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Abstract: One of the most common forgotten things of adults is that they go to the shops and completely
forget what they went for. The solution to this problem is to carry a shopping list. In this project, a
novel Internet of Things (IoT)-connected smart canister system is developed, which automatically
senses the item quantity in the canisters using proximity sensor, sends the data to a hub using Bluetooth
Low Energy, and then the hub sends a cloud message to the consumer’s smartphone app using the
Internet. The hub and the smartphone app display the item quantities and automatically add the
items that are about to finish to a digital shopping list. The automatic generation of the shopping list
removes the burden of manually checking each item before going to the shops and gives peace of
mind to the consumers. A prototype of the proposed system with three canister devices, one hub, and
the smartphone app is developed and tested successfully. The canister device consumes ultra-low
power and has a battery life of more than a year.

Keywords: Bluetooth Low Energy (BLE); Wi-Fi; proximity sensor; android things; cloud messaging;
shopping list

1. Introduction

The shopper marketing agency V360 [1] found that most people get distracted and forget what
they went out for shopping, and 92% of people end up coming home without the item they intended to
buy. Half of those surveyed say that they forget on a regular basis [2]. The research published in [3]
suggests that consumers should always use shopping lists as they cannot predict when they are likely to
forget. However, making a shopping list for each grocery item requires to check the remaining quantity
of that item from different containers and canisters, and then write down the items that are finishing
soon on a paper or in a smartphone. This manual process can be time consuming and tiresome.

In this paper, a novel Internet of Things (IoT)-connected smart canister system is developed,
which automatically senses the quantity of the item in the canister, sends the data to a central hub
using Bluetooth Low Energy (BLE), and the hub sends a cloud message to the consumer’s smartphone
app using the Internet. The hub and the smartphone app display the item quantities in the canisters
and add the items that are about to finish to a digital shopping list. The automatic generation of the
shopping list removes the burden of manually checking each item before going to the shops and gives
peace of mind to the consumers. The shopping list can be accessed from any place as long as the
smartphone is connected to the Internet.

In the proposed method, each canister or bottle cap contains a low-power and small-size electronic
device comprising a proximity sensor, a system-on-chip microcontroller with BLE, detector switch, and a
rechargeable battery. The device wakes up from low power sleep mode whenever it is put on the canister,
then it measures the item quantity and sends the data to a central hub using BLE. The central hub is
wirelessly connected with the home Wi-Fi and sends a cloud message using the Internet. The smartphone
app is notified immediately using push notification, then it downloads the item quantity and battery
level data from the cloud, and then adds the items to the shopping list that are less than a threshold level.
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Using the menu of the hub app, a new canister can be added, its configuration can be edited, or existing
canisters can be deleted. A prototype of the proposed system with three canister devices, one hub, and
the smartphone app is developed and tested successfully.

Smart homes and IoT are automating the ability to control and monitor items around the house—
from window shades to pet feeders—with a smartphone or using voice command. Some activities,
like setting up a lamp to turn on and off [4], monitoring a baby’s diaper wetness [5,6], controlling and
monitoring chicken eggs in incubator [7], are some examples. Several works are found in the literature
on generating shopping lists using IoT and smart home technology. In [8], a smart refrigerator is
designed with three cameras to see inside from anywhere using a smartphone. In this technology, the
user first sees the image of the items in the refrigerator and then manually makes a shopping list of
the items that are finishing soon. Thus, this process of generating a shopping list is not automated.
Moreover, some items may not be visible by the camera if the refrigerator is crowded with many food
items. In our proposed system, the bottles can be scattered in any place around a 100-meter radius of
the central hub and do not need to be under direct line of sight of the camera.

In [9–11], smart water bottles are designed that track every sip by a sensor and send total water
consumption to a smartphone app using Bluetooth. The bottle in [9] also glows to give a visual reminder,
and the bottle in [10] generates vibration to drink water to achieve hydration and fitness goals. In [11],
water level data are sent to a smartphone using a Global System for Mobile Communications (GSM)
modem. However, the current consumption of a GSM modem in normal operation is 250 mA and
can rise up to 1 A while transmission [12], which is not practical for a battery-operated IoT device.
The Smart Container in [13] senses when coffee pods are running low and automatically reorders the
item from Amazon. This device connects with home Wi-Fi and has a battery life of around one year.
This product is not general for all kinds of items, rather it is designed for coffee pods only.

