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Abstract: Intrusion detection systems can defectively perform when they are adjusted with datasets
that are unbalanced in terms of attack data and non-attack data. Most datasets contain more non-
attack data than attack data, and this circumstance can introduce biases in intrusion detection systems,
making them vulnerable to cyberattacks. As an approach to remedy this issue, we considered the
Conditional Tabular Generative Adversarial Network (CTGAN), with its hyperparameters optimized
using the tree-structured Parzen estimator (TPE), to balance an insider threat tabular dataset called
the CMU-CERT, which is formed by discrete-value and continuous-value columns. We showed
through this method that the mean absolute errors between the probability mass functions (PMFs) of
the actual data and the PMFs of the data generated using the CTGAN can be relatively small. Then,
from the optimized CTGAN, we generated synthetic insider threat data and combined them with the
actual ones to balance the original dataset. We used the resulting dataset for an intrusion detection
system implemented with the Adversarial Environment Reinforcement Learning (AE-RL) algorithm
in a multi-agent framework formed by an attacker and a defender. We showed that the performance
of detecting intrusions using the framework of the CTGAN and the AE-RL is significantly improved
with respect to the case where the dataset is not balanced, giving an F1-score of 0.7617.

Keywords: cybersecurity; intrusion detection; insider threat; multi-agent system; generative adver-
sarial network; deep reinforcement learning

1. Introduction

In daily life, any system that needs to be protected is vastly more exposed to non-attack
scenarios than attack scenarios. This aspect can also be observed through the publicly
available datasets [1], in which the number of non-attack data is much larger than that of
attack data. Hence, these datasets are in some sense “biased” towards non-attacks. Some of
these datasets are the CMU-CERT [2,3], NSL-KDD [4], CICIDS2017 [5], among others. In
this work, we claim that balancing a dataset between the non-attack and attack data (i.e., by
adding novel data from the minority group, whose probability distribution resembles the
distribution of the actual data (of the minority group)) can reduce existing bias effects and
make an intrusion detection system learn better its parameters to protect a target system.

Recently, Xu et al. [6] worked in the domain of modeling the probability distribution
of rows in tabular data and generating realistic synthetic data. The authors propose
the Conditional Tabular Generative Adversarial Network (CTGAN) for modeling the
probability distribution of both continuous and discrete variables and for generating their
respective realistic synthetic data, with a benchmark of seven simulated and eight real
datasets. They compare the results obtained from CTGAN to those obtained with several
Bayesian methods and show their outperformance over the benchmark models.

Caminero et al. [7] addressed the problem of searching for fast and robust algorithms
that can detect and classify dangerous traffic in data networks in the face of threats that
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quickly change with time. They proposed an intrusion detection model using the multi-
agent deep reinforcement learning (MADRL) framework formed by an attacker and a
defender in a competitive (i.e., adversarial) setting. Whereas the attacker tries to trick the
defender by encouraging itself to choose attacks (i.e., actions) that the defender is unable to
detect correctly, the defender tries to learn to correctly detect the attacks sent by the attacker.
The proposed method is coined as the Adversarial Environment Reinforcement Learning (AE-
RL), which is based on the Double Deep Q-network (DDQN) [8] with epsilon-greedy
strategies and with the Huber loss function [9] for both the attacker and the defender to
optimize their respective parameters. The Huber loss is defined as a quadratic loss function,
up to a threshold, and beyond this threshold, it behaves linearly. The competition between
the attacker and the defender is expressed by their respective reward functions. For each
time step, the attacker receives a reward equivalent to +1 when the defender fails to classify
well the label of a given input sample (which can correspond to a type of attack or to
non-attack). Otherwise, the attacker receives zero as its reward. Contrarily, the defender
receives a reward equivalent to +1 when it can correctly classify the label of a given input
sample. Otherwise, it receives zero as its reward. The Q-network of the attacker consists
of three layers (input, one hidden, and output), whereas the Q-network of the defender
consists of five layers (input, three hidden, and output). The employed dataset for this
work is NSL-KDD [4]. The same feature vectors are fed to each Q-network as input (of
122 dimensions, consisting of 41 features with one-hot encodings for some of these features)
with 39 attack types, categorized into 4 attack categories. Hence, the output of the attacker’s
Q-network has 40 dimensions (i.e., 39 attack types, in addition to the normal type), whereas
the output of the defender’s network has 5 dimensions (i.e., 4 attack categories, in addition
to the normal category).

Brown et al. [10] showed their efforts to classify cyberattacks using machine learning
algorithms. The authors propose a malware classification system that is based on a random
forest model. Since malware can interact with many parts of a system, the authors collected
their data from system calls and labeled them by using a malware detection algorithm.
Their experiments were performed in both low-activity and heavy-activity cloud environ-
ments. The results show their method is effective in classifying malware in low-activity
environments, but it has poor performance to heavy-activity ones. One of the reasons for
this poor performance is due to the increase in features and data. Their approach could be
adapted to heavy-activity environments if the authors used a deep-learning-based model.

In the present work, we are particularly interested in resolving the problem of how
to improve the performance of an intrusion detection system in the face of insider threats
when the provided dataset is unbalanced within the framework of machine–environment
interaction (i.e., multi-agent deep reinforcement learning (MADRL) environment). Inspired
by the works of Xu et al. [6] and Caminero et al. [7], the approach that we take to address
this problem is first to generate novel realistic synthetic data using the CTGAN (which
helps to balance the dataset). The hyperparameters of CTGAN are optimized using the
tree-structured Parzen estimator (TPE) approach [11]. The TPE is a Bayesian optimization
that is often used to optimize the hyperparameters of machine learning algorithms. It
maintains two surrogate models that consist of probability distributions of hyperparameters
of both bad and good performances. What the TPE does is first define a concept called
the promisingness as a value that is proportional to the ratio of the probability distribution
of the hyperparameters that give good performance to the probability distribution of
the hyperparameters that give bad performance. Then, the TPE attempts to choose the
hyperparameter values that maximize this promisingness. The promissingness is also known
as the expected improvement.

