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Abstract

In the present work, a sensor network design for monitoring carbon dioxide (CO2) pollution
in Portoviejo City, Ecuador, is evaluated through a methodology that combines simulation
and physical implementation. This methodology involves the development and evaluation
of two scenarios: an initial scenario (A), developed through both physical implementation
and simulation, and another simulation scenario (B). Both simulated scenarios are created
using CupCarbon version 6.51 software. In these scenarios, the functionality of Wireless
Sensor Networks (WSNs) is analyzed by implementing the LoRaWAN communication
technology. Furthermore, the MQ-135 sensor is used to obtaining data on the PPM of
(CO2) in order to examine the areas that concentrate the most significant amount of this
atmospheric pollutant. The proposed networks are evaluated using the packet loss metric
during data transmission. After implementation, analysis, and respective evaluation, it can
be concluded that the network simulated in Scenario B is suitable for monitoring (CO2) and
other pollutants that can be analyzed within the urban environment.

Keywords: WSN; LoRaWAN; CO2; CupCarbon; MQ-135

1. Introduction
Today, technology has advanced significantly in several areas and is being utilized

to solve various problems, among them environmental pollution. Research is required in
order to understand and solve issues related to air quality and its affects on people’s health.
One of the leading contributors to environmental pollution is Carbon Dioxide (CO2). This
gas contributes to the greenhouse effect by absorbing infrared radiation, resulting in an
abnormal increase in surface temperature. For this reason, this pollutant has a greater
influence on global warming than all gases combined [1].

Among the solutions technology currently offers for monitoring and controlling vari-
ous gases are sensor networks. This type of technology comprises several sensors that allow
for the measurement of atmospheric pollutants. It is very useful for detecting anomalies,
allowing investigations of atmospheric behavior to be performed.

In this approach, devices known as sensor nodes are located at short distances. Their
function is to collect various data about the environment through different sensors such
as humidity, air quality, noise levels, movement, and temperature, among others. These
networks can be applied in various areas or situations, such as health, safety, and agricul-
ture [2].
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Small sensors can be installed in buildings, factories, hospitals, schools, and other lo-
cations where accurate measurement of polluting gas levels such as CO2, is required.
This guarantees air quality and reduces respiratory problems. By grouping several
sensors, a network can be configured to send real-time data of measurements via
wireless communication.

Consequently, when CO2 levels exceed certain thresholds, the sensor nodes au-
tonomously trigger an alert, allowing administrators to take immediate action and improve
air quality. Additionally, the data collected by the sensor network can be used to analyze
trends and inform decisions about air quality in their respective locations [3]. CO2 monitor-
ing is essential for various industries where measuring indoor air quality and safety is vital
for both industrial operations and scientific research. In indoor air quality, CO2 monitoring
determines whether levels of this gas are safe for human health and controls ventilation
in buildings and closed spaces. In the security industry, it is used to detect gas leaks and
ensure the safety of workers in hazardous areas. In scientific research, it is used to study
the effects of climate change.

The objective of this research is to evaluate the design of a sensor network that enables
the monitoring of CO2 in Portoviejo City by combining simulation and prototype imple-
mentation of the design. In addition to the designed network, one of the main contribution
of this paper lies in the methodology applied during the design and evaluation process of
the Wireless Sensor Network (WSN). The methodology proposed in this research can be
used by private companies, professionals, and research centers. In addition, the evaluated
design can serve as a starting point for public institutions or governments, providing a basis
for solutions to the excessive emission of this atmospheric pollutant, thereby improving
urban territorial reorganization. The contributions are summarized below:

• Design and evaluation of a WSN for CO2 monitoring in a specific city.
• A methodology for evaluating WSN design which combines simulation and

real deployment.
• Preliminary measurements of CO2 quantity at selected points of the city.

The rest of this paper is organized as follows: Section 2 presents a brief state-of-
the-art review of CO2 monitoring as well as other WSN applications; Section 3 describes
the methodology applied in this work; Section 4 presents the results of the study, while
Section 5 analyzes these results; finally, Section 6 presents the paper’s conclusions.

2. Related Works
From experimental analysis to finding solutions to monitor air pollutants, several

researchers have studied implementing sensor networks or Wireless Sensor Networks
(WSNs) to monitor CO2, mainly in outdoor environments.

Examples include the research by Bravo Granda et al. [4], where a sensor network
was implemented in Cuenca, Ecuador. The MG-811 sensor was used to detect CO2 levels
at various points in the city. The results obtained by the authors were optimal, allowing
essential conclusions to be drawn for decision-making on improving air quality.

In the Philippines, Palconit and Nuñez [5] developed a system for monitoring air
pollutants through mobile sensor networks to address high CO2 emissions from public
transport under poor conditions. These nodes were installed in the exhaust pipes of public
transport vehicles to collect data. The CO sensor they used was the NDIR COZIRWR-GC-
0006, and they concluded that the highest emission of atmospheric pollutants occurs when
public vehicles are stopped or moving uphill.