In [14], a smart canister system is proposed where the remaining item is detected using a proximity
sensor. It is linked to a smartphone via a Wi-Fi, and the data received are stored in a cloud. The Android
app (which is under development) is supposed to notify when items are running out and automatically
add such items to a shopping list. As this canister connects with the smartphone directly using Wi-Fi,
it will consume 10 times more power than BLE, even if they are performing the same tasks [15]. This
will significantly reduce the battery life, and it will need frequent recharging, which is an overhead.
In this paper, the proposed canister or bottle cap contains an ultra-low power and small-size electronic
device with a rechargeable battery. As it uses BLE to communicate with the central hub, the power
consumption of the device is very low, and it can have a long battery life.

2. Materials and Methods

Whenever the cap is put on the canister, the device wakes up from low power sleep mode,
measures the item quantity using a proximity sensor, and sends the data to a central hub using BLE.
The central hub—that can be attached on a kitchen refrigerator—contains an LCD with a touchscreen to
configure the canisters and to display the item quantities, connection status, and battery levels of each
canister. The central hub is wirelessly connected with the home Wi-Fi, and it sends a cloud message
using the Internet. The smartphone app is notified immediately using push notification; it downloads
the data from the cloud and adds the items to the shopping list that are running below a threshold
level. The overall system architecture of the proposed smart canister system is shown in Figure 1.

The different components of the system are briefly described below.
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Figure 1. The architecture of the smart canister system. (a–c) are smart canisters with the electronic 

device placed in the caps. The canisters are connected wirelessly with the central hub (d) using BLE. 

The central hub displays the item quantities, connection status, and battery levels of each canister. 

The hub is connected with the home router (e) using Wi-Fi. The hub sends cloud message (f) using 

the Internet to the smartphone app (g) to sync the data between hub and smartphone. The items that 

are running below a threshold level are automatically added in the shopping list of (d,g). 

2.1. Smart Canister 

The smart canister measures the remaining quantity of the item inside it and sends the data to 

the central hub whenever the cap is put on the canister. A hardware device is designed for this 

purpose—attached at the bottom of the canister cap. The key design challenge of the device is 

lowering the power consumption as it is powered by a battery. The hardware and firmware of the 

device are briefly described below. 

2.1.1. Hardware 

The block diagram of the hardware unit of the device inside the cap is shown in Figure 2. 
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Figure 2. Block diagram of the hardware device that is attached at the bottom of the canister cap. 

Figure 1. The architecture of the smart canister system. (a–c) are smart canisters with the electronic
device placed in the caps. The canisters are connected wirelessly with the central hub (d) using BLE.
The central hub displays the item quantities, connection status, and battery levels of each canister. The
hub is connected with the home router (e) using Wi-Fi. The hub sends cloud message (f) using the
Internet to the smartphone app (g) to sync the data between hub and smartphone. The items that are
running below a threshold level are automatically added in the shopping list of (d,g).

2.1. Smart Canister

The smart canister measures the remaining quantity of the item inside it and sends the data
to the central hub whenever the cap is put on the canister. A hardware device is designed for this
purpose—attached at the bottom of the canister cap. The key design challenge of the device is lowering
the power consumption as it is powered by a battery. The hardware and firmware of the device are
briefly described below.

2.1.1. Hardware

The block diagram of the hardware unit of the device inside the cap is shown in Figure 2.
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A low-power, small-size system-on-chip (SoC) micro-controller with BLE, nRF52832 [16], is used
as the processing and wireless communication unit. The micro-controller contains an industry-standard
ARM Cortex M4F MCU, 512 kB in-system programmable flash memory, 64 kB RAM, 2.4 GHz BLE
transceiver, 8 analog-to-digital converter (ADC) channels, general-purpose input/output (GPIO), timer,
I2C, and many other peripherals. It has low-power sleep modes, and it is suitable for systems where
ultra-low power consumption is required to increase battery life.

