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Abstract: Range-free localization algorithm continues to be an important and challenging

research topic in anisotropic Wireless Sensor Networks (WSNs). Designing range-free

localization algorithms without considering obstacles orholes inside the network area

does not reflect the real world conditions. In this paper, we have proposed Detour Path

Angular Information (DPAI) based sensor localization algorithm to accurately estimate the

distance between an anchor node and a sensor node. We utilized the Euclidean distance and

transmission path distance among anchor nodes to calculatethe angle of the transmission

path between them one by one. Then the estimated hop distanceis adjusted by the angle

between the anchor pairs. Based on the angle of the detoured path (which is the key factor for

accuracy), our algorithm determines whether the path is straight or detoured by anisotropic

factors. Our proposed algorithm does not require any globalknowledge of network topology

to tolerate the network anisotropy nor require high sensor node density for satisfactory

localization accuracy. Extensive simulations are performed and the results are observed to be

in good agreement with the theoretical analysis. DPAI achieved average sensor localization

accuracy better than0.3r in isotropic network and0.35r in anisotropic network when the

sensor density is above8.
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1. Introduction

By the advances of the Micro Electro Mechanical Systems (MEMS) and communication theory,

wireless networking and embedded processing, ad-hoc networks of devices and sensors capabilities

are becoming increasingly available for commercial applications such as environmental monitoring

(e.g., traffic, habitat, security), industrial sensing (e.g., factory, appliances), and critical infrastructure

protection applications (e.g., power grids, water distribution, waste disposal). For these purposes,

each sensor node collaborates with others in sensing, monitoring, and tracking events of interests by

exchanging acquired data, usually stamped with the time andposition information. In many of these

applications, knowledge about sensors’ geometrical positions are critical for many network protocols,

e.g., topology control, geographical routing, and clustering [1]. It thus becomes one of the fundamental

issues in Wireless Sensor Networks (WSNs) to acquire sensorposition knowledge, called sensor

localization problem.

In WSNs, positioning errors can often be masked by features such as fault tolerance, node redundancy,

data aggregation and other means [2,3]. This makes coarse accuracy of sensor localization sufficient for

many WSNs applications. Range-free localization is therefore pursued as a cost effective alternative for

expensive range based scheme, by having no dependence on theavailability or validity of hardware to

provide range information. The key idea is to place a small fraction of anchors (i.e., special sensors with

known positions) across the network. Positioning of sensors is obtained from the estimated distance to

multiple anchors and their coordinates, according to trilateral algorithm.

Previous range-free localization work mainly focuses on regular sensor deployment areas [4], i.e.,

sensors are uniformly and densely distributed in a convex region. However, this assumption does not hold

when a sensor network is deployed in irregular areas with obstacles, because the packet delivery path

between two sensors can be detoured by obstacles and this shortest path distance is dramatically different

from its geographical Euclidean distance. These detoured obstacles are inevitable in natural areas such

as valleys where sensors are deployed for habitat monitoring, as well as in urban areas where sensors

can be separated by buildings. Therefore, when applying range-free techniques to the concave areas, the

position estimates may in fact contain large errors [5]. One response to this irregular area problem is to

partially ignore the erroneous distance information by using an improved multi-hop algorithm [6]. Yet,

distorted anchor information can mislead accurate position estimates. One way to improve the accuracy

of localization would be to rule out distorted path information from some anchors, which however has

two particular difficulties. First, because sensors do not have the global view of their network, they have

no way of determining which path information is distorted and which is not. Second, anchors can rely

on the information that they receive from other anchors thatare in an unobstructed straight line path,

because they are able to determine their mutual reliabilitybased on the calculation of an expected hop

length. However, anchors and sensors cannot rely on each other in this way because sensors do not know

their own locations and so cannot make an expected hop-length calculation.