We then define (and optimize) an intrusion detection system (for insider threats) by
modeling it as a machine–environment interaction through the means of the MADRL
approach, in particular using the AE-RL method. Among many intrusion types, in the
present work, we focus on insider threats, provided by the CMU-CERT database [2]. To
the best of our knowledge, we have not found in the literature any work on designing
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a framework that combines both the generation of attack data using the CTGAN and
intrusion detection (in a multi-agent environment) with insider threats that belong to
various scenarios that correspond to different malicious human behaviors.

From the approach that we propose in the present work, we have found that the
probability mass function (PMF) of the synthetic insider threats that we generate using the
CTGAN approach (with its hyperparameters optimized with the TPE algorithm) are close
to the PMF of the actual CMU-CERT data. Also, we have found that when the dataset is
balanced by incorporating the attacks generated by the CTGAN, the performance of the
intrusion detection system can be significantly increased.

The work hereby presented is structured as follows. In Section 2, we show the works
that are related to the one that we present hereby. In Section 3, we present the method that
we propose in this work. In Section 4, we show the results that we obtained and discuss
them. Finally, Section 5 shows the concluding remarks and possible future works.

2. Related Works

In this section, we will review existing research that uses GAN to address the issue
of unbalanced data in detecting cyberattacks using reinforcement learning (RL) models.
The literature in the field of cyberattack detection suggests that recurrent neural network
(RNN) and RL approaches are not yet fully explored [12]. Our paper will specifically focus
on insider threat detection (ITD) as a type of cyberattack detection.

2.1. Balancing Datasets Comprising Attacks and Non-Attacks

ITD involves cyberattacks from trusted entities within an organization [13]. Since
such attacks happen within an organization, one can think the organization can easily
prevent them by monitoring as many data sources as possible (i.e., networks, employees’
computers, active directories, etc.). However, the literature shows that ITD is a challenging
task because it can leave no footprint of the attack. The data are often unbalanced, and since
the real-world data are protected, there is a lack of datasets for the ITD community [13–15].

In the literature, the GAN has been identified as a strategy to address unbalanced
classes by generating synthetic samples. While the synthetic minority oversampling tech-
nique (SMOTE) and modified versions of the convolutional neural network (CNN) are also
used for unbalanced data, the GAN has been proven to be a state-of-the-art approach [16].
Other strategies may be ineffective in extreme scenarios or costly for large datasets [16].

Yuan et al. [14] propose a framework for insider threat detection that performs three
main activities: identify the anomalous behavior sequence of users, augment the dataset,
and classify suspect behaviors. To identify the anomalous behaviors, an LSTM-autoencoder
encodes the user behavior sequences, and then the anomalous behaviors are selected from
the embedding space. A GAN generator learns a generative distribution that is close to
the distribution of the actual anomalous user behavior, and the GAN converges when the
discriminator is not capable of differentiating the synthetic data from the real data. The
authors show that their framework outperforms three other baselines in terms of the area
under the curve (AUC).

Gayathri et al. [13] propose the use of a conditional GAN (CGAN) to augment an
insider threat detection dataset. The methodology is also based on three phases: detect
the user behavior, augment the dataset, and classify the attacks. The authors affirm that
the CGAN is better suited to the task of generating cyberattack data because it increases
the diversity of the training set by including data from all classes. Their generator and
discriminator are formed by three fully connected layers. The discriminator is regularized
using a dropout of 0.2, and Adam and Leaky Relu are also used. Their results show that, by
combining the CGAN with any other cyberattack classification, they outperformed existing
methods in terms of precision, recall, F1-score, Cohen’s Kappa, and Mathew’s correlation
coefficient (MCC).
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Gayathri et al. [15] propose an end-to-end framework to classify insider threats that
uses the CWGAN-GP model, which is a combination of the CGAN and Wasserstein GAN
(WGAN) models. The WGAN was proposed to address the stability and convergence
issues of the vanilla GAN by optimizing the Wasserstein-1 distance instead of the Jensen–
Shannon divergence (JSD). WGAN-GP is an ameliorated version that uses gradient penalty
instead of weight-clipping for better stabilization. The generator of the CWGAN-GP model
has four layers with 20, 32, 64, and 100 nodes, respectively. Both the generator and the
discriminator have dense layers. The activation function of the generator is leaky ReLU
for the first three layers and linear activation for the output layer. The authors considered
linear, non-linear, and ensemble classifiers to evaluate their performance. The CWGAN-GP
model’s results were compared to those obtained from the SMOTE and the CGAN, and it
outperformed all the other models in terms of precision, recall, and F1-score.

Sharma et al. [17] studied the intrusion detection problem by generating synthetic
attacks using the conditional generative adversarial network and by detecting these attacks
using the XGBoost classifier [18] over two publicly available datasets: NSL-KDD [4] and
CICIDS2017 [5].

On the other hand, we have also found in the literature a study that explores Chat-
GPT [19] to generate social engineering attacks, phishing attacks, and automated hacking,
among other types of attack scenarios [20]. Then, the authors examine defense techniques
that use generative artificial intelligence (GenAI) methods to improve security measures.

Xu et al. realized that tabular data usually consists of a mixture of continuous and
discrete variables. While continuous variables may have multiple modes, discrete variables
are sometimes imbalanced (i.e., their respective values are often not uniformly distributed
along their ranges, but these values are concentrated for some subset of values), making
the modeling of their probability distributions difficult, and therefore, the generation of
the respective realistic synthetic data is difficult as well [6]. The CTGAN addresses the
aforementioned issue by using mode-specific normalization, the conditional generator, and
training by sampling. For our study, we work with the CMU-CERT insider threat dataset,
which is a tabular dataset with columns that have both continuous and discrete values.
Therefore, we have decided to employ the CTGAN to generate novel insider threats.

