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Abstract: Unmanned aerial vehicles (UAVs) have recently been applied in several contexts due to their
flexibility, mobility, and fast deployment. One of the essential aspects of multi-UAV systems is path
planning, which autonomously determines paths for drones from starting points to destination points.
However, UAVs face many obstacles in their routes, potentially causing loss or damage. Several
heuristic approaches have been investigated to address collision avoidance. These approaches are
generally applied in static environments where the environment is known in advance and paths are
generated offline, making them unsuitable for unknown or dynamic environments. Additionally,
limited flight times due to battery constraints pose another challenge in multi-UAV path planning.
Reinforcement learning (RL) emerges as a promising candidate to generate collision-free paths for
drones in dynamic environments due to its adaptability and generalization capabilities. In this study,
we propose a framework to provide a novel solution for multi-UAV path planning in a 3D dynamic
environment. The improved particle swarm optimization with reinforcement learning (IPSO-RL)
framework is designed to tackle the multi-UAV path planning problem in a fully distributed and
reactive manner. The framework integrates IPSO with deep RL to provide the drone with additional
feedback and guidance to operate more sustainably. This integration incorporates a unique reward
system that can adapt to various environments. Simulations demonstrate the effectiveness of the
IPSO-RL approach, showing superior results in terms of collision avoidance, path length, and energy
efficiency compared to other benchmarks. The results also illustrate that the proposed IPSO-RL
framework can acquire a feasible and effective route successfully with minimum energy consumption
in complicated environments.

Keywords: IoDs; IPSO; reinforcement learning; Q-learning; actor—critic

1. Introduction

Recently, the use of unmanned aerial vehicles (UAVs), known as drones, has been
receiving extensive attention for several applications. The flexibility, agility, and mobility
features of UAVs allow them to achieve tasks that are difficult for humans such as mon-
itoring, surveillance, medical supplies, military, telecommunications, rescue operations,
and delivery [1-3]. Furthermore, as technology advances, drones gain new capabilities
and become increasingly autonomous. Due to the goals of heterogeneity, communication
technology, and hardware/software constraints, the internet of drones (IoDs) needs to
collaborate to accomplish tasks that exceed their individual capabilities [4].

The efficient and safe navigation of drones to their intended destinations is hindered
by various types of obstacles, both static and dynamic. The presence of these obstacles
has a significant impact on the performance of drones, particularly in densely populated
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areas. Therefore, successfully completing missions in such environments poses a critical
challenge, imposing the development of an intelligent and efficient technique that allows
UAVs to modify their flight paths in real-time to ensure collision-free journeys towards
their destinations. This is considered as a challenging task, especially with dense swarms
and various environment constraints [5,6].

Numerous approaches have been employed to address UAV path planning, includ-
ing meta-heuristic algorithms such as the genetic algorithm (GA) [7], artificial bee colony
(ABCQ) [8], and particle swarm optimization (PSO) [9]. However, these approaches often
suffer from slow convergence and the problem of getting stuck in local optima. In re-
sponse to these limitations, researchers have made efforts to enhance the optimality and
convergence speed of some meta-heuristics, such as PSO, resulting in the development
of improved particle swarm optimization (IPSO) [10]. Nonetheless, these approaches are
primarily effective in static environments and are not suitable for unknown or dynamic
environments.

Recently, the use of machine learning, including reinforcement learning, alongside
other methods has enhanced the automation of drones and transferred them qualitatively to
achieve different goals and objectives. Learning through interactions with the environment
forms the core concept on which reinforcement learning is based, and this is precisely what
drones require for autonomous navigation [11-13].

Despite the massive number of studies addressing IoDs path planning in the literature,
most of these studies focus on addressing path planning in static environments where the
information of the environment is known in advance and the paths are generated offline. In
dynamic environments, information about the environment is not known in advance, and
the path is generated online in a drone field of view. To complete these tasks, IoDs require
a sophisticated technique for autonomous flight in the area filled with static and dynamic
obstacles, which is still challenging [14]. Additionally, in increasingly complex mission
situations with high drone densities, drones face new challenges as they become closer to
obstacles or each other. In such situations, IoDs path planning becomes a significant aspect
of autonomous navigation [15,16].

Another challenge is the inherent constraints that limit the complete realization of
drones’ capabilities [17]. The primary limitation is the lifespan of onboard batteries, which
restricts the duration of their flights. Consequently, many applications fall short of achieving
their maximum potential. Furthermore, in scenarios involving extensive flight paths across
large areas, minimizing the energy consumption of UAVs is essential to establish a safe
route and successfully reach their destinations.

To address these challenges, we propose an energy-efficient online static and dynamic
collision avoidance framework for IoD formation to tackle the multi-UAV path planning
problem in a fully distributed reactive manner.

The proposed approach incorporates environmental information and introduces a
novel reward structure that can be applied to various environments. The framework
combines IPSO guidance obtained through an IPSO path planning algorithm with local
RL-based planning. The local RL-based planner considers the surrounding environmental
information, including static and dynamic obstacles, as well as other UAVSs, to generate
appropriate actions. The objective is to avoid potential collisions while following the fixed
IPSO guidance. By integrating IPSO guidance and local RL-based planning, the framework
facilitates end-to-end learning in dynamic environments. The local planner utilizes spatial
and temporal information within a local area, such as the UAV’s field of view, to make
real-time decisions and navigate effectively.

The proposed IPSO guidance approach ensures scalability by enabling the UAV to
learn and navigate using a fixed-sized learning model, even in large-scale environments. It
provides a consistent reference path for the UAV while allowing the local RL-based planner
to adapt and make responsive decisions based on the current environmental conditions.
To achieve this, a reward function will be designed to combine and consider the IPSO
guidance in calculating a reward.
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The rest of this work is organized as follows: in Section 2, previous related works will
be reviewed, covering different techniques that are used in path planning and collision
avoidance. Section 3 explains the proposed energy-efficient online reinforcement learn-
ing for IoD path-planning description, thoroughly explaining the methods used and the
proposed solution. Section 4 explains the simulation results and discussion. Finally, the
conclusion are presented in Section 5.

2. Related Work

Drones can be used in path planning, monitoring and coordinating remote objects
such as ground vehicles using different algorithms and techniques. These methods can be
classified into non-reinforcement learning methods and reinforcement learning methods.

