts flying in the target area. The white lines show
the path pattern followed by the drone at the three altitudes. The drone was programmed
to travel at 1 m/s throughout the designated area. This speed was found to be the best
option to allow the application to take as many readings as possible. On average, the drone
required about five minutes to collect the data. This period could be changed depending
on the size of the covered zone. However, the majority of the zones are about 50 × 50 m2 in
size. The period of the process was kept to a minimum because our approach was used to
compensate or make up for the time spent performing drive/walk tests. To optimize the
efficiency and precision of the system, changes could easily be made to the drone’s speed,
the size of the areas, and the interval between drone data acquisitions.

Figure 3. Drone flight pattern.

Identifiable objects were positioned at specific locations along the drone’s path used
to collect signal strength measurements. The signal strength was also collected at these
locations on the ground using the same application settings. Figure 4 depicts the path of
the drone and the corresponding path on the ground.
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Figure 4. Drone flight and ground measurement paths.

4. Data Analysis

This section details the methods for analyzing and processing raw recorded measure-
ments, choosing the neural network structure, and estimating signal strength.

4.1. Data Pre-Processing

The number of measured points for data collected on the ground and in the air at
various altitudes differ. All the data were initially aligned according to their GPS locations.
Although the flight path of the drone was predetermined, measurements at different
altitudes and on the ground were not necessarily taken at the exact same GPS coordinates.
This step involved omitting misaligned information from the collected measurements. The
collected measurements for all altitudes and each location were plotted graphically to check
the positioning of the measured points along the path. The farthest points from the path
were omitted. Figure 5 depicts the locations where measurements were taken initially prior
to cleaning, and locations were measurements were taken following cleaning are shown in
Figure 6.
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Figure 5. Measurement location before data cleaning.

Figure 6. Measurement location after data cleaning.
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The measured data and location information to be applied to the ANN varied in
magnitude. In order to improve the accuracy of the ANN output and accelerate the
learning process, the input and output variables of the ANN were normalized [15]. To
accomplish this, the following min/max equation was utilized:

X
′
n =

Xn −min(Xn)

max(Xn)−min(Xn)
(1)

where Xn is the original non-normalized data and X
′
n is the normalized data. The reverse

process can be used to recover the non-normalized result.

4.2. Structuring the Artificial Neural Network

An ANN module is conventionally composed of a number of layers [16], including
one input layer, an output layer, and one or more hidden layers. In this work, the inputs to
the ANN module were the longitude and latitude location of the measurements and the
signal strength measured at high altitudes (in dBm). Measurements were conducted at
various heights in order to analyze the effects of altitude on the prediction accuracy and
to determine the optimal height. The output of the ANN was the predicted ground-level
RSRP. The collected data were separated into three sets. The training set (70%) was used to
train the ANN, the validation set (20%) was used to prevent overfitting, and the test set
(10%) was used to evaluate the performance of the trained ANN. The test set, which was
entirely distinct from the training set, was randomly selected from the entire dataset. The
number of iterations (epochs) used to train the ANN was set to 500. Mean square error
(MSE) is frequently used to evaluate the performance of a trained model for the regression
problem and is expressed as

MSE =
1
n

n

∑
i=1

(Pi − P̂i)
2 (2)

where n represents the number of test data, Pi represents the actual test values, and P̂i
represents the predicted test values. In this work, the MSE target for the network was set
to 0.001. When the MSE reaches the target value or the number of predefined epochs has
passed, model training ceased.

To our knowledge, there is no simple rule or standard formula for determining the
number of hidden layers and the number of neurons in each layer. Incorrectly determining
these parameters can sometimes lead to conditions known as overfitting and underfitting,
which have a very negative impact on the network’s efficiency and time complexity. Having
a large number of neurons in the first hidden layer is, therefore, an acceptable starting
point. The number of neurons on the other layers should decrease and converge to that of
the output layer [17]. Regarding the number of hidden layers, we started with one layer,
then increased the number of layers to twenty. Each time, the model was trained with a
different number of neurons. For each number of hidden neurons, the MSE was calculated,
as well as its impact on the prediction accuracy. With ten neurons, we achieved acceptable
performance on the test data set. Consequently, 10 neurons were chosen for the first hidden
layer. Similar steps were taken for the second hidden layer. An MLP-NN with two hidden
layers of 10 neurons in the first layer and 7 neurons in the second layer was adopted after
several trial-and-error steps. Figure 7 depicts the architecture of the adopted ANN.