2.2. Designing Multi-Agent Intrusion Detection Systems

Aryal et al. [21] recently presented a survey on adversarial attacks for malware
analysis. In this work, we are particularly interested in designing multi-agent intrusion
detection systems.

Elderman et al. [22] set the problem of securing networks in an adversarial reinforce-
ment learning framework formed by two agents (i.e., an attacker and a defender), in which
each agent has the goal to win as many Markov games with incomplete information and
stochastic elements. They showed that Monte Carlo learning with the softmax-exploration
strategy was the most effective approach (among the methods that they considered) for
their specific network scenario.

Sethi et al. [23] observed that existing intrusion detection systems (IDS) suffer to adapt
to changing attacks or to unseen attacks, and for this reason, the networks that need to be
secured remain vulnerable. The authors propose a new intrusion detection system based
on the deep Q-network (DQN) [24] with attention mechanisms distributed over multiple
agents, which are coordinated to provide an efficient and scalable IDS to detect and classify
advanced network attacks. They used the NSL-KDD [4] and CICIDS2017 [5] datasets to
test their model.

Jin et al. [25] addressed the issues of the low detection rate and the high false-positive
rate observed while detecting intrusions in wireless sensor networks. They propose an
intrusion detection scheme based on the use of both a multi-agent system and a node
trust value. They use the notion of typical node trust attributes (based on the combination
of the Beta distribution and a tolerance factor) and the Mahalanobis distance function to
define the normal behaviors. They show that this scheme offers a higher detection rate
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and a lower false-positive rate than other approaches, even in the presence of several types
of intrusions.

Sadhasivan and Balasubramanian [26] addressed the problem of the fact that the
arrivals of new attacks are not updated in the cyberattack dataset as quickly as needed,
leading to poor detection accuracy. They propose an adaptive rule-based multi-agent
intrusion detection system (ARMA-IDS) that improves detection performance by adaptively
updating the attack information to the available database. In the proposed model, they
combine rules and classification algorithms (such as AdaBoost [27] and JRip [28]) in a
multi-agent framework to detect attacks that are available through benchmark datasets
such as KDD Cup 1999 [29] and SCADA [30]. The authors show the effectiveness of the
proposed model, which offers a high detection rate for both datasets.

Achbarou et al. [31] observed the fact that making IDS efficient is not easy in a dis-
tributed environment such as the cloud environment. This is an open problem, and there
are no satisfactory solutions for the automated evaluation and cloud-security analysis. They
also observe the positive features of the multi-agent paradigm, such as adaptability, collab-
oration, and distribution. From this observation, they propose a distributed IDS (DIDS) in
a multi-agent framework to identify and prevent new and complex malicious attacks.

Suwannalai and Polprasert [32] worked on designing an anomaly-based network
intrusion detection system using the Adversarial Environment Deep Q-Network (AE-DQN)
over the NSL-KDD dataset, similar to what Caminero et al. [7] did.

All the approaches mentioned in this section do not balance the respective datasets
but directly work with the original unbalanced datasets.

2.3. Designing Multi-Agent Intrusion Detection Systems with Balanced Datasets Comprising
Attacks and Non-Attacks

Ma and Shi [33] observed the difficulty in detecting intrusions in dynamic environ-
ments with various types of fast-changing attacks, requiring novel, fast, and robust solu-
tions to detect them. To address this issue, the authors propose a method called Adversarial
Environment Reinforcement Learning with SMOTE (AESMOTE) for detecting intrusions.
It consists of combining a reinforcement learning (RL) algorithm with a technique that
balances a dataset comprising both attacks and non-attacks. On the one hand, the RL
algorithm that they used is the one proposed by Caminero et al. (i.e., the Adversarial
Environment Reinforcement Learning (AE-RL)) [7]. On the other hand, the data-balancing
algorithm that they employed is the one proposed by Chawla et al. (i.e., the synthetic
minority oversampling technique (SMOTE)) [34]. The proposed method is trained using
the NSL-KDD datasets [4]. While the SMOTE can be used to balance a dataset (between
attacks and non-attacks), the GAN has been proven to be a state-of-the-art approach [16].

The synthetic minority oversampling technique (SMOTE) is an algorithm proposed
by Chawla et al., 2002 [34]. It allows the sampling of novel data from the minority group.
This algorithm defines line segments that join each of the data points from the minority
group with their nearest neighbors. Then, it randomly samples novel data points along
these line segments until the total number of data points from the minority group becomes
about the number of data points from the majority group. Other oversampling techniques
can be randomly resampling techniques such as bootstrapping. As Gayathri et al. [15]
showed in their work, the performance of insider threat generation using the conditional
generative adversarial network (CGAN) is superior to the synthetic minority oversampling
technique (SMOTE) and to other resampling techniques (such as bootstrapping). Hence,
we chose the CTGAN algorithm to sample novel attack data to balance the overall dataset.
Another aspect that differs from the work of Ma and Shi [33] is that we work with the
CMU-CERT dataset (because we are interested in insider threat detection) instead of the
NSL-KDD dataset.
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3. Methodology
3.1. Dataset

The dataset used in this work is the CMU-CERT insider threat dataset version 4.2 (see
Figure 1). It is a synthetic dataset proposed by the Computer Emergency and Response
Team (CERT) division of Carnegie Mellon University (CMU) [2]. The insider threat dataset
comes in various versions, having improvements in each new version. We decided to use
the 4.2 version in this work because it is the version that contains the most cyberattacks
proportionally to the normal data. It contains 30,602,325 entries in total, among which only
7623 entries are cyberattacks; this means that the percentage of cyberattacks is 0.025%. This
dataset is composed of 5 different data sources, namely:

• Logon corresponds to session auditing logs inside an information system, containing
the fields id, date, user, pc, and activity (logon/logoff ). There are 427,628 entries, among
which 198 are cyberattack data (0.046% of the total entries).

• Device corresponds to external device auditing logs inside an information system,
containing the fields id, date, user, pc, and activity (connect/disconnect). There are
205,476 entries, among which 2786 are cyberattack data (1.37% of the total entries).

