
J. Sens. Actuator Netw. 2015, 4, 251-273; doi:10.3390/jsan4030251
OPEN ACCESS

Journal of Sensor

and Actuator Networks
ISSN 2224-2708

www.mdpi.com/journal/jsan

Article

Key Management in Wireless Sensor Networks

Ismail Mansour 1,2, Gérard Chalhoub 1,2,* and Pascal Lafourcade 1,2

1 University Clermont Auvergne, 49 Boulevard François Mitterrand, BP 10448, F-63000

Clermont-Ferrand, France;

E-Mails: ismail.mansour.mail@gmail.com (I.M.); pascal.lafourcade@udamail.fr (P.L.)
2 CNRS, UMR 6158, Campus des Cézeaux, LIMOS, F-63173 Aubière, France

* Author to whom correspondence should be addressed; E-Mail: gerard.chalhoub@udamail.fr;

Tel.: +33-4-73-17-70-48; Fax: +33-4-73-17-71-11.

Academic Editor: Dharma P. Agrawal

Received: 17 April 2015 / Accepted: 14 August 2015 / Published: 7 September 2015

Abstract: Wireless sensor networks are a challenging field of research when it comes to

security issues. Using low cost sensor nodes with limited resources makes it difficult for

cryptographic algorithms to function without impacting energy consumption and latency.

In this paper, we focus on key management issues in multi-hop wireless sensor networks.

These networks are easy to attack due to the open nature of the wireless medium.

Intruders could try to penetrate the network, capture nodes or take control over particular

nodes. In this context, it is important to revoke and renew keys that might be learned by

malicious nodes. We propose several secure protocols for key revocation and key renewal

based on symmetric encryption and elliptic curve cryptography. All protocols are secure,

but have different security levels. Each proposed protocol is formally proven and analyzed

using Scyther, an automatic verification tool for cryptographic protocols. For efficiency

comparison sake, we implemented all protocols on real testbeds using TelosB motes and

discussed their performances.

Keywords: renewing; revocation; authentication; wireless sensor network; security;

multihop; verification; formal proof

J. Sens. Actuator Netw. 2015, 4 252

1. Introduction

Nowadays, the Internet of Things (IoT) is a reality: more and more devices are used to monitor

our environment and to interconnect such embedded objects. IoT relies on wireless sensor networks

(WSNs) for ensuring connectivity between nodes on the lower level of the network architecture.

In such a context, some sensitive applications often require cryptographic mechanisms in order to

achieve security. For instance, most of the military applications of WSNs require a high level of

security [1]. Thus, it is important to design secure communication mechanisms between nodes of the

network. These mechanisms can be achieved thanks to modern cryptographic primitives. Once we have

established a secure communication channel in the network, several situations might occur; a node can

run out of battery, even get destroyed, or just leave the network, or a new node can join the network.

In addition, an intruder could capture a node and get all of its secret data (including secret cryptographic

keys). An attacker could also try to join the network and be part of the authenticated nodes of the

network. There exist several intrusion detection systems (IDS) in the literature [2,3] in order to detect

such malicious behavior. In general, an IDS either searches for signs of malicious activity in the network,

or monitors the internal behavior of one node. Several works use signature-based or anomaly-based

detection techniques. Using the results of IDS, the next step is to revoke identified malicious nodes and

to renew the cryptographic keys used by the nodes of the network.

Moreover, in WSNs, it is widely admitted that asymmetric encryption primitives based on

exponentiation, like, for instance, RSA [4] or Elgamal [5], cannot be used since sensor nodes have limited

resources (battery and computation power). However, there exist several lightweight cryptographic

primitives that are adapted for WSN, e.g., [6,7]. Such lightweight primitives guarantee a low level of

security, which remains a real obstacle for their deployment. For instance, using an improved differential

fault analysis, the authors in [8] claim that they can break a lightweight block cipher for WSNs called

LBlock using a personal computer within one hour. It is clearly not surprising that lightweight encryption

can be attacked in a few hours with a computer that has more computation power than a node. Recently,

a promising work [9] provided a solution to avoid such an attack by using code polymorphism. This

method improves security at several levels in electronic devices.

In this context, it is therefore crucial to have efficient key revocation and renewal mechanisms in

WSNs. The goal of this work is to propose secure and efficient protocols for key revocation and renewal

in WSNs. In the literature, many key revocation protocols have been proposed for WSNs. In [10], the

authors made a survey and a taxonomy of the most relevant key management protocols proposed for

WSNs. Key revocation is closely related to key distribution. Key revocation protocols can be classified

into centralized and distributed protocols. In centralized mode, a central entity decides to revoke certain

keys or nodes in the network. In distributed mode, a local voting procedure takes place to revoke keys or

nodes. The latter might be faster and requires less messages to send, but it is generally more complex to

implement. We propose several centralized secure key revocation and renewal protocols. Note that we

cover the revocation/renewal of both symmetric and asymmetric keys. Indeed, according to the security

level requirements, one or both cryptographic methods should be used. Therefore, it is crucial to be able

to renew both types of keys, asymmetric keys and symmetric keys.

J. Sens. Actuator Netw. 2015, 4 253

1.1. Contributions

In this paper, we propose key renewal and key revocation protocols. Based on the cryptographic

mechanisms used in [11], we propose centralized protocols for revoking and renewing keys when an IDS

has detected an abnormal behavior. These mechanisms can also be used for periodical key renewal. More

precisely, we provide a key revocation protocol (KR), a protocol for renewing symmetric keys between

any node in the network and the sink (RSK), four protocols to renew asymmetric keys of nodes (RAKnka,

RAKnkb, RAKdha and RAKdhb), a protocol to renew the network key (RNK) and two multihop shared

key establishment protocols (MSKa and MSKb). When several protocols with the same goal are given,

they use different cryptographic primitives. All of our protocols are proven secure using Scyther [12],

an automatic tool for verifying cryptographic protocols. In order to compare the speed of each protocol,

we implemented them on TelosB motes. These motes have limited resources: an 8-MHz microcontroller

with 10 Kb of RAM and 48 Kb of ROM. Thereafter, we compare the protocols depending on the speed

and their security level according to the cryptographic primitives used. This paper does not aim at

showing that the proposed protocols are faster than existing protocols. Instead, the main objective is

to present secure solutions for key revocation and key renewal using standard cryptographic algorithms

and primitives available on the Internet. The chosen primitives can be replaced by more optimized

primitives for better performance. The evaluation presented in the paper is essentially a proof of concept

and shows that the steps of each protocol can be implemented on low cost motes, such as TelosB motes,

which are known for their low capacities in computation speed. Indeed, for cryptographic primitives,

an implementation on recent and more powerful motes should give better results. Once again in this

work, our aim is not to obtain the best execution time, but to compare the performance of our different

solutions.

In this paper, we not only propose original protocols that solve the secure join/revocation/renewal

challenge, but also prove them to be secure, and we perform an experimental evaluation on real testbeds.

This paper is an extension of the short paper presented in [13]. It contains additional optimized protocols,

and we present additional in-depth details. Adding new nodes to the network was studied and evaluated

in [11,14], and the scalability evaluation of these protocols was studied in [15].