Implementing a sensor network can be very useful in situations such as natural
disasters. In [6], a WSN was developed and implemented to monitor fires through the
MG-811 sensor, allowing for the detection of CO2 levels to identify disasters in the town.
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To convert the city of Makassar, Indonesia into a smart city, Lisangan and Sumatra [6]
implemented a sensor network using public infrastructure and the MQ-9 sensor to detect
the presence of CO2. Their objective was to utilize WiFi Corner as the infrastructure to
detect congestion locations for the city government. They concluded that WSNs can be a
valuable tool to achieve this objective [6].

In Taiwan, a water and air monitoring system was developed based on a sensor
network utilizing Long Range Wide Area Network (LoRaWAN) communication, leveraging
its advantages of low power consumption, energy efficiency, and long-distance capabilities.
The system measured several parameters, focused on a campus area [7]. Another study by
Montoya and Chilo [8] measured different atmospheric gases and communicated with a
network of sensors in Juliaca, Peru. For this study, the MQ-135 sensor was used to monitor
CO2 gas, enabling the collection of necessary data to find solutions to the problem of
atmospheric pollution in that area.

In Spain, it was proposed that a sensor network be implemented to control CO2

emissions in the environment and make the necessary decisions to reduce pollution. For
this study, the MQ-135 sensor was used, and it was concluded that LoRaWAN was an
appropriate communication technology due to its scope for data collection in a city [9].

In 2020, Ordoñez Mendieta et al. [10] developed a sensor network implemented in
Loja, Ecuador, intending to monitor Carbon Monoxide (CO) emissions and noise levels at
specific city sites. They used CCS811 sensors placed in strategic areas for data collection to
detect atmospheric pollutant levels.

Kitazumi et al. [11] proposed a WSN to measure CO2 concentration, and studied
its correlation with other environmental factors such as relative humidity at a university
campus in Japan. They used LoRaWAN technology for communication, but the type or
model of CO2 sensor was not specified. In another study [12], a system with autonomous
sensor nodes was developed for monitoring CO2 in a Brazilian city with a high ratio of
cars per inhabitant. The sensor nodes were made up of several components, including a
Raspberry Pi, which increases cost but also provides greater autonomy.

Although the use of single modules or individual nodes to measure CO2 is common,
some proposals have combined multiple measurements to achieve more accurate values.
In [13], a fusion estimation model based on the Kalman-Consensus filter was used to
estimate the CO2 concentration in a greenhouse. For this model, the WSN nodes are
grouped in clusters to enhance the estimation.

Another study on data fusion was presented by [14], who proposed two sequential
algorithms to perform a binary decision (presence or absence of a contaminant gas) by
sequential detection, after which the individual decisions are transmitted to a fusion center.
Despite the significant improvement in terms of detection accuracy and delay, the proposal
does not show the quantity of gas detected.

Not all studies of CO2 monitoring in air focus on outdoor environments; many are
oriented toward indoor air monitoring and analysis. In [15], a WSN with low-power nodes
was proposed to monitor indoor air quality. The researchers emphasized the importance of
air monitoring in assessing its impact on human health [16].

The use of WSNs for CO2 monitoring also extends to the soil. Hassan et al. [17]
developed a probe system to monitor this substance in the soil, using LoRaWAN for
communication between the probe nodes.

Simulators are essential in various scientific fields for determining behaviors in dif-
ferent circumstances. In [18], the authors studied a WSN to maximize the operation of a
sensor network through the solar energy harvesting technique. Prior to implementing the
sensor network, a simulation was performed in the Network Simulator (NetSim) program
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using twenty nodes with an energy harvesting function and others without such a function.
The use of solar energy harvesting extended the useful life of the WSN by 25%.

Saeed et al. [19] developed a study in which a fire alarm system was implemented
through a wireless sensor network to facilitate early detection, thereby reducing damage
and saving lives. This research utilized the Zigbee protoco. The proposal’s functionality
was evaluated using Fire Dynamic Simulator (FDS) simulation, which enables the creation
of fire scenarios in various environments.

In [20], an evaluation of several routing protocols for a WSN is performed using the
CupCarbon simulator. According to the authors, this simulator enabled the assessment
of key metrics in a LoRaWAN network, including data package delivery rate, end-to-end
delay, jitter, throughput, and more. In addition, CupCarbon can simulate not only routing
protocols and power consumption but also advanced features such as encryption and
authentication protocols [21].

LoRaWAN technology is widely used in monitoring proposals with both fixed and
mobile sensor nodes. In [22,23], two different proposals for air quality monitoring using
drones as sensor nodes were presented. These studies showed LoRaWAN to be a perfect
choice for long-term tracking thanks to features such as low power consumption and
long-range coverage.

