
Journal of 

Actuator Networks
Sensor and

Article

Cloudlet Scheduling by Hybridized Monarch
Butterfly Optimization Algorithm

Ivana Strumberger , Milan Tuba * , Nebojsa Bacanin and Eva Tuba

Faculty of Informatics and Computing, Singidunum University, Danijelova 32, 11010 Belgrade, Serbia;
istrumberger@singidunum.ac.rs (I.S.); nbacanin@singidunum.ac.rs (N.B.); etuba@ieee.org (E.T.)
* Correspondence: tuba@ieee.org; Tel.: +381-653093-223

Received: 30 June 2019; Accepted: 1 August 2019; Published: 11 August 2019
����������
�������

Abstract: Cloud computing technology enables efficient utilization of available physical resources
through the virtualization where different clients share the same underlying physical hardware
infrastructure. By utilizing the cloud computing concept, distributed, scalable and elastic computing
resources are provided to the end-users over high speed computer networks (the Internet).
Cloudlet scheduling that has a significant impact on the overall cloud system performance represents
one of the most important challenges in this domain. In this paper, we introduce implementations
of the original and hybridized monarch butterfly optimization algorithm that belongs to the
category of swarm intelligence metaheuristics, adapted for tackling the cloudlet scheduling problem.
The hybridized monarch butterfly optimization approach, as well as adaptations of any monarch
butterfly optimization version for the cloudlet scheduling problem, could not be found in the literature
survey. Both algorithms were implemented within the environment of the CloudSim platform.
The proposed hybridized version of the monarch butterfly optimization algorithm was first tested on
standard benchmark functions and, after that, the simulations for the cloudlet scheduling problem
were performed using artificial and real data sets. Based on the obtained simulation results and
the comparative analysis with six other state-of-the-art metaheuristics and heuristics, under the
same experimental conditions and tested on the same problem instances, a hybridized version of the
monarch butterfly optimization algorithm proved its potential for tackling the cloudlet scheduling
problem. It has been established that the proposed hybridized implementation is superior to the
original one, and also that the task scheduling problem in cloud environments can be more efficiently
solved by using such an algorithm with positive implications to the cloud management.

Keywords: cloud computing; cloudlet scheduling; NP-hard problems; swarm intelligence; monarch
butterfly optimization

1. Introduction

In the modern era of Industry 4.0 and Smart Manufacturing, concepts and paradigms such as
Cloud Computing and Internet of Things (IoT) are becoming more important by enabling innovations
and advances in many domains [1–3]. As one of the recent examples, the cloud computing as a
promising technological paradigm, plays a significant role in developing future large-scale complex
smart cities applications [4].

By utilizing the cloud computing concept, distributed, scalable and elastic computing resources
are provided to the end-users over high speed computer networks, such as the Internet. Resources in
cloud environments can be anything, from central processing units (CPUs), memory and storage to
development platforms and applications. A cloud computing paradigm enables efficient utilization of
available physical resources through the virtualization technology, where different clients share the
same underlying physical hardware infrastructure.

J. Sens. Actuator Netw. 2019, 8, 44; doi:10.3390/jsan8030044 www.mdpi.com/journal/jsan

http://www.mdpi.com/journal/jsan
http://www.mdpi.com
https://orcid.org/0000-0002-1154-6696
https://orcid.org/0000-0003-3794-3056
https://orcid.org/0000-0002-2062-924X
https://orcid.org/0000-0003-4866-9048
http://dx.doi.org/10.3390/jsan8030044
http://www.mdpi.com/journal/jsan
https://www.mdpi.com/2224-2708/8/3/44?type=check_update&version=4


J. Sens. Actuator Netw. 2019, 8, 44 2 of 39

Scheduling is one of the most important challenges and topics in the cloud computing domain.
In order to provide and to maintain guaranteed quality of service (QoS) to the end-users, cloud systems
should utilize algorithms that map tasks (cloudlets) submitted by the clients to the available resources
in an efficient manner. With the increasing number of resources and submitted tasks, many potential
mapping combinations exist and, in large-scale cloud environments, the cloudlet scheduling problem
belongs to the category of NP (nondeterministic polynomial time) hard optimization. No algorithms
that are able to generate optimal solutions within the polynomial time exist for such kind of problems.

For solving a task scheduling problem in cloud environments, exhaustive search methods and
deterministic algorithms are not able to generate optimal or suboptimal results within a reasonable
computational time, and, for this reason, these approaches can not be applied efficiently in this
domain. The best way to tackle cloudlet scheduling problem is by utilizing heuristic and metaheuristic
based techniques that do not guarantee finding the optimal solution, but are able to obtain satisfying
(near optimal) solutions within the polynomial time.

Since the metaheuristics can efficiently handle massive search space, and, since they proved to be
robust NP-hard problem solvers [5,6], in the area of tasks cloud scheduling, metaheuristic methods like
swarm intelligence may obtain better results than other proposed approaches. Moreover, due to the fact
that many real-life problems such as wireless sensor networks (WSNs) node localization, transportation
problems, portfolio optimization, etc., can be modeled as optimization tasks, metaheuristic algorithms
are widely implemented for addressing many practical NP-hard challenges, as can be seen from
the literature.

1.1. Cloud Computing Definitions and Concept

In the era of advancement of networking and communication, cloud computing technology,
as an emerging paradigm demonstrates how the utilization of the right resources and the available
processing power can lead to the infrastructure that facilitates delivery of hardware and software
resources over the network that satisfies end-users’ requirements. Due to its efficiency in providing
computing resources, as well as for a variety of delivered services, the cloud computing has been widely
adopted by the information technology (IT) industry and by the academic and research communities
around the world.

Many definitions that portray the significance of cloud computing paradigm exist, and one of
them states that the cloud computing presents an elastic and distributed system in which computing
resources such as processing power and storage space, information and software, are propagated
through the network and delivered in the distributed location in the cloud where it can be shared
and obtained [7]. Another definition states that the cloud represents a collection of heterogeneous
hardware and software resources that enables services to the cloud users, hence the fact that is not
necessary the cloud users to have their own hardware and software infrastructure [8]. One of the
most important definitions of cloud computing that is accepted by many major global cloud vendors
is provided by the National Institute of Standards and Technology (NIST). According to this definition,
cloud computing can be described as a model for enabling ubiquitous and convenient on-demand
network access to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction [9].

Two state-of-the-art technologies that enabled the concept of cloud computing and proper
availability and resource management are virtualization and hyper-converged infrastructure
(HCL). Virtualization is technology that enables simultaneous execution of different tasks by the
virtual machines (VMs) that are decoupled from the underlying physical hardware infrastructure.
The hypervisor, or virtual machine monitor (VMM), is a software component that performs
management and control operations of the virtual environment by creating, managing and terminating
VMs. The HCL is computing infrastructure that virtualizes components of the traditional physical



J. Sens. Actuator Netw. 2019, 8, 44 3 of 39

hardware infrastructure by utilizing the “defined by the software” concept. This platform at a bare
minimum includes hypervisor, software-defined networks (SDNs) and software-defined storage (SDS).

The cloud service provider (CSP) is able to deliver software and hardware computing services
and resources to the end-users in an efficient and cost-effective way via the communication network
by exploiting the HCL and virtualization technologies. Some of the most important features of cloud
computing include: scalability of tasks and available resources, dynamic provisioning, load balancing,
fault tolerance, on time resource execution, and resources interoperability [10].

When overviewing a cloud computing concept, two most significant taxonomies of cloud
computing models should be mentioned. First, categorization uses the criteria of service models
and divides cloud computing into three base groups: software as a service (SaaS), platform as a service
(PaaS) and infrastructure as a service (IaaS). The SaaS delivers a software that is available in a form of
hosted service, to the end-users. The PaaS provides platform (operating systems and development
environments), where cloud users are able to develop, install and configure their own applications,
while the PaaS distributes the whole computing infrastructure, such as processing power, networking
and storage, to the cloud system users.

The second taxonomy makes a distinction between public, private, community and hybrid clouds,
by utilizing the criteria of delivery models. The accent here is not on the ownership over cloud resources,
rather on a party who exploits them. As an example, in private cloud environments, the whole cloud
system is being exploited by one single entity (individual or corporate user), while the owner of
the infrastructure may be the party who utilizes it, or the CSP. On the contrary, the public cloud is
shared among many parties. The most prominent examples of public cloud include Amazon Web
Services Elastic Compute Cloud - AWS EC3 (Amazon.com, Inc, Seattle, Washington, USA), Microsoft
Azure (Microsoft Corporation, Redmond, Washington, USA) and Oracle Cloud (Oracle Corporation,
Redwood Shores, California, USA).

Cloud service and delivery models are depicted in Figure 1.

Figure 1. Taxonomies of cloud computing.

1.2. Management and Economy Perspectives of Cloud Computing

Considering the fact that the research that was presented in this paper has both theoretical
and practical (management) contributions (please refer to Section 1.3) from the domain of cloud
computing, in this subsection, we provide some more details regarding management and economic
cloud computing perspectives.



J. Sens. Actuator Netw. 2019, 8, 44 4 of 39

First, we provide data considering the size of cloud computing market, and then we try to identify
the main driving factors that have influence on the rapid growth in popularity, as well as in the usage
of cloud computing services globally.

Since this is very short overview of management and economical cloud computing aspects,
we encourage readers to find additional information in [11–15].

The cloud computing market, as well as the adoption of this model by small and medium-sized
enterprises (SMEs), is rapidly growing. According to the Gartner, the public cloud world-wide revenue
was 182.4 billions of U.S. dollars in 2018, with the prediction that its value will reach 214.3 billions of
U.S. dollars by the end of 2019 [16].

Predictions of the company Gartner about the size of world-wide public cloud market up to the
year 2022, by categories of public cloud services, expressed in billions of U.S. dollars, are shown in
Figure 2.

Figure 2. Gartner’s revenue predictions of the global public cloud market; BpaaS—business process as
a service; CMaSS—cloud management and society services (the data used for generating the graph
was adapted from [16]).

In addition, the cloud computing market and the adoption of this concept by the enterprises is
rapidly growing in the European Union (EU) countries. According to the most recent study conducted
by the Eurostat, in year 2018, 26% of the EU enterprises used cloud computing for email services
and for storing e-documents, while 55% of them utilized some of the advanced cloud services, such
as financial and accounting applications and customer relationship management (CRM) systems.
In addition, according to the Eurostat, more enterprises used public cloud services (18%) compared to
the private cloud (11%) [17].

It is important to mention that, in the year 2018, the use of cloud computing, particular by large
enterprises, increased by 21%, when compared to the year 2014. In Figure 3, we show graph that
visualizes the usage of cloud computing in the year 2014 vs. the year 2018 by EU countries, expressed
in the percentage of companies that utilize this model. We note that, since the data for some countries
were not available for both years, some metrics are omitted.

For the sake of better understanding cloud computing, it is important to realize reasons that
drove its popularity and factors that have influenced the intention to use this relatively new model
of delivering computing resources. An excellent research study of the drivers and barriers of the



J. Sens. Actuator Netw. 2019, 8, 44 5 of 39

cloud computing in SMEs, from the position of the EU may be found in [18]. According to this study,
cost savings and simplifications of the technological infrastructure represent two of the most decisive
factors for the increasing use of cloud computing concept. In addition, according to the same study,
the lack of standardization and the need for new professionals and the emergence of distrust are some
of the barriers to its adoption [18].

The main motivation behind rapid growth in utilization and popularity of cloud computing
concept are generated benefits, particularly for business and economy. According to [19], some of the
most important benefits that cloud computing accomplishes for business may be defined as: software
and hardware cost reductions, maintenance and operational costs reduction, access to services from
any place in the world, market-oriented architecture, potential to transform business process, ability to
establish competitive advantage, easy-to-use cloud-based solutions, etc.

Figure 3. Use of cloud services in the EU countries for the year 2018 vs. year 2014 expressed in the
percentage of companies (the data used for generating the graph was adapted from [17]).

Based on the viewpoint of this paper’s authors, key benefits that an enterprise may acquire
when adopting cloud infrastructure can be summarized as: cost reduction and efficiency, scalability,
data security, disaster recovery (DR), mobility and competitive advantage.

By using the cloud infrastructure, enterprises do not suffer from large initial capital investments
when buying hardware, software and other equipment. In addition, costs related facilities, utilities,
buildings and IT staff are drastically reduced. Due to the benefits of virtualization technology, efficiency
and the degree of utilization of available computing resources is significantly enhanced, which leads
to the further decrease in costs. Another cost related aspect of using the cloud are costs related to
downtime. In the standard IT environments, downtime happens from time to time, and companies
waste large amounts of money on fixing potential issues. On the contrary, downtime is rare in cloud
computing environments.

Traditional IT infrastructure is organized in so-called “IT silos”, which function as separate units.
This may lead to the redundant hardware and under optimal computing resources utilization. In such
environments, it is very difficult to scale up/down computing infrastructure. The cloud environment
enables enterprises to efficiently and quickly scale up or down their IT departments according to
business needs and demands.

In the modern era of cyber attacks, security of the data and systems is one of the major issues.
The SMEs in most cases can not afford to buy sophisticated security appliances, and their systems
and the data are most of the time under great risk. However, since CSPs offer state-of-the-art security
appliances to their users, the SMEs are in a position to obtain sophisticated security devices with
relatively low costs.



J. Sens. Actuator Netw. 2019, 8, 44 6 of 39

Many CSP offer to their clients advanced DR systems with low costs. Many organization that use
traditional IT infrastructure can not afford to implement DR mechanisms and frequently suffer data
outages. Cloud-based services provide quick data recovery for all kinds of emergency scenarios—from
natural disasters to power outages.

Another great benefit of cloud computing is mobile access to enterprise services via smartphones
and other portable devices. In this way, the enterprise is more flexible and can easily adapt to new
tasks and objectives.

Finally, by employing cloud computing concept and models, and by combining together all
above-mentioned cloud computing benefits, an enterprise may accomplish and maintain competitive
edge on the market. Many companies have already realized this, and the adoption of cloud services
rapidly increases every year.

1.3. Research Question, Objectives, Contributions and Paper’s Structure

By reviewing modern literature, it can be concluded that the swarm intelligence metaheuristics
have been successfully applied for tackling different kinds of job (cloudlet) scheduling problems in
cloud computing environments [20,21]. The basic objective, as well as the focus, of the research that is
presented in this paper is to establish further improvements in solving cloud task scheduling problems
by utilization of swarm algorithms.

With the goal of achieving further improvements and efficiencies in cloudlet scheduling in terms
of the makespan objective, we have implemented two versions of the monarch butterfly optimization
(MBO) swarm metaheuristics, one original and one hybridized. The MBO algorithm was recently
proposed by Wang, Deb and Cui [22], and no implementations for cloud computing task scheduling of
the MBO algorithm exist in the literature. By applying a hybridized MBO approach, we have improved
the results that have previously been obtained by other metaheuristics that were tested on the same
problem instance.