In this project, the nRF52 Feather [17] board is used, which consists of the nRF52832 microcontroller,
USB-serial converter for efficient programming and debugging, a connector for 3.7V lithium polymer
(Li-Po) battery, onboard 3.3 V regulator, and a battery charging circuit. The programming and charging
circuits only get power when the board is connected with USB and do not consume power when the
battery is connected only. When both battery and USB are connected, the charging circuit starts to
charge the battery from USB power. A 3.7 V Li-Po rechargeable battery [18] with a capacity of 2500 mAh
is used as the power source for this hardware unit. In order to monitor the battery voltage—to know
when recharging is needed—an ADC pin is connected to the middle point of a voltage-divider circuit
that is powered by the Li-Po battery.

A proximity sensor [19] is used to measure the distance from the cap to the upper surface of the
item inside the canister. Thus, this sensor measures the height of the empty portion in the canister.
By subtracting the empty portion height from the maximum possible height in the canister, the filled-up
portion in the canister is calculated. The sensor [19] uses a precise clock to measure the time it takes
for infrared light to bounce back from the surface, independent of the surface reflectance. It can
measure distance up to 25 cm. The sensor is connected with the microcontroller using the I2C interface.
In order to reduce power consumption, the sensor is cut off from power when it is not used. An NPN
transistor [20] is used to connect and disconnect the sensor’s ground pin from the power supply ground.
The base of the transistor is controlled by a GPIO pin of the microcontroller, as shown in Figure 2.
The base current flows only for a few seconds during stabilization time and distance measurement,
and then the current is made zero by making the GPIO pin of the microcontroller to LOW to cut off the
power of the distance sensor. Thus, the base current has no significant effect on battery life.

The normally closed (N/C) and common (COM) terminals of a snap action detector switch [21]
are used to detect whether the cap is put on the canister. The lever of the switch gets pressed by the
top wall of the canister when the cap is put on, and the switch’s N/C contacts get opened; the lever of
the switch gets un-pressed when the cap is removed from the canister and the switch’s N/C contacts
get closed. The switch is connected to a GPIO interrupt pin of the microcontroller, and the interrupt
was configured to be triggered on the rising edge. A 1 µF capacitor is connected from the MCU pin to
the ground to filter out the bounce signal from the switch. An external pull-up resistor of 390 kΩ—as
shown in Figure 2—is used to make the pin high when the switch is pressed. The nRF52832 has internal
pull-up resistors (Rpu) with a value of approximately 13 kΩ [16]. If the internal pull-up resistors are
enabled, this branch through the switch will continuously consume 3.3 ÷ 13k = 0.25 mA current as long
as the cap is removed from the canister. This is a significant current. To solve this problem, the internal
pull-up resistor was disabled and a higher value external pull-up resistor of 390 kΩ is used. In this
case, the branch consumes only 3.3 ÷ 390k = 8.46 µA current (measured 8.24 µA in real-time) when
the cap is removed from the canister. Experiments showed that if a higher value of external resistor,
such as 1 MΩ, is used, then too much voltage drops, and the microcontroller pin does not recognize
a rising event interrupt. Thus, 390 kΩ external pull-up resistor is a good design choice. Now, when
the bottle cap is put on the canister, the detector switch gets pressed and the switch’s N/C contacts get
opened. This causes the microcontroller pin to go high and it triggers a rising interrupt event. As the
input resistance of the microcontroller pin is high, the sink current is approximately zero (measured
0.01 µA in real-time).

2.1.2. Firmware

In this proposed system, the canister devices send data to the central hub using BLE. The canister
devices are configured as peripheral and the hub is configured as central [22]. A high-performance
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Bluetooth 5 qualified protocol stack for the nRF52832 SoC—referred to as SoftDevice—is implemented
that contains complete stack with Generic Access Profile (GAP), Generic Attribute Profile (GATT), Link
and other layers [23]. A custom service with a Universally Unique ID (UUID) of 00001400-0000-1000-
8000-00805f9b34fb is created in the GATT profile. Under this service, a custom characteristic with a
UUID of 00001401-0000-1000-8000-00805f9b34fb is created. The characteristic has a data length of
2 bytes—one byte for proximity sensor data and another byte for battery level. Its notify property
is set so that the central hub gets a notification whenever the data in this characteristic is updated.
The device advertises with its GAP data so that it can be found by the central hub. Once the central
hub scans and finds the device, a connection is established.