Table 1 shows a categorization of the related works analyzed in this section. In
terms of communication coverage, the distribution is similar among Wireless Wide-Area
Network (WWAN), Wireless Local Area Network (WLAN), and Wireless Personal Area
Network (WPAN) technologies; however, this is not necessarily the case for other criteria.
Most researchers have proposed simple measurements as the data source, performed by
sensor modules attached to nodes. As an alternative, data fusion can be performed on the
measurements to achieve greater accuracy. For evaluation of monitoring proposals, the
use of real hardware is the preferred method; though less widely applied, simulations can
enable faster and easier evaluation of WSNs.

Table 1. Categorization of related works.

Communication Technology Measurement Mode Evaluation/Implementation
WWAN

(LoRa, 4G)
WLAN

(WiFi, XBee)
WPAN

(ZigBee) Simple Sensors Data Fusion Real Hardware Simulation

[7,9,11,12,22,23] [5,6,8,16] [4,10,15,18,19] [4–12,15,16,18,
19,22,23] [13,14] [4–9,11,12,15,16,

22,23] [10,13,14,18,19]

3. Materials and Methods
To delineate the methodology employed in this study, an initial review was undertaken

of various research works that have utilized sensor networks for the monitoring of multiple
gases, including CO2. The methodology in this paper aims to integrate the benefits of
both simulation and real-world deployment. Accordingly, the methodology consists of the
following phases:

• Collection and analysis of requirements
• Network design
• Design simulation
• Network implementation
• Data analysis.

3.1. Collection and Analysis of Requirements

We systematically reviewed tools and technologies relevant to WSNs for environ-
mental monitoring in order to establish a robust methodological framework. This review
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encompassed both specific case requirements and the components and technologies perti-
nent to WSN design.

Initially, fundamental requirements were delineated (e.g., CO2 monitoring in Por-
toviejo City, employment of remote nodes, and conducting a realistic evaluation), followed
by the selection of components for the WSN design. The subsequent subsections elaborate
on the selection criteria and provide the justification for each component.

3.1.1. Communication Technology

Our research began with a practical approach by seeking communication technologies
that could be feasibly implemented for our study. The study adopted a pragmatic approach
to evaluating communication technologies suitable for large-scale urban deployment. After
benchmarking alternatives (e.g., Zigbee, NB-IoT, and Sigfox), LoRaWAN was selected due
to its features.

LoRaWAN is an Low-Power Wide Area Network (LPWAN) technology. It is an
open-source technology focused on providing wide coverage with minimal resource re-
quirements. LoRaWAN operates in open bands, which allowed us to develop a private
network without requiring third-party infrastructure. Its long-range wireless capability,
location, and outdoor implementation suitability make it a practical choice for research
on energy consumption and large-area deployments [24–26]. As shown in Table 1, most
of the proposals for CO2 monitoring in the WWAN paradigm utilize LoRaWAN as a com-
munications technology. In [27], a detailed description and analysis of this technology is
performed. Among the main advantages of LoRaWAN are the following:

• Long-range capability (2–15 km in urban areas)
• Low energy consumption, enabling multi-year battery life for sensors
• Scalability, supporting thousands of nodes per gateway.

These attributes align with the requirements for monitoring CO2 levels across a city,
particularly in areas with limitations or restrictions.

3.1.2. CO2 Sensor Selection

Our comparative analysis of CO2 sensors focused on accuracy, cost, and compatibility
with IoT networks. As detailed in [28], the MQ-135 semiconductor sensor was chosen due
to its features:

• Sensitivity range (10–1000 ppm CO2)
• Low power consumption (~150 mW) [29]
• Validation in peer-reviewed studies for urban air quality monitoring [30].

While electrochemical sensors (e.g., Sensirion SCD30) or Non-Dispersive Infrared
(NDIR) sensors (e.g., MH-Z19) can offer higher precision [31], the MQ-135 sensor provides
an optimal tradeoff between performance and budget constraints [32]. While this sensor is
not considered a highly accurate sensor, it is useful for evaluating the designed WSN.

To calibrate the sensor measurements for CO2, we adjusted the resistance of the sensor
module according to the manufacturer’s indications. To obtain the measurements in ppm
(parts per million), we applied Equation (1), where a and b are constants that depend on the
specific gas to be measured, Ro is the sensor’s resistance in clean air, and Rs is the sensor’s
resistance at various concentrations of gases [33]. All of these values have previously
been determined for CO2. A limitation of this sensor is that the manufacturer does not
indicate the error range, although it does mention that environmental conditions can affect
the measurements.

ppm = a ∗ (Rs/Ro)∧b (1)
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3.1.3. WSN Simulator Tool

The simulator chosen for this research was CupCarbon version 6.51, which was
selected because it allows a representation that is very close to that of a real network.
CupCarbon can also perform analyses of different variables in a wireless network designed
for IoT devices. Additionally, its work interface is visual and user-friendly, making the
learning curve for designing a network relatively fast. Using this simulator, we leverage
the following features:

• Realistic node mobility and energy consumption algorithms [34]
• Integration of LoRaWAN protocols [35]
• Ability to simulate large-scale IoT deployments with terrain-specific propagation

models [36].