2.1. Non-Reinforcement Learning Methods

Non-reinforcement learning methods include different algorithms, some of them
inspired by biological systems and natural processes.

In ref. [5], an algorithm that helps the swarm avoid obstacles was proposed. These
obstacles can be dynamic or static, with altered sizes in a limited detection area in order to
reduce energy consumption. The algorithm utilizes a gradient-based approach for quick
and rapid convergence. Also, the proposed solution allows the drones to fly vertically
while hovering or turning around. The results demonstrate the accuracy and efficiency of
the proposed algorithm in high-collision-risk scenarios within dense environments with
obstacle speeds of up to 10 m/sec.

The authors of ref. [10] generated a 3D path to assist a swarm of drones in reaching
their destination without colliding with other drones or encountering terrain obstacles.
They used chaos map logic to start the PSO. Furthermore, optimized adaptive mutation is
used to balance the global and local search. Dormant particles are replaced by new active
particles to push the arrangement toward a global ideal. Monte Carlo simulations are
performed, and the outcomes are compared with standard PSO and recent work.

In [18], A path planning scheme is proposed for guiding the UAVs from the start
position to their final position. Offline planning creates a predetermined path that the
drone traverses while avoiding obstacles. Combining path control and collision avoidance
control results in this optimality. Additionally, each of these tasks can be completed on its
own, and the movement approach was created by merging them all together. To construct
the track control rule, they calculate the path errors from the geometric relationship between
the predetermined path and the UAVs. The optimal avoidance maneuver is determined by
utilizing angles and zone risk in the collision avoidance strategy.

Population-based evolutionary algorithms have made substantial strides recently [19,20].
To avoid collisions, these strategies rely on computational techniques. Numerous optimiza-
tion strategies are therefore suggested to deal with this complexity of computation. Many
researchers have been drawn to using these techniques for drone path planning like PSO,
ABC, GA, and ant colony optimization (ACO) [21]. Based on kinematics, limitations of
navigation, and collision probability, an innovative approach, the fast geometric avoidance
algorithm (FGA), is suggested in ref. [22] by joining the start time from geometric and
critical avoidance. Diverse threat levels were assigned to avoid obstacles sequentially based
on time, reducing the computational time compared to other works.

2.2. Reinforcement Learning (RL) Methods

Reinforcement learning (RL) is also one way to make the drones reach their desti-
nation using optimal paths while avoiding obstacles and conserving energy [11,12,23,24].
However, one of the recent twin-delayed deep deterministic policy gradients (TD3) [11]
suffers from energy issues.

To solve the problem of multiple drone collaborative path planning in complicated
situations with various constraints, the authors of ref. [25] proposed a multi-mode collab-
oration based on RL with a multi-objective PSO algorithm (MCMOPSO-RL) to find the
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best paths and deal with constraints simultaneously. Another study proposed a hybrid
path planning algorithm based on RL and PSO to address the path planning problem
of intelligent driving vehicles [26]. The authors of ref. [27] used a modified Q-learning
algorithm and a state action reward state action algorithm (SARSA) to plan the trajectories
of drones. The modified algorithm showed better results, reducing the path length and
computation time compared with SARSA. In terms of obstacle avoidance, the proposed
method uses a deep Q-learning network in a 3D environment using AirSim. Another study
suggests using reinforcement learning to address the collision avoidance problem and find
an optimal path (forward and backward) to solve the no-return problem [28].

A hybrid path planning algorithm that uses deep RL for local planning and an anytime
graph-based path planning algorithm was applied to real-time planning for an autonomous
UAV [29]. The authors of ref. [30] suggested an independent policy algorithm with C51
dueling using deep Q-learning (C51-Duel-IP). A swarm of UAVs can use this algorithm to
find the best path in a communication-denial environment.

In ref. [31], a deep reinforcement learning algorithm consisting of hindsight experience
replay (HER) and soft actor—critic (SAC) was proposed, called SACHER. This algorithm
works to find an optimal trajectory with obstacle avoidance. HER was used to enhance
learning and the sample efficiency of SAC. The proposed solution showed a better result
compared with DDPG and SAC, with a 66.08% success rate.

A system for path planning of UAV swarms using Q-learning with artificial neural
networks (ANNs) was proposed [32]. The goal is to provide full coverage of an area with
static obstacles without requiring prior information or goals apart from the provided map.
The experiment was conducted using different sizes of maps, varying numbers of UAVs,
and different obstacle configurations. The results indicated that as the number of UAVs
increased, the system achieved solutions with fewer movements.

Another approach [33] utilizes a laser to scan the data around the UAYV, providing a
simulation closer to the real-world environment. This approach uses the soft actor—critic
(SAC) algorithm to plan the path and navigate around obstacles to reach the destination.
Then, a sampling-based mechanism is used to create a reference point that the UAVs
can follow. These points are updated continuously. The results show how effective the
technique is in the training process and task performance, with an 80% success rate in
achieving the goal points.

RL can also be a great solution in hazardous weather conditions. A challenge faced
by UAVs while navigating in complicated environments, particularly urban areas with
dynamic factors such as wind zones, was addressed by proposing a multi-objective navi-
gation reinforcement learning algorithm (MONRL) [34]. This algorithm enables UAVs to
navigate and avoid obstacles in unknown environments with varying wind conditions.
The algorithm uses DRL with a memory architecture to build the navigation policies that
improve the UAV’s path while decreasing the impact of winds.

An algorithm was proposed to tackle the time-constrained path planning challenge for
UAVs in complex and unknown environments [35]. It involves utilizing off-policy RL along
with an enhanced exploration mechanism known as the improved exploration mechanism
(IEM), which also incorporates prioritized experience replay (PER) and curiosity-driven ex-
ploration to optimize the path planning process for UAVs. The research aims to enhance the
effectiveness and efficiency of path planning for UAVs in complicated environments. The
simulations showed that the proposed method, which included the improved exploration
mechanism (IEM), was superior to the original off-policy RL algorithms. The algorithm
was able to decrease the time needed for path planning and successfully rescue all the
individuals who were trapped.