The hybridized monarch butterfly optimization approach, as well as adaptations of any
monarch butterfly optimization version for cloudlet scheduling problem, could not be found in
the literature survey.

It should be noted that the authors have been analyzing and performing experiments with the
MBO algorithm before, and the research presented in this paper is the result of authors’ previous
experience in this domain. For example, in ref. [23], the authors have shown an adapted version of
the basic MBO algorithm for radio frequency identification (RFID) network planning problem and, in
ref. [24], adaptations of the MBO for WSNs localization problem were proposed.

The research question addressed in the conducted research can be formulated as follows: “Is it
possible to achieve further enhancements in tackling cloudlet scheduling problem by employing
swarm intelligence metaheuristics”?

Research that is presented in this paper is oriented towards two basic objectives: enhancements
by hybridization of the original MBO algorithm, and improvements in solving cloudlet scheduling
problem by adapting and applying a hybridized MBO implementation to this problem.

Research methodology that was utilized is simulation in the standard environment and with
the typical benchmark instances. Only by using standardized methodology could we establish and
compare performance of our methods with other approaches in a realistic way.

In order to test robustness of the enhanced algorithm, we first performed tests on standard
unconstrained benchmarks and presented comparative analysis with the original implementation.
Later, in the second simulation suite, we conducted experiments for the practical cloudlet scheduling
problem by utilizing artificial and real data sets.

Simulation and practical experiments are conducted in a robust and scalable environment of the
CloudSim framework. All of the details, including the settings of the algorithms’ control parameters,
simulation framework settings and employed data sets are fully provided in this paper, so the



J. Sens. Actuator Netw. 2019, 8, 44 7 of 39

researcher who wants to implement proposed approaches and to run simulations has more than
enough information to do this on her/his own.

In general, a contribution of this paper is threefold: improvements in solving task scheduling
problems in cloud environments by minimizing the makespan objective, implementations of the
original and hybridized MBO algorithm for cloudlet scheduling and improvements by hybridization
of the original MBO approach.

More precisely, contributions of this paper fall into the domain of algorithm improvements and
in the domain of cloud management enhancements. By hybridizing the original MBO, we enhanced
solutions’ quality and convergence, as it was proved in Section 5. Contributions in the area of cloud
management encompass better utilization of cloud infrastructure by establishing lower values of
the makespan objective and the degree of imbalance metric than other methods that were tested on
the same instance of cloudlet scheduling problem. Better utilization of cloud hardware and lower
makespan value in turn have a positive influence on the overall cloud infrastructure and maintenance
costs, QoS and end-users’ satisfaction.

Limitations of the presented research refer to the following: first, only a few data sets from
the real-world cloud environments are available and, secondly, performance could be evaluated
only in simulated environments, since the experiments in real conditions would require large
financial investments.

Paper’s Structure

The remainder of the paper is structured as follows. Due to the relevance with the research that
was conducted for the purpose of this paper, in Section 2, we provide a review of swarm intelligence
metaheuristics and its applications to the cloud computing domain. Moreover, in this section, we briefly
present the most important features of swarm algorithms.

An overview of the task scheduling problem in cloud environments and its mathematical
formulation is given in Section 3. In addition, in this section, we show basic terminology and concepts
that are crucial for understanding cloudlet scheduling problems, such as the notion of virtual machine
and the data center and the cloud scheduling system model.

In Section 4, we first provide a detailed description of the original MBO metaheuristics along
with the theoretical discussion of its drawbacks and potentials for enhancements. Second, we show an
extensive description of the hybrid MBO implementation and its inner workings, and explained how
the hybridized algorithm overcomes deficiencies of its basic implementation.

Details of the algorithm’s control parameters’ adjustments, simulation framework, experimental
results and comparative analysis with other algorithms are provided in Section 5. Experimental setup
and results that are shown in this section are divided into two categories: simulations on the
standard bound-constrained benchmark suite and testing on the practical cloudlet scheduling problem.
Along with the comparative analysis, we provide an analysis of the convergence speed and the
influence of control parameters on the performance of the algorithm.

Finally, in Section 6, the final remarks and research’s implications, along with the possible
directions of future research in this area, are given. The contributions and research implications that are
supported by the data provided in the experimental section are separated into two groups: theoretical
and practical (management).

2. Review of Swarm Intelligence Metaheuristics and Its Applications in Cloud Computing

Metaheuristics can be in general divided into two basic groups: those that are inspired by the
nature, and those that are not inspired by the nature. Nature-inspired (bio-inspired) metaheuristics
can be further categorized as evolutionary algorithms (EA) and swarm intelligence. One of the most
representative examples of EA is a genetic algorithm (GA). The applications of the GA for cloud
computing can be found in the literature survey [25–27].



J. Sens. Actuator Netw. 2019, 8, 44 8 of 39

Swarm intelligence is population-based, stochastic and iterative approaches that try to improve
potential problem solutions in a predefined number of cycles (iterations). The swarm is composed
of relatively simple and unsophisticated agents that collectively exhibit intelligent behavior and
characteristics. According to the survey of modern literature sources, swarm algorithms have many
implementations for the cloud computing domain [28,29].

The particle swarm optimization (PSO) is one of the best known swarm intelligence
representatives [30]. This algorithm was modified/improved and adapted for tackling many real-world
optimization problems [31–33]. The PSO metaheuristics has also implementations for various problems
from cloud computing. For example, in [25], the authors proposed a new model to optimize virtual
machines selection in cloud-IoT health services applications and adapted original PSO and parallel
PSO (PPSO) for tackling this kind of problem. In addition, in [8], by utilizing the PSO-based scheduling
(PSO-COGENT) algorithm, makespan, execution cost and the energy consumption of cloud data
centers, considering deadline as a constraint, were successfully optimized.

Another well-known swarm intelligence metaheuristics is artificial bee colony (ABC) that performs
the search process by simulating honey bee swarms [34]. The ABC approach was successfully tested on
a wider set of benchmark functions [35,36] and it also has many implementations for practical NP-hard
tasks [37–40]. Moreover, the ABC algorithm has been applied to problems from the cloud computing
field [41]. As one representative example, in [42], the authors developed a state-of-the-art hybrid ABC
approach that managed to substantially reduce energy consumption while performing VM migration.

A firefly algorithm (FA), which was devised by Yang in 2009 [43], was inspired by the flashing
behavior of the firefly insects. By examining available literature sources, it can be seen that the FA could
be successfully adapted for different types of practical NP-hard challenges [6,44–47]. This approach
was also tested on standard benchmark problems in modified [48] and hybridized versions [49]. The FA
algorithm was also applied to cloud computing problems, such as load balancing [50] and workflow
scheduling [51].

Another two widely employed swarm intelligence metaheuristics are cuckoo search (CS), devised
by Yang and Deb [52], and the bat algorithm (BA), created by Yang [53]. Both metaheuristics have
various applications for practical NP-hard challenges, RFID network planning problem [54], training
feed-forward neural networks [55] and constrained portfolio optimization [56], and were also tested for
benchmark functions [57,58]. Some of the BA and CS implementations for cloud computing challenges
include scheduling workflow applications [59,60], cloud service composition [61], task scheduling [62]
and load balancing [63].

The moth search (MS) approach is a relatively recent swarm intelligence algorithm that
emulates the phototaxis and Lévy flights of the moths [64]. The MS was tested on a wider set of
bound-constrained and constrained benchmarks [64,65], and also has some implementations for
practical tasks, for example in the domains of wireless sensor networks (WSNs) localization [66] and
drone placement [67]. Only a few implementations of the MS for cloud computing tasks can be found
in the literature [68].

The elephant herding optimization (EHO) also belongs to the group of novel swarm
algorithms [69]. According to the literature survey, many practical EHO implementations can
be found [5,70–72]. In addition, modified versions of the EHO that were tested on standard
benchmark functions exist [73]. By examining the available literature, we concluded that no EHO’s
implementations for the cloud computing domain exist.

The fireworks algorithm (FWA), which has many versions, was devised by Tan in 2010 [74].
This metaheuristics proved to be state-of-the-art NP-hard tasks optimizer for various types of
practical problems [75–80]. In addition, some hybridized FWA versions can be found in the modern
literature [81]. The FWA was successfully adapted for cloud computing problems [82].

Besides all mentioned above, there are also other state-of-the-art swarm intelligence algorithms
that showed outstanding performance for tackling various kinds of practical problems, for example



J. Sens. Actuator Netw. 2019, 8, 44 9 of 39

ant colony optimization (ACO) [83], brain storm optimization (BSO) [84–86], krill herd (KH) [87]
algorithm, tree growth algorithm (TGA) [5,88,89], and many others [90–93].

Some of the other swarm algorithms’ implementations for cloud computing challenges that
should be mentioned are presented in refs. [94,95], while a comprehensive review of swarm algorithms’
applications in a cloud computing domain can be found in refs. [20,21].

3. Cloud Task Scheduling Problem Formulation

In this section of the paper, we briefly describe a model for a cloudlet scheduling problem that
was used for testing purposes of the research presented in this paper, along with the most important
terminology and performance metrics.

The cloud hardware infrastructure is organized within the cloud data centers. The cloud data
centers are composed of a limited number of homogeneous and/or heterogeneous physical servers,
which are frequently referred to as hosts in the modern literature. Hosts are the state-of-the-art
computing hardware, usually HCLs. Each host in the cloud data center has at least the following set
of attributes: host unique identifier (hostID), number of processing elements (processing elements
may be CPUs or CPU cores), performance of each processing element expressed in MIPS (million
instructions per second) units, the size of system RAM memory, available network throughput, etc.

Each physical server (host) in the cloud data center hosts one or more VMs that execute in
a pseudo-parallel manner using time-shared or space-shared VM scheduling policy. The VMs in turn
serve as a platform for a different number of heterogeneous applications and services that represent the
basic unit of execution of submitted user requests [20]. In the context of cloud environment simulators,
end-user requests (tasks) are usually referred as cloudlets. Since the terminology used in this paper is
consistent with the cloud simulators terminology, the terms’ requests, tasks and cloudlets will be used
interchangeably. The VMs have the same properties as the physical server that hosts them.

When end-users submit cloudlets to the cloud system, the cloudlets first come to the task manager
component that performs organization of incoming requests, and provides the status of each task
to the user that submitted it. The task manager then forwards task requests to the task scheduler,
which assigns incoming tasks to the available and appropriate VMs by utilizing a scheduling algorithm.
In the case, if no VMs are available for processing, the task will wait in the queue. When VM finishes
the processing of a current task, VM becomes available for another task, and so on. Each VM executes
a single task at each time step. A system model for task scheduling in cloud environments is depicted
in Figure 4.

Figure 4. Task scheduling system model in cloud environments.

Many definitions of the scheduling exist in the literature. According to the definition provided by
Pinedo in [96], the scheduling is a decision-making process that is regularly used in many services
and manufacturing industries. With the goal to optimize one or more objectives, it deals with the
allocation of available system resources to tasks (jobs) over a given time periods. In distributed



J. Sens. Actuator Netw. 2019, 8, 44 10 of 39

environments, such as cloud computing, the basic role of a scheduler component is to choose the
computational resource in which each cloudlet will be executed. This decision is based on the objective
function. One of the most employed objective functions in modern cloud systems is task completion
time, or makespan [97] that should be minimized. Some of the other objective functions that are
usually taken for research, as well as for the practical purposes include: minimization of the transfer
and communication time, maximization of the throughput, maximization of the load balancing and
resource utilization, and minimization of the computing costs and energy consumption.

For the sake of more realistic comparative analysis with other approaches and, due to its
effectiveness in research, we used similar cloud scheduling mathematical formulation as in [68].
In order to present the mathematical formulation of the cloudlet scheduling problem that is used in
the research presented in this paper, let CI denote the cloud infrastructure that consists of Nph physical
hosts (PH), where in turn each host is comprised of the Nvm virtual machines (VM):

CI = {PH1, PH2, ..., PHi, ..., PHNph}, (1)

where each PHi(i = 1, 2, 3, ..., Nph) can be denoted as:

PHi = {VM1, VM2, ..., VMj, ..., VMNvm}, (2)

where VMj represents the j-th VM that is allocated within the particular physical host. Each VMj is
defined with the following set of properties (attributes):

VMj = {VMIDj, MIPSj}, (3)

where VMIDj and MIPSj denote the unique identifier (serial number) and processing performance in
terms of MIPS units of VMj, respectively.

As already mentioned above, end-users submit set of cloudlets (CLET) that should be mapped
and processes on a available and appropriate VM by using the scheduling algorithm:

CLET = {C1, C2, C3, ..., Ck, ..., CNclet}, (4)

where the Nclet denote the total number of cloudlets (tasks) submitted by the end-users, and cloudlet
Ck represents the k-th cloudlet in the sequence, which is more precisely defined as:

Ck = {CIDk, lengthk, ETCk, Pk}, (5)

where CIDk and lengthk denote the unique identifier and the length expressed in million instruction
(MI) units of the cloudlet k. The Pk represents the priority of the task k, while the ETCk denotes the
expected time to complete for a task k.

The allocation (mapping) of Cclet cloudlets to Nvm VMs has a great impact on the overall cloud
system performance.

The ETC of a k-th task (cloudlet) on the j-th VM can be calculated as follows:

ETCk,j =
lengthk
MIPSj

, (6)

where j = 1, ..., Nvm and k = 1, ..., Nclet.
The ETC matrix can be used as a task model for a cloud environment with heterogeneous

resources [20].
The ETC matrix of a size NcletxNvm denote the execution time required to complete each cloudlet

on a each VM machine [68]:



J. Sens. Actuator Netw. 2019, 8, 44 11 of 39

ETC =


ETC1,1 ETC1,2 ETC1,3 · · · ETC1,j · · · ETC1,Nvm

ETC2,1 ETC2,2 ETC2,3 · · · ETC2,j · · · ETC2,Nvm

ETC3,1 ETC3,2 ETC3,3 · · · ETC3,j · · · ETC3,Nvm

· · · · · · · · · · · · · · · · · · · · ·
ETCNclet ,1 ETCNclet ,2 ETCNclet ,3 · · · ETCNclet ,j · · · ETCNclet ,Nvm

 .