In this paper we introduce a novel method based on angular information of the detour transmission

path to estimate the optimal path distance between any pair of sensor nodes in WSNs with arbitrary node

density and low anchor to sensor ratio. The proposed algorithm leads to a good position determination

for WSNs as compared with some existing positioning schemessuch as pattern-driven [7], DV-Hop [8],
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Ganget al. [9], Chen et al. [10] and Hop-Count-based Neighbor Parition (HCNP) [11]. The main

contributions of this paper are as follows:

The average localization error is approximately less than 0.3r (r is the radio range of sensors) and

0.35r in isotropic and anisotropic network respectively. This localization accuracy can satisfy the needs

of many location-dependent protocols and applications, including geographical routing and tracking [2].

Compared with previous localization algorithms that declares to tolerate network anisotropy, our

localization scheme excels in (1) higher accuracy stemmingfrom its ability to tolerate multiple

anisotropic factors, including the existence of obstacles, sparse sensor distribution, and anisotropic

terrain condition; (2) localization accuracy guaranteed by theoretical analysis and simulation results;

and (3) a distributed solution with comparative communication overhead but high accuracy and enhanced

robustness to different network topologies and different degree of irregualrities.

The rest of the paper is organized as follows. We start by related work in Section2. Section3

describes the network model. Our proposed algorithm is presented in Section4. In Section5, simulation

results are shown and localization performances are discussed. Finally, we present our conclusions in

Section6.

2. Related Work

Many range-free approaches have been proposed to determinesensor locations in WSNs. For

example, the Centroid method [12] is probably the earliest and simplest range-free approach, in which

each node estimates its location by calculating the center of all the anchors it hears. APIT [2] lets each

node estimate whether it resides inside or outside several triangular regions bounded by the anchors it

hears, and refines the computed location by overlapping the regions a sensor could possibly reside in. In

order to improve accuracy, APIT needs many anchors and assumes that the anchors have radio ranges

that are 10 times larger than those of ordinary nodes. Another proposed space embedding approach [13]

rely on Multidimensional Scaling (MDS) or Singular Value Decomposition (SVD) based techniques to

project the node proximities into geographic distances.

DV-Hop employs a constant number of anchors and relies on theheuristic of proportionality between

the distance and hop count in isotropic networks. The systemestimates the average distance per hop from

anchor locations and the hop count among anchors. Each node measures the hop count to at least three

anchors and translates these into distances. By triangulation, the location is then calculated. However,

the DV-Hop method yields high localization errors in anisotropic networks, where the existence of

holes breaks the proportionality between the distance and hop count and thus leads to inaccurate

location estimates.

To modify the disadvantage of existing DV-Hop localizationalgorithm, the relevant literature

proposed many improved algorithms [9,10,14,15]. In [9], the location accuracy is improved by

modifying the network average hop distance based on minimummean square error criteria as

HopSizeNi =
∑

j 6=i hjdij
∑

j 6=i h
2

j

, wheredij is the straight line distance between the anchor nodei and j, hj

is the hop segment number between the anchor nodesi and j. Another algorithm in [10] calculates

the erroreij aseij = di,jest − di,jtrue, wheredi,jest is the estimated distance between anchor nodesi andj,

di,jtrue is the Euclidean distance between anchori andj. The average hop distance is finally adjusted by
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HopSizei,jeff=HopSizei − ei,j+ei,m

hi,j+hi,m wherem is the closest anchor node to anchor nodei andHopSizei

is calculated asHopSizei =
∑

j 6=i

√
(xi−xj)

2+(yi−yj)
2

∑
j 6=i hij

where(xi, yi) (xj , yj) are the coordinates of anchor

node i and j andhij is the number of hops between anchori and j. The Algorithms [9,10] made

improvements on distance estimation and localization of the DV-Hop algorithm. There are still some

disadvantages in the improved algorithms, such as no obvious improvement on localization accuracy,

especially when the transmission route is not straight but detoured.