In our specific case, we wanted to evaluate CO2 monitoring in a city. The CupCarbon
simulator enabled the use of LoRaWAN with rapid implementation capabilities to simulate
faults and visualize locations on a real map.

3.2. Network Design

For the physical implementation and simulation of the sensor network, LoRaWAN
communication technology was utilized because it possesses the necessary characteristics
to transmit and receive data over long distances. For this study, the data generated by the
sensors that monitor gases in a city are both sent and received. LoRaWAN was chosen for
its range of up to 15 km in line of sight, low consumption, greater fault tolerance, and better
signal propagation.

Our study concerns not just implementation but also a thorough evaluation; thus, we
simulated two network scenarios for evaluation to determine which best suited our study’s
needs. We then implemented one of the simulated scenarios to test its functionality in the
real world, ensuring a comprehensive evaluation process.

In the simulated Scenario A, we strategically placed three sensor nodes at various
points in Portoviejo City. These nodes were not randomly placed; rather, they were
intentionally located at significant distances to allow for a better network evaluation and to
obtain CO2 measurements at these points. The precise locations are detailed in Table 2.

Table 2. Location of sensor nodes in Scenario A.

Node Location Geographic Coordinates

Node 1 Chile St. and Ramos Iduarte Ave. −1.0521625412469338,
−80.45612958616223

Node 2 Pablo Zamora Ave. −1.0428113257944391,
−80.45904501135622

Node 3 UTM Human Resources Department −1.0461644648065493,
−80.45518665109073

Gateway UTM Faculty of Computer Science −1.0411741196059903,
−80.456772111608543

The locations of nodes in the simulated Scenario A were chosen based on observations
of areas with a more significant presence of vehicles. Another reason for their location
was accessibility for placement. For the physical implementation of the network, the
characteristics and sensor locations of Scenario A were chosen; three physical nodes were
created, each with a sensor for CO2 monitoring. Node 1 was located in the Nilton Díaz
Building, where the offices of the Provincial Government of Manabí currently operate;
Node 2 was placed in a house on the side of Rotonda Park; Node 3 was placed outside the
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Human Resources Department of the Universidad Técnica de Manabí (UTM); finally, the
gateway was located in the Faculty of Computer Sciences of the UTM (Figure 1).

Figure 1. Scenario A physical design (node locations).

For the simulated Scenario B, a gateway and nine sensor nodes were distributed
throughout the city at varying distances (Figure 2).

Figure 2. Scenario B physical design (node locations).
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The locations for Scenario B are detailed in Table 3. These locations were selected after
a thorough analysis because they have the highest vehicle traffic, vehicle congestion, levels
of smoke, and other factors. This selection process ensures the effectiveness of the network
implementation and accuracy of CO2 monitoring.

Table 3. Location of sensor nodes in Scenario B.

Node Location Geographic Coordinates

Nodo 1 José María Urbina Ave. and
Francisco de P Moreira St. −1.05253, −80.45278

Nodo 2 Manabí Ave. −1.04472, −80.47185
Nodo 3 Alajuela Ave. −1.05694, −80.45799
Nodo 4 10 de Agosto St. and Chile Ave. −1.05689, −80.45291
Nodo 5 Eduardo Loor St. −1.03865, −80.46877
Nodo 6 Cristo Rey St. −1.05384, −80.44579
Nodo 7 5 de Junio Ave. −1.05052, −80.46440
Nodo 8 Army Ave. −1.06186, −80.45876

Nodo 9 America Ave.
and 5ta. Transversal St. −1.06051, −80.46552

Gateway UTM Faculty of Computer Science −1.0411741196059903,
−80.456772111608543

The selection of locations for Scenario B aimed to consider areas with potentially high
levels of contamination as well as to evaluate different distances and environmental condi-
tions. On the other hand, locations for Scenario A were selected to evaluate connectivity
and CO2 hllevels as well as to provide an initial prototype of the monitoring WSN.

3.3. Simulation of the Network Design

The simulator used for the network designs was CupCarbon, since it allows for
simulation through the Long Range (LoRa) communication module and for the reasons
explained earlier.

The central research scenario was conducted in the selected city, with sensor nodes
located in the respective geographic coordinates according to each simulated scenario. After
the sensor nodes were placed in the simulation along with the respective programming
for sending data, which included setting the data transmission frequency, packet size, and
other parameters, the simulation automatically placed communication lines between all
nodes. However, these are not connected, nor do they allow for jumps between the nodes;
rather, an indication is made to signal the presence of the signal between the nodes.

At this stage, we executed simulated scenarios A and B to determine the percentage of
packets sent from each node and the viability of these nodes. To obtain data closer to the
real situation, transmission faults were included in each simulation (i.e., messages that are
not received by the gateway) using an option provided by the simulator. The reason for
this is that in a real environment, not all messages transmitted over the WSN will arrive at
the gateway.