1.2. Related Work

The main issue for secure communications in WSNs is how to set up secret keys between nodes,

which is known as the key agreement. This task is a challenge due to resource constraints and the size

of networks.

Many proposed methods are based on random key pre-distribution [16–18]. The main idea is that

any two sensor nodes have a probability for choosing the same key from the pre-distributed key pool.

The weakness of these schemes is when sensor nodes are captured by an attacker. All encryption keys

in the captured nodes will be revealed. In [19], the authors proposed an approach to resolve this issue.

The proposed approach is to hash the keys in the key pool with a one-way hash function. Once a key

is chosen by a sensor node, it will be hashed. If another sensor node chooses the same key afterwards,

instead of using the same key as the previous sensor node, it will derive a new different key by hashing

J. Sens. Actuator Netw. 2015, 4 254

the key value. This technique can reduce the amount of information revealed when a sensor node is

captured for about 30% to 50% according to the authors of [19].

Another way to reduce the impact of compromised nodes in WSNs is to preserve the network

connectivity. The authors in [20] propose an improved key distribution mechanism for large-scale

networks that preserves the network connectivity when many sensors are compromised with a sufficient

security level. Based on a three-tier hierarchical WSNs model, the authors propose three phases: the key

predistribution phase, the inter-cluster pairwise establishment phase and the inter-cluster pairwise key

establishment phase. Different secret information (polynomial shares) is pre-loaded in the first phase.

Two bivariate symmetric polynomials are used to establish pairwise keys between cluster heads and their

sensors in the second phase. In the last phase, each cluster head establishes a pairwise key with other

cluster heads. Compared to the existing key pre-distribution schemes, this scheme can achieve better

network resiliency against node capture attacks.

However, the compromised nodes in these schemes can continue to use the shared secrets with

neighbors without any revocation process. The neighbors of the compromised nodes should be alerted

in order to ignore any further communications with the compromised nodes.

Not all key distribution protocols for WSNs include a key renewal or revocation process. Most of

those that do include one suppose that an IDS is implemented in each node and enables it to signal the

presence of an intruder. In what follows, we summarize some of the key revocation and key renewal

protocols for WSNs.

One of the first key revocation protocols was proposed in [21,22]. This proposition has been enhanced

by the authors of [23], where they proposed a distributed collaborative key revocation mechanism that

divides the network into regions. In each region, nodes collaborate to identify a malicious node. Once

a malicious node is identified, the base station is informed, and it sends a broadcast message containing

a list of keys to revoke. Unlike [21,22], their contribution is able to revoke all of the keys with which

the revoked node is involved and does not need to know the network topology before the deployment.

The key revocation message sent by the base station is based on trivariate polynomial authentication and

verified by each node according to the region to which it belongs.

In [24], the authors propose a key distribution in a cluster-based network that is based on a

probabilistic key establishment inside the cluster. In addition, they propose a voting mechanism that

detects an intruder node of the network. Then, all of the keys shared with that node should be revoked.

The revocation step is initiated by the cluster head. Cluster heads form path keys to reach the base

station. The authors also discuss the revocation process for those keys. The key revocation is based

on asymmetric cryptography for inside cluster revocation and symmetric encryptions for inter cluster

revocation. The authors do not specify the cryptographic algorithms used for symmetric or asymmetric

primitives.

In [25], the authors propose a key distribution based on key chains where each key is obtained by

applying a hash function on the next key in the chain. These key chains are either exchanged through a

secure channel or installed in nodes before deployment. Authenticating the keys is done by verifying the

hash result. A central node is used as a key service entity that manages the key revocation process. This

entity shares a secret key with every node in the network. The authors do not explain how this secret key

is shared, nor how this secret is renewed.

J. Sens. Actuator Netw. 2015, 4 255

In [26], the authors propose a key revocation scheme based on public key cryptography that demands

periodical certificate broadcast. They propose the use of hash function chains instead of digital signatures

in order to conserve the limited resources of nodes. It is based on the exchanges that take place after

deployment on a secure channel, which means that the verification process of the proposed protocol

supposes the existence of a secure channel that helps them to define the shared information between

neighbors. The authors also propose using a voting mechanism in order to avoid malicious revocations.

Only revocations that reach a certain threshold in a neighborhood are validated.

Protocols based on key chains cannot easily update the chains, for their key renewal is based solely

on the hashing function and the root value of the chain. Moreover, chains should be long enough to last

for the life duration of the network.

In [27], the revocation method is centralized and based on preventing nodes from updating session

keys and, thus, preventing them from being able to exchange messages with other nodes in the network.

All communications are encrypted with a session key and a message authentication code (MAC).

Symmetric session keys are renewed using a function that takes the previous session key as a parameter

in addition to a pairwise key. The authors assume that the base station can reach all nodes in the topology.

In [28], the same key revocation scheme is used and applied on a hierarchical network topology with

three levels. In this method, keys are only revoked upon periodic renewal at the end of each session.

This can be a handicap when the session is very long.

In [29], the authors proposed a periodic key renewal based on fragmentation of the key generation

function. This method supposes that nodes will assemble the fragments sent by the base station.

The process of assembling the function is not authenticated and might be easily falsified, for it uses

only one key, which is a shared key between all of the nodes of the network; thus, any compromised

node is able to interfere in the process.

In [30], the authors propose a cluster reorganization in order to avoid renewing keys. By updating

the cluster head, a new pairwise key is established between the base station and the cluster head. This

key established is made without exchanging the key materials between the two entities. The shared key

is a simple exclusive-or of all of the keys of the nodes of the cluster. This supposes that the number of

keys is limited to the number of potential cluster heads, which is a limited number compared to the life

time of the network. In addition, the initial pairwise key agreement between neighboring nodes lacks

authentication. Any neighboring node is able to establish a key with its neighbor.

In [31], the authors propose a key renewal mechanism that is managed by a special entity called

the command node. The network is organized into clusters with one cluster head node that is used for

key revocation. This cluster head receives the list of new keys for renewal and sends them to the other

cluster gateways, which, in turn, send them to the sensor nodes. The authors use the shared key with the

command node to update keys and do not propose a mechanism for updating this shared key.

Table 1 summarizes the comparison between the related work schemes and our proposition.

The comparison is based on the type of cryptographic algorithms used, the type of cryptographic

technique and the evaluation and verification methods. We do not include the complexity of the protocols

listed in the table, since these analyses are not always given by the authors of the protocols, and often, it

is not feasible to perform a fair analysis of the protocol complexity only based on the presentation given

in the papers.

J. Sens. Actuator Netw. 2015, 4 256

As the table shows, and according to our knowledge, none of the existing revocation and key renewal

protocols were verified using an automatic formal verification tool. In addition, most of the results in the

state of the art are obtained through simulations or complexity estimation when evaluating the cost of

the cryptographic scheme. Most of the existing schemes do not specify the cryptographic algorithms of

encryption/decryption, leaving the choice of these algorithms to the application. We provide automatic

formal verification and real testbed implementation to further support our proposal. We used standard

algorithms and used both symmetric and asymmetric cryptography.