ANNs can be configured to predict signal strength using two distinct methods: regres-
sion and classification. The ANN’s output is a numerical value representing the predicted
RSRP in regression. In contrast, the output of classification is a number that indicates the
category of the signal level as one of four classes (due to the level of coverage quality), as
shown in Table 1. In this paper, we used ANN regression to attempt to predict the exact
value of RSRP.
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Longitude

Latitude

RSRP at high 

altitude

RSRP at the

Input
Hidden 1

Hidden 2

Output

ground

Figure 7. Structure of the Neural Network: 2 Hidden layers, 1 output layer, 17 neurons.

Table 1. Signal strength quality classifications.

RSRP Range (dBm) RSRP Quality Color

>−90 Excellent Green
−90 to −105 Good Yellow
−106 to −120 Fair Orange

<−120 Poor Red

5. Results and Discussion

In this section, several measurement setups will be discussed, including ground-level
drive tests, drone-based predictions, outdoor-to-indoor predictions, predictions from drone
data at an angle, and cross-zone predictions.

5.1. Drive-Test Approach

Before putting our approach to the test with the drone, we tested several scenarios to
predict RSRP at ground locations using measurements from other ground locations. This
was accomplished by driving a vehicle around the campus while recording the location
and RSRP readings along the route. This test employed the same hardware/software setup
that was used for air measurements.

Then, we attempted to estimate the signal strength along the same path but at distinct
locations. These distinct points that were used for testing were different from the points
that were used for training and had not been seen by the neural network. The same
proportion of data was divided into three groups as before. In this case, the only input
to ANN was the location points (longitude and latitude), and the estimated RSRP was
the output. To easily visualize the signal quality at a particular location, we plotted a
map displaying the predicted RSRP after training (see Figure 8). According to Table 1,
green points indicate excellent coverage, while yellow points indicate good coverage. The
predicted RSRP is shown in Figure 9, including the error bar showing less scattering in most
locations and indicating a good prediction performance. Alternatively, the error histogram
in Figure 10 reveals that the majority of predicted RSRP are close to actual measurements.
The horizontal coordinate represents the MSE error for the testing test, and the vertical
coordinate (instances) represents the number of samples from the dataset. The average
percentage of error was determined to be 3.7%.

In this classification method, the target output is the predicted class of the test data’s
signal strength, as stated in Table 1. The input to the neural network was only the location
(longitude and latitude), and the output was the estimated class. The data were divided
into three groups in proportions of 70:10:20 for training, validation, and testing, respectively.
The measurements were found to only include 3 ranges of classes (excellent, good, and fair);
there were no poor signals found, and therefore, the NN did not predict the class ‘Poor’
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for any output. However, the results of the classification algorithm showed an accuracy of
92.2%. The confusion matrix shown in Figure 11 depicts the percentage of the prediction
performance of the classifier. The green squares indicate the correct predictions for each
class, and the red squares indicate the wrong predictions. For example, in the first green
square, 85 test measurements of the ‘excellent’ class were predicted correctly, with 65.9%
overall accuracy. The bottom squares represent the accuracy and the error prediction of
each class. For the ‘good’ class, the NN successfully predicted 86.8% of signals that fell into
this signal strength category and failed to predict the other 13.2%.

Figure 8. Drive test locations.

Figure 9. The predicted RSRP and error bar.
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Figure 10. RSRP prediction error histogram.

Figure 11. Confusion matrix for test location RSRP classification.