A study [36] was proposed to dynamically choose the number of iterations for Q-
Learning to overcome the problems that occur due to poorly chosen iteration numbers,
such as taking a very long time or not giving an optimal path. This approach was compared
to Q-Learning with unchanged iteration numbers, as well as other algorithms like A%,
rapid-exploring random tree, and PSO. The proposed method demonstrated effectiveness
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and reliability in online path planning for unknown complex environments. Experiments
were conducted in various environments to evaluate different factors like memory usage,
time, path length, CPU utilization, and completeness. The results showed a remarkable
performance for the proposed algorithm, comparable to or better than A*, while keeping
computational requirements low and ensuring maximum completeness.

Another study [37] combined deep Q-network (DQN) with artificial potential field
(APF) in a method called B-APFDQN to improve the efficiency and effectiveness of path
planning. They used B-spline to make the path smoother. Q-Learning with a shortest
distance prioritization policy was suggested for efficiently planning the paths for drones
while avoiding both static and dynamic obstacles [38].

The performance of the proposed algorithm was compared to other path planning
algorithms such as Dijkstra, A*, and SARSA in terms of path length and learning time. The
proposed algorithm demonstrated improved performance, even when more obstacles were
added. An enhanced dueling double deep Q network (D3QN) with a prioritized experience
replay mechanism was utilized in ref. [39], and the algorithm’s network structure was
designed. This work aimed to plan the path of UAVs in dynamic scenarios. They trained
the drone in the static scenario and then retrained it in the dynamic scenario. Table 1 shows
a summary of the reviewed RL works.

The previously reviewed works suggest solving some aspects of the problems that
drones encounter during their flight while disregarding others. Some of the simulations
were conducted in known environments or with static objects, but UAVs usually face
more challenging situations. Some research has been conducted in two-dimensional en-
vironments, neglecting 3D environments. Other approaches proposed RL for UAV path
planning but neglected dynamic obstacles and IoD formation. More importantly, most of
the literature neglects the energy consumption of drones during missions. In this work, we
will address these issues.

Table 1. Summary of RL works reviewed.

Problem . e e

Ref. Date Addressed Algorithm Used Limitations

4] 2020 C011'1s1on Two-stage RL Not accurate when
avoidance scenario is changed
Path planning Advanced

[11] 2021  and energy Static environment
consumption TD3

[23] 2021 Path planning and DDQNs Static environment
data harvesting

[29] 2021 la)i;holl))l:tr:clll:g iADA*, DON, Obstacles move in

. and DDPG constant directions/speeds

avoidance
Energy consumption, .

[12] 2022  coverage, and SBG-AC Did not ad(.:lress

g path planning

connectivity

[25] 2022  Path planning MCMOPSO-RL  Static environment

[28] 2022 Path Planmng and convex-TSP Static environment
collision avoidance
Path planning Avoiding dynamic

[27] 2023  and obstacle SARSA and obstacles if moving

avoidance Q-learning at very low speeds
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Table 1. Cont.

Problem . NP
Ref. Date Addressed Algorithm Used Limitations
Path plannin .
[30] 2023 and obstacle C51-Duel-IP Did not address .
: power consumption
avoidance
Path planning
[31] 2023 and obstacle SACHER Static environment
avoidance
. Deals with static
[37] 2023 Path planning DQN and APF obstacles
[38] 2023 Path planning and Q-learning Considered only
obstacle avoidance and SDP 2D environments
. Q-learning UAVs flying at the
[32] 2024 Path planning and ANN same height
. Soft actor—critic
[33] 2024 Path planning (SAC) algorithm -
Path planning Works only
[34] 2024 in urban wind zones (MONRL) with specific conditions
RAPER,
[35] 2024 Path planning Q-learning -
and IEM.
Path planning and . Deals with static
[36] 2024 obstacle avoidance Q-learning obstacles.
(9] 2024  ‘athplanningand D3QN It is work on 2D

obstacle avoidance

3. Energy-Efficient Online Reinforcement Learning for IoD Path-Planning Description

This section provides a comprehensive overview of the system components and
their respective roles. Thus, IPSO, Q-learning and actor—critic DRL will be presented.
Additionally, the integration between these components within our proposed solution will
be detailed.

3.1. Energy Model for IoD Path Planning

The energy model is essential in the path planning process. Despite their increasing
popularity and numerous advantages, drones still face inherent limitations that restrict their
full potential. The most significant limitation is the short lifespan of their on-board batteries,
which is regarded as their primary drawback [40]. When we incorporate the energy model
into the path planning and navigation algorithms, the framework can optimize the drone’s
trajectory to minimize overall energy consumption. By encouraging the drone to follow the
IPSO path and providing higher rewards as it approaches the goal, the process enhances
energy efficiency. The reward structure motivates the drone to take the most efficient route,
minimizing unnecessary movements and thus conserving energy. Thus, when the drone
navigates the path, at each step, the energy is calculated, and an amount of reward will be
added depending on that energy. To do so, we use the following formula:

Ry =1+ (05(1/(1+E))), 1)

where R; is the cumulative reward, r; is the current reward, and E is the energy required
to reach the goal or the destination. In this work, we apply the energy model applied in
ref. [41] to accurately determine the energy consumption during a drone’s flight mission.
The model explains various maneuvering activities described by the energy model. The
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energy consumption for vertical flight over a distance Ah and velocity v, is calculated
as shown in Equation (2):

Ah

Ectimp(Bh) = Petjmp——- )
Oclimb
The energy required for vertical descent over a distance Al and velocity vy is given
by Equation (3):
Ah

Ejesc (Ah) = Phesc—- 3)

Udesc

The energy required to hover in place from time t; to time t, is given by Equation (4):

Enover = Phover(tZ - tl)- 4)
A horizontal flight as a function of velocity is given by Equation (5):

d
Ehoriz =P 5/ (5)

where d is the horizontal distance and v is the horizontal speed. Measurements were
conducted to determine the power and time required for the rotations, where the angular
speed was assumed to be wy,s, (2.1 rad/s) and a constant power of Py, (225 W/s) was
maintained throughout the rotation. Based on these assumptions, the energy needed to
cover an angle 6 were calculated as shown in Equation (6):

A6
Eturn = Pturni (6)

Wturn

Therefore, the overall energy can be written in Equation (7) as follows:

E= Eclimb + Edesc + Ehaver + Ehoriz + Eturn (7)

3.2. Planning the Path Using Improved Particle Swarm Optimization

IPSO is a modified version of the standard PSO meta-heuristic approach. The aim is
to generate the UAVs’ paths that ensure the shortest and obstacle-free path, which has a
significant effect on the mission of the drones in terms of time and energy consumption.
It should be noted that in our proposed solution, the IPSO algorithm is applied offline in
static environments. Thus, the paths generated by IPSO avoid only static obstacles during
the mission. The IPSO incorporates three main enhancements to standard PSO that will be
explained along with other components in the next subsections. The main enhancements
include improvements in the initialization stage of swarm particles using a chaos map,
improvements in the updating strategy using an adaptive mutation strategy, and inactive
particle replacement.