Table 1. Comparison of related work schemes and our proposition.

Proposed Schemes Standard Algorithms Cryptographic Technique Simulation Implementation Verification

Chan et al. 2003 [22] not specified symmetric none none none

Chan et al. 2005 [21] not specified symmetric none none none

Chattopadhyay et al. 2012 [23] not specified symmetric none none none

Chuang et al. 2010 [26] yes asymmetric none none none

Dini et al. 2006[25] not specified symmetric none none none

Jiang et al. 2008 [24] not specified symmetric none none none

Jolly et al. 2003 [31] not specified symmetric yes none none

Purohit et al. 2011 [28] not specified symmetric none none none

Wang et al. 2006 [29] none symmetric none none none

Wang et al. 2010 [30] not specified symmetric yes none none

Wang et al. 2007 [27] not specified symmetric yes none none

All of our schemes yes symmetric/asymmetric none TelosB automatic

1.3. Outline

In the next section, we introduce the cryptographic primitives used and present the two join protocols

proposed in [11]. In Section 3, we describe all of our renewal and revocation protocols. Then, in

the following section, we explain the relationships between all keys in order to understand in which

order the renewal has to be done. Then, in Section 5, we use Scyther to verify all of our protocols.

In Section 6, we present our experiments performed on testbeds using TelosB motes for all of our

protocols. These measurements allow us to compare the execution time of our solutions. Finally, we

conclude in the last section.

2. Authenticated Join Protocols

Before recalling the two authenticated join protocols given in [11], we introduce some cryptographic

primitives and notations used in the rest of the paper.

2.1. Cryptographic Primitives and Notations

We use public key elliptic curve cryptography (ECC), using parameters secp160r1 given by the

Standards for Efficient Cryptography Group [32]. Our implementation of ECC on TelosB is based on

the optimized TinyECC library [33]. More precisely, we use the elliptic curve integrated encryption

scheme (ECIES 160 bits), the public key encryption system proposed by Victor Shoup in 2001 [34].

J. Sens. Actuator Netw. 2015, 4 257

For all symmetric encryptions, we use an optimized implementation of AES [35] with a key of 128 bits

proposed by [36].

In what follows, we also use the following notations to describe exchanged messages in our protocols:

• I: a new node that initiates the protocol,

• R: a neighbor of node I ,

• S: the sink of the network (also called the base station),

• nA: a nonce generated by node A,

• {x}k: the encryption of message x with the symmetric or asymmetric key k,

• pk(A): the public key of node A,

• sk(A): the secret (private) key of node A,

• K(I, S) or K(S, I): the symmetric session key between I and S,

• NK: the symmetric network key between all nodes of the network,

• KDH(N, S) or KDH(S,N): the shared symmetric key between N and S using the Diffie–Hellman

key exchange without the interaction described below.

Before deployment, each node N knows the public key pk(S) of the sink and also its own pair

of public and private keys, denoted pk(N) and sk(N), respectively. Based on ECC, we have that

pk(N) = sk(N)×G, where G is a public generator point of the elliptic curve. From pk(N) and

G, it is difficult to find sk(N); this problem is called the elliptic curve discrete logarithm problem

(ECDLP) [37,38].

Using this material, each node N can compute a shared key with the sink S using a variation of the

Diffie–Hellman key exchange without interaction, denoted KDH(N, S) = KDH(S,N).

• The sink knows its own secret key sk(S) and the public key pk(N) of any node N . The sink

computes KDH(N, S) = sk(S)× pk(N).

• Node N multiplies its secret key sk(N) by the public key of the sink pk(S) to get KDH(N, S).

Both computations give the same shared key, since: KDH(N, S) = sk(N) × pk(S) = sk(N) ×

(sk(S)×G) = (sk(N)×G)× sk(S) = pk(N)× sk(S).

In our protocols, we intensively use this mechanism.

2.2. Join Protocols (DJS and IJS)

In Figure 1, we present two key establishment protocols given in [11]. The first protocol, called

direct join to the sink (DJS), allows a node to join directly through the sink and is described in Figure 1a.

In DJS, a new node I sends a direct request to S in order to establish a session key with it. Node I begins

the join process by computing the symmetric key KDH(I, S) with the sink S. Then, node I generates

a nonce nI and adds its identity then encrypts it with KDH(I, S) and sends it to S. Upon reception,

S computes KDH(I, S) to decrypt the request. Then, S verifies the identity of I and generates a new

session key K(I, S). The join response contains nI , the identity of S and the new symmetric session key

K(I, S). The response is encrypted using pk(I) and is sent to I . Only I is able to decrypt the response

with its secret key sk(I). We note that nI helps I to authenticate S.

J. Sens. Actuator Netw. 2015, 4 258

The second protocol, called indirect join to the sink (IJS), allows a new node I to join the network

through a neighbor node R that is already authenticated in the network. Node I sends an indirect request

to S in order to establish a session key with R. Node R forwards without any modification the request

to S through intermediate nodes that are trusted to route the request towards S. Only nodes I and S

are able to decrypt the messages encrypted with KDH(I, S), and only R and S are able to decrypt the

messages encrypted with KDH(S,R).

Initiator

I

Sink

S

{nI , I}KDH(I,S)

{nI , S,K(I, S)}pk(I)

(a)

Initiator

I

Neigh. node

R

Sink

S

{nI , I}KDH(I,S)

{nI , S, pk(I)}KDH(S,R)

{nI , R,K(R, I)}pk(I)

(b)

Figure 1. Join protocols. (a) DJS: direct join to the sink. Node I directly joins the network

by communicating directly with the sink S. (b) IJS: indirect join to the sink. Intermediate

nodes between R and S forward messages without any encryption or decryption.

3. Renewal and Revocation Protocols

Our contribution is the design of secure key revocation and key renewal protocols, based on two

key establishment protocols presented in Section 2. In this context, each node N has several keys that

should be renewed: a symmetric shared key between N and S (KDH(N, S)), a pair of public/secret

keys (pk(N), sk(N)), the public key of the sink (pk(S)) and a symmetric network key (NK). We start

by presenting the key revocation protocol (KR). Then, we present the protocol RSK for renewing

symmetric keys (KDH(N, S)) between a node N and the sink. Then, we propose four protocols to renew

asymmetric keys of a node (RAKnka, RAKnkb, RAKdha and RAKdhb) using different cryptographic

primitives. Finally, we propose a protocol to renew the network key (RNK) and two multihop shared key

protocols (MSKa and MSKb) to establish via the sink a shared symmetric key between any two nodes

of the network. In order to achieve mutual authentication of the sender and the receiver, we use nonces

J. Sens. Actuator Netw. 2015, 4 259

in our protocols. Each time we reduce to the minimum the number of needed nonces. For example,

in some cases, we use a fresh generated key as a nonce in order to minimize it. Moreover removing a

single nonce or a part of a message in any of our protocols will create a flaw either in authentication

or secrecy. All nonces play a crucial role in the mutual authentication in order to avoid several classic

attacks, like man in the middle, replay or reflection attacks. Finally, we decide to use nonces instead of

complex and time-consuming cryptographic primitives, like, for instance, signatures or MAC (message

authentication codes).