As mentioned above, in this research, we utilized the makespan (MS) objective, as in [68]. In order
to establish the MS objective, first the execution time (ET) of all VMs has to be calculated. The ET of
the j-th VM (ETj) for the cloudlet k depends on the decision variable xk,j [20]:

xk,j =

{
1, if Ck is allocated to VMj,

0, if Ck is not allocated to VMj.
(7)

Then, the ETj, where j is in the range [1, Nvm], can be calculated as:

ETj =
Nclet

∑
k=1

xk,j · ETCk,j. (8)

The MS objective is the maximum of ET for all VMs:

MS = max[ETj]
Nvm
j=1 , (9)

∀k ∈ [1, Nclet]mapped to jth VM, j = 1, 2, 3, ..., Nvm. (10)

Moreover, in addition to the MS objective, to better assess the performance of the proposed
metaheuristics, we have also used the degree of imbalance (DI) that can be calculated as:

DI =
Tmax − Tmin

Tavg
, (11)

where Tmax, Tmin and Tavg denote maximum, minimum and average execution time of all VMs,
respectively. The degree of imbalance was also employed in [68].

The model described is one of the most widely utilized cloudlet (task) scheduling models for
research purposes, due to its clear formulation and easy-to-track performance metrics [68,98]. It is
a single-objective model, with the goal of minimizing the MS objective.

By utilizing this model, the performance of metaheuristics can be clearly defined. Moreover,
since the same model formulation and its variations have been widely adopted in the modern literature,
simulation results of different methods are available. In this way, by performing comparative analysis
with other approaches, we could better establish performance improvements of our approach over
other methods applied to the same model. This represents our main motivation for employing this
model for testing the performance of the hybrid algorithm proposed in this paper.

Besides the cloud computing task scheduling model presented in this paper, many other cloudlet
scheduling models exist for both single-objective and multi-objective optimization. For example,
in [99], a multi-objective task scheduling model, where the makespan and the budget cost objectives
were taken into account, was presented. In this research, the fitness is calculated by combining the
makespan and the budget cost objective values. Another example of multi-objective model was
utilized in [100], with the goals of simultaneously minimizing the execution time and maximizing the
energy efficiency.

When testing algorithms for some more complicated cloudlet scheduling models, the results
may be ambiguous and the performance metrics may be obscured. For this reason, according to our
opinion, when adapting and testing new metaheuristics for cloudlet scheduling, it is better to utilize a
more straightforward model with clearly defined performance metrics and objectives.



J. Sens. Actuator Netw. 2019, 8, 44 12 of 39

4. Original and Hybridized Monarch Butterfly Optimization Algorithm

The monarch butterfly optimization (MBO) was proposed in 2015 by Wang and Deb [22].
The researchers who devised MBO in the very first published paper that describes this metaheuristics
presented testing results on a wider set of standard bound-constrained benchmarks [22]. Early testing
results proved to have great potential of the MBO algorithm in the area of NP-hard optimization.
Since the MBO proved its potential, later the MBO was adapted for some practical NP-hard problems,
such as RFID network planning [23] and node localization in WSNs [24]. In addition, some hybridized
versions of the MBO algorithm were devised [101,102].

In this section of the paper, we first describe the original MBO approach, and later we
present devised hybrid MBO implementation, along with the adaptations for the practical cloudlet
scheduling problem.

4.1. Original Monarch Butterfly Optimization Approach

Monarch butterflies’ spices inhabit regions of North America, and one of the most distinguishable
characteristics that differentiate them from other groups of butterflies is long distance migration.
Every year, monarch butterflies fly thousands of miles from the USA and southern Canada to
Mexico. The migration behavior of monarch butterflies inspired research to simulate such behavior.
More information about the biological background of the MBO algorithm can be obtained from [22].

For the purpose of successful implementation of the MBO, the following simplifications of the
real biological system were applied [22]:

1. monarch butterfly population is situated only in two areas—Land 1 and Land 2;
2. by applying migration and adjusting operator on butterfly in Land 1 or Land 2, an offspring

monarch butterfly is generated;
3. if the fitness of the offspring butterfly is greater than the fitness of its parent, the offspring is

preserved, and it is transferred to the next iteration. On the contrary, the offspring is discarded
from the population, and the parent is left intact;

4. on the solutions (butterflies) from the population with the best fitness, operators are not applied
and they are transferred to the next iteration in the present form. In this way, by utilizing elitist
selection, the performance of the algorithm will not be degraded from one iteration to another.

In order to be consistent with the optimization algorithms’ terminology, instead of the
butterfly, a term solution will be used, and Land 1 and Land 2 will be denoted as subpopulation1
and subpopulation2.

As in the case of every other swarm intelligence algorithm, two basic methods that guide the
search process are exploitation (intensification) and exploration (diversification). The MBO algorithm
performs the exploration and exploitation by utilizing solutions migration and adjusting operators.

4.1.1. Solutions Migration Operator

At the initialization phase of the MBO, the number of solutions in subpopulation1 (Nsp1) and
subpopulation2 (Nsp2) should be determined. For this purpose, Equations (12) and (13) [22] are used:

Nsp1 = ceil(p · Np), (12)

Nsp2 = Np − Nsp1, (13)

where Np represents the number of solutions in the whole population (subpopulation1 plus
subpopulation2), function ceil(x) rounds the argument x to the nearest integer that is greater than or
equal to x, while the ratio of the number of solutions in subpopulation1 (Nsp1) to the total number of
solutions (Np) is denoted as p.



J. Sens. Actuator Netw. 2019, 8, 44 13 of 39

The parameter p play an important role in the MBO’s search process. By adjusting the value of
this parameter, a relative influence of subpopulation1 to the subpoplation2 is established. If the value
of p is large, then most of the total population will be comprised of solutions from subpopulation1,
and vice versa. In the original implementation, the value of p is set to 5/12.

By applying a solutions migration operator, a novel solution in iteration t + 1 is created by
applying one the following equations [22]:

xt+1
i,j = xt

r1,j, (14)

xt+1
i,j = xt

r2,j, (15)

where xt+1
i,j stands for the j-th parameter of the novel xi solution at iteration t + 1, xt

r1,j and xt
r2,j denote

the j-th component of the xr1 and xr2 solutions at the current iteration t, respectively. The solutions r1

and r2 represent a pseudo-random solution from subpopulation1 and subpopulation2.
Whether the novel solution will be directed towards the solution in subpopulation1

or subpopulation2 is determined by taking into account the value of the parameter r that is calculated
according to the following expression:

r = rand · peri, (16)

where peri that indicates a migration period, represents another MBO control parameter, and rand is
a number drawn from the uniform distribution. In our implementations, as well as in the original
MBO’s implementation [22], the value for the peri is set to 1.2.

Finally, when the r ≤ p condition is true, then the j-th component of the solution xi in generation
t + 1 is created by using Equation (14). In the opposite case for generating the j-th component of the
solution xi in generation t + 1, Equation (15) is employed.

The solutions migration operator is applied only to solutions from subpoplation1.

4.1.2. Solutions Adjusting Operator

The second procedure that guides the MBO’s search process is a solutions adjusting operator.
This operator performs both processes—exploration and exploitation. A direction of the search
process depends on the value of the generated pseudo-random number rnd, where two cases can
be distinguished.

In the first case, if the condition rnd ≤ p is satisfied, then the new solution is generated by
applying the following equation to all parameters (components) of the current solution [22]:

xt+1
i,j = xt

best,j, (17)

where xt+1
i,j denotes the j-th parameter of the new solution i, and xt

best,j is the j-th parameter of the
current best solution in the whole population.

In the second case, if rnd > p, then the new solution in the iteration t + 1 is generated by applying
Equation (18) to all parameters of the solution in the iteration t:

xt+1
i,j = xt

r3,j, (18)

where xt
r3,j represents the j-th parameter of the randomly selected solution r3 from subpopulation2.

Moreover, if the condition rnd > BAR is established, newly generated solutions are further
updated by applying [22]:

xt+1
i,j = xt+1

i,j + α× (dxj − 0.5), (19)

where BAR represents solution adjusting rate, and dx is the walk step of the solution i that can be
determined by using Lévy flights:

dx = Levy(xt
i ). (20)



J. Sens. Actuator Netw. 2019, 8, 44 14 of 39

The weighting factor α that is utilized in Equation (19) is given as [22]:

α = Smax/t2, (21)

where Smax is the maximum walk step in which an individual (solution) is able to move in one time
step, while t indicates the current iteration number.

The value of α parameter establishes the balance between the exploitation and exploration.
When α is increased, the search step is longer, and the process of exploration has greater influence on
the algorithm’s execution. In the opposite case, with the decrease of α, the intensification has a more
significant influence on the whole search process.

Solutions adjusting operator is applied only to solutions from subpoplation2.

4.2. Hybridized Monarch Butterfly Optimization Approach

In this subsection, we first emphasize the shortcomings of the original MBO implementation,
and then we show implementation of our proposed hybridized MBO approach that overcomes
observed deficiencies.

4.2.1. Drawbacks of the Original MBO

By performing practical simulations on standard bound-constrained benchmarks, we noticed
some deficiencies in the original MBO’s implementation. In the following few paragraphs, observed
deficiencies will be briefly described.

First, deficiency refers to the insufficient power of the exploration process.
In the basic MBO’s version, solutions migration operator performs the process of exploitation

by moving solutions to the direction of existing solutions in subpopulation1 and subpopulation2.
The second operator, solutions adjusting operator, conducts both processes—exploitation and
exploration. By applying this operator, exploitation is performed by moving solutions in the direction
of the current best solution in the whole population, or in the direction of a randomly selected solution
from the subpopulation2 (please refer to Equations (17) and (18)). Only in the case when the condition
rnd > BAR holds is the process of exploration conducted. However, even in this case, the intensity of
exploration depends on the weighting factor α and the maximum walk step (Smax) that dynamically
decreases during the algorithm’s run (please refer to Equation (21)).

The observed lack of exploration power in early iterations of the algorithm’s execution has
significant influence. In some runs of empirical testing, due to the insufficient exploration power,
the MBO could not find the right part of the search space, which led to the worse mean values.

The second deficiency of the original MBO implementation refers to the inadequate trade-off
between the exploitation and exploration that is set in favor of exploitation. The balance adjustment
between these two processes is crucial for the performance of any swarm algorithm. In early stages
of algorithms’ execution, with the assumption that the right part of the search domain is not found,
this balance should be adjusted in favor of exploration. However, in the later stages, when the
promising domain of the search space is hit, the balance should be shifted towards exploitation.
By testing the MBO on standard benchmark functions, we noticed that, even when the value of Smax

parameter is high, an appropriate balance could not be established.

4.2.2. Details of the Hybrid MBO Approach

With the goal of overcoming observed shortcoming of the original MBO, we devised a hybrid
MBO approach. Hybridization, as a method that combines strengths of two or more metaheursitcs
(algorithms) and at the same time eliminates weaknesses, proved to be an efficient way to improve
original implementations of swarm algorithms. Prior to the research conducted for the purpose of this
paper, the authors have already implemented and tested some hybridized MBO versions [101,102].



J. Sens. Actuator Netw. 2019, 8, 44 15 of 39

Guided by the goal of enhancing the process of exploration, we adopted the mechanism of
discarding exhausted solutions from the population from the ABC metaheuristics. For every solution
in the population, we included an additional attribute trial. In every iteration, in which the current
solution could be improved, a trial parameter is incremented by one. When a value of the trial reaches
a predetermined exhaustiveness value (exh), it is said that this solution is exhausted and it is being
replaced with the randomly generated solution within the lower and upper boundaries of the search
space by utilizing Equation (22). The parameter exh represents an additional control parameter of the
hybrid MBO metaheuristics:

xi,j = φ · (ubj − lbj) + lbj, (22)

where ubj and lbj denote lower and upper bounds of parameter j, respectively, and φ is pseudo-random
number from the range [0, 1]. We should note that this equation is also used in the initialization phase
of the algorithm.

However, by conducting empirical simulation, if the mechanism of discarding exhausted solutions
is being applied during the whole course of algorithm’s execution, then, in later iterations, with the
assumption that the search process has converged to the domain where an optimum resides, too many
solutions are “wasted” on the exploration.

To overcome this, we introduce another parameter, discarding mechanism trigger (dmt)
that controls for how many iterations the mechanism of discarding exhausted solutions from the
population is going to be executed. In most tests, we established the optimum value of this parameter
to round(maxIter/1.5), where maxIter denotes the maximum number of iterations in one execution
(run) of the algorithm, and round(x) function rounds argument x to the closest integer value.
Thus, after round(maxIter/1.5) iterations, discarding the mechanism trigger is not being executed.

We have also noticed that the search process in the original MBO’s implementation in
early iterations may converge too fast to the suboptimal region of the search domain, and the
algorithm frequently gets stuck in one of the local optima. This is a consequence of an inadequately
established balance between the intensification and diversification, particularly in the search
mechanism encapsulated within the solutions migration operator. This operator is applied to every
solutions’ component. To overcome this, we have adapted another control parameter from the ABC
metaheuristics, the modification rate MR. In the method that models solutions migration operator,
for each component of every solution from subpopulation1, we generate pseudo-random number θ,
and only if the condition that the θ ≤ MR is satisfied, then the particular solutions’ components will
be altered according to Equations (14) or (15). Otherwise, the components will be left intact.

By introducing three additional control parameters and the notion of solutions’ exhaustiveness
from the ABC metaheuristics, we enhanced the exploration power of the original MBO approach and
established better exploitation–exploration trade-off. Since modifications of the original MBO were
inspired by the ABC algorithm, new metaheuristics is called MBO-ABC.

Pseudo-code of the MBO-ABC metaheuristics is given in Algorithm 1.



J. Sens. Actuator Netw. 2019, 8, 44 16 of 39

Algorithm 1 Pseudo code of the MBO-ABC metaheuristics

Initialization. Set the iteration counter t to 1, set the maximum iteration maxIter value, set the

values for p, peri,Smax, BAR, exh and dmt parameters; generate random initial population of size Np

by using Equation (22); calculate Nsp1 and Nsp2 sizes of subopopulation1 and subpopulation2 with

Equations (12) and (13); initialize trial property for solutions in the whole population to 0.
Fitness calculation. Evaluate fitness of all solutions
while t < maxIter do

Sort all solutions according to their fitness value
Divide the whole population into subpoplation1 of size Nsp1 and subpopulation2 of size Nsp2
for all solutions in subpopulation1 do

for all components in the solution do

Generate pseudo-random number θ
if θ ≤ MR then

Generate new component by employing Equations (14) or (15)
end if

end for
Choose between old and new solutions according to their fitness value
If the old solution is chosen, increment the value of the trial parameter

end for
for all solutions in subpopulation2 do

for all components in the solution do

Generate new component by utilizing Equations (17)–(20)
end for
Choose between old and new solutions according to their fitness value
If the old solution is chosen, increment the value of the trial parameter

end for
for all solutions in the whole population do

if t ≤ dmt then

Discard solutions for which the condition limit ≥ exh is satisfied and replace them with

randomly created solutions (Equation (22))
end if

end for
Merge newly generated subpopulation1 and subpopulation2 into new population of size Np
Calculate fitness and evaluate new population
Adjust the value of Smax parameter according to Equation (21)
t ++

end while
return The best solution from the population

4.3. Solution Encoding and Algorithms’ Adaptations

One of the greatest challenges in the process of adaptation of any metaheuristics for specific
problem is how to encode candidate problem solutions. According to the problem formulation
given in Section 3, if there are Nclet cloudlets and Nvm VMs, the size of the search space and the
number of possible allocations of cloudlets to VMs are (Nvm)Nclet . In our adaptations of both MBOs’
implementations, the potential solution is represented as a set of cloudlets that should be executed,
where each cloudlet is mapped to the appropriate VMs.