Another pattern driven localization scheme is proposed in [7] to tolerate network anisotropy. The

paper proposes three different methods of anchor-sensor distance calculation based on three patterns,

namely Concentric Ring (CR): isotropic pattern, Centrifugal Gradient (CG): anisotropic but slightly

detoured, and Distorted Gradient (DG): anisotropic and strongly detoured. For the CR pattern, it utilizes

the last hop distance for overall distance calculation. Themethod is based on the neighbor node degree

of a sensor node. It requires high node density to work properly. For the CG pattern, the author proposes

DiffTriangle to revise the anchor-sensor distance estimates with the assistance from the nearest anchor to

the sensor (namely Reference Station), which exhibits the CR pattern. This implies that these reference

stations should appear in normal sensors’ CR category and thus the distance from sensors to their

dominating reference stations should be no more than three or four hops. This assumption implicitly

places a high demand for anchor distribution density. In DG pattern, the anchors which falls in DG

category are dropped and no longer be used for location estimation. However it may be impossible in

practice to accurately recognize the slightly detoured anchors from the strongly detoured anchors or even

moderately detoured anchors, without the global knowledgeon network topology,i.e., network boundary

and obstacles shapes.

In the REndered Path (REP) algorithm [16], the authors assumed that the boundaries of holes in the

network have been detected and every node knows if it is a boundary node or not. The authors proposed

an approach for computing the straight line distance between two nodes by arguing corresponding

shortest path with virtual holes. In HCNP [11], the author proposed source to destination distance

estimation algorithm based on the observation that the neighbors of a destination can have different

hop counts with respect to the same source and such information is used to improve the localization

accuracy only in isotropic network.

3. Network Model

When sensor nodes are randomly deployed in WSNs, we cannot assume any regularity in spacing or

pattern of the sensors. This is due to the fact that most of thecases sensors are deployed from the low

flying airplanes or unmanned ground vehicles. However anchors can be placed randomly or in the form

of regular tile across the network so as to help in estimatingthe sensors positions [17]. In this paper we

place anchor and sensor nodes randomly, which is more practical.

Consider a WSNs in a 2D plane withN sensors, denoted by a setS = {s1, s2..., sN} wheresi
is the ith sensor node. All sensor nodes are uniformly and independently deployed in a square area

A = L × L. Such a random deployment results in a 2D Poisson distribution of sensors with sensor

densityλ = N/(L×L). All sensors are assumed to be homogeneous and stationary and omnidirectional.

Therefore the network can be seen as static or regarded as a snapshot of mobile ad hoc sensor networks.
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In order to simplify the discussion, we are not concerned with the issues of energy consumption and

robustness of sensor nodes. We believe that these missing issues do not invalidate the correctness of the

proposed method.

Definition 1: Let a (si, r) define the transmission range or radio coverage area of a sensor si, where

the center is sensorsi and the transmission radius isr. The radio coverage area of any sensor is assumed

to be circular and symmetrical. Soa (si, r) = πr2. Any sensor nodes that are located within this area

can directly communicate with each other and is defined as neighbors of each other. It is because we

assume that all the sensors have the same transmission capability.

Definition 2: Let NE be the average number of sensors located in the radio coverage area. The

average connectivity denoted byCE is defined as the average number of neighbor sensors located in the

sensors transmission range. Following definition 1, the transmission coverage area isa (si, r) = πr2.

The sensor density of the network isλ = N/(L× L). ThereforeNE = λπr2 andCE = NE − 1.

4. The Proposed Algorithm (DPAI)

In real life scenarios, the sensor nodes are deployed randomly from the airplanes in areas where

obstacles or holes may exist. Because of obstacles or holes,the packet transmission paths among anchor

and sensor nodes are not always straight but detoured. In range-free localization, the exact hop distance

calculation is the key problem for estimating location. Theaverage hop distance of the network heavily

depends on the data transmission path,i.e., if the transmission path is almost straight, then the average

hop distance is almost accurate, otherwise deviated from its actual value if there is an obstacle in between.

We observe that, if we can associate the angle of the detouredtransmission path with the calculation

of the average hop distance, then we can accurately calculate the average hop distance and hence the

localization. Utilizing this concept of angular information of the detoured transmission path, we propose

the DPAI algorithm for precise localization.

4.1. Detour Path Angular Information Based Localization

Suppose that two anchor nodesA andB are separated by an obstacle and thus connected by a detoured

shortest transmission pathA − S1 − S2 − S3 − S4 − S5 − B as shown in Figure1 (left hand side).