3.2.1. Initialization Using the Chaos Map

To improve the initial distribution of particles in the searching space, the IPSO al-
gorithm operates a chaos map logic for the initialization of the particle population. This
initialization technique helps improve the convergence speed and quality of the solutions.
Chaos-based particles utilize the logistic map to obtain the initialization formation. The
simplest logistic map presented in [10] is applied to IPSO using Equation (8):

Xns1) = f(uXn) = pXu(1 — Xn) 8)

where n =0, 1, 2, 3... and X represent the chaos variable, while y is a predetermined
constant called the bifurcation coefficient.

To effectively demonstrate the superiority of logistic map initialization over random
initialization, visual representations of 10,000-time iterations in MATLAB are presented in
Figure 1 [42]. The graphical analysis clearly indicates that the distribution of the logistic
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chaos map exhibits greater uniformity compared to that of the rand function. This enhanced
uniformity contributes to a broader spectrum of potential flight paths for UAVs.

Value

MMMMMMMJMMML‘ L

0 H 0 1
0 2000 4000 6000 8000 10000 0 2000

1L u._.ult i MLI'\L. Lpecbl bl s ddihul,)
4000 6000 8000 10000

Iterative times of rand function Iterative times of Logistic chaos
(a) Rand function map (b) Logistic chaos map

Figure 1. Random function compared with logistic map [42].

3.2.2. Adaptive Mutation Strategy

The primary goals of particles in the optimization process are searching and conver-
gence to achieve the optimal solution. Therefore, the particle needs to initially search
(explore) to enhance the diversity, then convergence will be obtained in the second stage.
To address issues like exploration efficiency and premature convergence, this strategy is
proposed. The strategy adjusts the mutation rate based on the particles’ fitness values
to balance the exploitation and exploration of the searching space. To achieve that, the
adaptive mutation strategy uses Equation (9):

x(1+1t) =x(t) +ev(l+1), C)

where t is the current simulation time, v is the velocity, and  selects the particle’s movement
speed. A high value of ¢ helps in rapid exploration of the area but may affect the fine-
tuned optimization. On the other hand, a low value of € increases the convergence and
adjusts the solution. Accordingly, for an effective optimization process, the particles
must initially explore extensively and make significant leaps towards searching regions.
As the iterations progress, the speed of the particles should decrease to facilitate rapid
convergence. Consequently, € should dynamically change with each iteration, as indicated
by the following Equation (10):

(Emux - Smin) *

1
MaxIt ! (10)

€ = &max —
where €, < €max, and they are constant values. The current time and the total simulation
time are t and MaxlIt, respectively.

3.2.3. Inactive Particle Replacement

One main enhancement of the IPSO algorithm is replacing inactive particles with new,
fresh particles. Inactive particles are those that have not been able to participate effectively
in the searching process. This occurs when the particles lose the ability to search globally
or even locally, such as when they fail to discover a better position, leading to premature
convergence. Therefore, by replacing them with fresh ones, the searching process will
converge towards the global optimum rather than getting stuck in the local optimum.
Additionally, the algorithm incorporates other crucial components that contribute to its
overall functionality and efficacy. These components will be highlighted to provide a
comprehensive understanding of the IPSO algorithm.

3.2.4. Social Acceleration Coefficient

A crucial role is played by the acceleration coefficients in the IPSO algorithm, indicating
the weight of the stochastic acceleration. By multiplying these coefficients, c1 and c2, with
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random vectors, r1 and r2, they introduce controllable stochastic effects on the velocity
of the formation of the IoDs. Furthermore, the coefficients represent the weights that are
assigned to share the information between particles. For example, if c1 = 2 = 0, the particle
will solely rely on its own knowledge. Conversely, if c1 > ¢2, the particles will manage to
gravitate towards local attractors (pBest), while if 2 > c1, it will cause the particles to lean
towards the global attractor (gBest). Thus, the choice of c1 and c2 determines the balance
between exploration and exploitation within the searching space.

3.2.5. Inertia Weight (w)

The optimization algorithm’s performance depends on balancing global and local
searching. To accomplish this, the concept of inertia weight is employed to effectively
manage the exploitation and exploration in the searching process. To provide further clarity,
a large value of w promotes exploration by encouraging the algorithm to explore a wider
space, while a small value enables exploitation by focusing on exploiting promising regions.
As a result, some studies have proposed adapting w linearly, as demonstrated in [10]. The
linear adaptation of w is presented as shown in Equation (11):

(MaxIt —t)

w(t) = *wmaxw) + Wiin

(11)
here, t represents the current time, while MaxIt is the higher simulation time. wyy,;,
and wyx correspond to the minimum and maximum values of the inertia weight. By
utilizing this linear adaptation, the w value will change dynamically over time, gradually
transitioning from wy,ay to Wi, as the simulation progresses. This adaptive approach
allows the algorithm to make a necessary balance between exploitation and exploration
throughout the optimization process. In light of the aforementioned considerations, it can
be generally stated that the IPSO algorithm consists of many parts. It starts by initializing
all parameters, creating the initial position, velocity, and solution of all the particles. After
that, the process of planning the path will be carried out by obtaining the parameters and
environment constraints to return feasible paths to the destination with corresponding
average fitness. The improvements mentioned for the PSO are added to increase the search
efficiency. Furthermore, as discussed previously, adaptive adjustment of € and wy.x occurs
at each iteration. At the end of each iteration, the trail of each particle is evaluated. If
the trail exceeds the threshold, the inactive particle will be replaced with a refreshed one.
Then, the algorithm will be repeated until an optimal solution is attained or the time limit
is reached.