5.2. Drone Flight Results

As previously stated, the ground signal strength at the same geolocation points was
estimated in our work. In this regard, we made use of RSRP measurements at altitudes
of 10 m, 18 m, and 24 m, respectively. Figure 12 (right) shows the path followed by the
drone and a grid of measurement points at 10 m height. At the beginning of the training
procedure, the MSE was high in the first epoch; however, this decreased throughout
training until it reached its lowest value for the validation set. Figure 12 (left) shows the
estimated results of the test locations within the collected dataset. Table 2 consists of some
significant parameters used in our experiment, i.e., a sample of the test set locations, the
percentage error of the estimated signal strengths relative to the actual error, the actual
ground measurements, and the ANN-based estimated RSRPs. The average MSE error was
determined to be approximately 3%.
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Figure 12. Drone path (right) and the predicted RSRP (left).

Table 2. Sample of test results.

Longitude Latitude Measured RSRP, dBm Estimated RSRP, dBm Error, %

58.1683 23.6005 −77.1000 −75.5050 2.0687
58.1683 23.6005 −76.6000 −74.9638 2.1361
58.1683 23.6005 −76.1000 −75.8127 0.3775
58.1683 23.6007 −76.8000 −74.7034 2.7300
58.1684 23.6007 −76.0000 −76.8867 1.1667
58.1684 23.6006 −76.7000 −77.8693 1.5245
58.1684 23.6005 −77.7000 −76.6334 1.3727
58.1684 23.6008 −75.6000 −72.7632 3.7524

The same method was applied to measurements collected at 18 m and 24 m altitudes.
The neural network was trained again with the measurements collected at each location
and RSRPs at 18 m and 24 m altitudes to predict the signal strength on the ground. Only
measurements of one altitude were used for training and testing each time. All three
altitudes provided accurate predictions of RSS on the ground. The MSE was 3.9%, 4.2%,
and 4.5% for 10 m, 18 m, and 24 m, respectively. Consequently, predictions based on
the tested altitudes yield acceptable results, with approximately 0.5% difference. When
selecting the optimal altitude to predict the signal strength of the ground, multiple factors
must be taken into consideration. One of them is selecting a path with no obstacles that
could potentially damage the drone. As a result, we flew our drone above surrounding
obstacles (e.g., streetlights and trees). Even though we were unable to fly the drone above
25 m due to authority regulations, we did observe signal degradation at these altitudes in
certain locations.

5.3. Impact of Location Area

Geographical locations and terrain characteristics impact signal strength predictions.
Due to several factors, urban areas, for instance, are more complex than free-space areas.
RSRP is also affected by channel impairments, such as attenuation, reflection, and shad-
owing. These factors appear to occur more frequently in dense urban areas due to tall
buildings and other obstacles. Figures 13 and 14 depict an agricultural region and an open
area region, respectively. We applied the trained ANN to both locations to predict RSRP on
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the ground and to observe the effect of location. Therefore, the average MSE of agricultural
locations was determined to be 2.8 dB, while that of open space was determined to be
2.4%. The applied ANN has an average accuracy of approximately 97% for all locations,
regardless of area clutter.

Figure 13. Estimated RSRP on agriculture location.

Figure 14. Estimated RSRP on open area location.

All previous scenarios predicted the signal strength of the same location point on the
ground relative to the signal strength at a high altitude. Due to obstacles such as trees,
mountains, or other obstructions, it is sometimes impossible to conduct a drone or drive
test to measure signal strength at high altitudes or on the ground along the target path.
Therefore, it serves the same purpose to fly the drone at an angle. In this scenario, we
explore the possibilities for predicting the signal strength from a drone at a specific angle.
To examine the effect of different angles on signal strength prediction, the height of the
drone was fixed at 10 m. Location and RSRP data collected at 10 m altitude were inputs
to the ANN, and the output was the RSRP on the ground at an angle with respect to the
vertical. Figure 15 depicts the flight path of the drone and the predicted RSRP on the
ground at an angle of 32 degrees and 68 degrees from the drone. The percentage MSE
was determined to be 2.3% for angles closer to the drone and 2.6% for those further away.
Overall, it appears that both cases accurately predict signal strength on the ground.
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Figure 15. Drone path and targeted test paths of different angles from the drone.