From the figure, we can see that the angleα between the two anchors and the middle of the shortest

transmission path is closely related to the length of the transmission path. The angle approaches to180◦

if the transmission path is almost straight (A − S1 − S2 − S3 − B) as shown in Figure1 (right hand

side), otherwise the angle is much smaller as shown in Figure1 (left hand side). Suppose the Euclidean

distance between anchor nodesA andB is D, the distance from anchorA andB to the middle of the

transmission path isd and the number of hop between these anchor nodes isNh.
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Figure 1. Packet transmission path between two anchors with obstacleand without obstacle.

Now from△AMB , we can write,

D2 = d2 + d2 − 2× d× d× cosα

⇒ d =
D√

2− 2 cosα
(1)

Therefore the average hop distance is

hd =
2d

Nh

hd =
2D

Nh

√
2− 2 cosα

(2)

From Figure2 we can see the relation between transmission path length andthe angleα. There are

three different transmission paths from anchorA to anchorB, namely transmission pathsAMB, ANB

andAOB respectively. Obviously the path lengths are different,i.e.,AMB < ANB < AOB. We draw

the lineAP through the middleM of the transmission pathAMB and draw one line fromP to B in

such a way that the triangle△APB is right angle triangle, where∠ABP is the right angle. Similarly

we draw the lineAQ andAR. From every middle point of the transmission path we draw oneline to

B. The lines areMB, NB andOB. Thus the anglesα1, α2 andα3 denote the transmission paths route

bend degree, when the transmission path lengths areAMB, ANB andAOB respectively. The angles

β1, β2 andβ3 are defined as follows:

β1 = cos−1

(

AB

AP

)

(3)

β2 = cos−1

(

AB

AQ

)

(4)

β3 = cos−1

(

AB

AR

)

(5)

From the above equations, we notice that the value ofβ is dependent on the length of transmission

pathsAP , AQ andAR. This is because the path lengthAB between two anchor nodesA andB,

is constant for static sensor network. The longer the transmission paths, the larger the value ofβ.

Consequently the shorter the transmission path, the largeris the value ofα. In Figure2, β3 > β2 > β1

andα1 > α2 > α3. To calculate the value ofα we present one example as follows:

Suppose in Figure3, A, B andC are three anchor nodes. The Euclidean distance betweenA andB

is 20, A andC is 36 andB andC is 40 (the figure is not drawn to scale). The number of hops between
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A andB is 4, A andC is 4 andB andC is 5. Each anchor node calculates the average hop distance

as follows:

A :

(

20 + 36

4 + 4

)

= 7

B :

(

20 + 40

4 + 5

)

= 6.6

C :

(

36 + 40

4 + 5

)

= 8.4

Now for simplicity, we can consider the case of anchorA. After calculating the average hop distance,

A will calculate the Transmission Path Length (TPL) by multiplying the number of hops and average

hop distance. So fromA to B, theTPL is 4 × 7 = 28. But the Euclidean Distance(ED) betweenA

andB is 20, which is shorter than theTPL. SinceTPL > ED, A assumes that theTPL is detoured.

To calculate the angle of the detoured transmission path, wedraw one lineAP from A to P through the

middle of the transmission pathM (Because the length of the transmission path is known) and whose

length is the length ofTPL i.e., in our example28. We draw one line fromP to B in such a way that

the angle∠ABP is right angle. From the middleM , we draw another line toB. From△AMB, the two

sidesAM andBM are equal. Hence the angleβ = γ. From△ABP , we know that,

β = cos−1

(

AB

AP

)

(6)

The anchor node knows the value ofAB andAP . So it can calculate the angleβ. Now from△AMB,

we know that

β + α + γ = 1800

α = 1800 − (2× β)[Since γ = β] (7)

In a similar manner,A can calculate the angle betweenA andC and accordingly adjust the average

hop distance by (2). IfTPL ≤ ED, then the value ofβ is set to00 and accordingly,α can be calculated

by (7).

Figure 2. Relation between transmission path length and the angleα.



J. Sens. Actuator Netw. 2013, 2 32

Figure 3. Calculation of angleα.