3.4. Implementation of the Network Design

For the physical implementation of the sensor network, we chose Scenario A. This
decision was based on the economic cost involved in developing the nodes and the ease
of access to their locations, which affected the practicality of our project. In this imple-
mentation, we deployed three sensor nodes, each equipped with the gateway and LoRa
communication technology.

Furthermore, we implemented the MQ-135 sensor in each physical node for CO2 de-
tection. This sensor was chosen for its high sensitivity in capturing atmospheric pollutants,
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which ensures accurate data, as well as for its low economic cost. Figure 3 provides a visual
depiction of one of the nodes used in the implementation.

Figure 3. Sensor node used in physical implementation.

In addition, a gateway based on a Dragino LG01-N device (Figure 4) was used for
data collection. A connection was configured to the ThingSpeak platform, allowing for
visualization of data received every 30 min from sensor nodes located at the three points in
the city.

Figure 4. LoRaWAN gateway for the physical implementation.

Because the network uses LoRa communication technology, it was selected on the
platform and the respective configuration was made to establish communication, where the
server port, gateway ID, and other parameters were entered. Then, server configuration
was performed by entering parameters such as the username, password, user ID, port for
data transmission, and other connection parameters.

The respective configuration was performed for communication using LoRaWAN for
each sensor node. Table 4 lists the configuration parameters assigned to each node. In
this configuration, a Spreading Factor (SF) of 7 (i.e., SF7) was selected, with a bandwidth
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of 125 MHz. The SF is a parameter ranging from 7 to 12 that controls the speed of data
transmission and the sensitivity of the receiver, influencing both the range and power
consumption. A higher SF means a higher data rate and lower area coverage; on the other
hand, a lower SF indicates a lower data rate and higher area coverage. We chose the SF7
because the distance to the sensor nodes was not very great.

Table 4. LoRaWAN configuration of sensor nodes.

Parameter Configuration

Bandwidth 125 KHz
Spread factor SF7

Length of preamble 8 bits
Frequency 915,600,000 Hz

These parameters were programmed into the three physically implemented sensor
nodes along with the server port, gateway ID, and other necessary details. This process was
crucial because it allowed us to establish communication using the LoRaWAN protocol,
ensuring the necessary transmission range between the nodes.

Each sensor node has its own respective Message Queuing Telemetry Transport
(MQTT) channel for storing the information obtained through the CO2 sensor. In the
ThingSpeak platform, each channel displays the data stored by each node, with saved data
downloaded in the form of an Excel file.

3.5. Data Analysis

After simulating the sensor network using CupCarbon and executing the physical
implementation of the sensor nodes at various points in the city, we conducted a statistical
analysis. This analysis was crucial because it allowed us to compare the data generated by
the simulator with the data obtained from the physical nodes. We specifically examined
the number of sent and lost packets, which provided valuable insights into the network’s
performance and reliability.

Additionally, the ThingSpeak Internet of Things (IoT) platform was utilized to store
the data collected from the sensor nodes as well as to display and download it.

For data distribution analysis, the statistical measure called kurtosis was applied. This
measure allowed us to determine the shape of the data distribution and identify whether
the data distribution had heavy or light tails compared to a normal distribution. Then,
the t-test for unequal variances was applied (Equation (2)), where the respective analysis
sought to detect any significant difference between the means of the two designs.

t =
x̄1 − x̄2√

s2
1

n1
+

s2
2

n2

(2)

4. Results and Validation
In this section, we present the results of the tests of both scenarios; the first scenario

included both simulation and real deployment, while the second was purely a simulation.
Both scenarios are of equal importance and provide valuable insights into packet loss in
different evaluation methods.

4.1. Scenario A

In the first simulation scenario (comprising three nodes), we measured both the
absolute quantity and the relative percentage of lost packets from a predefined number
of transmitted packets. The simulation covered three days of operation, with each node
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transmitting 240 packets per day, analyzed independently. To enhance the realism of
the results, we deliberately introduced controlled fault injections during the simulation
runtime. The aggregated results for the three-day period are presented in Figure 5, which
summarizes the packet loss trends across all nodes.
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) Nodes
Node 1
Node 2
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Figure 5. Percentage of packet loss over three days of network monitoring in simulation Scenario A.

As illustrated in Figure 5, the packet loss percentages varied significantly across nodes
during the three-day simulation. On the first day, Node 1 exhibited the highest packet loss
(10.42%), followed by Node 3 (4.17%) and Node 2 (2.92%). The trend shifted on the second
day, with Node 2 experiencing the most substantial loss (20.33%), while Node 1 and Node
3 recorded losses of 17.67% and 11.67%, respectively. By the third day, Node 2 again led in
packet loss (8%), though at a reduced rate compared to the previous day, while Node 1 and
Node 3 showed further declines (6.67% and 5%, respectively). These fluctuations may be
attributed to simulated network conditions, including variable node-to-gateway distances
and dynamic fault injections designed to replicate real-world connectivity challenges.