3.1. Key Revocation Protocol

The sink collects the IDS results and determines the nodes that have to be revoked. Then, it sends

a revocation request to node I using the protocol (KR) described in Figure 2. In this protocol, the sink

sends to node I the list M1, . . . ,Mk of all revoked nodes in the neighborhood of I and a nonce nS

encrypted with KDH(S, I). Then, node I deletes all shared session keys with all nodes included in the

list and does not accept any further communications with these nodes. In order to confirm the reception

of the list, node I sends back the nonce nS encrypted with KDH(S, I). Nonce nS acknowledges the

reception of the list by node I , and it also ensures the authentication.

Sink

S

Dest.node

I

{M1, ...,Mk, nS}KDH(S,I)

{nS}KDH(S,I)

Figure 2. Key revocation protocol (KR): revocation of k malicious neighbor nodes of node I .

3.2. Renewing Symmetric Keys

Figure 3 presents protocol RSK, which allows an initiator node I to renew a session key with its

neighbor R. The protocol consists of sending the new session key K ′(I, R) encrypted with the previous

session key K(I, R) in order to confirm to R that I has the previous session key. Then, the message is

encrypted again with the public key of R. Notice that an intruder should obtain K(I, R) and sk(R) in

order to learn the new session key K ′(I, R). This part of the protocol takes more execution time due to

the extra public key encryption (see Table 2). Finally, the new key K ′(I, R) is used as a nonce by R to

confirm the reception by sending back to I the message {K ′(I, R)}K ′(I,R).

J. Sens. Actuator Netw. 2015, 4 260

Initiator

I

Neighbor

R

{{K ′(I, R)}K(I,R)}pk(R)

{K ′(I, R)}K ′(I,R)

Figure 3. RSK: renewing a symmetric or session key.

Table 2. Execution time of all protocols.

Protocol Name Figure Time with S (ms) Time without S (ms) Gain Standard Deviation (ms)

Join Protocols [11]
DJS 1a 10,112.62 4082.05 59% 78.09

IJS 1b 10,180.81 10,049.45 1% 111.94

Revocation KR 2 155.37 87.58 44% 3.82

Renewing SymKey RSK 3 10,042.32 10,042.32 0% 76.49

Renewing AsymKey

RAKnka 4a 6797.75 3436.24 49% 4.26

RAKnkb 4b 3646.05 254.62 93% 3.95

RAKdha 5a 6797.75 3436.24 49% 4.26

RAKdhb 5b 3646.05 254.62 93% 3.95

Renewing Network Key RNK 6 221.09 121.40 45% 3.73

Multihop Shared Key
MSKa 7a 6893.76 6631.91 4% 5.76

MSKb 7b 3682.53 301.42 91% 5.25

3.3. Renewing Asymmetric Keys

In what follows, we describe four protocols to renew asymmetric keys of the network. These protocols

use the existing key infrastructure to securely replace the asymmetric keys between the sink and all nodes

of the network. For this, the sink creates its own new public/private keys (pk′(S), sk′(S)) and a new pair

of public/private keys (pk′(I), sk′(I)) for each node I in the network. Our four protocols (RAKnka,

RAKnkb, RAKdha and RAKdhb) are based on the same idea: first, S securely sends pk′(S) and the

new pair of keys for node I; then, node I replies by sending back its identity with the new shared key

K ′
DH(S, I). We use different cryptographic mechanisms to distribute these new keys.

In Figure 4, we present two protocols, RAKnka and RAKnkb, where the new public key of the sink

pk′(S) is broadcast to all nodes using the network key (NK). In the first protocol RAKnka, depicted

in Figure 4a, the sink only sends to each node I the new pair of keys using KDH(S, I). Then, I

computes the new shared key K ′
DH(S, I) = sk′(I) × pk′(S). In order to save computation time for

node I , we propose a second version RAKnkb described in Figure 4b, where the sink pre-computes

K ′
DH(S, I) = sk′(S)× pk′(I) without using the secret key of I .

J. Sens. Actuator Netw. 2015, 4 261

An alternative is to use the pre-shared key KDH(S, I) instead of NK in the distribution of pk′(S), as

depicted in Figure 5. In Figure 5a, we explain the protocol RAKdha with the computation of the new

key performed by node I . In Figure 5b, we present the protocol RAKdhb where the sink pre-computes

K ′
DH(S, I). These two protocols use symmetric shared keys on each hop, preventing an intruder from

learning the new key of the sink by learning the network key, as is the case in the protocols of Figure 4.

Nevertheless, this solution requires more load on the network, since the transmission of the public key

of the sink is not a broadcast using the network key, but a unicast using a symmetric shared key between

two nodes. For instance, for a line of four nodes (S, A, B and C), in one case, three messages are enough

to broadcast pk′(S), and in the other situation, it requires 1 + 2 + 3 = 6 messages to send pk′(S).

Sink

S

Dest. node

I

{pk′(S)}NK

{pk′(I), sk′(I)}KDH(S,I)

K ′

DH
(S, I)

{I}K ′

DH
(S,I)

K ′

DH
(S, I)

(a)

Sink

S

Dest. node

I

{pk′(S)}NK

K ′

DH(S, I)

{pk′(I), sk′(I), K ′
DH(S, I)}KDH(S,I)

{I}K ′

DH
(S,I)

(b)

Figure 4. Two protocols for renewing asymmetric keys of a node I , where S uses the

network key NK to broadcast pk′(S). (a) Protocol RAKnka: S and I compute K ′
DH(S, I);

(b) protocol RAKnkb: S computes K ′
DH(S, I) and sends it to I .

J. Sens. Actuator Netw. 2015, 4 262

Sink

S

Dest. node

I

{pk′(S)}KDH(S,I)

{pk′(I), sk′(I)}KDH(S,I)

K ′

DH
(S, I)

{I}K ′

DH
(S,I)

K ′

DH
(S, I)

(a)

Sink

S

Dest. node

I

{pk′(S)}KDH(S,I)

K ′

DH
(S, I)

{pk′(I), sk′(I), K ′
DH(S, I)}KDH(S,I)

{I}K ′

DH
(S,I)

(b)

Figure 5. Two protocols for renewing the new asymmetric keys of a node I , where S uses

the symmetric shared key KDH(S, I) to deliver pk′(S) to I . (a) Protocol RAKdha: S and I

compute K ′
DH(S, I); (b) protocol RAKdhb: S computes K ′

DH(S, I) and sends it to I .

3.4. Renewing the Network Key

Changing the network key NK is a decision made by the sink. We propose a secure way for the

sink to distribute this new key to all authenticated nodes. This protocol, denoted RNK, is described in

Figure 6. It allows the sink to be sure that all nodes receive the new key before starting to use it. It works

as follows: the sink generates a new network key NK ′ and a nonce ns. Then, it encrypts NK ′ and

n(S,I) (one new nonce per node I) using the shared symmetric key KDH(S, I) and sends the encrypted

message to each node. Then, it collects all nonces n(S,I) before starting to communicate with the new

network key NK ′.