A real-time operating system (RTOS), known as FreeRTOS [24], is used in the firmware. The firmware
is designed by using event response—known as call-backs—without always running codes inside a
loop. The firmware goes to low power sleep mode and waits for an event to happen to wake up.
Whenever the cap is put on the canister, the detector switch gets pressed, the cap_closed interrupt is
triggered, and the microcontroller wakes up. The interrupt service routine (ISR) then starts a timer and
also applies power to the proximity sensor by making the GPIO pin HIGH that is connected with the
base of the transistor. Within the delay from the timer, the canister is expected to become stable from
motion. After the delay, the timer ISR is called. In this ISR, the timer is first stopped. Then the I2C and
ADC peripherals are enabled, proximity sensor data and battery levels are read, then the I2C and ADC
peripherals are disabled. The sensor and battery level data are then written on the BLE characteristics
and it causes a call-back function to be called in the central hub for reading the data. Finally, the power is
cut off from the sensor by making the GPIO pin—that controls the transistor—LOW. Then the program
goes to low power mode and waits for another event to happen. The actions executed by the device
after the cap is put on the canister are shown in Figure 3.J. Sens. Actuator Netw. 2019, 8, x FOR PEER REVIEW 6 of 13 
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To make the program power efficient, the following configurations were done:

• The frequency of the RTOS tick interrupt (referred to as configTICK_RATE_HZ) was reduced from
1024 Hz to 4 Hz to reduce power. This change caused 200 µA current reduction. The tick interrupt
is used to measure time. Therefore, a higher tick frequency means the timer can measure time to
a higher resolution. The RTOS scheduler will share processor time between tasks of the same
priority by switching between the tasks during each RTOS tick. A high tick rate frequency will
therefore also have the effect of reducing the “time slice” given to each task [24]. The system clock
of the microcontroller (referred to as SystemCoreClock) is 64 MHz and it is not changed. Thus,
the microcontroller executes instructions at a high speed without sacrificing the performance.

• No floating point numbers were used because the floating point unit (FPU) consumes significant
power. To take the microcontroller in low power mode, the exception flags and the pending FPU
interrupts were cleared [25].

• The DC/DC converter of the microcontroller is enabled instead of low dropout (LDO) regulator [26].
• The advertising BLE connection interval was set to 20 ms, and the transmission power level was

set to 0 dB to balance between power consumption and performance. We did an experiment by
reducing the transmission power level to −30 dB, however, no significant reduction of current
consumption was noticed, but created problem during connection.

2.2. Central Hub

In the proposed system, the central hub receives data from multiple smart canisters using BLE
and sends a cloud message using the home Wi-Fi to the smartphone app. The hub is designed with the
state-of-the-art touch-screen-based LCD unit that can be attached to a refrigerator or on the kitchen
wall, showing item quantities, connection status, and battery levels of each canister. The hardware and
app parts of the hub are described below.

2.2.1. Hardware

A Raspberry Pi (RPi) v3 [27] single board computer is used as the main processing unit. It contains
a 1.2 GHz 64-bit quad-core ARMv8 microprocessor, 1 GB of RAM, micro SD card slot supporting up to
32 GB, LCD interface (DSI), on-board BLE and Wi-Fi module, and other built-in hardware peripherals.
A 7-inch capacitive touch LCD [28] is interfaced with the RPi using the DSI and the I2C port. The LCD
has 24-bit color depth and the screen resolution of 800 × 480 pixels. The power supplies for the RPi
board and the touch LCD are supplied using 110 V AC to 5.1 V DC adapters [29].