In the real-world deployment, three sensor nodes were strategically positioned across
the city to monitor CO2 levels over a one-week period in July. Each node transmitted air
pollutant data to the gateway at 30-minute intervals, enabling continuous environmental
monitoring. This setup facilitated a robust evaluation of network reliability under opera-
tional conditions. A comparative analysis of simulation and physical deployment results
provides critical insights into the system’s performance, particularly in terms of packet loss
dynamics. The daily packet loss percentages for each node in the physical network are
detailed in Figure 6.

The second day of monitoring revealed notable packet loss patterns across the network
nodes. Both Node 1 and Node 2 exhibited identical loss percentages of 16.67%, suggesting
potential similarities in their network conditions or operational constraints. Node 3 demon-
strated significantly better performance with only 8.33% packet loss, representing the most
reliable communication link among all nodes during this observation period. The substan-
tial difference in Node 3’s performance may indicate either more favorable positioning,
superior hardware resilience, or more stable connection pathways to the gateway.
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Figure 6. Percentage of packet loss over three days of network monitoring for the physical deployment.

A significant change in network behavior was observed on the third day, as illustrated
in Figure 6. Node 1’s packet loss increased to 21.05%, representing the highest value
recorded across all measurement intervals, possibly indicating emerging connectivity diffi-
culties or heightened network congestion. Node 2 maintained relatively stable performance
with a loss rate of 15.22%, showing only minimal improvement from the previous day.
Notably, Node 3 continued its exemplary performance trend, attaining the lowest loss
rate of 4.88% within the network. This consistent superior performance by Node 3 across
multiple measurement periods merits further examination of its technical specifications or
topological advantages within the network architecture.

The analysis of packet loss percentages across the three sensor nodes revealed a con-
sistent performance pattern, with Node 2 exhibiting the highest packet loss rates, followed
closely by Node 1. In contrast, Node 3 showed significantly better performance. This per-
formance degradation in Nodes 1 and 2 can be attributed to multiple compounding factors:
(1) their greater physical distance from the Gateway, resulting in weaker signal strength;
(2) substantial urban interference from tall buildings and other structures obstructing the
line-of-sight communication paths; and (3) adverse weather conditions, particularly rainfall,
which further attenuated signal quality through atmospheric absorption and scattering
effects. Indeed, on the first day of the test, there was a slight rain in the city. Historical
weather data, obtained from https://www.tutiempo.net/clima/ws-841350.html (accessed
on 9 September 2025), confirm the following precipitation measurements of rain for the
days of the tests:

• Day 1: 4.06 mm.
• Day 2: 2.03 mm.
• Day 3: 0.0 mm.

In addition, there was no clear line of sight between the nodes and the gateway. These
environmental challenges collectively contributed to the observed disparity in network
performance across nodes.

To evaluate the operational effectiveness of the deployed network architecture, envi-
ronmental sensor data were systematically collected and logged via the Thinkspeak IoT
platform. Figure 7 presents the temporal variation of atmospheric CO2 concentrations (mea-
sured in ppm) across all monitoring locations during the 72-h observation period. Spatial

https://www.tutiempo.net/clima/ws-841350.html
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analysis reveals pronounced heterogeneity in pollution levels, with Node 2 consistently
recording the highest CO2 concentrations greater than other nodes.
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Figure 7. Evolution of CO2 concentration (in parts per million) over three days of continuous
monitoring in Scenario A.
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Although the elevated pollution signature could correlate with the node’s strategic
placement in a high-traffic urban corridor characterized by frequent vehicular congestion
where idling vehicles and stop-and-go traffic patterns are known to exacerbate localized
emissions, the high values can also correspond to an unusual operation of the sensor due
to its limitations. As such, the empirical data validate both the network’s monitoring
capabilities and the anticipated spatial distribution of urban air pollutants. The acquired
data will be made available as part of this publication.

In Table 5, a descriptive analysis of measured CO2 is presented. This analysis shows
that the values obtained in Node 1 have fewer variations in its measurements. Although
Nodes 2 and 3 have different means, their variability is highly similar.

Table 5. Descriptive comparison of CO2 measurements.

Parameters Node 1 Node 2 Node 3

Mean 765.13 1271.59 885.85
Variance 197.06 1477.63 1454.37

Standard deviation 14.04 38.44 38.14
Kurtosis 0.446 11.41 0.50

4.2. Scenario B

The sensor network in Scenario B was systematically simulated in order to quantify
packet loss percentages, facilitating a comprehensive evaluation of the network’s reliability
and performance. These results were subsequently compared with those obtained from
Scenario A to assess relative performance under differing configurations. As illustrated
in Figure 8, the simulation data disclose notable variations in packet loss across nodes,
indicating differential influences of network topology or environmental conditions. This
comparative analysis offers critical insights into the robustness of the network design under
varying operational parameters.