3.3. Q-Learning Algorithm

The Q-learning algorithm is an RL algorithm that focuses on how an agent can learn
from the environment by making sequential decisions that maximize the cumulative
rewards. RL has undergone significant advancements and refinements. The Q-learning
algorithm is a model-free and off-policy RL method. The agent of Q-learning is a value-
based agent trained to estimate the return or future rewards during the learning process.
Thus, the agent will select and output the action for which the greatest return will be
obtained using the concept of a Q-value. The Q-value is the content of the Q-table; the
rows and columns of the Q-table represent the states and actions. Initially, all the Q-values
are random or zeros. Then, the Bellman equation is employed to obtain the Q-value. The
max Q-value representing the best action should be selected for a particular state. Thus, Q-
learning as an RL algorithm needs to use the sequential behavior decision problem, which
is defined by the Markov decision process (MDP). The process of the Bellman equation is
formulated by using the MDP and the value function. In the next subsection, a detailed
explanation will be provided for the Markov decision process, the value function, and the
Bellman equation, which form the foundation of RL algorithms.
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3.3.1. Markov Decision Process (MDP)

The MDP captures the idea of the agent interacting with the environment over several
time steps. At each time step, the agent takes an action A after observing the current state
of the environment S and accordingly will obtain reward R [43,44]. The environment of the
agent is probabilistic, meaning that after the action is taken, the transition of the state and
the compensation are random. Policies are selections of actions that should be performed
in a specific state, which can be formulated using MDP [45]. The MDP consists of the
following components:

State: The environment’s state at time step t denoted by St, which represents the
state of the environment at that moment. The agent has access to a set of observable
states, denoted as S, which refers to the observations made by the agent regarding its own
situation [46].

Action: The action refers to a set of possible actions denoted as A within a given
state S. The action At is the action that occurs at time step t. Typically, the agent’s available
actions remain the same across all states. Thus, a single representation can be used to
indicate the set of actions A [47].

Policy: Policy in RL can be defined as the behavior of the agent at a given time. In
other words, the policy converts the perceived states to actions to be taken when in those
states. Policy can be a complicated searching process that needs significant computational
resources, or it can be as simple as a lookup table or a small function. The policy represents
an essential part of RL, in the sense that the agent cannot determine the behavior without it.
In general, the policies specify the probabilities for each action [12]. The 7t in Equation (12)
is the policy probability that the agent may choose an action a in a state s at time step t.

nt(als) = P[A; = a|S; = 5] (12)

Reward: The goal of an RL problem can be defined by the reward signal. The
environment will give the RL agent numerical value called the reward. Therefore, the
agent’s role is to try to maximize the total reward that receives over running time. Thus,
the reward signal R defines what are the good and bad actions the agent can make.

Discount factor: The discount factor or discount rate is denoted by 7. Its value is
between 0 and 1, determining the importance of future rewards compared to immediate
rewards. In each state, when the agent takes an action, it will receive a reward as compen-
sation [12]. The discount factor allows the agent to balance between immediate rewards
and delayed rewards by enabling it to make decisions that align with either short-term or
long-term objectives based on the chosen value of . The choice of discount rate depends
on the specific problem and the agent’s goals. A lower discount rate may be suitable for
situations where immediate rewards are of importance, while a higher discount rate may
be more appropriate when long-term cumulative rewards are the primary focus [48].

Value Function: The value function is a key concept in RL. It provides the prediction
of the expected future reward that can be achieved if the agent follows a particular policy. It
measures how each state or state-action pair performs [49]. The value function is linked to
the Bellman equation, describing the relationship between the state’s value and the values
of its neighboring states [50].

3.3.2. Bellman Equation

Q-learning algorithms use the Bellman equation as an exploitation-exploration strat-
egy to update the Q-values and to improve the policy over time. Q-learning iteratively
updates the Q-values, which represent the expected cumulative reward for taking a partic-
ular action in a given state. After using the Bellman equation to derive the Q-values, the
best action is selected based on the max Q-value for a particular state [50]. Equation (13) is
simplified to obtain the Q-value [45], while Equation (14) uses the temporal difference:

Q"(s,a) = rt +ymaxQ(s(;41y, ) (13)
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Q" (s,a) = Q(s(4-1), a(4—1)) + o.(rt + ymaxQ(s 41y, a) — Q(S(1-1y,a4—1)))  (14)

Table 2 below provides more clarity about the equations.

Table 2. Clarification of parameters in Equations (13) and (14).

Parameter Name Description

s Current state
Action taken in the current state
Tt Reward at moment t
o Learning rate, value between 0 and 1
Discount factor, value between 0 and 1
Q"% (s,a) New Q-value for action a after taking state s
Q(s(t-1y,a(1-1)) Old Q-value for action a after taking state s
maxQ(s(;41), a) Maximum expected value among the policies that
the agents can receive

(re +ymaxQ(s 41y, a) — Q(S(1—1), A(4-1))) Temporal difference

3.4. Deep Reinforcement Learning (DRL)

After providing an overview of Q-learning, which is one of the traditional RL algo-
rithms, we explore the advancements made in the field of deep reinforcement learning
(DRL). DRL combines the principles of RL with the powerful function approximation
capabilities of deep neural networks, allowing for the efficient learning of complex, high-
dimensional environments. Thus, the key advantage of DRL is its ability to handle large
state and action spaces like what we have in path planning in a 3D environment, which
are often present in real-world problems. Deep neural networks can effectively learn to
represent the value function or the policy, enabling the agent to make informed decisions in
complex environments [51]. An alternative approach in DRL is the actor—critic model, which
combines two methods, policy-based and value-based methods, to utilize the strengths of
both. The next subsection provides a detailed explanation of the actor—critic model.

Actor—Critic Model

The actor—critic model is a method that combines the strengths of value-based methods
like Q-learning and policy-based methods like policy gradients to help the agent learn
both the value function and the policy. This approach can often lead to more stable and
efficient learning, as the critic provides valuable guidance to the actor. The actor can focus
on exploration and policy optimization, while the critic provides a stable and informative
value function to guide the actor’s updates [12,51].