• Http corresponds to the HTTP requests made by the users inside an information sys-
tem, containing the fields id, date, user, pc, url, and content. There are 28,438,284 entries,
among which 3860 are cyberattack data (0.013% of the total entries).

• Email corresponds to the emails sent within an information system (which can be sent
inside and outside the information system), containing the fields id, date, user, pc, to, cc,
bcc, from, size, attachment_count, and content. There are 1,315,459 entries among which
469 are cyberattack data (0.035% of the total entries).

• File corresponds to a file auditing log inside an information system, containing the
fields id, date, user, pc, to, filename, and content. There are 222,801 entries among which
10 are cyberattack data (0.004% of the total entries).

Figure 1. The adaptation procedure of the original dataset.

The dataset also contains lightweight directory access protocol (LDAP) logs of the
2 years covered by the dataset. These LDAP logs can be used to list which users are present
in the considered company at any given time. The cyberattack data are generated by
70 users inside the company who act according to 3 scenarios:

• Scenario 1: A user who did not previously use removable drives or work after hours
begins logging in after hours, using a removable drive, and uploading data to wikileaks.
org. The user leaves the organization shortly thereafter.

• Scenario 2: A user begins surfing job websites and soliciting employment from a
competitor. Before leaving the company, the user uses a thumb drive (at significantly
higher rates than what the user used to do previously) to steal data.

• Scenario 3: A system administrator becomes disgruntled. He downloads a keylogger
and uses a thumb drive to transfer it to his supervisor’s machine. The next day, he

wikileaks.org
wikileaks.org
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uses the collected keylogs to log in as his supervisor and send out an alarming mass
email, causing panic in the organization. He leaves the organization immediately.

3.2. Data Pre-Processing

We need to pre-process this dataset to correctly use it. This pre-processing is performed
in two steps. In the first step, we clean the data, extract the cyberattack data, as well as the
normal data, and extract the features that we consider to be the most useful. In the second
step, the resulting dataset is adapted for the framework of multi-agent reinforcement
learning. To be able to discern normal data (i.e., non-attack data) from a cyberattack dataset,
a folder named “answers” (which contains all the cyberattack identifications) is used.
This folder contains all cyberattacks in the dataset, which are separated by the scenario
associated. Each cyberattack can then be associated with its scenario and its data source.
After the differentiation between normal and cyberattack data is performed, both categories
of data can be extracted. Finally, for each data source (independently from their categories),
a field selection step is performed such that only the most useful fields are left. The fields
are chosen such that they are common in all data sources (see Algorithm 1 for details).

Algorithm 1 Data pre-processing

1: for each entry in the folder answer do
2: Select the answer ID
3: for each entry in the dataset do
4: if the event ID equals the current answer ID then
5: Get the associated data source
6: Get the associated insider threat scenario
7: Add the entry to the cyberattack dataset
8: else
9: Add the entry to the normal dataset

10: for each cyberattack do
11: Keep User, PC, and Date fields
12: for each normal data do:
13: Keep User, PC, Date fields

In the end, all the entries in the dataset are separated with respect to their categories
(i.e., normal or cyberattack), and the respective fields are properly considered. The next step
is the dataset adaptation for the multi-agent RL framework. To correctly adapt the dataset,
it is required to concatenate all the entries into one file and label them according to their
data source and their categories (i.e., normal or cyberattack). To do so, a field named ‘label’
is added to all the entries, which will correspond to the data source and its category. As an
example, if the data source logon is associated with Scenario 1, the label that corresponds
to each associated entry is “logon1” (see Algorithm 2 for details).

Algorithm 2 Data adaptation for multi-agent RL

1: for each cyberattack do
2: Create column ‘Label’
3: Get the associated data source
4: Get insider threat scenario associated
5: Set label to be: data source + insider threat scenario number
6: for each normal data do
7: Create column ‘Label’
8: Get the associated data source
9: Get insider threat scenario associated

10: Set label to be: data source
11: Concatenate normal data and cyberattacks
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Hence, in this work, we considered four different scenarios (as described in Section 3.1)
with their respective labels as follows:

• Normal scenario (i.e., non-attack scenario) with the following classes (i.e., labels):
logon, device, http, email, file;

• Scenario 1 with the following classes (i.e., labels): logon1, device1, http1;
• Scenario 2 with the following classes (i.e., labels): device2, http2;
• Scenario 3 with the following classes (i.e., labels): logon3, device3, email3, http3, file3.

3.3. Conditional Tabular Generative Adversarial Network (CTGAN)

In this work, we generate novel synthetic insider attacks using the Conditional Tabular
Generative Adversarial Network (CTGAN) [6]. We train both an attack generator and an
attack discriminator using the insider attacks that are present in the CMU-CERT dataset
(version 4.2) [2] and pre-processed as indicated in Section 3.2. The CMU-CERT is a tabular
dataset consisting of a mixture of continuous and discrete variables. In such a dataset, the
continuous variables can have multiple modes, whereas the discrete variables are often
imbalanced. This fact makes modeling their respective probability distributions difficult.