The neural network could also predict the signal strength of a path with a previously
unseen angle and measurements of another different angle. In this instance, the neural
network structure included the angle value as an input. The training set consisted of the
data for the path directly beneath the drone (angle = 0) and the path within an angle (68°
in the tested scenario) from the drone. The test set consisted of a path between these two
ground-level angles. Figure 16 depicts the system’s outline. The red points represent the
routes included in the network’s training set. The blue point represents the predicted target
RSS of the path between two red points. The percentage MSE was determined to be 1.58%.
Hence, it is possible to use the trained ANN to predict the signal strength on the ground
with different angles from the drone, which can be useful if there are difficulties measuring
the signal strength due to the drone’s limits or restrictions regarding the location. Table 3
displays a sample of the test outcomes.

Angle = 0
Training Set

Angle = 68
Training Set

Targeted path

Figure 16. Outline of the training scenario with angle information.

Table 3. Sample of test results with angle measurements.

Longitude Latitude Measured RSRP, dBm Estimated RSRP, dBm Error, %

58.1650 23.6005 −79.8000 −79.0407 0.9515
58.1651 23.6005 −80.5000 −79.7568 0.9233
58.1651 23.6005 −79.3000 −79.2822 0.0225
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Table 3. Cont.

Longitude Latitude Measured RSRP, dBm Estimated RSRP, dBm Error, %

58.1651 23.6005 −79.7000 −78.3743 1.6633
58.1652 23.6005 −78.5000 −78.3233 0.2251
58.1652 23.6005 −78.3000 −78.5976 0.3801
58.1652 23.6005 −80.2000 −78.1301 2.5809

5.4. Outdoor–Indoor Signal Prediction

One of the efficient and time-saving ways to measure signal strength inside buildings
is to use the signal levels measured outside the building. This can be applied to high-rise
buildings by measuring the signal using a drone to predict the coverage inside the building.
Here, we tested the situation using ML to predict signal strength without the need to
physically walk through each building. This depended on a variety of factors, such as
the building’s structure, which could consist of typical cement with metal rods or other
materials. In addition to the walls, the objects and the distance from the base station could
weaken the signal’s ability to propagate through the building. Furthermore, the frequency
of operation can also impact the behavior of the signal’s propagation through the building.
We tested the outdoor–indoor prediction scenario within the university campus in different
buildings. The location and RSRP values outside the building were given as inputs to the
neural network, and the predicted RSRP values inside the building were estimated. The
MSE error for testing within the same building was determined to be 2.28% with location
information and 5% without location information. Next, the trained ANN module was
utilized to predict the signal strength in another building. Walk tests were conducted inside
and outside the building to evaluate the trained model’s accuracy. It was determined that
the trained ANN module accurately predicted the signal strength with an acceptable error
rate of 5.4%. Figure 17 depicts the tested building scenario. Figure 18 displays the predicted
RSRP for the same building and a different building, as well as the error bar for each case.
Next, the trained ANN module was applied to estimate RSRP within a third building with
a different structure and design. The building was a workshop with a wide, open area and
a different indoor structure as compared to the office building used for training. The MSE
of the estimated RSRP in this new case jumped to 24%.

Figure 17. Path within second building.
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Figure 18. Predicted indoor RSRP and error bar using outdoor measurements.