Every individual in the population is encoded as an array of size Nclet, where every element of
the array has the value in the range [1,Nvm]. An example of a candidate solution with Nclet number of
cloudlets and Nvm = 8 is given in Figure 5. In this example, cloudlet C1 is scheduled for execution on



J. Sens. Actuator Netw. 2019, 8, 44 17 of 39

the VM with VMID= 7, cloudlet Ci will be executed on the VM with VMID= 8, while cloudlets C2

and CNclet will be both processed on the VM with VMID of 4.

Figure 5. Example of a solution encoding scheme.

If, as another example, we consider 10 tasks and four VMs, the potential solution can be
represented as [3 2 3 1 4 2 4 2 2 1].

In the initialization phase of each run, the Np number of individuals are randomly generated,
where each individual xi is represented as an array of size Nclet (xi = xi,1, xi,2, xi,3, ..., xi,Nclet ).
Solutions are generated by using the following expression:

xi,j = round(φ · (ub− lb) + lb), (23)

where for all solution components j = 1, 2, 3, ..., Nclet, upper bound (ub) and lower bound (lb) were set
to Nvm and 1, respectively. The φ is pseudo-random number from the interval [0, 1].

Since the search space is relatively large, there was no need to adapt metaheuristics for integer
programming problems. In Equation (23), as well as in Equations (19) and (20), results are rounded to
the closest integer value using simple round function.

5. Practical Simulations

When a new metaheuristics is devised, or existing is improved/modified/upgraded/hybridized,
it first should be tested on a wider range of benchmark problems. Due to this reason, in this
section of the paper, we first show simulation (testing) results of the MBO-ABC on some of the
well-known bound-constrained benchmarks, along with the comparative analysis with the basic MBO
implementation. In this way, the improvements, in the terms of convergence speed and solutions’
quality, of the MBO-ABC over the original MBO can be established.

In the second suite of conducted simulations, we tested MBO-ABC on a practical cloudlet
scheduling problem by utilizing two sets of data: artificial data generated in the CloudSim simulation
environment and the real data taken from the real log-traces of the real-world cloud infrastructure.
In both cases, we performed comparative analysis with other state-of-the-art approaches for task
scheduling in cloud environments.

5.1. Experimental Suite 1: Bound-Constrained Benchmarks

In the following subsections, we show benchmark functions, algorithms’ parameters adjustments
and comparative analysis between the MBO-ABC and the basic MBO.

5.1.1. Benchmark Functions and Parameter Settings

As stated above, in the first set of simulations, we tested the MBO-ABC metaheuristics on a group
of eight standard bound-constrained (unconstrained) benchmarks. Details of the benchmarks are
shown in Table 1.

Metaheuristics parameters’ adjustments are summarized in Table 2. For the sake of better distinction
between parameters, parameters are categorized into three groups: basic initialization parameters,
MBO and MBO-ABC common control parameters and MBO-ABC specific control parameters.



J. Sens. Actuator Netw. 2019, 8, 44 18 of 39

Table 1. Unconstrained benchmark function details.

ID Name of the Benchmark Parameter Range Optimum Separability Modality

F1 Alpine [−10,10] 0.00 separable multimodal
F2 Brown [−1,4] 0.00 nonseparable unimodal
F3 Dixon & Price [−10,10] 0.00 nonseparable multimodal
F4 Fletcher–Powell [−π,π] 0.00 nonseparable multimodal
F5 Powell [−4,5] 0.00 separable unimodal
F6 Rastrigin [−5.12,5.12] 0.00 nonseparable multimodal
F7 Schwefel 2.21 [−100,100] 0.00 nonseparable unimodal
F8 Zakharov [−5,10] 0.00 nonseparable unimodal

The group of basic initialization parameters includes settings that are used in all population-based
metaheuristics, while the other two groups further separate control parameters that are common for both
algorithms, MBO and MBO-ABC, from the parameters that are specific for the MBO-ABC implementation.

One of the greatest challenges when adapting and testing any swarm intelligence algorithm is
how to choose optimal values of control parameters. The optimal control parameters’ values of swarm
intelligence algorithms depend on the particular problem, and in most cases they are determined
empirically, by conducting practical simulations.

We used the same values for the basic initialization parameters and for the parameters that are
in common for MBO and MBO-ABC as in the paper [22], where the MBO was firstly proposed.
The authors of the MBO have been performing extensive empirical simulations and they have
determined optimal MBO parameters’ values for the bound-constrained benchmarks. On the other
hand, in the case of the exh and dmt MBO-ABC specific control parameters, we established optimal
values by performing practical simulations. Since the MR parameter was adopted from the ABC
algorithm, we set the value of this parameter as suggested in ref. [35].

Table 2. MBO-ABC and MBO parameters’ adjustments.

Parameter Name Parameter Notation Parameter Value

Basic initialization parameters

Total number of solutions in the population Np 50
Number of solutions in subpopulation1 Nsp1 21
Number of solutions in subpopulation2 Nsp2 29

Maximum number of iterations maxIter 50

MBO and MBO-ABC common control parameters

Migration ratio p 5/12
Migration period peri 1.2
Maximum step Smax 1.0

Butterfly adjusting rate BAR 5/12

MBO-ABC specific control parameters

Exhaustiveness value exh 4
Discarding mechanism trigger dmt 33

Modification rate MR 0.8

As stated in Table 2, the values of exh and dmt parameters were set to 4 and 33, respectively.
By performing practical simulations, we found that the optimal or near optimal value for the exh
parameter can be calculated by using the following simple expression:

exh = round(
maxIter

Np
· 4). (24)



J. Sens. Actuator Netw. 2019, 8, 44 19 of 39

The value of the dmt parameter is calculated by using the formula round(maxIter/1.5), as it
was already mentioned in Section 4.2.2. Finally, the optimum value for the MR parameter was
chosen empirically.

5.1.2. Testing Results and Analysis

We performed tests with the MBO and the MBO-ABC on eight benchmarks in 30 independent
executions (runs), where, for each run, a different pseudo-random number seed is used. Moreover, we
utilized two tests, one with 30-dimensional (D = 30) and the second with 60-dimensional (D = 60)
solution spaces. In all conducted experiments, we tracked best value, as well as the mean and standard
deviation values that are averaged over 30 independent runs.

Comparative analysis between the MBO-ABC and the basic MBO for benchmarks with
30 dimensions (D = 30) is shown in Table 3. In the presented table, the best results for each indicator
are marked in bold.

Table 3. Comparative analysis—hybridized MBO-ABC vs. original MBO on benchmarks with
dimension D = 30 (bold style is used to indicate better results).

ID Indicator MBO MBO-ABC

Best 0.10 0.08
F1 Mean 12.93 7.06

StdDev 17.19 9.33

Best 0.02 7.66 × 10−3

F2 Mean 196.00 89.05
StdDev 493.80 153.62

Best 31.53 7.32
F3 Mean 3.57 × 108 9.52 × 107

StdDev 3.54 × 108 5.13 × 108

Best 4.63 × 105 2.23 × 105

F4 Mean 8.46 × 105 5.36 × 105

StdDev 2.85 × 105 1.83 × 105

Best 0.67 0.83
F5 Mean 3.16 × 103 2.95 × 103

StdDev 3.58 × 103 3.75 × 103

Best 0.05 0.03
F6 Mean 106.00 87.72

StdDev 84.42 53.92

Best 0.47 0.51
F7 Mean 45.50 32.88

StdDev 45.26 32.15

Best 31.23 1.13
F8 Mean 541.90 425.39

StdDev 357.30 303.91

From the results shown in Table 3, it is evident that the MBO-ABC on average obtains better
results than the original MBO approach. In addition, the exploitation–exploration balance, as well as
the convergence speed is better in the case of the hybrid MBO metaheuristics.

For example, in the case of the test for F2 benchmark, original MBO in early iterations performed
exploitation in the wrong part of the search space. However, in some runs, it hits the right part of the
search space, but, in later iterations, and as a consequence the optimum value can not be achieved.
In the same test, the MBO-ABC manages to find the promising region of the search space in early
iterations, and by performing fine-tuned search in this region in later iterations, an optimum can
be obtained. This can be also concluded from observing the mean values for the same benchmark,



J. Sens. Actuator Netw. 2019, 8, 44 20 of 39

in which case the mean value obtained by the MBO-ABC is more than two times better than the mean
value, which is accomplished by the basic MBO.

Significant performance difference between MBO-ABC and the MBO can also be observed when
comparing results for the F8 benchmark. In this case, all three indicators, best, mean and standard
deviation are substantially better in MBO-ABC simulations. For example, the best value obtained by
the MBO-ABC is almost 30 times lower than the best accomplished by the original MBO. In addition,
when making an overall observation for all eight benchmarks, it can be noticed that the MBO-ABC
managed to obtain better mean value for every conducted simulation. This proves that the MBO-ABC
establishes much better convergence speed than the original MBO.

However, there are few instances where the basic MBO performs better than the MBO-ABC.
Such examples include the following: best indicator for F5 and F7 tests, and the standard deviation
indicators for F3 and F5 benchmarks. In all these cases, the MBO obtained slightly (not significantly)
better results than the MBO-ABC.

Despite of the fact that the basic MBO in few cases performed better than the MBO-ABC, based on
overall simulation results, a conclusion that the MBO-ABC overcomes deficiencies in terms of the
exploration power and exploitation–exploration trade-off of the original MBO approach, can be drawn.

A similar conclusion regarding the performance of the MBO-ABC and the MBO can be deduced
from the results obtained in simulations performed over 60-dimensional search space for the same
benchmark functions. These results are presented in Table 4. In the table shown, the best results for
each indicator are marked in bold.

Table 4. Comparative analysis—hybridized MBO-ABC vs. original MBO on benchmarks with
dimension D = 60 (bold style is used to indicate better results).

ID Indicator MBO MBO-ABC

Best 0.13 0.15
F1 Mean 59.21 41.81

StdDev 61.82 47.19

Best 0.05 0.19
F2 Mean 5.50 × 1014 0.33 × 109

StdDev 3.05 × 1015 5.03 × 109

Best 1.34 × 104 13.29
F3 Mean 2.50 × 109 1.06 × 109

StdDev 2.12 × 109 1.45 × 109

Best 5.20 × 106 7.43 × 106

F4 Mean 7.19 × 106 5.66 × 106

StdDev 1.33 × 106 1.95 × 106

Best 25.18 3.03
F5 Mean 1.29 × 104 1.03 × 104

StdDev 1.22 × 104 1.19 × 104

Best 60.44 32.92
F6 Mean 301.10 299.44

StdDev 158.90 140.50

Best 4.32 2.23
F7 Mean 176.20 145.81

StdDev 86.66 99.33

Best 165.70 13.85
F8 Mean 5.02 × 105 6.96 × 103

StdDev 1.93 × 106 2.91 × 104

Convergence speed graphs of the best run for F2 and F6 benchmarks with D = 30 and D = 60 of
MBO-ABC and MBO metaheuristics are shown in Figures 6 and 7, respectively.



J. Sens. Actuator Netw. 2019, 8, 44 21 of 39

Figure 6. Convergence speed of MBO-ABC and MBO for F2 benchmark with D = 30 and D = 60.

Figure 7. Convergence speed of MBO-ABC and MBO for F6 benchmark with D = 30 and D = 60.

From Figure 6, slightly better performance in the convergence speed for the F2 test of the
MBO-ABC, compared to the basic MBO, can be observed. On the contrary, in the case of F6
60-dimensional benchmark (Figure 7), the MBO-ABC obtains substantially better convergence than
the original MBO. In the 30-dimensional F6 benchmark, both approaches establish almost the same
convergence speed.

Finally, with the goal of providing empirical proofs for the theoretical background of proposed
MBO-ABC algorithm, especially regarding the exploitation–exploration balance (please refer to
Sections 4.2.1 and 4.2.2), we have conducted simulations with varying values of the exh and dmt
parameters, while all other MBO-ABC parameters were set as in Table 2. Despite of the fact that the
value of MR parameter also has influence on the exploitation–exploration trade-off, we did not change
its value, since it was adopted from the ABC algorithm and set as suggested in [35].

With the increase of the exh parameter value, the power of exploitation increases, while at the
same time the intensity of exploration decreases, and vice versa. As stated above, we found that the
optimal value of the exh parameter, with all other parameters set as in Table 2, is 4.



J. Sens. Actuator Netw. 2019, 8, 44 22 of 39

Similarly, as in the case of the exh control parameter, when the value of dmt parameter is increasing,
the diversification power is decreasing, while the intensification capability of the search process is
enhancing. As stated above, we found that the optimal value of the dmt parameter, with all other
parameters set as in the Table 2, is 33. With these settings, optimal balance between the exploitation
and exploration of the MBO-ABC search process can be established.

In Table 5, we show testing results of the MBO-ABC for unconstrained benchmarks with
30 dimensions in size, with exh parameter set to 3, 4 and 5.

Similarly, in Table 6, we show simulation results of the MBO-ABC for unconstrained benchmarks
with 30 dimensions in size, with a dmt parameter set to 32, 33 and 34.

From presented tables, it is clear that the MBO-ABC establishes the best performance regarding
the solutions quality (best values) and convergence speed, when the exh and dmt values are set as
shown in Table 2. With these settings, the balance between exploitation and exploration is appropriate
and the MBO-ABC obtains the best performance.

Table 5. Experiments with varying exh parameter value of the MBO-ABC for benchmarks with
30 dimensions (bold style is used to indicate better results).