The initial day of the simulation revealed significant disparities in node performance.
Node 1 (4%) and Node 7 (4.33%) proved to be the most dependable, demonstrating minimal
packet loss. Conversely, Nodes 3 (17.00%), 8 (16%), and 9 (15.33%) exhibited considerably
reduced performance, suggesting the presence of potential bottlenecks or vulnerabilities
within the network architecture. Intermediate nodes displayed packet loss rates ranging
that these extremes, indicating a gradient of network reliability that may be associated
with their physical placement or communication pathways. These preliminary findings
underscore the need for targeted optimization of the less performant nodes.

A notable change in network performance was detected on the second day of simula-
tion. Node 2 experienced a significant increase in packet loss, reaching 24%, which marked
the most considerable degradation observed throughout the study period; conversely,
Node 4 exhibited exceptional reliability, with a packet loss of only 5.67%. It is noteworthy
that the majority of nodes (n = 7) showed enhanced stability, with loss rates remaining
below 15%. This day-to-day fluctuation may indicate dynamic network conditions or the
cumulative impact of simulated environmental stressors, necessitating further research into
temporal performance variations.

The final day’s simulation revealed a partial recovery of network performance, with
Node 7 achieving the lowest loss rate (5%) and Node 3 persisting as the most problematic
node (20% loss). The remaining nodes exhibited moderate losses clustered between 7%
and 15.67%, suggesting the establishment of more stable communication pathways. When
analyzed collectively, the three-day dataset demonstrates that while specific nodes (3 and
2) consistently underperformed, others (4 and 7) maintained robust connectivity, poten-
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tially indicating optimal placement or superior hardware configurations. These findings
underscore the importance of node-level diagnostics in network optimization strategies.
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Figure 8. Percentage of packet loss over three days of network monitoring through simulation for
Scenario B.

4.3. Comparative Analysis

Preliminary analysis of the WSN transmission test datasets indicated deviations from
ideal normality; however, the concentration of values near zero implied an approximately
normal distribution. Considering these distribution characteristics and the relatively small
sample sizes in each case, Welch’s t-test for unequal variances was employed to ensure
a robust statistical evaluation. This methodology is particularly suitable for comparing
datasets with potentially heteroskedastic variances, as it does not presuppose equal sample
sizes or variances between groups.

The main aim of this statistical analysis was to determine whether the simulated
Scenario A could validly approximate the behavior of the physical implementation under
similar design conditions. A two-tailed t-test was performed to compare daily packet
loss percentages across all nodes between the two scenarios, with the significance level (α)
established at 0.01 to increase the credibility of the results. This threshold was selected to
reduce the probability of Type I errors while ensuring sufficient statistical power in light of
our sample limitations.

As presented in Table 6, the analysis yielded a two-tailed p-value of 0.04781, which
marginally exceeds our α value. Thus, under these conditions there is no evidence for
rejecting the hypothesis that both tests are statistically similar. The p-value remains slightly
below the conventional significance level of 0.05, which is used in most studies that apply
this statistical test. This result provides moderate evidence supporting the hypothesis that
the simulation scenario approximates the physical implementation behavior (p = 0.048).

Although the observed variance in the test data indicates some operational differences
between simulation and physical implementation of Scenario A, the overall similarity in
central tendency measures suggests the simulation’s practical utility for network evaluation
purposes. The moderate significance level (0.01 < p < 0.05) implies that while the tests are
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not statistically identical at a stronger threshold, the simulation demonstrates sufficient
fidelity for most engineering applications where complete correspondence is not required.

Table 6. Data obtained from the t-test between the simulated Scenario A and the physical deployment.

Physical Deployment Simulation

Mean 17.96 10.34
Variance 81.99 27.55

Sample size 9 9
T value 2.18 -

P(T ≤ t) one tail 0.02390 -
P(T ≤ t) two tails 0.04781 -

A possible limitation of this analysis is that the sample size may be small in the first
analysis (implementation and simulation of Scenario A). In the same analysis, a value for α

of 0.01 can be seen as non-significant.
An two-sample t-test was also conducted to compare the performance of the simulated

scenarios (A and B), assessing whether the increase in the number of nodes led to a statisti-
cally significant difference in network performance. Again, the analysis was performed
using a two-tailed test with a significance level (α) of 0.01. The results summarized in
Table 7 include key metrics such as the mean values, variance, sample sizes, t-statistic, and
corresponding p-values.

Table 7. Data obtained from the t-test between the simulated Scenarios A and B.

Scenario A Scenario B

Mean 10.34 11.01
Variance 27.55 24.36

Sample size 9 27
T value −0.34 -

P(T ≤ t) one tail 0.37096 -
P(T ≤ t) two tails 0.74192 -

The two-tailed p-value of 0.74192 (p > α) indicates that the difference in performance
between Scenario A and Scenario B is not statistically significant at the confidence level of
1%. Although an α value of 0.05 can be used, the p-value remains lower than this value.
This suggests that increasing the number of nodes did not substantially alter the network’s
performance under the tested conditions. Consequently, both configurations remain viable
options for implementing a CO2 monitoring network, with no significant advantage of one
over the other in terms of the measured metrics.