J. Sens. Actuator Netw. 2015, 4 263

Sink

S

Dest. node

I

{NK ′, n(S,I)}KDH(S,I)

{n(S,I)}KDH(S,I)

Figure 6. Protocol RNK: renewing the network key.

3.5. Multihop Shared Key Protocol

Our aim is to establish a shared key between any two authenticated nodes I and R of the network

(not necessarily in range). We propose two protocols, called MSKa and MSKb. The protocol MSKa,

depicted in Figure 7a, uses the secure channels created between the sink and each node to communicate

the public key of I and R. Notice that in our context, the sink knows all of the public keys of all nodes,

and a node only knows its public key and the public key of the sink. The initiator node I builds a request

containing the identity of node R and a nonce nI . This request is encrypted with KDH(I, S) and sent to

S. The sink S sends:

• to I , the identity of R, a nonce nS , the public key of R encrypted with the shared symmetric key

KDH(I, S),

• to R, the identity of I , the same nonce nS , the nonce nI received from I and the public key of I

encrypted with the shared symmetric key KDH(S,R).

Once these messages are received, the two nodes are able to compute KDH(I, R) as follows:

• Node I computes sk(I)× pk(R) = sk(I)× sk(R)×G = KDH(I, R).

• Node R computes sk(R)× pk(I) = sk(R)× sk(I)×G = KDH(I, R).

To ensure mutual authentication of R and I , node R generates a nonce nR, then uses KDH(I, R) to

encrypt its own identity, the two received nonces from S plus its nonce nR. This cipher is sent to I ,

without necessarily passing by S. Finally, node I verifies that the received nonce from R is the same as

the one sent by the sink. Then, it confirms that it correctly received the message by sending to R its own

identity and the two nonces nS and nR, encrypted with KDH(I, R).

Notice that the computation of the new keys can be done by the sink in order to save some

computations on nodes R and I . This version, called MSKb, is depicted in Figure 7b.

J. Sens. Actuator Netw. 2015, 4 264

Sink

S

Initiator

I

Neigh.node

R

{R, nI}KDH(I,S)

{R, nS, pk(R)}KDH(I,S)

{I, nS, nI , pk(I)}KDH(S,R)

KDH(I, R)

{R, nS, nI , nR}KDH(I,R)

KDH(I, R)

{I, nS, nR}KDH(I,R)

(a)

Sink

S

Initiator

I

Neigh. node

R

{R, nI}KDH(I,S)

KDH(I, R)

{R, nS ,KDH(I, R)}KDH (I,S)

{I, nS , nI ,KDH(I,R)}KDH (S,R)

{R, nS, nI , nR}KDH(I,R)

{I, nS, nR}KDH(I,R)

(b)

Figure 7. Protocols for the multihop shared key. (a) Protocol MSKa; (b) protocol MSKb.

4. Key and Protocol Dependency

It is important to note that cryptographic keys are interdependent. In order for a certain protocol to

be executed, nodes should have the appropriate keys. In this section, we recapitulate the dependency

between the keys for each of our protocols.

Figure 8 presents the dependency between keys for each of our protocols, where K1 &K2
A:B
−→ K3|K4

denotes that K3 or K4 are delivered from A to B and encrypted with K1 and K2. The public/private

keys of nodes are used to compute the shared symmetric keys using Diffie–Hellman without interaction

described in Section 2.1. All of these keys, besides the network key NK, are predistributed to nodes

before the deployment. Therefore, all protocols in Figure 8 plus KR can be executed at any time after

J. Sens. Actuator Netw. 2015, 4 265

deployment, except protocol RSK. Indeed, protocols DJS and IJS end with establishing a session key

between the initiator and its neighbor. Therefore, protocol RSK must be executed after DJS and IJS in

order to renew the session key.

Protocol name Delivering

DJS pk(I)
S:I
−→ K(I, S)

IJS KDH(N,S)
S:N
−→ pk(I)

N :I
−→ K(I,N)

RSK K(I,R) & pk(R)
I:R
−→ K ′(I,R)

RAKnka NK
S:I
−→ pk′(S)

KDH(S, I)
S:I
−→ pk′(I)|sk′(I)

RAKnkb NK
S:I
−→ pk′(S)

KDH(S, I)
S:I
−→ pk′(I)|sk′(I)|K ′

DH(S, I)

RAKdha KDH(S, I)
S:I
−→ pk′(S)

KDH(S, I)
S:I
−→ pk′(I)|sk′(I)

RAKdhb KDH(S, I)
S:I
−→ pk′(S)

KDH(S, I)
S:I
−→ pk′(I)|sk′(I)|K ′

DH(S, I)

MSKa KDH(I, S)
S:I
−→ pk(R)

KDH(R,S)
S:R
−→ pk(I)

MSKb KDH(I, S)
S:I
−→ KDH(I,R)

KDH(R,S)
S:R
−→ KDH(I,R)

Figure 8. Key dependency for our protocols. K1 &K2
A:B
−→ K3|K4 denotes that K3 or K4 is

delivered by A to B and encrypted with K1 and K2.

Protocol KR is done based on information given by an IDS in order to revoke the keys in possession

of compromised nodes. In executing KR, the sink informs the nodes in the neighborhood of the

compromised node to delete all shared keys. Therefore, protocols RAK and MSK can be executed

regularly or after the revocation process in order to maintain the security level of the application in the

case of RAK or to create more secure links between nodes in the case of MSK. Protocol RNK must be

renewed in a short interval or after a revocation process.

5. Formal Security Evaluation

Evaluating the security of cryptographic protocols is not an easy task. It is easy to design flawed

protocols. Recently, formal methods started to be used to analyze WSN protocols [39–41]. Moreover,

during the last decade, several tools have been developed to automatically verify cryptographic

protocols [12,42,43]. In order to prove the security of all of our protocols, we use the automatic

cryptographic protocol verification tool Scyther [12] developed by Cas Cremers. We chose this tool

since it is one of the fastest tools, as has been shown in [44], and it is one of the most user friendly.

J. Sens. Actuator Netw. 2015, 4 266

5.1. Scyther Overview

Scyther is a free (GPL-2.0) tool available on all operating systems (Linux, Mac and Windows).

This tool can automatically prove security properties or provide an attack on a cryptographic protocol

for bounded and unbounded numbers of sessions. One main advantage of Scyther is that it provides an

easy way to model security properties, like secrecy and authentication. Scyther considers the Dolev–Yao

intruder model. In this model, messages are abstracted by a term algebra, in order to formalize the

cryptographic primitives used in the protocols. Moreover, the perfect encryption hypothesis is made,

meaning that it is possible for a malicious node to decrypt an encrypted message only if it knows the

associated secret key. Finally, in this model, the intruder is controlling the network, which means that

all messages can be captured by the intruder. Thus, he has the ability to delete, change or modify any

message according to his knowledge. This last assumption is very strong, since in a WSN, it is not

realistic to consider that one intruder is able to receive what each node is receiving. However, if a

protocol is secure against such a strong intruder, it will also be secure against a weaker attacker. Indeed,

the tool considers the most powerful intruder in order to prove the highest security.