ID Indicator exh = 3 exh = 4 exh = 5

Best 0.11 0.08 0.09
F1 Mean 10.54 7.06 10.33

StdDev 15.22 9.33 13.03

Best 9.25 × 10−3 7.66 × 10−3 15.02 × 10−3

F2 Mean 96.15 89.05 93.77
StdDev 303.14 153.62 275.11

Best 16.55 7.32 8.29
F3 Mean 1.53 × 108 9.52 × 107 1.01 × 108

StdDev 8.99 × 108 5.13 × 108 5.28 × 108

Best 3.29 × 105 2.23 × 105 5.06 × 105

F4 Mean 7.66 × 105 5.36 × 105 7.52 × 105

StdDev 2.32 × 105 1.83 × 105 2.68 × 105

Best 0.96 0.83 0.87
F5 Mean 5.05 × 103 2.95 × 103 3.23 × 103

StdDev 4.02 × 103 3.75 × 103 3.81 × 103

Best 0.04 0.03 0.04
F6 Mean 96.91 87.72 93.50

StdDev 67.47 53.92 58.00

Best 0.53 0.51 0.52
F7 Mean 35.51 32.88 35.67

StdDev 36.27 32.15 34.13

Best 5.92 1.13 7.35
F8 Mean 471.20 425.39 485.50

StdDev 337.19 303.91 346.58



J. Sens. Actuator Netw. 2019, 8, 44 23 of 39

Table 6. Experiments with varying dmt parameter value of the MBO-ABC for benchmarks with
30 dimensions (bold style is used to indicate better results).

ID Indicator dmt = 32 dmt = 33 dmt = 34

Best 0.08 0.08 0.09
F1 Mean 9.24 7.06 10.02

StdDev 13.77 9.33 13.85

Best 10.13 × 10−3 7.66 × 10−3 9.12 × 10−3

F2 Mean 99.37 89.05 98.62
StdDev 325.19 153.62 307.66

Best 14.09 7.32 8.05
F3 Mean 2.57 × 108 9.52 × 107 9.85 × 107

StdDev 6.33 × 108 5.13 × 108 6.71 × 108

Best 3.51 × 105 2.23 × 105 5.22 × 105

F4 Mean 6.39 × 105 5.36 × 105 6.13 × 105

StdDev 1.92 × 105 1.83 × 105 2.09 × 105

Best 0.91 0.83 0.85
F5 Mean 5.11 × 103 2.95 × 103 3.07 × 103

StdDev 4.81 × 103 3.75 × 103 3.78 × 103

Best 0.06 0.03 0.04
F6 Mean 99.52 87.72 90.30

StdDev 69.55 53.92 56.82

Best 0.53 0.51 0.53
F7 Mean 34.17 32.88 35.22

StdDev 36.99 32.15 33.82

Best 4.12 1.13 6.92
F8 Mean 461.25 425.39 483.19

StdDev 350.92 303.91 352.34

5.2. Experimental Suite 2: Cloudlet Scheduling Simulations

Cloudlet (task) scheduling simulations were performed in the environment of the CloudSim
toolkit. As noted above, we conducted two types of tests (simulations).

In the first test, an artificial data set that is randomly generated within the simulation platform
is utilized. However, in the second experiment, we used a realistic data set taken from the log-traces of
one production cloud infrastructure.

5.2.1. CloudSim Simulation Environment and Computing Platform

CloudSim is a self-contained framework which provides an extensible simulation toolkit
that enables modeling and simulation of cloud computing systems and application provisioning
environments [103]. The CloudSim Toolkit software, that was released as Open Source under the
Apache Version 2.0 license, has been developed in Java technology by the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory, and it is widely used by the research and academic
community for modeling and testing cloud systems and applications. The CloudSim can be freely
downloaded from the URL: https://github.com/Cloudslab/cloudsim/releases.

The following characteristics of the CloudSim make it a state-of-the-art toolkit for cloud
simulations [103]: it provides repeatable and controlled experimental environment for creating and
modeling cloud entities; it can be easily extended to include user-defined scheduling and allocation
policies; it provides network architecture and infrastructure that can be easily modified; and it enables
VM, host, network and application provisioning.

The whole CloudSim library consists of 12 packages that are used for simulating different kinds
of cloud computing scenarios. The most important package is CloudSim, and it contains classes for
modeling various cloud entities like Datacenter, Cloudlet, Host, VM and DatacenterBroker.

https://github.com/Cloudslab/cloudsim/releases


J. Sens. Actuator Netw. 2019, 8, 44 24 of 39

An overview of the CloudSim class design diagram and architecture is shown in Figure 8.
In the following few paragraphs, we briefly describe some of the most important components of
the CloudSim architecture.

Figure 8. CloudSim architecture (figure was taken from [103]).

Cloudlet represents a class that models application services that are cloud-oriented, such as delivery
of a content and business workflow, and also all other tasks that are submitted by the end-users for
processing to the cloud system. For every application service, before starting the simulation, instruction
length and data transfer overhead need to be defined. The cloudlet class can be easily extended to
model various types of application services.

CloudletScheduler is an abstract class that is used for implementing different policies that define
the way the processing power of VMs is shared between the cloudlets. In the basic CloudSim library,
two types of these policies are available: space-shared (CloudletSchedulerSpaceShared) and time-shared
(CloudletSchedulerTimeShared). Researchers are able to easily extend this class for modeling other
policies, according to the research requirements and the utilized model.

Datacenter class models the underlying hardware architecture, on top of which the VMs execute.
It is used for defining characteristics of host platforms that can be either homogeneous or heterogeneous.
The homogeneous hosts are hosts that share the same hardware configurations (number and type
of CPUs and CPUs cores, memory and storage capacity). In the heterogeneous hosts environment,
different hosts have different physical hardware characteristics. It also should be mentioned that
each Datacenter class instantiates a generalized application provisioning component that implements
a group of policies for bandwidth, memory and storage allocation to hosts and VMs.

DatacenterBroker models a broker entity that acts as an intermediate between the SaaS and
CSPs. The broker performs on behalf of the SaaS providers. When a request submitted by the
end-users arrives, the broker discovers suitable CSPs by querying the cloud information service
(CIS) and undertakes online negotiations for allocation of resources and/or services that can meet
the application’s quality of service (QoS) needs [103]. This class may be extended with the goals of
developing and testing custom broker policies.

The class DatacenterCharacteristics encapsulates information regarding the configuration of various
data center resources. Host is an important CloudSim component that models a physical resource.
This class contains various important data about physical resource characteristics, such as the amount of
available RAM memory and storage capacity, list and type of processing elements (cores), information



J. Sens. Actuator Netw. 2019, 8, 44 25 of 39

about the policy used for sharing processing power between the VMs, and provisioning policies of
bandwidth and memory to the VMs. The VmScheduler class is an abstract class that the Host component
implements, which is used for modeling space-shared and time-shared policies for allocating processor
cores of the physical host to the VMs.

Each Host component of the CloudSim manages and hosts one or many VMs. The Vm class
is used for modeling the VMs. Attributes of the Vm class represent following VM characteristics:
processing speed, accessible memory, size of the storage, and the VM’s internal provisioning policy
that is extended from an abstract CloudletScheduler component [103]. The VmmAllocationPolicy is an
abstract class that models the provisioning policy that a VMM employs for allocating VMs to hosts.
The most important role of this class is to select an available host in the data center that meets the
minimum requirements for deploying the VMs, in terms of the required memory, processing power
and storage.

In the basic CloudSim installation package, some examples of generating and executing
CloudSim simulations are included. Provided example instances are divided into following categories:
basic, network, power and container examples. These examples provide more than enough information
for the researcher to be able to generate and to perform CloudSim experiments on his/her own.

The process of generating CloudSim simulations (simulation life cycle) may be summarized
into the following eight steps: initialization of the CloudSim package, creation of the data center(s),
broker creation, generating cloudlets (defining the workloads), the VM creation, starting simulation
(automated process, handled through discrete events simulation), stopping simulation and printing
results (outputs visualization). In each of these steps, which are visualized in Figure 9, various
components of the CloudSim architecture (data centers, VMs, cloudlets, RAM, processing elements,
provisioning and scheduling policies, etc.) are being implemented.

For more information about the CloudSim toolkit, please refer to [103].
In conducted experimental simulations, we used CloudSim version 3.0.3. For the purposes of

modeling cloud environment and implementing swarm algorithms, we modified some of the base
classes provided in the CloudSim. In all tests, the computing platform with following characteristics
was utilized: Intel R© CoreTM i7-8700K CPU with 32 GB of RAM memory, Windows 10 operating system
and Java SE Development Kit 12.0.1.

5.2.2. Simulations with Artificial Data Set

In the first cloudlet scheduling experiment, we used the same experimental conditions as in [98]
because we wanted to evaluate the performance of our hybridized metaheuristics against other
approaches presented in this paper.

We took makespan for an objective function, as stated in Section 3. For more details about the
problem formulation, please refer to Section 3.

We conducted tests with a different number of tasks (cloudlets), ranging from 100 to 600, as in [98].
Every test instance is conducted in 100 independent algorithms’ runs, and, as the final result, we took
the average of makespan values obtained in all runs. In this way, we wanted to decrease the influence
of the randomization to the obtained results, and, overall, to make more precise evaluation of the
performance of the proposed metaheuristics.

For every run of each test instance, a randomized cloud environment with characteristics shown
in Table 7 is generated.

As can be seen from Table 7, for every independent run, a randomized cloud environment
is created with CPU MIPS for VMs varying in the range between [1860,2660], Cloudlets’ task
length varying within the range of [400–1000], etc. For the cost metrics provided within the
DatacenterCharacteristics CloudSim entity, we took default values.

In performed simulations, we set the arrival rate of cloudlets to 10 tasks per second,
as in [98]. To simulate this behavior, we modified DatacenterBroker CloudSim entity class, particulary
submitCloudlet() method.



J. Sens. Actuator Netw. 2019, 8, 44 26 of 39

Figure 9. CloudSim life cycle.

In ref. [98], an improved version of the ACO metaheuristics, performance budget ACO (PBACO),
for job scheduling in cloud computing is presented and tested against the same data set that we used
in our simulations. In order to make comparative analysis with other heuristics and metaheuristics,
shown in ref. [98], more realistic, we set the value of Np to 20 and maxIter to 50, yielding the total
number of 1000 objective function evaluations (20× 50 = 1000). The PBACO was tested with 10 ants
in the population and 100 iterations, establishing, as in our case, 1000 objective function evaluations.

The value of the exh parameter was calculated according to Equation (24), and was set to
10, while the value of the dmt was set to 33, by using the same expression as in simulations
with bound-constrained benchmarks (please refer to Section 5.1.1). The other MBO and MBO-ABC
parameters were adjusted as shown in Table 2.



J. Sens. Actuator Netw. 2019, 8, 44 27 of 39

Table 7. CloudSim environment configuration for simulations with an artificial data set.

CloudSim Entity Parameter Value

Cloudlet

no. of cloudlets 100–600
cloudlet length 400–1000 (units: MI)

file size 200–1000 (units: MB)
output size (memory) 20–40 (units: MB)

VM

no. of VMs 10
CPU ability 1860–2660 (units: MIPS)

RAM 4096 (units: MB)
bandwidth 100 (units: Mbps)

storage capacity 10 (units: GB)
cloudlet scheduling policy time-shared

VMM Xen
O.S. Linux

no. of CPUs 1

Host

no. of hosts 2
RAM 32 (units: GB)

storage capacity 1 (units: TB)
bandwidth 10 (units: Gbps)

VMs scheduling policy time-shared

Datacenter no. of datacenters 2

First, we wanted to perform comparison between the MBO-ABC and the MBO to measure
improvements of our hybrid algorithm over original MBO implementation for this instance of cloudlet
scheduling problem. Simulation results are visualized in Figure 10.

From the results visualized in Figure 10, it is evident that the MBO-ABC obtains better makespan
value than the original MBO in all test instances. For example, in the case of the test with 100 cloudlets,
the MBO-ABC establishes a decrease of 31.81% in the makespan value compared to the original MBO.
Performance improvements in tests with 600 cloudlets is 8.57%, while the same metric for 300 and
400 cloudlets simulations is around 13%.

Improvements over the original MBO for all test instances with the artificial data set are
summarized in Table 8.

Figure 10. Comparative analysis—MBO-ABC vs. MBO at arrival rate of 10 cloudlets per second with
artificial data set.



J. Sens. Actuator Netw. 2019, 8, 44 28 of 39

Table 8. Improvements over the original MBO in simulations with artificial data set.

Number of Cloudlets Makespan Improvement

100 +31.81%
200 +17.85%
300 +13.88%
400 +10.63%
500 +13.56%
600 +8.57%

Comparative analysis between MBO-ABC and Min-Min, first come first serve (FCSF) heuristics
and ACO and PBACO metaheuristics are depicted in Figure 11. Results for Min-Min, FCFS, ACO and
PBACO are taken from [98]. The original MBO was also included in comparative analysis.

Figure 11. Comparative analysis—MBO-ABC vs. other approaches at arrival rate of 10 cloudlets per
second with an artificial data set.

From the comparative analysis shown in Figure 11, it is interesting to notice that the best
performing metaheuristics is MBO-ABC, the second best is the PBACO, while the third best is the
original MBO. Only in the case of the test with 500 cloudlets, the PBACO establishes the same makespan
value as the MBO-ABC. Original MBO metaheuristics in average (when all test instances are taken
into account) obtains slightly better performance than the original ACO and the Min-Min heuristics.
The FCFS heuristics shows the worst performance among all tested approaches.

Performance increase (makespan value objective decrease) of the MBO-ABC over other heuristics
and metaheuristics included in comparative analysis is summarized in Table 9.

Table 9. Makespan improvements over other metaheuristics.

Number of Cloudlets PBACO ACO Min-Min FCFS

100 +34.78% +37.50% +34.78% +17.85%
200 +11.53% +14.81% +11.53% +61.19%
300 +3.12% +35.41% +11.42% +55.55%
400 +6.66% +28.81% +19.23% +63.41%
500 +0.00% +54.86% +27.14% +67.30%
600 +12.32% +57.04% +35.35% +62.37%



J. Sens. Actuator Netw. 2019, 8, 44 29 of 39

5.2.3. Simulations with a Real Data Set

In order to further test the robustness, solution quality and scalability of the proposed MBO-ABC
metaheuristics, we simulated homogeneous cloud environment, where all VMs have the same
characteristics, with varying number of tasks (from 100 to 2000). However, this time, we took the data
set for the cloudlets parameters from the real-world computing environment.

The cloudlets used in performed simulations were generated from the Sweden standard formatted
workload trace log of high performance computing—HPC2N. This log contains information for
527,371 cloudlets and 240 CPU resources collected in the period, from year 2002 to year 2006.
We retrieved the workload trace log file HPC2N-2002-2.2-cln.swf from the following URL: http:
//www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/. Each row in the workload file represents
characteristics of one cloudlet.

From the first column of the retrieved file, we extracted the cloudlet ID, while the length of each
cloudlet (expressed in million instructions unit), and requested processing element (PE) are extracted
from the columns four and eight, respectively.

In conducted simulations, we used ten VMs with the same configurations, one data center with the
default CloudSim characteristics and two physical hosts. The same simulation environment, as well as
the dataset, was utilized in [68]. In [68], a moth search algorithm hybridized with differential evolution
(MSDE) was adapted and tested for a cloudlet scheduling problem.