As explained by Xu et al. [6], the CTGAN addresses the aforementioned issue by
using mode-specific normalization, the conditional generator, and training by sampling. First, the
continuous variables are treated differently from the discrete variables. For each continuous
column (from a data table), the variational Gaussian mixture model (VGM) [35] is used
to estimate the number of modes and to fit a Gaussian mixture. In this way, the values
of each continuous-value column can be represented with a one-hot vector (whose size
depends on the number of modes and whose value depends on the mode to which a
value belongs) and a scalar (whose value depends on the continuous value, and the mean
and the standard deviation of the mode to which this continuous value belongs). Second,
for each discrete-value column (from a data table), the probability mass function (PMF)
of a row (formed by the discrete columns) is estimated by conditioning it with a value
for each discrete-value column, which is sampled in turn from a PMF that is constructed
as the logarithm of its frequency. Because of this conditioning procedure, the resulting
method is called the conditional tabular GAN. Finally, the one-hot vectors and the scalar
values that are needed to represent continuous-value columns and the one-hot vectors
required to represent discrete-value columns can be generated using a GAN that consists
of two fully connected hidden layers for both the generator and the discriminator (see
Figure 2). In the generator network, the batch normalization and ReLU activation functions
are used in the hidden layers, whereas in the output layer, the tanh activation function is
used to learn to generate the scalar values for continuous-value columns, and the Gumbel
softmax function [36] is used for one-hot vectors of both continuous-value columns and
discrete-value columns. In the discriminator network, the leaky ReLU activation and dropout
are used on each hidden layer. Finally, the CTGAN is trained using the Wasserstein gradient
penalty (WGAN-GP) loss function [37] with the Adam optimizer [38].

Figure 2. GAN paradigm.

The quality of the cyberattacks generated with the CTGAN model is evaluated by
computing the mean absolute error between the probability mass function (PMF) of the
real data and the PMF of the generated data. In order to generate realistic cyberattacks, it
is required to split the cyberattacks with respect to their data source. Hence, a CTGAN
model is trained for each data source, as shown in Figure 3. Further, the hyperparameters
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of each CTGAN model (i.e., a CTGAN model per data source) are optimized using the
tree-structured Parzen estimator (TPE) algorithm [11]. These hyperparameters are shown
in Table 1.

Figure 3. The generation of attacks using the CTGAN.

Table 1. The CTGAN’s hyperparameters that are optimized using the TPE algorithm [11].

Hyperparameters Meaning

Batch size The size of the samples employed to optimize the GAN’s
parameters

Discriminator decay A weight decay employed by the Adam optimizer for the
discriminator neural network

Discriminator learning rate The initial learning rate used by the Adam optimizer for the
discriminator neural network

Discriminator steps The steps for the discriminator neural network

Generator decay A weight decay employed by the Adam optimizer for the
generator neural network

Generator learning rate The initial learning rate used by the Adam optimizer for the
generator neural network

Log frequency An indicator parameter for if the PMF is defined with the
logarithmic function.

After the optimization steps, the CTGAN models can be used to generate high-quality
cyberattacks (see Appendices A and B for details). Once the cyberattacks are generated,
they can be concatenated with the real data to balance the overall dataset. Then, the
resulting dataset can be split into training and test datasets. As indicated in Figure 3, the
splitting factor is 50%, meaning that the original dataset is split into 50% for training the
Adversarial Environment Reinforcement Learning (AE-RL) algorithm (which is described
in Section 3.4) and 50% for testing this algorithm.

3.4. Adversarial Environment Reinforcement Learning (AE-RL)

As an approach to detect intrusions (in particular, insider threats), we used the ap-
proach proposed by Caminero et al. [7], which is the Adversarial Environment Reinforcement
Learning (AE-RL) algorithm (see Figure 4). In this approach, the double deep Q-network
(DDQN) proposed by van Hasselt et al. [8] is implemented within the multi-agent frame-
work consisting of an attacking agent (that emulates an insider that threatens an organiza-
tion’s computer network) and a defending agent (that tries to identify the insider’s threats)
using the CMU-CERT pre-processed (see Section 3.2) and augmented (see Section 3.3).
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Figure 4. RL paradigm.

Each agent (both the attacker and the defender) tries to optimize its action within the
framework of the Markov decision process (MDP). The action optimization is attempted by
maximizing the action-value function, which is approximated by a deep neural network
(DNN). The DNN for the attacker is illustrated in Figure 5a and the DNN for the defender
in Figure 5b. The input features to each of these two DNNs are the same, while the output
variables for the attacker’s DNN are attack categories, and those for the defender’s DNN
are the considered scenarios. For both DNNs, the input variables can be viewed as the state
variables, the output variables as actions, and the values returned for each of these actions
as the values of the action-state function. The parameters of these DNNs are optimized
by performing the backpropagation, which consists of updating the model parameters
following the negative direction of the gradients of the respective loss function with respect
to the parameters. The loss function is applying the Huber function [9] to

Lt =
(

YDoubleQ
t −Qψ

(
st, ut; θψ

))2
, (1)

where ψ ∈ {attacker, defender} and

YDoubleQ
t = Rψ

t + γQψ

(
st+1, arg max

uψ

Qψ
(
ss+1, uψ; θψ

)
; θ̃ψ

)
, (2)

with γ being the discount factor, θψ being the parameters of the main ψ-DNN, and θ̃ψ being
the parameters of the target ψ-DNN.

As suggested Caminero et al. [7], the rewards of both the attacker and the defender at
time instant t are defined as

rattacker
t = I{yt 6= ŷt},

rdefender
t = I{yt = ŷt},

where I{·} is the indicator function that indicates whether the considered condition is true
or not, yt is the attack generated by the attacker, and ŷt is the attack that the defender
estimates. Hence, if the defender correctly estimates the attack, the defender gains +1 as
a reward, while the attacker obtains zero as its reward. Otherwise, the defender obtains
zero reward, whereas the attacker gains +1 as its reward. As indicated by this definition
of reward, on the one hand, the attacker gains a positive reward when it arrives to trick
the defender with a particular attack that it chose. If this is the case, the attacker will try to
exploit the knowledge that it gained about the defender’s vulnerability and, in this way,
maximize its expected return. The attacker also explores better policies (i.e., other types of
attacks) that can harm the defender even more. On the other hand, the defender gains a
positive reward when it arrives to correctly classify (i.e., detect) the attacker’s action. If this
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is the case, the defender will try to exploit the solution that it found to improve its ability
to detect the attackers’ intentions. The defender also explores other detection solutions to
see if it can further improve its ability to detect the attacks. This adversarial environment
makes both the attacker and the defender more intelligent in their functions, and as a result,
the defender can improve its ability to detect insider threats.