5.2. Security Analysis

We verified automatically all of our protocols using Scyther in a few seconds on a regular PC.

Scyther concludes that all of our protocols are secure. More precisely, we proved the secrecy of all

sensitive data exchanged (keys and nonces) and also the authenticity of the communication. Our Scyther

codes are available here [45]. The advantage of using an automatic verification tool that considers

a powerful intruder is that we are sure that there is no attack, including replay or man-in-the-middle

attacks. In all of our protocols, the authentication is ensured by using, in an appropriate manner, nonces,

which also ensures the freshness of the messages to avoid, for instance, replay attacks. Moreover, the

tool guarantees that our protocols preserve the confidentiality of the sensitive data and that the different

participants communicate in an authenticated manner.

Moreover, for each protocol, we minimize the amount of exchanged data. This is why we use in the

protocol of Figure 3 the new symmetric key as a nonce. Similarly, in the last protocol (Figure 7a), all

nonces are crucial, since each time you remove one, Scyther finds an authentication flaw.

6. Experiments

Using Scyther, we have proven the security of all of our protocols, but Scyther cannot evaluate the

execution time of our solutions. Hence, to compare the execution time of our different protocols, we

implemented each protocol on TelosB motes. The goal is to compare the performances of the different

proposed protocols. We first describe the settings of our testbed. Then, we provide and discuss the

results of the execution time of each protocol.

J. Sens. Actuator Netw. 2015, 4 267

6.1. Settings

In order to evaluate the efficiency of our solutions, we used TelosB motes. These motes have an

8-MHz microcontroller with 10 Kb of RAM, 48 Kb of ROM and a CC2420 radio using the IEEE

802.15.4 standard. Due to the limitation of their computing resources, these motes are used as a basis for

comparison between the different protocols and not for obtaining the best results in terms of performance.

Our implementation of ECC is based on the TinyECC library [33], on ECIES with a key of 160 bits and

on an optimized implementation of symmetric encryption AES [35] in CTR mode with a key of 128 bits.

In order to explain why we choose AES with CTR mode and the 128-bit key k, we recall the mechanism

of this scheme: let us consider a message m composed of k blocks m1||m2|| . . . ||mp and an initial

counter value IV randomly chosen. The cipher of the block mi is ci = {IV + i}k ⊕ mi, where ⊕

denotes the bitwise exclusive-or operator. If you know IV and the key k, then you can easily recover

from ci the message mi = {IV + i}k ⊕ ci. When the size of the last block mp is smaller than 128 bits, it

is usual to pad it with 0 up to 128 bits in order to have both operands with the same length to perform the

bitwise exclusive-or. In this case, the size of the transmitted encrypted packets is always a multiple of

128 bits. However, in CTR mode, we can just cut the {IV + p}k message to the size of mp. Hence, we

can transmit an encrypted message that has exactly the same size as the original message and, therefore,

avoid any overhead in terms of transmission time. For example, in protocol KR, if the list of revoked

nodes and the nonce is l-bits long, that is smaller than 128 bits (AES block size), it is sufficient to only

transmit l bits.

During the experiments, we considered topologies without intermediate nodes, since these nodes

would only forward packets, in a multihop manner, without doing any modification on the packet.

The cost of these communications is therefore negligible compared to the encryption and decryption

costs. Moreover, this cost is the same for all protocols; only the load of the network can change

between unicast and broadcast protocol. Hence, for each situation, we only consider a minimal topology

containing only the nodes involved in the cryptographic operations. Moreover, malicious nodes were

only included in the verification model automatically done by Scyther. No malicious nodes were

included in the experiments. When detecting (IDS), a malicious or a compromised node, the sink is

informed. Then, the sink can launch the revocation process in executing the protocol KR. Afterwards,

the sink should launch the renewing key process in executing one of protocols RAK for the nodes in the

neighborhood of the malicious node and RNK for all of the concerned nodes of the network.

6.2. Results and Discussion

In Table 2, we provide the execution time for all of our protocols (please note that the execution

time for the cryptographic algorithms can be found in [46]). We also present the results without the

execution time of the sink, since in many applications, the base station is a special node with extra

resources. All results are the averages of 100 experiments of each protocol. We also provide the standard

deviations for execution time including the time of S. We notice that these values are small compared

to the execution time of the protocol. These variations are normal according to the motes used, physical

parameters like 2.4 GHz interference, battery level, humidity, temperature, etc. Moreover, the cause of

the high standard deviation of join protocols and RSKb presented in Table 2 is essentially related to the

J. Sens. Actuator Netw. 2015, 4 268

random number (that is, of course, different at each generation) that is used in multiplication operations

in the asymmetric encryption. In fact, when the random number is small, the multiplication operations

take much less time than what they take for a large random number. To confirm this claim, we have

tested with a given constant random number coded on 20 bytes. We obtained small standard deviation

values, 5.94 ms for the DJS protocol and 5.71 ms for the IJS protocol.

The differences in our protocols come from the usage of cryptographic primitives. All protocols using

asymmetric encryption require more execution time than protocols using only symmetric encryption.

Moreover, we see that the two slowest protocols are the join protocols proposed in [11]. Hence, it is

more efficient to renew keys than to rejoin the network.

The protocol KR (key revocation) is the fastest. We also note that the sink performs almost half of the

cryptographic operations; thus, by making it do more operations, we avoid sensor nodes doing the heavy

cryptographic computations. In the experiments we considered only one node to revoke. Knowing that

a nonce is represented on 4 bytes and a node identity on 1 byte, we obtain 5 byte-long messages. In this

case, we encrypt with the AES 128-bit key the initial vector (IV), then we XOR the 5 bytes and only

send a message of 5 bytes. Therefore, if the size of the list of revoked nodes increases, then the protocol

KR will take more time.

The protocol RSKa, renewing the symmetric key, also exchanges two messages encrypted with a

symmetric encryption scheme, but the size of the exchanged message is longer; this is why it is slightly

slower than KR. In order to have a better level of security, we add to the protocol RSKb an extra public key

encryption. This operation is very costly, and the execution time of this protocol is close to the protocols

proposed in [11]. Moreover, since the sink is not involved in this protocol, the gain of execution time

without counting the execution time on S is null.

The protocol RNK is also one of the fastest protocols, since it is based on the same cryptographic

primitives as those of protocol KR, but the size of the message is 20 bytes, so requires two AES

encryptions of 16 bytes and the transmission of 16 + 4 bytes.

For renewing the asymmetric key, we proposed four protocols: two of them use the symmetric

network key NK, and the other two use symmetric keys KDH . We see that since they are using

the same symmetric encryption mechanism, they take the same execution time. Hence, the execution

time for protocols RAKnka and RAKdha is the same and similar for protocols RAKnkb and RAKdhb.

However, the second versions of these protocols, RAKnkb and RAKdhb, are faster than protocols

RAKnka and RAKdha (more if we do not count the sink execution time). This clearly shows that

the computation of the new key by a node is expensive. Therefore, it is important that a designer takes

this into account during the conception of the protocols in order to have efficient protocols and also to

preserve the resources of the nodes.