For the sake of more objective comparative analysis with MSDE, population size of the MBO-ABC
and MBO metaheuristics Np were set to 30 with the maximum 1000 iterations in one run. The same
control parameters were used in [68].

As in the simulations with the artificial data set, the value of the exh parameter was calculated
according to Equation (24), and was set to 133, while the value of the dmt was set to 667, by using the
same expression as in simulations with bound-constrained benchmarks (please refer to Section 5.1.1).
Other MBO-ABC and MBO parameters were adjusted as shown in Table 2.

The characteristics of VMs and hosts utilized in simulations are summarized in Table 10.

Table 10. CloudSim parameters for simulations with artificial data set.

CloudSim Entity Parameter Value

VM

no. of VMs 10
CPU ability 9726 (units: MIPS)

RAM 512 (units: MB)
bandwidth 1000 (units: Mbps)

storage capacity 10 (units: GB)
cloudlet scheduling policy time-shared

VMM Xen
O.S. Linux

no. of CPUs 1
CPU type Pentium 4 Extreme Edition

Host1

RAM 3 (units: GB)
CPU type Intel Core 2 Extreme X6800

Number of cores (PEs) 2
CPU ability 27079 (units: MIPS)

storage capacity 1 (units: TB)
bandwidth 10 (units: Gbps)

VMs scheduling policy space-shared

Host2

RAM 3 (units: GB)
CPU type Intel Core i7 Extreme Edition 3960X

Number of cores (PEs) 6
CPU ability 177730 (units: MIPS)

storage capacity 1 (units: TB)
bandwidth 10 (units: Gbps)

VMs scheduling policy space-shared

http://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/
http://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/


J. Sens. Actuator Netw. 2019, 8, 44 30 of 39

Like in the previous test (Section 5.2.2), for each test instance (the number of cloudlets),
we executed metaheuristics in 100 independent runs and calculated the averages of the makespan
objective and of the degree of imbalance (DI) indicator (Equation (11)). Unlike in the previous test,
we did not alter the arrival rate of cloudlets in the DatacenterBroker class of the CloudSim environment.

In addition, it should be noted that, since there are 527,371 cloudlets in the data set, in each run,
we have chosen random cloudlets (in test instance with 100 cloudlets, 100 cloudlets were randomly
chosen, etc.). The effect of randomization to the algorithms’ performance is neutralized with 100 runs
for every test instance.

Comparative analysis between the MBO-ABC and the original MBO on a small number of cloudlets
(100–600) and a large number of cloudlets (1000 and 2000) are shown in Figures 12 and 13, respectively.

Figure 12. Comparative analysis—MBO-ABC vs. MBO using HPC2N real trace for a small number
of tasks.

Figure 13. Comparative analysis—MBO-ABC vs. MBO using HPC2N real trace for a large number
of tasks.

From the presented figures, it is evident that the MBO-ABC obtains better performance by
establishing better value for the make span objective, for both test sets, with a smaller number and
larger number of cloudlets. Improvements of the MBO-ABC over to the original MBO expressed in
percents are summarized in Table 11.



J. Sens. Actuator Netw. 2019, 8, 44 31 of 39

Table 11. Improvements of the MBO-ABC over the original MBO in simulations with a HPC2N data set.

Number of Cloudlets Makespan Improvements

100 +18.25%
200 +4.72%
300 +7.19%
400 +7.83%
500 +11.27%
600 +9.75%
1000 +9.61%
2000 +16.03%

A convergence speed graph of the MBO-ABC and the MBO on problem instance with 2000
cloudlets in some of the better runs is given in Figure 14.

Figure 14. MBO-ABC vs. MBO convergence speed for the problem instance with 2000 cloudlets.

From the presented figure, it is interesting to notice that, in early iterations, the MBO-ABC
converges faster than the original MBO metaheuristics. This means that the solutions’ exhaustiveness
mechanism adapted from the ABC algorithm improved the exploitation–exploration balance of the
original MBO, and, in early iterations, MBO-ABC does not get stuck in some of the suboptimal search
space domains. Moreover, by performing careful analysis, it can be observed that the MBO-ABC
already in iterations between 650 and 700 started to perform a fine search in the promising region of
the search space.

As stated above, we compared performance of the MBO-ABC with the MSDE, which was
introduced in [68]. By analyzing [68], we noticed that, in this paper, the results for costs per user
plus makespan were reported, as in [99]. In our analysis, we show only the values of the makespan
(not costs).

In the comparative analysis for small and large number of tasks, which are visualized in
Figures 15 and 16, respectively, we included the original MBO, as well as the round robin (RR)
heuristics. The RR heuristics is used by default within the CloudSim platform.

According to presented results, the performance of the original MBO is significantly below the
performance of the MSDE metaheuristics, but better than the results obtained by the RR method.
On the contrary, hybridized MBO-ABC on average establishes slightly better solution quality than
the MSDE metaheuristics. In simulations with 100, 300, 400, 500, 600 and 2000 cloudlets, MBO-ABC
proved to be better than MSDE, while the MSDE outperformed MBO-ABC in experiments with 200 and



J. Sens. Actuator Netw. 2019, 8, 44 32 of 39

1000 cloudlets. The RR heuristics are included in analysis for proving the superiority of metaheuristics
over heuristics approaches for tackling these kinds of problems.

Figure 15. Comparative analysis—MBO-ABC vs. MSDE vs. RR using HPC2N real trace for a small
number of tasks.

Figure 16. Comparative analysis—MBO-ABC vs. MSDE vs. RR using HPC2N real trace for a large
number of tasks.

Improvements of the MBO-ABC compared to the MSDE and RR in percentage are given in
Table 12.

Table 12. Improvements of the MBO-ABC over MSDE and RR in simulations with an HPC2N data set.

Number of Cloudlets MSDE RR

100 +1.52% +21.01%
200 −3.62% +15.09%
300 +2.28% +10.60%
400 +0.11% +17.68%
500 +3.07% +18.02%
600 +1.33% +17.68%
1000 −0.07% 17.87%
2000 +1.38% +20.34%



J. Sens. Actuator Netw. 2019, 8, 44 33 of 39

Moreover, in simulations with the data set taken from production cloud environment, we have
also included the DI indicator that is formulated according to Equation (11). Comparative analysis
with the DI is shown in Table 13. The best results from each category are marked in bold.

Table 13. Comparative analysis for the DI indicator (best results from each category of test instances
are marked bold).

Number of Cloudlets RR MSDE MBO MBO-ABC

100 2.015933 0.939974 1.130944 0.928832
200 2.132201 1.084389 1.127601 0.984572
300 2.116783 0.979446 1.259612 1.003461
400 1.990805 0.839467 1.102893 0.943278
500 2.135521 0.917298 1.3039980 0.885800
600 1.858426 0.951177 1.100474 1.015604
1000 2.238352 1.01822 1.365704 0.969883
2000 2.085152 0.971754 1.152770 0.980129

Similarly, as in the case of the MS objective, the DI value is averaged over 100 independent
algorithms’ runs is taken. We note that the DI was not taken as an optimization objective.

Results of the DI indicator comparison are as expected. The RR heuristics obtained the worst
values for the DI. The MBO metaheuristics generated higher DI values than the MSDE and MBO-ABC.
Finally, MSDE and MBO-ABC accomplish nearly the same performance for this indicator.

As a general conclusion, it can be stated that the MBO-ABC hybrid metaheuristics are able to
accomplish better solution quality, robustness and scalability than other algorithms that are included
in comparative analysis. Moreover, by applying the MBO-ABC, improvements in solving cloudlet
scheduling problem in cloud computing can be established.

6. Conclusions and Future Work

The basic goal of the research that was presented in this paper is focused towards establishing
further enhancements in tackling cloudlet (task) scheduling problem in cloud computing environments
by utilizing swarm intelligence. This problem belongs to the category of NP-hard tasks and it is being
addressed as one of the most important challenges and topics in the domain of cloud computing.

To achieve a defined goal, we have implemented a cloudlet scheduling model with the makespan
objective, and for this purpose we have adapted two versions of the MBO swarm metaheuristics,
one original and one hybridized with the ABC algorithm (MBO-ABC). Prior to this research,
no adaptations of the MBO approach for the cloud computing challenges could be found in the
literature. By applying a hybridized MBO approach, we have improved the results that have previously
been obtained by other metaheuristics and heuristics that were tested on the same problem instances.

Simulation and practical experiments were conducted in a robust and scalable environment of the
CloudSim framework that is accepted by many researchers world-wide. All of the details, including
the settings of the algorithms’ control parameters, simulation framework setup, and the data sets that
were used in experiments are fully provided in this paper, so the researcher who wants to implement
the proposed approaches and to run simulations has more than enough information to do that.

For the purpose of this research, we have conducted two types of experiments. In the first
experimental suite, we have tested original and the hybridized MBO metaheuristics on a wider set
of bound-constrained (unconstrained) benchmarks, where we performed side-by-side comparison
between these two approaches. We assumed that if the MBO-ABC exhibits better performance than
the original MBO for standard benchmark tests, then it will also establish better solutions’ quality for
practical NP-hard challenges, such as the task scheduling in cloud computing.

In the second experiments suite, we have tested MBO and MBO-ABC on a practical cloudlet
scheduling task, when we also performed two types of tests. In the first test, we utilized a synthetic



J. Sens. Actuator Netw. 2019, 8, 44 34 of 39

data set that was generated in a pseudo-random manner within the CloudSim platform, while, in the
second test, we employed a data set from the real-world computing environment.

According to obtained experimental results and comparative analysis with other heuristics and
metaheuristics that were tested on the same problem instances, and, under the same experimental
conditions, we concluded that the further enhancements in solving task scheduling problems in cloud
environments can be established by employing swarm intelligence methods.

6.1. Theoretical Implications of the Research

According to the contributions of this paper that are shown in Section 1, presented research has
theoretical and management implications.

Theoretical implications refer to the improvements by hybridization of the original MBO
algorithm. The devised MBO-ABC hybrid obtains significantly better results in terms of the solutions’
quality and the convergence than the original MBO approach. Performance of the MBO-ABC was
validated on a various benchmark tests, as was shown in Section 5.

6.2. Management Implications of the Research

Besides improvements of the original MBO algorithm, we adapted basic and hybridized MBO for
the cloudlet scheduling problem and obtained better results in terms of the makespan and the degree
of imbalance than other methods. Improvements in solving a cloud scheduling problem have clearly
defined implications in the area of cloud management.

By decreasing the makespan value and the degree of imbalance, the cloud infrastructure is better
utilized, and the enterprise may obtain financial gains in a way in which the capital investments and
maintenance costs are lowered. For example, if an enterprise may satisfy all business needs by better
hardware utilization, there would be no need for buying additional hardware units. In addition, better
hardware utilization and lower makespan value have an important influence on the QoS, which in
turn may have a positive influence on the end-users’ satisfaction. Besides all mentioned, the money
the company would invest into buying new equipment may be distributed to core business operations.

6.3. Future Research

As part of the future research in this domain, we will adapt and test proposed metaheuristics on
other problems and challenges from the domain of cloud computing, such as workflow scheduling,
load balancing, reduction of energy consumption, VMs migration, etc. Since swarm intelligence shows
great potential in tackling cloud computing challenges, we assume that further improvements and
enhancements in this area can be accomplished.

In accordance with this, as part of our future research, we also plan to implement and to adapt
other swarm intelligence approaches for cloud computing problems and challenges. Moreover, we will
definitely try to improve existing swarm algorithms by performing small changes (modifications
in search equations, control parameters’ adjustments, etc.) and large modification by introducing
hybridization with other heuristics and metaheuristics.

Author Contributions: I.S. and M.T. proposed the idea. I.S., N.B. and E.T. worked on the algorithm’s
implementation and adaptation. The entire research project was conceived and supervised by M.T. The
original draft was written by I.S., N.B. and E.T.; review and editing was performed by M.T. All authors participated
in the conducted experiments and in discussion of the experimental results.

Funding: This research is supported by the Ministry of Education and Science of Republic of Serbia, Grant
No. III-44006.

Conflicts of Interest: The authors declare no conflict of interest.



J. Sens. Actuator Netw. 2019, 8, 44 35 of 39

References

1. Amira, A.; Agoulmine, N.; Bensaali, F.; Bermak, A.; Dimitrakopoulos, G. Special Issue: Empowering eHealth
with Smart Internet of Things (IoT) Medical Devices. J. Sens. Actuator Netw. 2019, 8, 33. [CrossRef]

2. Khan, T. A Low Power IoT-Connected Smart Canister System Creating Automatic Shopping List. J. Sens.
Actuator Netw. 2019, 8, 38. [CrossRef]

3. Saqlain, M.; Piao, M.; Shim, Y.; Lee, J.Y. Framework of an IoT-based Industrial Data Management for Smart
Manufacturing. J. Sens. Actuator Netw. 2019, 8, 25. [CrossRef]

4. Abbas, H.; Shaheen, S.; Elhoseny, M.; Singh, A.K.; Alkhambashi, M. Systems thinking for developing
sustainable complex smart cities based on self-regulated agent systems and fog computing. Sustain. Comput.
Inform. Syst. 2018, 19, 204–213. [CrossRef]

5. Strumberger, I.; Minovic, M.; Tuba, M.; Bacanin, N. Performance of Elephant Herding Optimization and
Tree Growth Algorithm Adapted for Node Localization in Wireless Sensor Networks. Sensors 2019, 19, 2515.
[CrossRef]

6. Bacanin, N.; Tuba, M. Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization
Problem with Entropy Diversity Constraint. Sci. World J. 2014, 2014. [CrossRef]

7. Chaudhary, D.; Kumar, B. Cloudy GSA for load scheduling in cloud computing. Appl. Soft Comput. 2018,
71, 861–871. [CrossRef]

8. Kumar, M.; Sharma, S. PSO-COGENT: Cost and energy efficient scheduling in cloud environment with
deadline constraint. Sustain. Comput. Inform. Syst. 2018, 19, 147–164. [CrossRef]

9. Mell, P.; Grance, T. The NIST definition of cloud computing recommendations of the National
Institute of Standards and Technology. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf (accessed on 24 July 2019).