Algorithm 1 DPAI resides in anchors
Input:

k: Anchor ID;VA: The anchor set;

{(xi, yi);Nh(i, k)}where1 ≤ i ≤ |VA| andi 6= k: received position of anchori and corresponding hop

count to anchork;

Output:

hdk: The average hop distance calculated by each anchor;

1. FORi ∈ VA andi 6= k DO

2. calculateDikandNh(i, k);

3. calculatehlest =
∑

Dik∑
Nh(i,k)

;

4. calculateTPLik = hlest ×Nh(i, k);

5. IFTPLik > Dik THEN

6. calculateβ = cos−1
(

Dik

TPLik

)

;

7. calculateα = 1800 − (β + γ) ; [γ = β];

8. ELSE

9. setβ = γ = 00; soα = 1800;

10. ENDIF

11. calculatehdk =
2×Dik

Nh(i,k)
√

2−2 cos(α)
;

12. ENDFOR

13. broadcasthdk;

Algorithms 1 and 2 represent the pseudo codes of DPAI schemes. They represent the localization

algorithms conducted in anchors and sensors respectively.VA represents the set of anchor nodes,TPLik

represents the transmission path length andDik represents the Euclidean distance between anchori

andk. At run time, similar to other range-free localization approaches such as DV-Hop, DPAI scheme
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ensures that anchor nodes first broadcast their locations and hop count value set to one. Each receiving

node records the minimum hop count value from an anchor node and then flood outwards the same

packet with hop count value incremented by one. Any packet containing larger hop count value than the

previous one is ignored. Thus all nodes get the minimum hop number from every anchor nodes.

Algorithm 2 DPAI resides in sensors
Input:

j: Sensor ID;VA: The anchor set;

hdk: The average hop distance broadcast from a nearby anchor;

{(xi, yi);Nh(i, j)}where1 ≤ i ≤ |VA|andi 6= j: received position of anchori and corresponding hop

count to sensorj;

Output:

(xj , yj): Sensorj′s position estimate;

1. Collecthdk from anchors;1 ≤ k ≤ |VA|;
2. Calculatehd =

∑
hdk

|VA|
;

3. IF |VA| ≥ 3 THEN

4. calculatedji = Nh(i, j)× hd; 1 ≤ i ≤ |VA|;
5. ENDIF

6. Apply Multilateral method [8] to calculate(xj, yj);

4.2. Analysis of Algorithm Complexity

Table1 summarizes the protocol comparison of DPAI with DV-Hop and pattern-driven in various

aspects including Communication Overhead (C.O), Computation Cost (C.C) and Applicable Network

(A.N). To calculate the average hop distance, each anchor node needs 2 rounds of broadcasts.

Consequently for an entire network the communication overhead is bounded byO(n2), wheren is

the total number of nodes in the network. The anchor nodes bear most of the computational burden.

Each anchor node deals with angular information based average hop distance calculation and for each

calculation, the anchor node does at mostO(M) computations to calculate the average hop distance

from the detour path, whereM is the number of holes or obstacles within the network. Thus for entire

network each anchor’s computational overhead isO(nM).

Table 1. Protocol Comparison.

Protocol C.O C.C A.N

DV-Hop O(n2) O(n) Isotropic

pattern-driven O(n2) O(nM) Isotropic,Anisotropic

DPAI O(n2) O(nM) Isotropic,Anisotropic

On the other hand, DV-Hop presumes isotropic network and triangulates the nodes location with its

network distances to the three anchors. Each node floods the network for computing the hop count so

the communication cost of DV-Hop isO(n2). Each anchor accepts requests from all the network and
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sends out feedback withO(n) computational cost. In the next section we will compare the localization

accuracy of our approach through simulations.

5. Simulation Results and Performance Analysis

A series of simulations are conducted to evaluate the performance of our proposed scheme in isotropic

and anisotropic WSNs, where anchor nodes are deployed randomly. For anisotropic network, we

consider O-shape and C-shape network topology. For each of the different types of network, we run

the simulation for 100 rounds and take the average over 100 runs, during which the quantity of the

deployed sensor nodes is kept unchanged. However, the topology of the network varies because we

establish connectivity between pair of sensor nodes randomly. To measure the accuracy of localization,

the average localization error is used.