Finally, we measured the execution time of protocols MSKa and MSKb, presented respectively in

Figure 7; we observe that the pre-computation of the key by the sink allows us to save 3 s. By doing the

key generation on the sink once, we avoid consuming additional time and energy on the sensor nodes.

Indeed, this avoids creating the key twice, once in each node. This helps obtain a gain of around 90% if

we consider that the sink is not time nor energy constrained.

J. Sens. Actuator Netw. 2015, 4 269

7. Conclusions and Perspectives

We have proposed several protocols to revoke a set of nodes, to renew symmetric and asymmetric

keys and to establish a shared key between two authenticated nodes of the network. Our solutions

use the ECC, which allows nodes to easily construct shared keys without interaction. Moreover, all of

our protocols have been automatically verified as secure using Scyther. This ensures the security of

our solutions. We also have implemented and tested all of our protocols on TelosB nodes in order to

evaluate their execution time relative to one another. These results show that according to the load of the

network and to the topology, one protocol might be more efficient than another. Then, according to the

context (size of the network, size of the battery, type of mote, energy consumption for communication,

computation resources of the motes), one solution might be better than another one. All of these

parameters should be taken into account before choosing one real solution.

In this version of our key renewal mechanism, we did not ensure message integrity. Ensuring message

integrity implies the addition of MAC generated using a different key than the one used for encryption.

Thus, response messages will take more time to be generated and will be 16 bytes bigger. We plan

on proposing an extension that includes integrity mechanisms in our future works. Notice that the key

establishment protocols DJS and IJS both ensure integrity, because they use the ECIES scheme, which

includes a MAC operation on the cipher text.

As a long-term perspective, we plan on testing our protocols in more realistic platforms, such as the

IoT-LAB platform [47]. This would give us an idea about how our different protocols would perform in

a large-scale network and how long it would take to revoke and renew distributed keys and to establish

the required secured links.

Acknowledgments

This research was conducted with the support of the “Digital Trust” Chair from the University of

Auvergne Foundation.

Author Contributions

In this paper, Ismail Mansour, Gerard Chalhoub and Pascal Lafourcade have worked together on the

design, verification and evaluation of the protocols, while the implementation work has been essentially

done by Ismail Mansour.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Hussain, M.A.; Khan, P.; Sup, K.K. WSN research activities for military application. In

Proceedings of the 11th International Conference on Advanced Communication Technology,

Phoenix Park, Korea, 15–18 February 2009; Volume 1, pp. 271–274.

J. Sens. Actuator Netw. 2015, 4 270

2. Debar, H.; Dacier, M.; Wespi, A. Towards a taxonomy of intrusion-detection systems. Comput.

Netw. 1999, 31, 805–822.

3. Sun, B.; Osborne, L.; Xiao, Y.; Guizani, S. Intrusion detection techniques in mobile ad hoc and

wireless sensor networks. IEEE Wirel. Commun. 2007, 14, 56–63.

4. Rivest, R.L.; Shamir, A.; Adleman, L. A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems. ACM Commun. 1978, 21, 120–126.

5. El Gamal, T. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.

IEEE Trans. Inf. Theory 1985, 31, 469–472.

6. Eisenbarth, T.; Kumar, S.; Uhsadel, L.; Paar, C.; Poschmann, A. A Survey of

Lightweight-Cryptography Implementations. IEEE Des. Test Comput. 2007, 24, 522–533 .

7. Cazorla, M.; Marquet, K.; Minier, M. Survey and Benchmark of Lightweight Block Ciphers for

Wireless Sensor Networks. In Proceedings of the 10th International Conference on Security and

Cryptography (SECRYPT 2013), Reykjavík, Iceland, 29–31 July 2013; pp. 543–548.

8. Jeong, K.; Lee, C.; Lim, J. Improved differential fault analysis on lightweight block

cipher LBlock for wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2013,

2013, doi:10.1186/1687-1499-2013-151.

9. Couroussé, D.; Robisson, B.; Lanet, J.; Barry, T.; Noura, H.; Jaillon, P.; Lalevée, P. COGITO:

Code Polymorphism to Secure Devices. In Proceedings of the 11th International Conference

on Security and Cryptography (SECRYPT 2014), Vienna, Austria, 28–30 August 2014;

pp. 451–456.

10. Zhang, J.; Varadharajan, V. Wireless sensor network key management survey and taxonomy. J.

Netw. Comput. Appl. 2010, 33, 63–75.

11. Mansour, I.; Chalhoub, G.; Misson, M. Security architecture for multi-hop wireless sensor

networks. In Security for Multihop Wireless Networks; CRC Press: Boca Raton, FL, USA,

2014; pp. 157–178.

12. Cremers, C. The Scyther Tool: Verification, Falsification, and Analysis of Security Protocols.

In Proceedings of the 20th International Conference on Computer Aided Verification, Princeton,

NJ, USA, 7–14 July 2008; pp. 414–418.

13. Mansour, I.; Chalhoub, G.; Lafourcade, P.; Delobel, F. Secure Key Renewal and Revocation for

Wireless Sensor Networks. In Proceedings of the 39th IEEE Conference on Local Computer

Networks (LCN), Edmonton, AB, Cananda, 8–11 September 2014; pp. 382–385 .

14. Mansour, I.; Chalhoub, G.; Lafourcade, P. Evaluation of Secure Multi-Hop Node Authentication

and Key Establishment Mechanisms for Wireless Sensor Networks. J. Sens. Actuator Netw.

2014, 3, 224–244.

15. Mansour, I.; Chalhoub, G.; Lafourcade, P. Secure Multihop Key Establishment Protocols for

Wireless Sensor Networks. In Proceedings of International Conference on Cryptography and

Security Systems, Lublin, Poland, 22–24 September 2014; pp. 166–177.

16. Mehta, M.; Huang, D.; Harn, L. RINK-RKP: A scheme for key predistribution and shared-key

discovery in sensor networks. In Proceedings of the 24th IEEE International on Performance,

Computing, and Communications Conference, Phoenix, AZ, USA, 7–9 April 2005; pp. 193–197.

J. Sens. Actuator Netw. 2015, 4 271

17. Park, J.; Kim, Z.; Kim, K. State-based key management scheme for wireless sensor networks.

In Proceedings of IEEE International Conference on Mobile Adhoc and Sensor Systems,

Washington, DC, USA, 7 November 2005.

18. Park, J.; Kim, Z.; Kim, K. Random key assignment for secure wireless sensor networks. In

Proceedings of the 1st ACM workshop on Security of Ad Hoc and Sensor Networks, Washington,

DC, USA, 27–30 October 2003; pp. 62–71.

19. Cheng, Y.; Malik, M.; Xie, B.; Agrawal, D. Enhanced Approach for Random Key

Pre-Distribution in Wireless Sensor Networks. In Proceedings of International Conference

on Communication, Networking and Information Technology, Amman, Jordan, 6–8 December

2007.

20. Cheng, Y.; Agrawal, D. An Improved Key Distribution Mechanism for Large-Scale Hierarchical

Wireless Networks Key Distribution. AD HOC Netw. J. 2007, 5, 35–48.