10. Buyya, R.; Pandey, S.; Vecchiola, C. Cloudbus Toolkit for Market-Oriented Cloud Computing. In Cloud
Computing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 24–44. [CrossRef]

11. Rezaei, R.; Chiew, T.K.; Lee, S.P.; Aliee, Z.S. A semantic interoperability framework for software as a service
systems in cloud computing environments. Expert Syst. Appl. 2014, 41, 5751–5770. [CrossRef]

12. Shiau, W.L.; Chau, P.Y. Understanding behavioral intention to use a cloud computing classroom: A multiple
model comparison approach. Inf. Manag. 2016, 53, 355–365. [CrossRef]

13. Fan, M.; Kumar, S.; Whinston, A.B. Short-term and long-term competition between providers of shrink-wrap
software and software as a service. Eur. J. Oper. Res. 2009, 196, 661–671. [CrossRef]

14. Sultan, N.A. Reaching for the “cloud”: How SMEs can manage. Int. J. Inf. Manag. 2011, 31, 272–278.
[CrossRef]

15. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.;
Stoica, I.; et al. A View of Cloud Computing. Commun. ACM 2010, 53, 50–58. [CrossRef]

16. Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17.5 Percent in 2019. Available online:
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-
public-cloud-revenue-to-g (accessed on 24 July 2019).

17. Cloud Computing—Statistics on the Use by Enterprises. Available online: https://ec.europa.eu/eurostat/
statistics-explained/index.php?title=Cloud_computing_-_statistics_on_the_use_by_enterprises (accessed
on 24 July 2019).

18. Palos-Sanchez, P.R. Drivers and Barriers of the Cloud Computing in SMEs: The Position of the European
Union. Harv. Deusto Bus. Res. 2017, 116–132. [CrossRef]

19. Palos-Sanchez, P.R.; Arenas-Marquez, F.J.; Aguayo-Camacho, M. Cloud Computing (SaaS) Adoption as
a Strategic Technology: Results of an Empirical Study. Mob. Inf. Syst. 2017, 2017. [CrossRef]

20. Mishra, S.K.; Sahoo, B.; Parida, P.P. Load balancing in cloud computing: A big picture. J. King Saud
Univ.—Comput. Inf. Sci. 2018. [CrossRef]

21. Kalra, M.; Singh, S. A review of metaheuristic scheduling techniques in cloud computing. Egypt. Inform. J.
2015, 16, 275–295. [CrossRef]

22. Wang, G.G.; Deb, S.; Cui, Z. Monarch Butterfly Optimization. Neural Comput. Appl. 2015. [CrossRef]
23. Strumberger, I.; Tuba, E.; Bacanin, N.; Beko, M.; Tuba, M. Modified Monarch Butterfly Optimization

Algorithm for RFID Network Planning. In Proceedings of the 2018 6th International Conference on
Multimedia Computing and Systems (ICMCS), Rabat, Morocco, 10–12 May 2018; pp. 1–6. [CrossRef]

http://dx.doi.org/10.3390/jsan8020033
http://dx.doi.org/10.3390/jsan8030038
http://dx.doi.org/10.3390/jsan8020025
http://dx.doi.org/10.1016/j.suscom.2018.05.005
http://dx.doi.org/10.3390/s19112515
http://dx.doi.org/10.1155/2014/721521
http://dx.doi.org/10.1016/j.asoc.2018.07.046
http://dx.doi.org/10.1016/j.suscom.2018.06.002
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://dx.doi.org/10.1007/978-3-642-10665-1_4
http://dx.doi.org/10.1016/j.eswa.2014.03.020
http://dx.doi.org/10.1016/j.im.2015.10.004
http://dx.doi.org/10.1016/j.ejor.2008.04.023
http://dx.doi.org/10.1016/j.ijinfomgt.2010.08.001
http://dx.doi.org/10.1145/1721654.1721672
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://ec.europa.eu/eurostat/statistics-explained/index.php?title = Cloud_computing_-_statistics_on_the_use_by_enterprises
https://ec.europa.eu/eurostat/statistics-explained/index.php?title = Cloud_computing_-_statistics_on_the_use_by_enterprises
http://dx.doi.org/10.3926/hdbr.125
http://dx.doi.org/10.1155/2017/2536040
http://dx.doi.org/10.1016/j.jksuci.2018.01.003
http://dx.doi.org/10.1016/j.eij.2015.07.001
http://dx.doi.org/10.1007/s00521-015-1923-y
http://dx.doi.org/10.1109/ICMCS.2018.8525930


J. Sens. Actuator Netw. 2019, 8, 44 36 of 39

24. Strumberger, I.; Tuba, E.; Bacanin, N.; Beko, M.; Tuba, M. Monarch butterfly optimization algorithm
for localization in wireless sensor networks. In Proceedings of the 2018 28th International Conference
Radioelektronika (RADIOELEKTRONIKA), Prague, Czech Republic, 19–20 April 2018; pp. 1–6. [CrossRef]

25. Elhoseny, M.; Abdelaziz, A.; Salama, A.S.; Riad, A.; Muhammad, K.; Sangaiah, A.K. A hybrid model of
Internet of Things and cloud computing to manage big data in health services applications. Future Gener.
Comput. Syst. 2018, 86, 1383–1394. [CrossRef]

26. Keshanchi, B.; Souri, A.; Navimipour, N.J. An improved genetic algorithm for task scheduling in the cloud
environments using the priority queues: Formal verification, simulation, and statistical testing. J. Syst. Softw.
2017, 124. [CrossRef]

27. Wang, T.; Liu, Z.; Chen, Y.; Xu, Y.; Dai, X. Load Balancing Task Scheduling Based on Genetic Algorithm
in Cloud Computing. In Proceedings of the 2014 IEEE 12th International Conference on Dependable,
Autonomic and Secure Computing, Dalian, China, 24–27 August 2014; pp. 146–152. [CrossRef]

28. Rizk-Allah, R.M.; Hassanien, A.E.; Elhoseny, M.; Gunasekaran, M. A new binary salp swarm algorithm:
Development and application for optimization tasks. Neural Comput. Appl. 2019, 31, 1641–1663. [CrossRef]

29. Boveiri, H.R.; Khayami, R.; Elhoseny, M.; Gunasekaran, M. An efficient Swarm-Intelligence approach for
task scheduling in cloud-based internet of things applications. J. Ambient Intell. Humaniz. Comput. 2018.
[CrossRef]

30. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the 1995 IEEE International
Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

31. Nagireddy, V.; Parwekar, P.; Mishra, T.K. Velocity adaptation based PSO for localization in wireless sensor
networks. Evol. Intell. 2018. [CrossRef]

32. Zhang, L.; Tang, Y.; Hua, C.; Guan, X. A new particle swarm optimization algorithm with adaptive inertia
weight based on Bayesian techniques. Appl. Soft Comput. 2015, 28, 138–149. [CrossRef]

33. Singh, S.P.; Sharma, S.C. A PSO Based Improved Localization Algorithm for Wireless Sensor Network.
Wirel. Pers. Commun. 2018, 98, 487–503. [CrossRef]

34. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-TR06 Technical
report-tr06; Engineering Faculty, Computer Engineering Department, Erciyes University: Kayseri, Turkey,
2005; pp. 1–10.

35. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization:
Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

36. Bacanin, N.; Tuba, M. Artificial Bee Colony (ABC) Algorithm for Constrained Optimization Improved with
Genetic Operators. Stud. Inform. Control 2012, 21, 137–146. [CrossRef]

37. Tuba, M.; Bacanin, N. Artificial bee colony algorithm hybridized with firefly metaheuristic for cardinality
constrained mean-variance portfolio problem. Appl. Math. Inf. Sci. 2014, 8, 2831–2844. [CrossRef]

38. Bacanin, N.; Tuba, M.; Strumberger, I. RFID Network Planning by ABC Algorithm Hybridized with Heuristic
for Initial Number and Locations of Readers. In Proceedings of the 2015 17th UKSim-AMSS International
Conference on Modelling and Simulation (UKSim), Cambridge, UK, 25–27 March 2015; pp. 39–44. [CrossRef]

39. Tuba, M.; Bacanin, N.; Beko, M. Multiobjective RFID Network Planning by Artificial Bee Colony Algorithm
with Genetic Operators. In Advances in Swarm and Computational Intelligence; Tan, Y., Shi, Y., Buarque, F.,
Gelbukh, A., Das, S., Engelbrecht, A., Eds.; Springer: Cham, Switzerland, 2015; pp. 247–254.

40. Tuba, M.; Bacanin, N.; Pelevic, B. Artificial Bee Colony Algorithm for Portfolio Optimization Problems. Int. J.
Math. Model. Methods Appl. Sci. 2013, 7, 888–896.

41. Zahoor, S.; Javaid, S.; Javaid, N.; Ashraf, M.; Ishmanov, F.; Afzal, M.K. Cloud–Fog–Based Smart Grid Model
for Efficient Resource Management. Sustainability 2016, 10, 2079. [CrossRef]

42. Karthikeyan, K.; Sunder, R.; Shankar, K.; Lakshmanaprabu, S.K.; Vijayakumar, V.; Elhoseny, M.;
Manogaran, G. Energy consumption analysis of Virtual Machine migration in cloud using hybrid swarm
optimization (ABC–BA). J. Supercomput. 2018. [CrossRef]

43. Yang, X.S. Firefly algorithms for multimodal optimization. In International Symposium on Stochastic Algorithms;
Springer: Berlin/Heidelberg, Germany, 2009; Volume 5792, pp. 169–178.

44. Bacanin, N.; Tuba, M. Fireworks Algorithm Applied to Constrained Portfolio Optimization Problem.
In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC 2015), Sendai, Japan,
25–28 May 2015.

http://dx.doi.org/10.1109/RADIOELEK.2018.8376387
http://dx.doi.org/10.1016/j.future.2018.03.005
http://dx.doi.org/10.1016/j.jss.2016.07.006
http://dx.doi.org/10.1109/DASC.2014.35
http://dx.doi.org/10.1007/s00521-018-3613-z
http://dx.doi.org/10.1007/s12652-018-1071-1
http://dx.doi.org/10.1007/s12065-018-0170-4
http://dx.doi.org/10.1016/j.asoc.2014.11.018
http://dx.doi.org/10.1007/s11277-017-4880-1
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.24846/v21i2y201203
http://dx.doi.org/10.12785/amis/080619
http://dx.doi.org/10.1109/UKSim.2015.83
http://dx.doi.org/10.3390/su10062079
http://dx.doi.org/10.1007/s11227-018-2583-3


J. Sens. Actuator Netw. 2019, 8, 44 37 of 39

45. Tuba, M.; Bacanin, N.; Pelevic, B. Framework for constrained portfolio selection by the firefly algorithm.
Int. J. Math. Model. Methods Appl. Sci. 2014, 7, 1888–1896.

46. Strumberger, I.; Tuba, E.; Bacanin, N.; Zivkovic, M.; Beko, M.; Tuba, M. Designing Convolutional Neural
Network Architecture by the Firefly Algorithm. In Proceedings of the 2019 International Young Engineers
Forum (YEF-ECE), Costa da Caparica, Portugal, 10 May 2019; pp. 59–65. [CrossRef]

47. Hrosik, R.C.; Tuba, E.; Dolicanin, E.; Jovanovic, R.; Tuba, M. Brain Image Segmentation Based on Firefly
Algorithm Combined with K-means Clustering. Stud. Inform. Control. 2019, 28, 167–176. [CrossRef]

48. Strumberger, I.; Bacanin, N.; Tuba, M. Enhanced Firefly Algorithm for Constrained Numerical Optimization,
IEEE Congress on Evolutionary Computation. In Proceedings of the IEEE International Congress on
Evolutionary Computation (CEC 2017), San Sebastian, Spain, 5–8 June 2017; pp. 2120–2127.

49. Tuba, M.; Bacanin, N. Improved seeker optimization algorithm hybridized with firefly algorithm for
constrained optimization problems. Neurocomputing 2014, 143, 197–207. [CrossRef]

50. Kaur, G.; Kaur, K. An Adaptive Firefly Algorithm for Load Balancing in Cloud Computing.
In Proceedings of the Sixth International Conference on Soft Computing for Problem Solving, Patiala,
India, 23–24 December 2016; Deep, K., Bansal, J.C., Das, K.N., Lal, A.K., Garg, H., Nagar, A.K., Pant, M., Eds.;
Springer: Singapore, 2017; pp. 63–72.

51. SundarRajan, R.; Vasudevan, V.; Mithya, S. Workflow scheduling in cloud computing environment using
firefly algorithm. In Proceedings of the 2016 International Conference on Electrical, Electronics, and
Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 955–960. [CrossRef]

52. Yang, X.S.; Deb, S. Cuckoo search via Levy flights. In Proceedings of the World Congress on Nature &
Biologically Inspired Computing (NaBIC 2009), Coimbatore, India, 9–11 December 2009; pp. 210–214.

53. Yang, X.S. A new metaheuristic bat-inspired Algorithm. Stud. Comput. Intell. 2010, 284, 65–74.
54. Tuba, M.; Bacanin, N. Hybridized Bat Algorithm for Multi-objective Radio Frequency Identification (RFID)

Network Planning. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC 2015),
Sendai, Japan, 25–28 May 2015.

55. Tuba, M.; Alihodzic, A.; Bacanin, N. Cuckoo Search and Bat Algorithm Applied to Training Feed-Forward
Neural Networks. In Recent Advances in Swarm Intelligence and Evolutionary Computation; Yang, X.S., Ed.;
Springer: Cham, Switzerland, 2015; pp. 139–162. [CrossRef]

56. Strumberger, I.; Bacanin, N.; Tuba, M. Constrained Portfolio Optimization by Hybridized Bat Algorithm.
In Proceedings of the 2016 7th International Conference on Intelligent Systems, Modelling and Simulation
(ISMS), Bangkok, Thailand, 25–27 Janurary 2016; pp. 83–88. [CrossRef]

57. Bacanin, N. Implementation and performance of an object-oriented software system for cuckoo search
algorithm. Int. J. Math. Comput. Simul. 2010, 6, 185–193.

58. Yang, X.S.; Ting, T.O.; Karamanoglu, M. Random Walks, Lévy Flights, Markov Chains and Metaheuristic
Optimization. In Future Information Communication Technology and Applications; Springer: Dordrecht,
The Netherlands, 2013; Volume 235; pp. 1055–1064.

59. Kaur, N.; Singh, S. A Budget-constrained Time and Reliability Optimization BAT Algorithm for Scheduling
Workflow Applications in Clouds. Procedia Comput. Sci. 2016, 98, 199–204. [CrossRef]

60. Raghavan, S.; Sarwesh, P.; Marimuthu, C.; Chandrasekaran, K. Bat algorithm for scheduling workflow
applications in cloud. In Proceedings of the 2015 International Conference on Electronic Design, Computer
Networks Automated Verification (EDCAV), Shillong, India, 29–30 Januray 2015; pp. 139–144. [CrossRef]

61. Xu, B.; Sun, Z. A Fuzzy Operator Based Bat Algorithm for Cloud Service Composition. Int. J. Wire.
Mob. Comput. 2016, 11, 42–46. [CrossRef]

62. Agarwal, M.; Srivastava, G.M.S. A Cuckoo Search Algorithm-Based Task Scheduling in Cloud Computing.
In Advances in Computer and Computational Sciences; Bhatia, S.K., Mishra, K.K., Tiwari, S., Singh, V.K., Eds.;
Springer: Singapore, 2018; pp. 293–299.