Neural Networks: When dealing with complex problems, the Q-table used in rein-
forcement learning needs to store a very large number of states and actions. This can result
in a significant slowdown in the training speed and reduce the overall effectiveness of the
approach. Path planning and obstacle avoidance are examples of complex problems of this
nature. To address this, a neural network is used to calculate values rather than relying
solely on the Q-table. By using the DRL, the system can handle the large number of states
and actions required for the complex obstacle avoidance problem without the performance
issues associated with a Q-table of that scale [27]. In DRL, the neural networks are used as
the function approximators for both the policy and value functions. The specific neural
network architectures can vary depending on the problem domain [52]. The actor—critic
model involves two main components:

1. Actor network: This network is responsible for mapping the current state to actions
and effectively learning the policy that determines the agent’s behavior. It aims to
maximize the expected cumulative reward.

2. Critic network: This network evaluates the actions taken by the actor network and
provides feedback about the quality and precision of those actions. It learns to estimate
the value function, which represents the expected future reward [51,53].
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Experience replay memory: Experience replay memory is a popular technique used
in deep Q-learning (DQL). It helps to reduce the correlation between samples, which
improves the efficiency of the learning process [52]. There are some limitations of DQN
that experience replay memory addresses:

1. The optimal policy is deterministic, which limits its use in adversarial domains where
more flexibility is needed.

2. Finding the best action with respect to the Q-function can be computationally expen-
sive, especially when there are many possible actions [54].

Experience replay memory refers to the storage of the agent’s past experiences (state,
actions, rewards, next states) in a replay buffer. During training, the agent periodically
samples a batch of experiences from this buffer and uses them to update the neural network
parameters rather than just using the most recent experience. The main benefit of using
such memory is that by sampling the experiences randomly from the buffer, it breaks the
correlation between consecutive samples that occurs during learning. This can lead to
more stable and efficient learning. Also, the reuse of past experiences allows the agent to
learn more from the number of interactions with the environment. Additionally, replaying
the past experiences helps the agent retain knowledge about earlier parts of the task,
preventing it from forgetting important information. Therefore, the combination of the
actor—critic method and experience replay can lead to powerful and data-efficient training
of the agent [51,52].

3.5. Proposed IPSO-DRL System Model

In our proposed solution, IPSO and RL-based methods are integrated to formulate
the IPSO-RL framework. The system model of the proposed framework is illustrated
in Figure 2. The IPSO and DRL components are described above. The construction of
this framework considers the surrounding environmental information, including static
and dynamic obstacles, as well as other UAVs, to generate appropriate actions while
considering energy consumption. One key feature of our proposed framework is scalability,
even in large-scale environments, by utilizing the IPSO guidance, enabling the UAV to
learn and navigate using a fixed-sized learning model. By incorporating IPSO guidance,
the framework maintains its efficiency and effectiveness in complex environments. The
RL-based planner utilizes spatial and temporal information within a local area, such as the
UAV’s field of view (FoV), as shown in Figure 2, to make real-time decisions and navigate
effectively. To drive the learning-based planning process, a reward function is designed to
combine and consider the IPSO guidance in calculating the reward, motivating the UAVs
to explore various potential solutions while encouraging convergence in the learning-based
planning process. The FoV observation, as well as IPSO guidance, are utilized as inputs to
the CNN that learns from current observation, IPSO guidance, and historical information,
predicting an appropriate action.

The process begins by initializing the environment, which involves creating a random
map containing static obstacles, dynamic obstacles, and drones, which represents the RL
agents. Next, the start and end coordinates are established. The energy-efficient path
planning conducted using the IPSO algorithm ensures minimum energy consumption
and avoids static obstacles. The IPSO path serves as a consistent reference for the drone,
allowing the RL-based planner to adapt and make responsive decisions based on real-time
environmental conditions. After the establishment of the path, the drone navigates the
environment using an RL-based planner—in our case, Q-learning or DRL—to reach its
goal by generating appropriate actions. The drone receives positive rewards for following
the IPSO path, making this path preferable to others. Conversely, if the drone collides
with any obstacles or goes outside the boundary, it incurs a negative reward or penalty.
Additionally, the drone earns positive rewards as it follows IPSO path or gets closer to
the goal, encouraging its learning process. The highest reward is given when the drone
successfully reaches the goal, to reinforce the correct completion of the task. Energy
consumption is a critical factor in drone path planning; therefore, we provide higher
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rewards when the drone follows the IPSO path to encourage the drone to use it. Also, for
each step, the drone will receive a reward that corresponds with its approach to the goal.
This process will lead to enhanced energy efficiency. Figure 3 shows the flowchart of the
IPSO-RL framework.
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Figure 2. Proposed IPSO-DRL system model.
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Figure 3. Flowchart of IPSO-RL framework.

3.5.1. Reward Function Structure

The reward function of the proposed approach is designed to manage the movement
of the drones within the environment by calculating the reward that helps the agent nav-
igate around obstacles effectively to reach the destination. To accomplish this, this part
of the proposed solution is organized into functions and helper methods that collectively
constitute the goal of the reward operation. The helper methods include methods for
calculating the distance and another method for the dictionary to return rewards based on
different cases. The drone will face several cases while navigating toward the goal, like
obstacles or the IPSO path. These cases are carefully identified and processed to ensure the
best learning for the drone. These cases are treated in this sequence with related rewards
and processes:

e If the drone reaches the goal, a large positive reward is defined.

e If the drone collides with obstacles or goes out of bounds, a large negative reward is
defined.

e If the drone reaches one of the locations on the IPSO path, a large positive reward is
defined, as well as more rewards for being near the goal. This reinforces the drone to
follow the IPSO guidance.

e If the drone reaches a free cell that is not part of the IPSO guidance, a small negative
reward is defined. This discourages deviation from the reference path. Also, this small
negative reward is subjected to change depending on the distance from that point to
the goal.
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After setting up the environment and implementing the necessary functions, the train-
ing process commences using two distinct approaches: Q-learning and actor—critic DRL.

3.5.2. Q-Learning Approach

For the Q-learning approach, we trained the drone by iteratively updating the Q-
values based on the agent’s interactions with the environment. This required the agent
to observe the current state, select an action, receive a reward, and then update the Q-
value estimate accordingly. The goal of this training was to enable the agent to learn the
optimal action—value function, which would guide the drone’s decision-making process.
Algorithm 1 presents the pseudocode that we use in our approach.