5.5. Cross-Zone Prediction

Although it is theoretically possible to determine the strength of an electromagnetic
field at any given location in space using the Maxwell equations, the amount of data and
level of precision required make it practically impossible. The signal strength was predicted
with the aid of a model that simplified the calculations. There are many available models
for this, such as the Okumura–Hata and COST models. To predict the signal strength or the
path loss, these models require distinct types of environments and operational information,
such as frequency of operation, Tx and Rx antenna parameters, TX–RX distance, and type
of clutter. On the other hand, the method used in this work requires location information
and a trained ANN module. Twelve trained ANN modules were developed for the twelve
tested campus zones. These trained modules were used to test newly collected data from
other zones without retraining the network. To accomplish this, we considered the collected
measurement for each zone to be a new piece of information for each trained ANN module.
In total, eleven new measurements were attempted on each module. While it is impossible
to predict signal strength with absolute certainty, the results indicate that the average error
was minimized when the training zone was close to the test zone (for example, zone 1 and
zone 2) and/or the RSRP ranges of the two zones are comparable. Overall, this method
could be enhanced by including additional input data, such as the transmitted power from
the base station or the path loss. Figure 19 depicts the MSE prediction error matrix after
testing the trained ANN module with new data from other locations for all zones. The blue
squares indicate that each zone is evaluated using its own test data. The green squares
indicate good predictions with lower MSEs based on the results of the predicted RSRPs
and how closely they match the actual RSRP. It was expected to have an MSE of less than
7%. Yellow squares indicate an acceptable prediction range of 7% to 15% MSE. Red squares
represent poor predictions, with an MSE greater than 15%. As depicted in the figure, the
module trained on zone 7 data provided the most accurate prediction for all other zones
tested on campus. Consequently, it can serve as a default model for predicting the signal
strength inside the university using a drone. The model trained on zone 4 cannot be used
as the default model because it predicts the weakest signal strength for all campus test data.
This is believed to be due to the fact that zone 4 was close to the base station antenna, with
strong signals and less variability.
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Figure 19. MSE prediction between different zones.

5.6. Training Set Size

Drones in general have short battery life, and on the other hand, there is a need
to reduce the effort put forth while taking field measurements. It is essential to specify
the minimum percentage of the training class that would show acceptable results. Here,
we examined the impact of reducing the training set’s size on the accuracy of the signal
estimation. Instead of using the default division of 70:20:10 for training:validating:testing,
different division values were tried for these classes. The chart in Figure 20 shows the
average and the maximum error for using different values for the testing set, ranging from
90% until 20%. The error increases as the size of the testing set grows, as expected. However,
the average error drops to less than 5% when testing with less than 80% of the data.
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Figure 20. Impact of training set size on prediction MSE.

6. Challenges and Future Work

Several challenges may limit drone-based drive test systems, including the need for
permission to fly drones in certain areas and altitude restrictions imposed by authorities.
Due to these constraints, measurements for this study were conducted only on campus, and
the maximum height was set at 25 m. Another challenge is identifying a suitable machine
learning (ML) algorithm that can work in multiple wireless propagation environments. In
this study, we selected ANNs because of their flexibility in updating their parameters and
their ability to model complex scenarios. Finding one network for all environments might
be challenging. However, a simple solution is to use multiple trained ANN networks for
different scenarios. On the other hand, other ML approaches should also be investigated.
Candidate ML algorithms should be investigated and ranked using formal methods to
verify the correctness of the chosen ML algorithm. Formal methods are a set of mathematical
techniques that can be used to verify the correctness, security, and fairness of software
systems [18,19]. However, there are also some challenges to the application of formal
methods to machine learning and AI. Machine learning models are often complex and
non-linear, which can make them difficult to verify using formal methods. Additionally,
the data used to train machine learning models are often noisy and incomplete, which can
also make it difficult to verify the correctness of these models.

7. Conclusions

In this paper, we used drone measurements from higher altitudes to predict ground-
level coverage. The method utilized an ANN module trained mainly with the measured
signal strength at higher altitude and the location data of the targeted point at ground level.
Several zones on the campus of Sultan Qaboos University, Oman, were used to collect data.
At each measurement zone, the trained module accurately predicted the signal level with
acceptable precision. In addition, the module trained for each zone was used to predict
the ground-level signal strength in other zones. For the tested scenarios, it was found that
training an ANN module in one zone can be used to predict the signal strength in other
zones with an error of 10%. Additionally, outside measurements were used to predict the
signal strength inside of buildings. This emulates the scenario of using drone measurements
taken from outside a high-rise building to predict coverage inside the building.
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