The average localization error is defined as the ratio of the differences between the estimated location
(

x
′

i, y
′

i

)

and the real location(xi, yi) to the communication range of sensor nodes. In this paper, the

average localization error is expressed relative to the radio ranger. The average localization error△ of

the sensor network, which is composed of|VS| sensor nodes, is expressed as follows:

△ =
1

|VS|r

|VS |
∑

i=1

(

√

(

x
′

i − xi

)2
+
(

y
′

i − yi
)2
)

(8)

The initial network parameters for simulations are shown inTable2. We vary the number of anchors and

sensor density (the average number of sensors per sensor radio area) when necessary to observe their

impact on localization errors.

Table 2. Network Parameters for Simulation.

Network For Isotropic For Anisotropic

Parameter Network Network
Area 10× 10m 10× 10m

Sensor Nodes 200 200

Anchor Nodes 20 20

Radio Range 2m 2m

For simulation, we compared our proposed algorithm with DV-Hop [8], Gang et al. [9],

Chenet al. [10], HCNP [11] and pattern-driven [7]. The results are shown in the Figures4 and 5

for isotropic network, Figures6 and7 for O-shape, and Figures8 and 9 for C-Shape network. Also

we investigate the impact of radio irregularity on the localization performance. The result is shown

in Figure 10. From the results, we can say that, our scheme has higher localization accuracy than

HCNP [11] (which cannot tolerate anisotropic factor) and pattern-driven [7] (which can tolerate multiple

anisotropic factor), DV-Hop [8], Ganget al. [9], and Chenet al. [10]. Our scheme is robust in sparse

isotropic network (Figure11), anisotropic (O-Shape (Figure12) and C-Shape (Figure13)) network, and

under realistic system configurations where the radio transmission pattern of a sensor node varies per

unit degree change in the direction of radio propagation as shown in Figures14and 15. The other three
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methods [8–10] degrades severely in anisotropic network and under different degree of radio irregularity.

HCNP [11], which is only designed for isotropic network, degrades severely in different anisotropic

network conditions.

Figure 4. Location errorvs. number of anchor nodes (isotropic network).
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Figure 5. Localization errorvs. sensor density (Isotropic network).
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Figure 6. Location errorvs. number of anchor nodes.(O-shape network).
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Figure 7. Localization errorvs. sensor density (O-shape network).
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Figure 8. Location errorvs. number of anchor nodes (C-shape network).
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Figure 9. Localization errorvs. sensor density (C-shape network).
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Figure 10. Localization errorvs. DOI.
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Figure 11. Initial node deployment in isotropic network.
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Figure 12. Initial node deployment in anisotropic O-shape network.
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Figure 13. Initial node deployment in anisotropic C-shape network.
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Figure 14. Irregular Radio Pattern when DOI=0.05.
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Figure 15. Irregular Radio Pattern when DOI=0.1.
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5.1. Localization Error When Varying the Number of Anchors

For the first experiment, we vary the number of anchors in sparse isotropic network (sensor density

= 8) to study its impact on location accuracy. Figures4, 6 and8 show that the localization accuracy

of DPAI is better than others. For example, in Figure4 with 20 anchor nodes (which is 10% of total

number of nodes), DPAI has an average localization error of about 0.3r, whereas in pattern-driven [7] and

HCNP [11], the error is 0.37r and 0.36r respectively. We also observethat, as we increase the anchor

numbers, the localization error of DPAI reduces from 0.3r to0.21r. It can be seen from Figures6 and

8 that in anisotropic network, our proposed algorithm performs better than the pattern-driven algorithm

and other algorithms. In fact, the performance of DV-Hop andother (except pattern-driven) algorithms

in anisotropic network is random in nature and worst than in isotropic network. In O-shape and C-shape

region, the transmission paths are more curved and the hop count based distance estimation from sensor

nodes to anchor nodes is dramatically changed if the detoured transmission paths are treated in the same

manner as in the isotropic network.