In contrast, we use the actor—critic model as our DRL approach, utilizing a more
sophisticated neural network architecture. This method consists of two main components:
the actor network and the critic network. The actor network is responsible for selecting the
most appropriate actions based on the current state, while the critic network evaluates the
quality of those actions and provides feedback to the actor network. Through this iterative
process of action selection and value estimation, the drone is able to learn a more complex
and effective policy for navigating the environment. Algorithm 2 is the pseudocode that
explains the general structure of the training process of the IPSO-DRL framework.

Algorithm 1: Pseudocode of Q-learning of the IPSO-RL framework

Initialization:-Initialize the environment boundary;
-Initialize Q-table g-table with zeros;
-Set hyperparameters: learning rate (), discount factor (7y),
exploration rate (€) and the € decay rate;
-Initialize variables: Episodes, Epochs, reward, all rewards ;
for i < 1 to Episodes do
Reset the environment to initial state;
for j <— 1 to Epochs do
Choose an action using e-greedy policy based on Q-table ;
Take the chosen action;
Calculate the reward based on action and IPSO guidance information;
Obtain next state;

if numEpochs is greater than the inverse of €_Decay then
| setato0.01;
end
while episode is not done do
if RandomNum is less than € then
| The action is selected randomly from the actions set;
else
| The action is selected as argmax of the Q-table;
end
[next state, reward, done]«+— Apply action;
Update the cumulative reward;
Update the Q-table with the new value;
Update the state to the next state;

end
end

end
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Algorithm 2: Pseudocode of actor—critic of the IPSO-DRL framework
Initialization:
Initialize the environment boundary, and obstacles.;
for Each UAV; in IoDs do
Initialize starting and destination point ;
Initialize the actor network;
Initialize the critic network;
Initialize the target actor network;
Initialize the target critic network, Initialize experience replay buffer x;
end
Define store_experiences, target_model, actor;
Set hyperparameters: €, e_decay, e_min, batch_size, timesteps_per_episode, and
numEpisodes.
for Each episode in Episodes do
for Each time t in timesteps do
for Each UAV; in IoDs do
Action «+ agent.actor(state, €,IPSO Guidance);
next state, reward, done < Apply action;
Store experience (state, action, reward, next_state, done) in «;
Update state to next_state;
if length(x) > batch_size then
| Retrains the Q-network using a minibatch from the replay buffer;
end
if episode done then
| Align target model and break;
end

end
end

end

4. Simulation Results and Discussion

To evaluate our proposed framework for planning the path and avoiding obstacles
with minimum energy consumption, we carried out a simulation in a dynamic environment.
In the following subsections, we explain the relevant parameters and discuss the results.

4.1. Parameter Settings

The hardware and software specifications are illustrated in Table 3.

Table 3. Hardware and software specifications.

Hardware/Software Description
Operating system macOS Sonoma
Processor Apple M2/Intel i5
Memory 8GB/16GB
Python 3.10.10
TensorFlow 2.15.0

We use the epsilon decay technique to balance the agent exploration and exploitation.
The parameters setting are listed in Table 4.
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Table 4. Parameters used in Q-learning.
Parameter Name Value
Learning rate («) 0.01
Discount factor () 0.99
Exploration rate (€) 1.0, decaying to 0.02 over time

The environment is simulated with static obstacles and dynamic objects, where drones
navigate to plan the path. Our environment is 8 x 8 x 4. It contains three static obstacles
and two dynamic objects, in addition to our drones, which are the RL agents. The speed is
assumed to be 10 m/s for the drones and 1 m/s for dynamic obstacles.

Finally, Table 5 clarifies the parameters used in training the DRL approach.

Table 5. Parameters used in DRL.

Parameter Name Value

Learning rate («) 0.0001

Discount factor (7) 0.95

Exploration rate (¢) 1.0, decaying to 0.01 over time
Batch size 64

Replay memory size 1000

4.2. Simulation Results

In this section, we present the simulation results for our proposed IPSO-RL framework.
We conducted several comparative analyses to demonstrate the validity and effectiveness of
the proposed method. First, we examined the outcomes of integrating the IPSO algorithm
with the Q-learning method and analyzed the effects of incorporating the energy model into
the framework by comparing the results with and without the energy model. Second, we
further expanded our analysis by comparing the performance of our IPSO-RL framework
against the DRL approach. This comparison helps to evaluate the advantages and trade-offs
of using the IPSO-RL framework versus a more advanced DRL technique. Finally, we
compared our findings from the IPSO-DRL framework against a recent study in the field.
This comparative analysis provides valuable insights into how our proposed IPSO-DRL
framework fares against state-of-the-art techniques in the literature.

4.2.1. IPSO-RL results

To achieve optimal performance, we examined various sets of parameters across
50,000 episodes. When we identified promising results, we extended the range and con-
ducted additional training with those parameters to confirm their efficacy. Figure 4 depicts
the drone’s performance during the training process. We experimented with different e
values of 0.99, 0.5, and 0.1, in addition to the decaying technique. Moreover, we tested «
values of 0.0001, 0.001, 0.01, and 0.1 and < values of 0.99 and 0.
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and €.

4.2.2. DRL Results

First, we used our proposed framework to train the drone for 250,000 episodes using
Q-learning under two conditions, one with the energy model included and one without. By
monitoring the reward amount during training, we are able to observe the learning progress
and the differences between the two approaches. When the energy model was included,
we observed a significant improvement in the drone’s performance after approximately
15,000 episodes. The cumulative reward steadily increased, indicating continuous learning
and enhancement, and it became relatively stable after approximately 30,000 episodes, indi-
cating that the drone had reached an optimal level of learning and performance. Figure 5
shows a smaller scale of the learning process to visualize the interval where the gradual
increase of the reward occurs, while Figure 6 shows the cumulative reward obtained by the
drone throughout the whole learning process. The reward amount shown in the figures
indicates that the drone was able to learn to operate in a more energy-efficient manner.
Figure 7 shows the energy consumption during the learning process and how it decreases
significantly as the number of episodes increases, indicating that the drone is able to learn
and optimize its energy usage over time.
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Figure 7. Energy consumption during the learning process.