63. Yakhchi, M.; Ghafari, S.M.; Yakhchi, S.; Fazeli, M.; Patooghi, A. Proposing a load balancing method based on
Cuckoo Optimization Algorithm for energy management in cloud computing infrastructures. In Proceedings
of the 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO),
Istanbul, Turkey, 27–29 May 2015; pp. 1–5. [CrossRef]

64. Wang, G.G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems.
Memet. Comput. 2018, 10, 151–164. [CrossRef]

http://dx.doi.org/10.1109/YEF-ECE.2019.8740818
http://dx.doi.org/10.24846/v28i2y201905
http://dx.doi.org/10.1016/j.neucom.2014.06.006
http://dx.doi.org/10.1109/ICEEOT.2016.7754828
http://dx.doi.org/10.1007/978-3-319-13826-8_8
http://dx.doi.org/10.1109/ISMS.2016.18
http://dx.doi.org/10.1016/j.procs.2016.09.032
http://dx.doi.org/10.1109/EDCAV.2015.7060555
http://dx.doi.org/10.1504/IJWMC.2016.079471
http://dx.doi.org/10.1109/ICMSAO.2015.7152209
http://dx.doi.org/10.1007/s12293-016-0212-3


J. Sens. Actuator Netw. 2019, 8, 44 38 of 39

65. Strumberger, I.; Tuba, E.; Bacanin, N.; Beko, M.; Tuba, M. Hybridized moth search algorithm for constrained
optimization problems. In Proceedings of the 2018 International Young Engineers Forum (YEF-ECE),
Costa da Caparica, Portugal, 4 May 2018; pp. 1–5. [CrossRef]

66. Strumberger, I.; Tuba, E.; Bacanin, N.; Beko, M.; Tuba, M. Wireless Sensor Network Localization Problem by
Hybridized Moth Search Algorithm. In Proceedings of the 2018 14th International Wireless Communications
Mobile Computing Conference (IWCMC), Limassol, Cyprus, 25–29 June 2018; pp. 316–321. [CrossRef]

67. Strumberger, I.; Sarac, M.; Markovic, D.; Bacanin, N. Moth Search Algorithm for Drone Placement Problem.
Int. J. Comput. 2018, 3, 75–80.

68. Elaziz, M.A.; Xiong, S.; Jayasena, K.; Li, L. Task scheduling in cloud computing based on hybrid moth search
algorithm and differential evolution. Knowl.-Based Syst. 2019, 169, 39–52. [CrossRef]

69. Wang, G.G.; Deb, S.; dos S. Coelho, L. Elephant Herding Optimization. In Proceedings of the 2015
3rd International Symposium on Computational and Business Intelligence (ISCBI), Bali, Indonesia,
7–9 December 2015; pp. 1–5.

70. Tuba, E.; Alihodzic, A.; Tuba, M. Multilevel image thresholding using elephant herding optimization
algorithm. In Proceedings of 14th International Conference on the Engineering of Modern Electric Systems
(EMES), Oradea, Romania, 1–2 June 2017; pp. 240–243.

71. Strumberger, I.; Beko, M.; Tuba, M.; Minovic, M.; Bacanin, N. Elephant Herding Optimization Algorithm
for Wireless Sensor Network Localization Problem. In Technological Innovation for Resilient Systems;
Camarinha-Matos, L.M., Adu-Kankam, K.O., Julashokri, M., Eds.; Springer: Cham, Switzerland, 2018;
pp. 175–184.

72. Strumberger, I.; Bacanin, N.; Beko, M.; Tomic, S.; Tuba, M. Static Drone Placement by Elephant Herding
Optimization Algorithm. In Proceedings of the 24th Telecommunications Forum (TELFOR), Belgrade, Serbia,
21–22 November 2017, doi:10.1109/TELFOR.2017.8249469.

73. Strumberger, I.; Bacanin, N.; Tuba, M. Hybridized Elephant Herding Optimization Algorithm for Constrained
Optimization. In Hybrid Intelligent Systems; Abraham, A., Muhuri, P.K., Muda, A.K., Gandhi, N., Eds.;
Springer: Cham, Switzerland, 2018; pp. 158–166.

74. Tan, Y.; Zhu, Y. Fireworks Algorithm for Optimization. Adv. Swarm Intell. LNCS 2010, 6145, 355–364.
75. Tuba, E.; Tuba, M.; Dolicanin, E. Adjusted Fireworks Algorithm Applied to Retinal Image Registration.

Stud. Inform. Control 2017, 26, 33–42. [CrossRef]
76. Tuba, M.; Bacanin, N.; Alihodzic, A. Multilevel image thresholding by fireworks algorithm. In Proceedings

of the 2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA), Pardubice,
Czech Republic, 21–22 April 2015; pp. 326–330. [CrossRef]

77. Tuba, M.; Bacanin, N.; Beko, M. Fireworks algorithm for RFID network planning problem. In Proceedings
of the 2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA), Pardubice,
Czech Republic, 21–22 April 2015; pp. 440–444. [CrossRef]

78. Tuba, E.; Strumberger, I.; Bacanin, N.; Tuba, M. Bare Bones Fireworks Algorithm for Capacitated p-Median
Problem. In Advances in Swarm Intelligence; Tan, Y., Shi, Y., Tang, Q., Eds.; Springer: Cham, Switzerland, 2018;
pp. 283–291.

79. Strumberger, I.; Tuba, E.; Bacanin, N.; Beko, M.; Tuba, M. Bare Bones Fireworks Algorithm for the RFID
Network Planning Problem. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC),
2018, pp. 1–8. [CrossRef]

80. Tuba, E.; Strumberger, I.; Bacanin, N.; Jovanovic, R.; Tuba, M. Bare Bones Fireworks Algorithm for Feature
Selection and SVM Optimization. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation
(CEC), Wellington, New Zealand, 10–13 June 2019, pp. 2207–2214. [CrossRef]

81. Bacanin, N.; Tuba, M.; Beko, M. Hybridized Fireworks Algorithm for Global Optimization. Math. Methods
Syst. Sc. Eng. 2015, 41, 108–114.

82. Li, J.; Tian, Q.; Zhang, G.; Wu, W.; Xue, D.; Li, L.; Wang, J.; Chen, L. Task scheduling algorithm based on
fireworks algorithm. EURASIP J. Wirel. Commun. Netw. 2018, 2018. [CrossRef]

83. Jovanovic, R.; Tuba, M. An ant colony optimization algorithm with improved pheromone correction strategy
for the minimum weight vertex cover problem. Appl. Soft Comput. 2011, 11, 5360–5366. [CrossRef]

84. Tuba, E.; Strumberger, I.; Zivkovic, D.; Bacanin, N.; Tuba, M. Mobile Robot Path Planning by Improved Brain
Storm Optimization Algorithm. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation
(CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [CrossRef]

http://dx.doi.org/10.1109/YEF-ECE.2018.8368930
http://dx.doi.org/10.1109/IWCMC.2018.8450491
http://dx.doi.org/10.1016/j.knosys.2019.01.023
http://dx.doi.org/10.24846/v26i1y201704
http://dx.doi.org/10.1109/RADIOELEK.2015.7129057
http://dx.doi.org/10.1109/RADIOELEK.2015.7129049
http://dx.doi.org/10.1109/CEC.2018.8477990
http://dx.doi.org/10.1109/CEC.2019.8790033
http://dx.doi.org/10.1186/s13638-018-1259-2
http://dx.doi.org/10.1016/j.asoc.2011.05.023
http://dx.doi.org/10.1109/CEC.2018.8477928


J. Sens. Actuator Netw. 2019, 8, 44 39 of 39

85. Tuba, E.; Strumberger, I.; Bacanin, N.; Zivkovic, D.; Tuba, M. Cooperative clustering algorithm based on brain
storm optimization and K-means. In Proceedings of the 2018 28th International Conference Radioelektronika
(RADIOELEKTRONIKA), Prague, Czech Republic, 19–20 April 2018; pp. 1–5. [CrossRef]

86. Tuba, E.; Strumberger, I.; Bacanin, N.; Zivkovic, D.; Tuba, M. Brain Storm Optimization Algorithm for
Thermal Image Fusion using DCT Coefficients. In Proceedings of the 2019 IEEE Congress on Evolutionary
Computation (CEC), Wellington, New Zealand, 10–13 June 2019, pp. 234–241. [CrossRef]

87. Bacanin, N.; Tuba, M.; Pelevic, B. Krill Herd (KH) Algorithm for Portfolio Optimization. In Proceedings of
the 14th International Conference on Mathematics and Computers in Business and Economics (MCBE ’13),
Baltimore, MD, USA, 17–19 September 2013; pp. 39–44.

88. Cheraghalipour, A.; Hajiaghaei-Keshteli, M.; Paydar, M.M. Tree Growth Algorithm (TGA): A novel approach
for solving optimization problems. Eng. Appl. Artif. Intell. 2018, 72, 393–414. [CrossRef]

89. Strumberger, I.; Tuba, E.; Zivkovic, M.; Bacanin, N.; Beko, M.; Tuba, M. Dynamic Search Tree
Growth Algorithm for Global Optimization. In Technological Innovation for Industry and Service Systems;
Camarinha-Matos, L.M., Almeida, R., Oliveira, J., Eds.; Springer: Cham, Switzerland, 2019; pp. 143–153.

90. Yu, S.; Xu, Y.; Jiang, P.; Wu, F.; Xu, H. Node Self-Deployment Algorithm Based on Pigeon Swarm Optimization
for Underwater Wireless Sensor Networks. Sensors 2017, 17. [CrossRef]

91. Elhoseny, M.; Shankar, K.; Lakshmanaprabu, S.K.; Maseleno, A.; Arunkumar, N. Hybrid optimization with
cryptography encryption for medical image security in Internet of Things. Neural Comput. Appl. 2018.
[CrossRef]

92. Cheng, L.; Wu, X.-H.; Wang, Y. Artificial Flora (AF) Optimization Algorithm. Appl. Sci. 2018, 8, 329.
[CrossRef]

93. Shankar, K.; Lakshmanaprabu, S.K.; Khanna, A.; Tanwar, S.; Rodrigues, J.J.; Roy, N.R. Alzheimer detection
using Group Grey Wolf Optimization based features with convolutional classifier. Comput. Electr. Eng. 2019,
77, 230 –243. [CrossRef]

94. Anwar, N.; Deng, H. A Hybrid Metaheuristic for Multi-Objective Scientific Workflow Scheduling in a Cloud
Environment. Appl. Sci. 2018, 8. [CrossRef]

95. Gao, R.; Wu, J. Dynamic Load Balancing Strategy for Cloud Computing with Ant Colony Optimizatio.
Future Internet 2015, 7, 465–483. [CrossRef]

96. Pinedo, M. Scheduling: Theory, Algorithms, and Systems; Prentice Hall international series in industrial and
systems engineering; Springer: Cham, Switzerland, 2008.

97. Bittencourt, L.F.; Goldman, A.; Madeira, E.R.; da Fonseca, N.L.; Sakellariou, R. Scheduling in distributed
systems: A cloud computing perspective. Comput. Sci. Rev. 2018, 30, 31–54. [CrossRef]

98. Zuo, L.; Shu, L.; Dong, S.; Zhu, C.; Hara, T. A Multi-Objective Optimization Scheduling Method Based on
the Ant Colony Algorithm in Cloud Computing. IEEE Access 2015, 3, 2687–2699. [CrossRef]

99. Sreenu, K.; Sreelatha, M. W-Scheduler: Whale optimization for task scheduling in cloud computing.
Clust. Comput. 2017. [CrossRef]

100. Peng, H.; Wen, W.S.; Tseng, M.L.; Li, L.L. Joint optimization method for task scheduling time and energy
consumption in mobile cloud computing environment. Appl. Soft Comput. 2019, 80, 534–545. [CrossRef]

101. Strumberger, I.; Tuba, E.; Bacanin, N.; Beko, M.; Tuba, M. Modified and Hybridized Monarch Butterfly
Algorithms for Multi-Objective Optimization. In Hybrid Intelligent Systems; Madureira, A.M., Abraham, A.,
Gandhi, N., Varela, M.L., Eds.; Springe: Cham, Switzerland, 2020; pp. 449–458.

102. Strumberger, I.; Sarac, M.; Markovic, D.; Bacanin, N. Hybridized Monarch Butterfly Algorithm for Global
Optimization Problems. Int. J. Comput. 2018, 3, 63–68.

103. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.F.; Buyya, R. CloudSim: A Toolkit for Modeling
and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms.
Softw. Pract. Exp. 2011, 41, 23–50. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/RADIOELEK.2018.8376369
http://dx.doi.org/10.1109/CEC.2019.8790206
http://dx.doi.org/10.1016/j.engappai.2018.04.021
http://dx.doi.org/10.3390/s17040674
http://dx.doi.org/10.1007/s00521-018-3801-x
http://dx.doi.org/10.3390/app8030329
http://dx.doi.org/10.1016/j.compeleceng.2019.06.001
http://dx.doi.org/10.3390/app8040538
http://dx.doi.org/10.3390/fi7040465
http://dx.doi.org/10.1016/j.cosrev.2018.08.002
http://dx.doi.org/10.1109/ACCESS.2015.2508940
http://dx.doi.org/10.1007/s10586-017-1055-5
http://dx.doi.org/10.1016/j.asoc.2019.04.027
http://dx.doi.org/10.1002/spe.995
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Cloud Computing Definitions and Concept
	Management and Economy Perspectives of Cloud Computing
	Research Question, Objectives, Contributions and Paper's Structure

	Review of Swarm Intelligence Metaheuristics and Its Applications in Cloud Computing
	Cloud Task Scheduling Problem Formulation
	Original and Hybridized Monarch Butterfly Optimization Algorithm
	Original Monarch Butterfly Optimization Approach
	Solutions Migration Operator
	Solutions Adjusting Operator

	Hybridized Monarch Butterfly Optimization Approach
	Drawbacks of the Original MBO 
	Details of the Hybrid MBO Approach

	Solution Encoding and Algorithms' Adaptations

	Practical Simulations
	Experimental Suite 1: Bound-Constrained Benchmarks
	Benchmark Functions and Parameter Settings
	Testing Results and Analysis

	Experimental Suite 2: Cloudlet Scheduling Simulations
	CloudSim Simulation Environment and Computing Platform
	Simulations with Artificial Data Set
	Simulations with a Real Data Set


	Conclusions and Future Work
	Theoretical Implications of the Research
	Management Implications of the Research
	Future Research

	References