Our proposed algorithm outperforms others by using the angular value of the detoured transmission

paths,i.e., the average hop distance among anchor nodes and the sensornodes are adjusted according

to the angle of the curved transmission paths. For the same sensor density, our scheme outperforms

pattern-driven and other approaches even when the anchor tosensor ratio is as low as 10%, which

signifies the cost effectiveness of our approach.

5.2. Localization Error When Varying the Sensor Density

Figures5, 7 and9 show the performance of our approach and other approaches when varying the

sensor density. We vary the sensor density from 6 to 24. Effective localization remains a problem

in sparse networks where the sensor density falls in the range of 6 to 15. Kleinrock and Silvester

have proved in [18] that 6 is the optimum sensor density to maintain the networkconnectivity. The

localization problem in sparse networks deserves investigation, because lower sensor density implies

lower deployment cost, smaller possibility of traffic jam, and radio interference.

It can be seen from Figures5, 7 and9 that DPAI performs better than other schemes when the sensor

density is 6, and as we increase the sensor density from 6 to 24, the localization error of DPAI as well

as other approaches decreases. This is because, as the sensor density increases, the numbers of one hop

neighbor nodes increases, so the per hop average distance calculation error decreases and the calculation

error does not propagate to large number of hops. At a low sensor density such as 6 or 8, if the hop

number is large, then there is a high possibility that the transmission path between two anchors is not

straight but slightly curved in isotropic network. However, if the hop number is less (which occurs

when the sensor density is high), then the path between two anchor nodes is almost straight and the

average hop distance calculation becomes more accurate than before. By the value of the angle, we can

determine whether the transmission path is straight or not and accordingly the average hop distance is

calculated. In low sensor density isotropic network with noobstacle, some holes are created because of

the low sensor density. In such situation, DPAI performs better because we calculated the average hop

distance by utilizing the angle of the detour transmission path. In high density isotropic network, the

localization error of DPAI approaches 0.22r (when the sensor density is 24) and in anisotropic network,
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the localization error is 0.25r for O-shape and 0.26r for C-shape respectively. For low density such as

8, the localization error of DPAI is near to 0.3r for isotropic network and below 0.35r for anisotropic

network. According to [2], this localization accuracy can satisfy the needs of many location dependent

protocols and applications, such as geographical routing and tracking.

5.3. Localization Error When Varying the Degree of Irregularity (DOI)

Radio irregularity is a common and non-negligible phenomenon in wireless sensor networks [19]. It

results in irregularity in radio range and variations in packet loss in different directions, and is considered

as an essential reason for asymmetric links as viewed by upper layers in the protocol stack. The parameter

Degree Of Irregularity (DOI) is used to denote the irregularity of the radio pattern. It is defined as the

maximum radio range variation per unit degree change in the direction of radio propagation. When the

DOI is set to zero, there is no range variation, resulting in aperfectly circular radio model. To get a better

idea of how this DOI parameter affects signal propagation characteristics, Figures14 and 15 show the

radio patterns generated in simulation with DOI values set to 0.05 and 0.1 respectively. The DOI model

is a good start to model signal irregularity. However, it does not model interference in real devices well.

Since the DOI model is based on an absolute communication range, it assumes that within the inner

range, the signal is very strong and can always be received correctly, while beyond the outer range there

is no signal at all. This binary pattern is not true in reality.

To address the issue of radio irregularity in wireless sensor network, we utilized Radio Irregularity

Model (RIM) [19] in our simulation. This model bridges the discrepancy between spherical radio

models used by simulators and the physical reality of radio signals and also verify the presence of radio

irregularity using empirical data obtained from the MICA2 platform. RIM takes into account both the

non-isotropic properties of the propagation media and the heterogeneous properties of devices.