2.2.2. App

The Android Things [30] embedded operating system is installed on a 16 GB secure digital (SD)
card of the RPi board. Android Things is recently developed by Google, aimed to be used with
low-power and memory constrained IoT devices. The platform can run any program targeting Android
and it also comes with other libraries for accessing hardware peripherals, such as BLE, Wi-Fi, and I2C
of the RPi. The device gets connected to the home router using Wi-Fi and can access the Internet.

The first screen of the app contains a list-view box. Each record in the list-view box shows the
name of the item in the canister, percentage of the item quantity, connection status, and the battery
level. The list-view box reads this information from a comma-separated values (CSV) file. This file
contains the current properties of each canister, such as item name, maximum height, threshold height,
current height, BLE MAC address, battery level, and whether connected with BLE or not.

The app contains a settings menu for configuring the smart canisters. From this menu a canister
can be added, edited, or deleted. To add a canister, the user manually enters the item name of the
canister (such as bean or coffee), maximum possible item height, and threshold height. The item will be
automatically added in the shopping list when the current height of the item goes below the threshold
height. Then the user presses the “Start Scan” button to find the nearby BLE devices that are advertising.
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The nearby BLE devices are added in a list-view box and the user can select the required smart canister’s
MAC address from the list. The item name, maximum height, threshold height, and MAC address are
saved in the CSV file. A canister can be deleted by making a long click on item name of the canister.

After one or more canisters are added, the user presses the “connect” button to get connected with
all the canisters using BLE. The app scans the nearby BLE devices and sends a connection request to those
devices whose MAC addresses match the MAC addresses stored in the CSV file. As there are multiple
canisters, multiple BLE connections are created using an array of instances of BLE manager objects.

Now, whenever the cap of the canister is put on, the hardware device in the cap measures the
height from the cap to the item surface and measures the battery level and sends the data to the hub.
The hub app is notified with new data, it reads the 2 bytes from the BLE characteristic, and it stores the
data in the CSV file. Whenever the CSV file is updated, it refreshes the list-view in the first screen
showing the item quantities and battery levels and also sends a cloud message—with the content
of CSV file—to the smartphone app for data synchronization. Sending the cloud message is done
with a Hypertext Transfer Protocol (HTTP) request. The message is sent using a Server key that is
generated from the cloud server where the smartphone app is registered. The steps executed by the
hub whenever BLE data are received are shown in Figure 4.
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2.3. Firebase Cloud Messaging

Firebase Cloud Messaging (FCM) [31] is used to send data from the hub to the customer’s
smartphone app. FCM is a cross-platform messaging solution that reliably delivers messages at no
cost. Using FCM, a smartphone app can be immediately notified whenever new data are available to
sync. A message can transfer a payload of up to 4 KB to a client app.

2.4. Smartphone App

The smartphone app is developed for the Android platform. It is written with a similar structure
of the hub app with some additional features. The first screen of the app contains a list-view box
showing the name of the item in the canister, the percentage of the item quantity, connection status,
and the battery level. It also contains a button “Shopping List” that is used to display only the items
whose current height is below the threshold height.

The app is added and registered in the FCM for receiving the push notification. A service [32],
named FirebaseMessaging, runs at the background of this app. When it receives a push notification
message from the FCM, a call-back function is called, and the app saves the message in the local
smartphone in a CSV file. The list-view box in the first screen and shopping list is updated with the
CSV file whenever a new message arrives. In this way, the data are synchronized between the hub in
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the home and the user’s smartphone at whatever place the user may be in. The flowchart in Figure 5
shows the actions taken by the smartphone whenever cloud message is received.
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3. Results

A prototype of the proposed smart canister system comprising three canisters, one central hub,
and a smartphone app has been developed, calibrated, and tested successfully. A photograph of the
device, that is attached under the canister cap, is shown in Figure 6. The cap has a diameter of 9 cm.
Two devices were attached with two caps and they are used to measure the item quantity of rice and
lentils as shown in Figure 7.
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The third device prototype was developed on a breadboard, and an ammeter was connected
through the positive wire of the battery to measure the current consumption. The measured current
consumptions of the device at different states are shown in Table 1.