5. Discussion
The comparative analysis between the simulations of Scenario A and Scenario B indi-

cates an absence of statistically significant differences in performance across the two net-
work architectures. Likewise, a comparison between the simulated outcomes of Scenario
A and its physical implementation shows no substantial discrepancies. Nevertheless,
marginally increased packet loss rates were observed during the real-world deployment,
presumably due to environmental influences or signal interference.

From a practical deployment perspective, the higher node density in Scenario B could
offer better spatial coverage for urban monitoring, as it allows for data collection from a
larger number of points across the city. Nevertheless, Scenario A was selected for the initial
implementation due to its lower resource requirements and ease of deployment, while still
providing sufficient data to validate the network design.
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The selection of LoRaWAN as the communication technology has been demonstrated
to be highly appropriate for urban environments, corroborating previous research findings
such as those presented by [9]. Additionally, air quality monitoring capabilities can be
expanded beyond stationary sensor nodes through the integration of mobile sensing units,
as evidenced in [37], where LoRaWAN was also employed for effective data transmission.

The real-world data collected from the deployment of Scenario A provided prelimi-
nary insights into CO2 concentrations across selected urban areas. While broader spatial
coverage would strengthen the dataset, the current findings still offer a valuable foundation
for local policymakers to assess air quality trends. However, the cause of the unusual
values obtained by one of the nodes must first be identified.

We have not found any proposal for CO2 monitoring in this city in scientific literature
that would allow for comparison with our design. However, comparison with similar
proposals in the literature demonstrates our designed of a WSN with low-cost and long-
distance communication nodes that can be used for monitoring not only CO2 but also other
gases of interest.

Although this study primarily concentrated on WSN design optimization for CO2

monitoring, future developments in sensor node technology may encompass the integration
of supplementary air quality sensors, such as those for particulate matter and Nitrogen
dioxide (NO2). This expansion, similar to the multi-sensor methodology described in [38],
would enhance the versatility of the nodes while preserving the low-power and wide-area
benefits inherent in the proposed design.

6. Conclusions
This study presents a comprehensive methodology for analyzing and designing a

WSN for CO2 monitoring, combining simulation-based evaluation with targeted real-world
deployment to optimize network performance assessment while minimizing resource
expenditure. By leveraging this dual-phase approach, we demonstrate that robust WSN
validation can be achieved without full-scale physical implementation, offering a cost-
effective framework for urban air quality monitoring systems.

CO2 emissions, predominantly originating from transportation systems, constitute
a critical environmental challenge in modern cities. To address this issue, we evaluated
a WSN design for CO2 monitoring through simulations and physical deployment in Por-
toviejo City, Ecuador, an urban environment facing growing air quality concerns. Our
literature review confirmed that the MQ-135 sensor paired with LoRaWAN communication
remains the prevalent choice for large-scale air quality monitoring due to its cost efficiency,
reliability, and low energy consumption, attributes that were successfully replicated in
our implementation.

Using the CupCarbon simulator, we modeled two distinct WSN scenarios (A and B)
and physically deployed Scenario A across three strategic locations to validate simulation
accuracy. However, our findings reveal that Scenario B presents the most viable solution for
future deployments thanks to its enhanced node distribution, achieving optimal coverage
while maintaining energy efficiency.

The real-world implementation of Scenario A not only confirmed CupCarbon’s re-
liability as a simulation tool but also yielded critical insights into local CO2 distribution.
Notably, the highest CO2 concentrations were recorded at Node 2, located near Pablo
Zamora Avenue and La Rotonda Park. Despite its proximity to green spaces, persistently
high vehicular traffic in this zone resulted in elevated emissions, suggesting that urban
vegetation alone cannot offset pollution in high-traffic corridors, although these unusual
values could also be caused by abnormal operation of the sensor. These findings provide a
valuable empirical foundation for urban air quality management strategies.
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This study delineates four pivotal directions for subsequent research aimed at advanc-
ing urban air quality monitoring systems: (1) the development of integrated multi-sensor
networks capable of concurrently monitoring Particulate Matter sized 2.5 microns (PM2.5)
and NO2 concentrations, facilitating more comprehensive pollution assessment; (2) inves-
tigation of the relationship between dynamic traffic flows and CO2 dispersion patterns
through real-time spatiotemporal analytics to enhance understanding of urban emission
dynamics; (3) the deployment of machine learning algorithms to analyze historical sensor
data for predicting pollution hotspots, enabling proactive environmental management;
and (4) the evaluation of hybrid LoRaWAN-5G communication architectures to augment
network reliability and scalability within high-density urban environments, addressing
current limitations in data transmission efficiency. These proposed avenues of inquiry are
anticipated to substantially contribute to the development of more robust, intelligent, and
responsive air quality monitoring infrastructure.
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