21. Chan, H.; Gligor, V.; Perrig, A.; Muralidharan, G. On the distribution and revocation of

cryptographic keys in sensor networks. IEEE Trans. Dependable Secur. Comput. 2005, 2,

233–247.

22. Chan, H.; Perrig, A.; Song, D. Random key predistribution schemes for sensor networks. In

Proceedings of IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 11–14 May 2003.

23. Chattopadhyay, S.; Turuk, A.K. A Scheme for Key Revocation in Wireless Sensor Networks.

Int. J. Adv. Comput. Eng. Commun. Technol. 2012, 1, 16–20.

24. Jiang, Y.; Shi, H. A Cluster-Based Random Key Revocation Protocol for Wireless Sensor

Networks. J. Electron. Sci. Technol. China 2008, 6, 10–15.

25. Dini, G.; Savino, I. An efficient key revocation protocol for wireless sensor networks. In

Proceedings of International Symposium on a World of Wireless, Mobile and Multimedia

Networks, Buffalo, NY, USA, 26–29 June 2006.

26. Chuang, P.; Chang, S.; Lin, C. A Node Revocation Scheme Using Public-Key Cryptography in

Wireless Sensor Networks. J. Inf. Sci. Eng. 2010, 26, 1859–1873.

27. Wang, Y.; Ramamurthy, B.; Zou, X. KeyRev: An Efficient Key Revocation Scheme for Wireless

Sensor Networks. In Proceedings of International Conference on Communications, Glasgow,

UK, 24–28 June 2007; pp. 1260–1265.

28. Purohit, G.N.; Rawat, A.S. Revocation and Self-Healing of keys in Hierarchical Wireless Sensor

Network. Int. J. Comput. Sci. Inf. Technol. 2011, 2, 2909–2914.

29. Wang, C.; Hong, T.; Horng, G.; Wang, W. A Key Renewal Scheme under the Power Consumption

for Wireless Sensor Networks. In Proceedings of the 4th International Conference on Photonics,

Networking and Computing, Kaohsiung, Taiwan, 8–11 October 2006.

30. Wang, G.; Kim, S.; Kang, D.; Choi, D.; Cho, G. Lightweight Key Renewals for Clustered Sensor

Networks. J. Netw. 2010, 5, 300–312.

31. Jolly, G.; Kusçu, M.; Kokate, P.; Younis, M. A Low-Energy Key Management Protocol for

Wireless Sensor Networks. In Proceedings of the Eighth IEEE International Symposium on

Computers and Communications, Kiris-Kemer, Turkey, 30 June–3 July 2003.

32. Standards for Efficient Cryptography Group. SEC 1: Elliptic Curve Cryptography. Available

online: http://www.secg.org/2000 (accessed on 26 August 2015).

J. Sens. Actuator Netw. 2015, 4 272

33. Liu, A.; Ning, N. TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wireless

Sensor Networks. In Proceedings of 7th International Conference on Information Processing in

Sensor Networks, St. Louis, MI, USA, 22–24 April 2008; pp. 245–256.

34. Shoup, V. A Proposal for an ISO Standard for Public Key Encryption. IACR Cryptology ePrint

Archive: Report 2001/112. Available online: http://eprint.iacr.org/2001/112 (accessed on 26

August 2015).

35. Daemen, J.; Rijmen, V. The Design of Rijndael: AES—The Advanced Encryption Standard;

Springer-Verlag: Berlin, Germany, 2002.

36. Manica, N.; Saloni, M.; Toldo, P. WSN—Secure comunications with AES algoritms. Faculty of

Computer Science, University of Trento, Trento, Italy, 2008.

37. Blake, I.F.; Seroussi, G.; Smart, N.P. Elliptic Curves in Cryptography; Cambridge University

Press: New York, NY, USA, 1999.

38. Miller, V.S. Use of Elliptic Curves in Cryptography; Springer-Verlag New York, Inc.: New York,

NY, USA, 1986; pp. 417–426.

39. Meadows, C.; Poovendran, R.; Pavlovic, D.; Chang, L.; Syverson, P.F. Distance Bounding

Protocols: Authentication Logic Analysis and Collusion Attacks. In Secure Localization and

Time Synchronization for Wireless Sensor and Ad Hoc Networks; Poovendran, R., Roy, S.,

Wang, C., Eds.; Springer: Berlin, Germany, 2007; Volume 30, pp. 279–298.

40. Arnaud, M.; Cortier, V.; Delaune, S. Modeling and Verifying Ad Hoc Routing Protocols. Inf.

Comput. 2010, 238, 30–67.

41. Pura, M.L.; Patriciu, V.V.; Bica, I. Formal Verification of Secure Ad Hoc Routing Protocols Using

AVISPA: ARAN Case Study. In Proceedings of the 4th Conference on European Computing

Conference, Bucharest, Romania, 20–22 April 2010; pp. 200–206.

42. Armando, A.; Basin, D.; Boichut, Y.; Chevalier, Y.; Compagna, L.; Cuellar, J.;

Drielsma, P.H.; Heám, P.C.; Kouchnarenko, O.; Mantovani, J.; et al. The AVISPA Tool for the

Automated Validation of Internet Security Protocols and Applications. In Proceedings of 17th

International Conference, CAV 2005, Edinburgh, Scotland, UK, 6–10 July 2005; pp. 281–285.

43. Blanchet, B. Automatic Proof of Strong Secrecy for Security Protocols. In Proceedings of IEEE

Symposium on Security and Privacy, Oakland, CA, USA, 9–12 May 2004, pp. 86–100.

44. Cremers, C.J.F.; Lafourcade, P.; Nadeau, P. Comparing State Spaces in Automatic Security

Protocol Analysis. In Formal to Practical Security; Springer Berlin Heidelberg: Berlin,

Germany, 2009; pp. 70–94.

45. Mansour, I.; Lafourcade, P.; Chalhoub, G. Scyther code of our authentication protocols.

Available online: http://sancy.univ-bpclermont.fr/~lafourcade/scyther-jsan-code.tar (accessed on

26 August 2015).

46. Mansour, I.; Chalhoub, G. Evaluation of different cryptographic algorithms on wireless sensor

network nodes. In Proceedings of International Conference on Wireless Communications in

Unusual and Confined Areas, Clermont Ferrand, France, 28–30 August 2012; pp. 1–6.

http://sancy.univ-bpclermont.fr/~lafourcade/scyther-jsan-code.tar

J. Sens. Actuator Netw. 2015, 4 273

47. IoT-LAB. Available online: https://www.iot-lab.info/ (accessed on 26 August 2015).

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

https://www.iot-lab.info/

	Introduction
	Contributions
	Related Work
	Outline

	Authenticated Join Protocols
	Cryptographic Primitives and Notations
	Join Protocols (DJS and IJS)

	Renewal and Revocation Protocols
	Key Revocation Protocol
	Renewing Symmetric Keys
	Renewing Asymmetric Keys
	Renewing the Network Key
	Multihop Shared Key Protocol

	Key and Protocol Dependency
	Formal Security Evaluation
	Scyther Overview
	Security Analysis

	Experiments
	Settings
	Results and Discussion

	Conclusions and Perspectives