(a) Attacker’s neural network. (b) Defender’s neural network.
Figure 5. Attacker’s and defender’s neural networks.

The Q-network of the attacker consists of three layers (input, one hidden, and output),
whereas the Q-network of the defender consists of five layers (input, three hidden, and
output). In terms of the RL hyperparameter values, we have used those that Caminero et al.
used [7].

Finally, Figure 6 shows the overall framework that combines the CTGAN (Section 3.3)
and the AE-RL (explained in this section).

Figure 6. GAN-RL paradigm.

4. Results and Discussion

We implemented the framework formed by the CTGAN and the AE-RL shown in
Figure 6 on a computer with the hardware and software specifications shown in Table 2.

As shown in Figure 3, the synthetic attacks are generated for each data source sepa-
rately. Hence, we optimized the hyperparameters of the CTGAN for each of the five data
sources (i.e., logon, device, http, email, and file) using the tree-structured Parzen estimator
(TPE). Table 3 shows the seven hyperparameters of the CTGAN, the default hyperparame-
ter values (which are the default values suggested by Xu et al. [6]), and the hyperparameter
values optimized for each of the five data sources of the CMU-CERT dataset. The batch
size refers to the size of the data that are considered to update the parameters of both
the generator and discriminator’s neural networks. Both the discriminator decay and the
generator decay are the weight decays for the Adam optimizer that both the discriminator
and generator’s neural networks in order to update their respective parameters. These
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weight decays are used for regularization purposes. Finally, both the discriminator learning
rate and the generator learning rate are the initial learning rates that the Adam optimizer
uses for the discriminator’s and the generator’s neural networks, respectively.

Table 2. The hardware and software specifications used to implement the framework of CTGAN and
AE-RL shown in Figure 6.

Characteristics Values

PC HP-Z2-Tower-G4-Workstation
CPU Intel® Core™ i7-8700 CPU @ 3.20 GHz × 12
RAM 15.5 GiB
GPU NVIDIA GP106GL [Quadro P2200]
Disk 1.5 TB
OS Ubuntu 20.04.6 LTS

Python IDE Spyder 3.3.6
Python 3.8.10

Hyperopt 0.2.7
Keras 2.7.0

Tensorflow 2.7.0
Torch 1.8.0

CTGAN [6] 0.7.0

Table 3. Optimization of the CTGAN’s hyperparameters.

Hyperparameters Default Logon
CTGAN

Device
CTGAN

Http
CTGAN

Email
CTGAN File CTGAN

Batch size 500 390 450 600 90 60

Discriminator decay 1e−6 7.19e−3 2.22e−3 8.08e−3 2.23e−3 8.95e−3

Discriminator learning rate 2e−4 5.89e−3 4.45e−3 9.72e−3 8.35e−3 2.05e−5

Discriminator steps 1 8 2 2 7 7

Generator decay 1e−6 8.90e−3 7.21e−3 1.57e−3 4.99e−3 8.66e−3

Generator learning rate 2e−4 7.03e−3 1.42e−5 2.06e−5 4.62e−3 1.36e−3

Log frequency True True True True True False

Figure 7 shows the mean absolute error (MAE) between the probability mass function
(PMF) of the actual attacks and the PMF of the attacks generated with the CTGAN, for five
different data sources (i.e., logon, device, http, email, and file) and for two different settings:
one with the default hyperparameters of the CTGAN and the other with optimized hyper-
parameters. These results show that the MAE values with the optimized hyperparameters
are lower than those with the default hyperparameter values.

Figure 8 shows the convergence of the two agents (i.e., the attacker and the defender),
which are trained both with and without data augmented using the CTGAN method. For
each of the two plots in Figure 8, the horizontal axis represents the number of epochs (which
ranges up to 5000), whereas the vertical axis represents the total rewards attained by each
of the two agents in an epoch. One epoch consists of 100 steps. At each step, the attacker
obtains +1 as its reward value if it successfully attacks the defender (i.e., if the defender
does not detect the attack). Otherwise, it obtains zero reward. On the other hand, the
defender obtains +1 as its reward value if it successfully defends the attack that comes from
the attacker (i.e., the attacker fails to attack the defender). Otherwise, it obtains zero reward.
Figure 8a shows the convergence curves without the data augmented with the CTGAN
method, whereas Figure 8b shows the convergence curves with the data augmented with
the CTGAN method.
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Figure 7. The comparison of mean absolute error (MAE) of the probability mass function (PMF) of
the five activities that the CMU-CERT considers.

(a) No data augmentation. (b) With data augmentation.
Figure 8. The convergence of the total rewards for both the attacker’s and defender’s neural networks.

For the case without data augmentation (Figure 8a), the attacker’s total-reward curve
starts with high values and decays to low values, whereas the defender’s total-reward
curve starts at relatively low values and increases to high values as the number of epochs
augment. We think that these phenomena are observed because, as the number of attacks
is small compared to the normal data in the original CMU-CERT dataset, the defender can
quickly learn to defend itself from the attacks that originated by the attacker. Conversely, as
the number of epochs advances, the attacker fails more often to attack the defender, which
becomes able to defend its system more and more.

On the other hand, for the case with data augmentation (Figure 8b), we observe similar
behaviors for both the attacker and the defender as in the case without data augmentation.
However, the attacker does not reach values as low as those attained without data augmen-
tation at the end of the experiment (i.e., at the maximal number of epochs). Similarly, the
defender does not reach values as high as those attained without data augmentation at the
end of the experiment. This may be explained by the fact that we augmented the original
dataset with synthetically generated attacks. In this case, the defender does not succeed in
defending itself as much as in the case without data (i.e., attack) augmentation. Hence, the
defender struggles to learn to improve its defense system. As a result, the attacker’s total
rewards are higher than for the case without data augmentation. Further, both curves with
data augmentation present more significant fluctuations than those observed in the case
without data augmentation.