Table 1. Measured current consumption of the device at different states.

Device State Current Consumption (µA)

Advertising ~600
Connected and cap not on the canister 233

Connected and cap on the canister 224

The BLE of the device will advertise only when it needs to be discovered by the central hub. Once
discovered and connected, the device consumes 233 µA when the detector switch is un-pressed—i.e.,
the cap is not put on the canister, and the device consumes 224 µA when the detector switch is pressed—
i.e., the cap is put on the canister. When the cap is put on, the device wakes up from sleep mode,
measures and transmits data for a short amount of time, and again goes to sleep mode. The prototype
uses a Li-Po rechargeable battery with a capacity of 2500 mAh. As the device will be connected and
the cap will be on the canister for most of the time, the battery life of the device is approximately
2500 ÷ 0.224 = 11,160.71 hours, or 465 days.

The photographs of the central hub are shown in Figure 8. The hub’s display shows the item
quantities, connection status, and battery levels of each canister as shown in Figure 8a. A canister can
be added, edited, or deleted from the hub app. Figure 8b shows the properties of the canister that
contains rice. The hardware of the hub is designed with Raspberry Pi board interfaced with LCD is
shown in Figure 8c.
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The screenshots of the smartphone app are shown in Figure 9. The app shows the item quantities,
connection status, and battery levels of each canister in the front screen, as shown in Figure 9a. When
the “Shopping List” button is pressed, the app shows the list of items that are below the threshold
level, as shown in Figure 9b.
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Figure 9. Screenshot of the smartphone app—(a) front screen showing item names in the canisters,
connection status, and battery levels; (b) shopping list showing the items that are below the
threshold levels.

The smart canister system is tested in the real world by taking the smartphone several miles away
from the canisters and the hub. The phone was out of the range of home Wi-Fi and was connected
with the Internet using the cellular network. When the cap was put on the canister, the item quantity,
connection status, and battery level got updated immediately in the smartphone app.

4. Discussion

After the IoT device was attached at the bottom of the cap and the cap was put on the canister,
it was found that the proximity sensor was not accurately measuring the distance from the cap to
the item surface. To solve this problem, the sensor data were calibrated. Several data points were
gathered by recording the true distance and the measured distance by the sensor. Then a plot was
made, and Equation (1) was derived using the curve fitting technique. In Equation (1), dt is the true
distance in millimeter (mm) and dm is the measured distance by the sensor in mm. The hub app and
the smartphone app implement Equation (1) to find the true distance from the sensor data.

dt = 0.9393dm − 9.7424 (1)

The coefficient of determination, denoted by R2, for the linear Equation (1) is 0.997 or 99.7%. R2 is
a statistical measure of how close the data are to the fitted regression line, and it ranges from 0% to
100%. In general, the higher the R2, the better the model fits the data, so the accuracy of the calibrated
sensor data is more than 99%.

When canisters of different sizes and shapes are used, the height may not properly signal the item
quantity as their length and width will vary. One way to solve this is to take the length and width of
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the canister (or diameter for cylindrical canister) during canister configuration, as shown in the screen
in Figure 8b, and calculate the volume from the measured height. The volume, instead of height, will
give more accurate information when canisters of different shapes and sizes are used.

The hardware device prototype under the canister cap is built using microcontroller and proximity
sensor break-out boards. Break-out boards are used to reduce prototype development time and
soldering complexity. However, if bare chips are used in a custom designed printed circuit board
(PCB), the device can be made by spending less than 30 USD including the battery. The price will be
reduced more when it is produced in bulk quantity. The central hub can be developed with 100 USD.
The FCM has no cost, and the smartphone app can be downloaded freely.

The future work includes making PCB with surface mount device (SMD) components to reduce
the device size and cost, using MOSFET [33] to cut-off power from the sensor, implementing the system
for multiple users, and developing the smartphone app in the iOS platform.

5. Conclusions

In this paper, a novel smart canister system is developed that automatically measures the item
quantities and generates a digital shopping list in the smartphone that can be accessed from any place
using the Internet. The canister cap contains a low power IoT device with a battery life of more than
a year.
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