In contrast, without the energy model, the improvement in performance is much
slower. The improvement was noticed after approximately 150,000 episodes. Figure 8
shows where the exponent of the learning process starts. It begins after approximately
135,000 episodes and reaches its optimal after 155,000 episodes. Figure 9 shows the cumula-
tive reward curve without using the energy model for all episodes.
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Figure 8. Scale where the improvement in the learning process occurs for IPSO-RL without the
energy model.

We also analyzed the average reward curve, which provides an overall measure of the
drone’s learning progress. With the energy model included, the moving average reward
curve showed clear improvements over time, as depicted in Figure 10, demonstrating that
the drone is able to learn more effective and comprehensive behaviors.
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Figure 9. Reward curve for IPSO-RL without the energy model.

Without the energy model, the improvement in the moving average reward curve was
more gradual and less apparent in comparison, as illustrated in Figure 11.

Next, we compared the performance of both the Q-learning RL (IPSO-RL) with the
actor—critic DRL (IPSO-DRL). We can notice the rapid improvement of the IPSO-DRL model,
shown in Figure 12, compared with the IPSO-RL model. Also, the upward trend in the
average reward over the training indicates that the DRL model can learn more effectively
within fewer episodes.
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Figure 11. Moving average curve for IPSO with the energy model.

In contrast, the IPSO-RL plot (Figure 6) displays a more gradual improvement in the
reward curve. While the IPSO-RL approach still demonstrated a positive learning trend,
the magnitude of the rewards achieved was generally lower compared to the IPSO-DRL.

This difference in performance can be attributed to the inherent strengths of DRL
techniques, such as their ability to effectively capture complex relationships and patterns in
high-dimensional state spaces. The use of deep learning in the IPSO-DRL approach allows
the agent to learn more expressive and efficient representations of the problem, leading to
faster convergence and higher-quality solutions.

Finally, we compared our result of IPSO-DRL with a recent study. The study suggests
using an improved DRL technique to solve the path planning problem in dynamic environ-
ments, employing the Q-function approximation of the prioritized experience replay D3QN
to estimate the agent’s action Q-values. The algorithm’s network structure combines a
competitive neural network architecture with double Q-learning and prioritized experience
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replay. The simulation of the study was implemented using the TensorFlow platform. The
environment includes static obstacles that the drone is trained to avoid; after that, the
same model is used to train the drone with the dynamic obstacles. The dynamic obstacles
are added randomly to the environment, and their movements are randomly generated
as well. The reward function penalizes collisions with obstacles and rewards progress
towards the goal. The start and goal positions for the drone are randomly generated within
the environment. Figure 13 depicts the reward curve for the study. We can notice the
improvement in the DRL technique for dynamic path planning. However, the reward curve
depicted in these results, although improving over time, stabilizes at a lower cumulative
reward compared to our framework. We can notice that our framework is able to reach a
much higher level of cumulative reward compared to the previous study, highlighting a
superior learning capability of the IPSO-DRL framework.
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Figure 12. Reward curves for IPSO-DRL.
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Figure 13. Reward curve for the recent study.
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Through these comprehensive comparisons, we aimed to thoroughly assess the merits
of the IPSO-RL framework and its ability to address the complexities involved in the
problem at hand.

4.3. Discussion

This study highlights that the proposed IPSO-DRL framework significantly generates
online energy-efficient paths for IoDs in dynamic environments compared to other existing
methods. Furthermore, the proposed IPSO-RL framework acquires a feasible and effective
route successfully with minimum energy consumption. The reason behind this can be
attributed to the adaptive learning capabilities of the solution that integrates IPSO with RL.
A significant improvement in the drone’s performance, with the cumulative reward steadily
increasing when the path is optimized for energy consumption minimization, indicated
continuous learning and enhancement. This suggests that the drone had reached an optimal
level of learning and performance. The energy consumption during the learning process
significantly decreased as the number of episodes increased, indicating that the drone
learned to optimize its energy usage over time. Moreover, the performance comparison of
Q-learning with the actor—critic DRL models showed a much earlier improvement in the
IPSO-DRL. The superior performance of the IP-SO-DRL model is attributed to its ability
to capture complex relationships in high-dimensional state spaces through deep learning,
leading to faster convergence and higher-quality solutions. Furthermore, our IPSO-DRL
framework outperforms the recent study on dynamic path planning, demonstrating supe-
rior learning capabilities and achieving higher results. Unlike previous approaches that rely
on static environments, our method dynamically adjusts paths in response to surrounding
environmental changes, resulting in a more efficient solution. These findings suggest
that implementing IPSO-RL in IoD systems leads to more sustainable and cost-effective
operations, especially in energy-constrained environments.

The main limitation of our study is that it assumes all UAVs are flying at a fixed
altitude. This choice was made to ensure a consistent resolution in applications that require
the collection of useful information from the environment. Thus, this framework can not
address different altitudes of IoD formations.

5. Conclusions

In this work, we proposed a novel approach for planning collision-free paths for
UAVs operating in unknown, dynamic, 3D environments. By integrating the improved
particle swarm optimization (IPSO) algorithm with reinforcement learning (RL), the de-
veloped IPSO-RL framework could generate energy-efficient and collision-free paths for
drones in real-time. The proposed framework offered a flexible and adaptive solution
for UAV path planning, capable of responding to dynamic environmental changes, thus
addressing the limitations of traditional heuristic methods designed for static environments.
Additionally, incorporating an energy model into the RL reward structure allowed the
drone to optimize the energy of paths, leading to more sustainable and enduring drone
operations. We conducted simulations to evaluate our proposed solution, training the
drone for 250,000 episodes using Q-learning and actor—critic algorithms within the IPSO-
RL framework. We tested the framework under two conditions: with and without the
energy model included. The extensive simulations highlighted the superior performance
of the IPSO-DRL approach compared to other benchmarks in terms of collision avoidance,
path length, and energy consumption. By addressing the critical challenges of collision
avoidance and energy efficiency, this research advances the state-of-the-art in autonomous
UAV navigation. The proposed framework represents a significant step towards enabling
safe and sustainable UAV operations in complex, dynamic environments.

In future work, we will considered variable altitudes of IoDs, requiring a sophisticated
reward function. We will also optimize the UAV system to incorporate weather conditions
and other constraints.
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