Figure 9 shows the Huber loss curves for both the attacker’s and defender’s neural
networks when the dataset is augmented or not with the CTGAN. For each subfigure of
Figure 9, the horizontal axis represents the number of epochs (ranging up to 5000), and
the vertical axis represents the Huber loss. Recall that each epoch consists of 100 steps,
and therefore, each of the loss values for each epoch corresponds to those of the last
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step. In particular, Figure 9a corresponds to the case without data augmentation. We
observe that the loss curves of both the attacker and the defender decrease as the number
of epochs increases, reaching a plateau with similar loss values. Similarly, Figure 9b
shows the convergence of the Huber loss of both the attacker and the defender when
the dataset is augmented with the attacks generated by the CTGAN. In this case, once
again, both loss curves flatten as the number of epochs increases, but each of these two
curves converge to some different values. In fact, the defender seemingly has difficulty
improving its performance as its converged value is somewhat higher than that of the
attacker. This phenomenon is aligned with the results observed in Figure 8b. As there are
more attacks generated by the CTGAN, the defender seems to struggle more to correctly
detect the attacks. This fact makes the attacker improve its performance, as shown in the
corresponding figure.

(a) No data augmentation. (b) With data augmentation.
Figure 9. The convergence of the loss function for both the attacker’s and defender’s neural networks.

Figure 10 shows the confusion matrices for both when only the original CMU-CERT
dataset is considered (see Figure 10a) and when this dataset is augmented with the attacks
generated with the CTGAN method (see Figure 10b). First, the total number of data shown
in the confusion matrices corresponding to the original CMU-CERT dataset is lower than
that of the confusion matrix corresponding to the augmented dataset, due to the fact that
we have more attacks available in the dataset augmented with the CTGAN. The ratio is
about 67% (i.e., 3,596,524/5,391,334).

(a) No data augmentation. (b) With data augmentation.
Figure 10. Confusion matrices with and without data augmentation.

From the results shown in the respective confusion matrices (shown in Figure 10),
we can compute the values of true positive (TP), true negative (TN), false positive (FP), and
false negative (FN). We can achieve this from two different perspectives: the multi-class
classification, and the binary classification. By the perspective of multi-class classification,
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we mean that both the positive/negative predictions and true/false actual samples are
regarded with respect to a considered scenario (among four scenarios: Normal, Scenario 1,
Scenario 2, and Scenario 3 (which are defined in Section 3.1)). On the other hand, by the
perspective of binary classification, we mean that both the positive/negative predictions and
true/false actual samples are regarded from the point of view of attack and non-attack.
From each of these two perspectives, we first define the respective values of TP, TN, FP,
and FN. Then, from these numbers, we define the respective precision, recall, and F1-score as
follows to measure the performance of detecting intrusions (in our case, insider threats)
with and without data augmentation:

Precision =
TP

TP+FP
, Recall =

TP
TP+FN

, F1-score = 2 · Precision · Recall
Precision + Recall

. (3)

In Table 4, we show the performance results of the detection of insider threats in terms
of F1-score, precision, and recall. We compute these performance values for both with
and without data augmentation. Further, we analyze them from the two aforementioned
perspectives: multi-class classification (for which four classes are considered (i.e., Normal,
Scenario 1, Scenario 2, and Scenario 3)) and binary classification (for which two classes
are considered (i.e., attack and normal)). We also show the performance differences between
the unbalanced and balanced cases in percentage. These difference rates are computed as(

quantitybalanced − quantityunbalanced
)

quantityunbalanced
× 100%. (4)

Table 4. Classification performance regarded both as multi-class classification and as binary
classification.

Scenario F1-Score F1-Score Difference Precision Precision Difference Recall Recall Difference
(Unbalanced) (Balanced) Rate (%) (Unbalanced) (Balanced) Rate (%) (Unbalanced) (Balanced) Rate (%)

Normal 0.9601 0.8552 −11 0.9999 0.9200 −8 0.9234 0.7990 −13
Scenario 1 0.0620 0.5915 853 0.0321 0.5643 1658 0.9349 0.6214 −34
Scenario 2 0.0142 0.5769 3 965 0.007 0.5146 7097 0.9652 0.6564 −14
Scenario 3 0.0078 0.5502 6 992 0.0039 0.4210 10,707 0.9202 0.7940 −23

Attack/Normal 0.0463 0.7617 15 0.0237 0.6826 28 0.9667 0.8619 −11

Let us first analyze the results shown in Table 4 from the perspective of multi-class
classification. For the case of the unbalanced dataset, the F1-score values are remarkably
bad in general for all scenarios except for the normal scenario. Considering (3), this is
mainly due to bad precision values. Notice that the recall values are in general significantly
good. There can be several reasons why the precision values can be bad. The first reason
can be due to the fact that, while we optimized the hyperparameters of the CTGAN, we
employed the AE-RL hyperparameter values that Caminero et al. used for their work. From
the confusion matrix without data augmentation (see Figure 10a), we can observe that for
Scenario 1, Scenario 2, and Scenario 3, very large numbers of normal (i.e., non-attack) data are
predicted as attacks. These phenomena make the FP values large and, as a consequence, the
precision values too. Another observation that we can make is the fact that the true normal
(i.e., true non-attack) and true attack data are noticeably unbalanced. Their respective
quantities are 3,589,621 and 6903. In other words, the true attacks are only about 0.2% of
the total test dataset. This fact seems to influence the results obtained with the unbalanced
dataset. On the other hand, for the case of the balanced dataset, the obtained F1-scores
are significantly larger than those of the unbalanced case. This difference rate is more
noticeable for the normal case. However, in general, these F1-score values are not high, and
we think that this may be because we used the AE-RL hyperparameter values that are used
by Caminero et al. for their work but not adapted to ours. Further, from (3), we can explain
the gain of F1-scores for the balanced case. Although the corresponding recall values are
decreased with respect to the unbalanced case, these losses are smaller than the significant
gain obtained regarding the precision. These results have made a significant increase in
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F1-score values. Moreover, from Figure 10b, we observe that the distribution of the true
normal (i.e., true non-attack) data and true attack data are more balanced. Their respective
quantities are 3,589,620 and 1,801,714. Hence, the size of the true attack data represents
about 33% of the total test dataset (which means more balanced than the unbalanced case).