In isotropic radio models, the received signal strength is usually represented with the

following formula:

ReceivedSignalStrength = SendingPower − PathLoss + Fading (9)

To reflect the two main properties of radio irregularity, namely non-isotropic and continuous variation,

RIM adjusts the value of path loss models in (9) based on DOI values, resulting in the following formula:

ReceivedSignalStrength = SendingPower −DOIAdjustedPathLoss+ Fading (10)

DOIAdjustedPathLoss = PathLoss×Ki (11)

HereKi is a coefficient to represent the difference in path loss in different directions. Specifically,Ki

is the ith degree coefficient, which is calculated in the following way:

Ki =

{

1, i = 0

Ki−1 ± Rand×DOI, 0 < 1 < 360 ∧ i ∈ N
(12)

where‖K0 −K359‖ ≤ DOI



J. Sens. Actuator Netw. 2013, 2 43

It is possible to generate360 Ki values for the360 different directions, based on (12), by randomly

fixing a direction as the starting direction represented byi = 0. For the direction that does not have an

integer value of angle from the start direction, the interpolation of theKi value has been taken based on

the values of the two adjacent directions that have integer angles from the starting direction.

Ki = Ks + (i− s)× (Kt −Ks) (13)

where,s = ⌊i⌋ ∧ t = ⌈i⌉mod360 ∧ 0 < i < 360 ∧ i /∈ N

The variance of received signal strength in RIM in differentdirections fits the Weibull [20]

distribution. The Weibull distribution can be used to modelnatural phenomena such as variation of wind

speed, scattering of radiation,etc. The Rayleigh distribution, which is commonly used for modeling

multi-path fading in wireless communication, is a special case of the Weibull distribution.

Due to the difference in hardware calibration and battery status, received signal strength can be

different from two sending nodes of the same type. RIM introduces a second parameter named VSP

(Variance of Sending Power), which is defined as the maximum percentage variance of the signal sending

power among different devices, to account for such a difference. The new signal sending power is

modeled by the following equation:

V SPAdjustedSendingPower = SendingPower× (1 +Rand× V SP ) (14)

Thus with the two parameters, DOI and VSP, the RIM model can beformulated as follows:

ReceivedSignalStrength = V SPAdjustedSendingPower−DOIAdjustedPathLoss+ Fading

(15)

With the help of the RIM model, we explore the impact of radio Irregularity of our proposed

algorithm (DPAI).

In this experiment, we investigate the impact of irregular radio patterns on the precision of localization

estimation. It is intuitive that irregular radio patterns can affect the network topologies resulting in

irregular hop count distributions. We can see, in Figure10, how this inaccurate estimate directly

contributes to localization error as the DOI increases. When DOI increases, it means the number of

neighbors around a sensor node decreases, and as a result it is very likely that the shortest transmission

path from one sensor node to another is more detoured than before. In that case our algorithm shows more

robustness than other algorithms because of the angular value based average hop distance calculation.

Our algorithm adapts to different detoured transmission path according to dynamic value of the angle and

thus calculates the distance between an anchor node and a sensor node more accurately. Figure10shows

the localization error when varying DOI in isotropic network when the sensor density is 16. Obviously,

in anisotropic network, which itself provides additional radio irregularity in the form of different obstacle

shapes, more localization errors will be introduced as the DOI increases.

6. Conclusions

Locating sensors is necessary for many location dependent applications in WSNs. The existing range-

free schemes suffer from poor localization accuracy when sensor density and the numbers of anchor
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nodes are low. Without the help of a large number of uniformlydeployed anchor nodes and higher

sensor density, those schemes fail in isotropic as well as inanisotropic WSNs. We have proposed a novel

localization algorithm based on angular information of thedetour path that improves the basic DV-Hop

algorithm as well as three other existing algorithms, particularly when the network is anisotropic as

well as isotropic. In particular, a DPAI scheme, proposed inthis paper, performs best when irregular

radio patterns, low sensor density and random node placement are considered. The localization error

of our proposed algorithm is decreased significantly by using the angular information of the curved

transmission path between two anchor nodes in such a way thatwe can calculate the average hop distance

more accurately. Thus DPAI achieves better performance even with few number of anchor nodes, which

implies the cost effectiveness of our algorithm in both isotropic and anisotropic network condition. The

extensive simulation results in isotropic, O-shape and C-shape network prove the effectiveness of our

proposed algorithm. We believe that our design of DPAI algorithm for both anchors and sensors will

make the range-free localization schemes more practical for ad-hoc networks and WSNs.
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