Now, let us analyze the results shown in Table 4 from the perspective of binary
classification. These results are shown in the last row of the table. In this case, we observe
that the F1-score for the unbalanced case is very low (0.0463), whereas for the balanced
case, it is significantly higher (0.7617). Both values may be increased by adapting the
AE-RL hyperparameter values. Further, their respective precision and recall values are also
presented, together with their difference rates computed, as shown in (4).

5. Conclusions and Future Work

In this work, we considered the Adversarial Environment Reinforcement Learning
(AE-RL) algorithm [7] to detect intrusions (in particular, insider threats) within a multi-
agent framework formed by an attacker and a defender. This intrusion detection system
is learned and evaluated with a publicly available dataset called the CMU-CERT version
4.2 [2]. Because this dataset is unbalanced between the non-attacks and attacks, we showed
that the performance of the intrusion detection system (implemented by the AE-RL) is
limited. To overcome this limitation, we considered the Conditional Tabular Generative
Adversarial Network (CTGAN) [6], with its hyperparameters optimized using the tree-
structured Parzen estimator (TPE) [11], to balance the tabular dataset (i.e., CMU-CERT). We
showed that the mean absolute errors between the probability mass functions (PMFs) of
the actual data and the PMFs of the data generated using the CTGAN are relatively small.
Then, from the optimized CTGAN, we generated synthetic insider threats and combined
them with the actual ones to balance the original dataset. Then, we used the resulting
dataset to train and test the AE-RL (i.e., the intrusion detection system) and showed that
the performance of detecting intrusions (through the F1-score) has significantly improved.
However, we observe that there is still room to improve the performance of detecting
intrusions with and without data augmentation, and we think that this may be because we
optimized the CTGAN hyperparameters but have employed the AE-RL hyperparameter
values that Caminero et al. used for their work. We will adapt them in the near future.
Other possible future works are the following. In this work, we only considered a multi-
agent system formed by one attacker and one defender. We may be able to scale up the
intrusion detection system that we present in this work, by increasing the number of
both attackers and defenders. Other future work can be used other than the CMU-CERT
dataset for the framework that we presented in this work, such as the NSL-KDD [4] and
CICIDS2017 [5]. Further, we possibly consider time-series data (instead of pointwise data)
to detect intrusions, adapting the framework that we presented in this work. Moreover, in
the future, we are also interested in designing an intrusion detection system (following the
research direction presented in this work) that is able to detect zero-day unknown attacks.
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Appendix A. The Comparison of the Probability Mass Functions (PMFs) of the Original CMU-CERT Attacks to the PMFs of the Attacks
Generated with the CTGAN

Appendix A.1. Logon Attacks

Appendix A.1.1. For the Case of the Attacks Generated Using the CTGAN with Default Hyperparameter Values

Figure A1. The PMFs of the actual logon attacks and those of the logon attacks generated by the CTGAN with default hyperparameter values.
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Appendix A.1.2. For the Case of the Attacks Generated Using the CTGAN with Optimized Hyperparameter Values

Figure A2. The PMFs of the actual logon attacks and those of the logon attacks generated by the CTGAN with optimal hyperparameter values.
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Appendix A.2. Device Attacks

Appendix A.2.1. For the Case of the Attacks Generated Using the CTGAN with Default Hyperparameter Values

Figure A3. The PMFs of the actual device attacks and those of the device attacks generated by the CTGAN with default hyperparameter values.
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Appendix A.2.2. For the Case of the Attacks Generated Using the CTGAN with Optimized Hyperparameter Values

Figure A4. The PMFs of the actual device attacks and those of the device attacks generated by the CTGAN with optimal hyperparameter values.
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Appendix A.3. Email Attacks

Appendix A.3.1. For the Case of the Attacks Generated Using the CTGAN with Default Hyperparameter Values

Figure A5. The PMFs of the actual email attacks and those of the email attacks generated by the CTGAN with default hyperparameter values.
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Appendix A.3.2. For the Case of the Attacks Generated Using the CTGAN with Optimized Hyperparameter Values

Figure A6. The PMFs of the actual email attacks and those of the email attacks generated by the CTGAN with optimal hyperparameter values.
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Appendix A.4. HTTP Attacks

Appendix A.4.1. For the Case of the Attacks Generated Using the CTGAN with Default Hyperparameter Values

Figure A7. The PMFs of the actual http attacks and those of the http attacks generated by the CTGAN with default hyperparameter values.
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Appendix A.4.2. For the Case of the Attacks Generated Using the CTGAN with Optimized Hyperparameter Values

Figure A8. The PMFs of the actual http attacks and those of the http attacks generated by the CTGAN with optimal hyperparameter values.
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Appendix A.5. File Attacks

Appendix A.5.1. For the Case of the Attacks Generated Using the CTGAN with Default Hyperparameter Values

Figure A9. The PMFs of the actual file attacks and those of the file attacks generated by the CTGAN with default hyperparameter values.
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Appendix A.5.2. For the Case of the Attacks Generated Using the CTGAN with Optimized Hyperparameter Values

Figure A10. The PMFs of the actual file attacks and those of the file attacks generated by the CTGAN with optimal hyperparameter values.
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Appendix B. The Mean Absolute Error (MAE) (between the Probability Mass Functions (PMFs) of the Original Attacks and of the Attacks
Generated Using the CTGAN with Optimized Hyperparameter Values) as Function of the Number of Attacks Sampled from the PMFs
Estimated Using the CTGAN

Figure A11. The mean absolute error (MAE) (between the probability mass functions (PMFs) of the original attacks and of the attacks generated using the CTGAN
with optimized hyperparameter values) as function of the number of attacks sampled from the PMFs estimated using the CTGAN.
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