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Abstract:



This paper studies the generalized spatial two stage least squares (GS2SLS) estimation of spatial autoregressive models with autoregressive disturbances when there are endogenous regressors with many valid instruments. Using many instruments may improve the efficiency of estimators asymptotically, but the bias might be large in finite samples, making the inference inaccurate. We consider the case that the number of instruments K increases with, but at a rate slower than, the sample size, and derive the approximate mean square errors (MSE) that account for the trade-offs between the bias and variance, for both the GS2SLS estimator and a bias-corrected GS2SLS estimator. A criterion function for the optimal K selection can be based on the approximate MSEs. Monte Carlo experiments are provided to show the performance of our procedure of choosing K.
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1. Introduction


This paper considers the instrumental variable (IV) estimation of the spatial autoregressive (SAR) model with SAR disturbances (SARAR model) in the presence of endogenous regressors and many instruments. We study the case where the number of instruments increases with the sample size and derive asymptotic distributions of the generalized spatial two stage least squares (GS2SLS) estimator and a bias-corrected GS2SLS (CGS2SLS) estimator based on the leading-order many-instrument bias. Using many moments may improve the asymptotic efficiency but can make inference inaccurate in finite samples. [1] propose to minimize an approximate mean square error (MSE) as that of [2] for choosing the number of instruments in a cross section data model with endogenous regressors. The MSE takes into account an important bias term, so the method can avoid cases where asymptotic inferences are poor due to the bias being large relative to the standard deviation.



Ref [3] have derived the approximate MSEs of the two stage least squares (2SLS) and bias-corrected 2SLS (C2SLS) estimators for the SAR model with endogenous regressors and many instruments, but that SAR model has not included a SAR process in the disturbances. We extend the analysis to the SARAR model with endogenous regressors. The SARAR model combines spatial lag with spatial error dependence. The latter reflects spatial autocorrelation in measurement errors or in variables that are otherwise not crucial to the model [4,5]. It has a broader application than the simpler SAR model. It has been applied to empirical studies, e.g., Case’s work [6,7,8,9,10]. Due to the presence of the spatial error dependence in addition to the spatial lag dependence, we consider the GS2SLS estimation of the model as in [11]. (Ref [12] have extended the estimation method in [11] to the SARAR model with endogenous regressors. Our focus here is on choosing the number of instruments by minimizing the approximated MSEs.) The estimation has taken into account the spatial error structure, based on a transformed equation. Because the transformation uses an initial consistent estimator of the spatial error dependence parameter, the impact from this initial estimator creates extra complexity that should be investigated. The analytical difficulty lies in determining the leading order terms depending on the number of instruments due to the presence of the spatial error process, whose orders cannot be expressed using terms appeared only in a SAR model without SAR disturbances. The approximated MSEs of the GS2SLS and CGS2SLS estimators turn out to be more complicated than those of the corresponding 2SLS and C2SLS estimators for the SAR model but are still tractable for empirical use. For the GS2SLS, the expression for the approximate MSE is similar to that for the 2SLS in [3], except for the presence of the filter for spatial error dependence in various matrices. If the formula for the approximate MSE in [3] is used for the SARAR models, then the derived number of instruments will not be asymptotically optimal. For the CGS2SLS estimator, however, except for the filter, the approximate MSE has additional terms compared with that for the C2SLS in [3], which are generated from the asymptotic distributions of the first two stage estimators.



We consider the following SARAR model:


[image: there is no content]=λ[image: there is no content][image: there is no content]+[image: there is no content]γ+un,un=ρ[image: there is no content]un+[image: there is no content]



(1)




where n is the number of spatial units, [image: there is no content] is an n-dimensional vector of observations on the dependent variable, the n-dimensional vector of disturbances [image: there is no content] has i.i.d. elements with mean zero and variance [image: there is no content], and [image: there is no content] is an [image: there is no content] matrix of variables that are possibly correlated with [image: there is no content], [image: there is no content] and [image: there is no content] are [image: there is no content] spatial weights matrices that can be equal or different from each other, scalars λ and ρ are spatial autoregressive parameters, and γ is a parameter vector for [image: there is no content]. Let [image: there is no content]=[image: there is no content]+vn, where [image: there is no content]=E([image: there is no content]). The [image: there is no content] is assumed to be an unknown function of [image: there is no content], which is an [image: there is no content] matrix of exogenous variables, and spatial lags of [image: there is no content]: [image: there is no content][image: there is no content], Wn2[image: there is no content], and so on. Model (1) can be an equation of the spatial simultaneous system as in [13]. In this case, [image: there is no content] is a vector of observations on one of, say, [image: there is no content] endogenous variables, and the equation for [image: there is no content], similar to those for other endogenous variables, is [image: there is no content]=λ[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content]+un, where [image: there is no content] is the included exogenous variable matrix, [image: there is no content] is the endogenous variable matrix including all observations on the other ([image: there is no content]−1) endogenous variables and [image: there is no content] and [image: there is no content] are parameter vectors, then [image: there is no content]=∑i=0∞Wni[image: there is no content][image: there is no content], where [image: there is no content]’s are matrices of parameters. Alternatively, [image: there is no content] or some elements of [image: there is no content] may be generated by an unknown nonlinear model [14], and thus we have an unknown nonlinear functional form for the conditional mean [image: there is no content] [1]. For [image: there is no content], we assume that [image: there is no content]’s are i.i.d. with mean zero and E(vni′[image: there is no content])=[image: there is no content], [image: there is no content] is independent of [image: there is no content] for [image: there is no content], but E([image: there is no content][image: there is no content])=[image: there is no content]. That is, [image: there is no content] and [image: there is no content] are correlated except with the exogenous explanatory variables. The ith variable in [image: there is no content] is exogenous if the ith element of [image: there is no content] is zero. Let [image: there is no content]=([image: there is no content][image: there is no content],[image: there is no content]) and [image: there is no content], then [image: there is no content]=[image: there is no content]δ+un.



We are interested in the parameter δ. As in [11], the final generalized estimator for δ is based on the Cochrane–Orcutt transformed equation:


[image: there is no content]([image: there is no content])[image: there is no content]=λ[image: there is no content]([image: there is no content])[image: there is no content]δ+[image: there is no content]([image: there is no content])un



(2)




where [image: there is no content]([image: there is no content])=[image: there is no content]−[image: there is no content][image: there is no content] with [image: there is no content] being a consistent estimator of ρ. We consider the problem of choosing the number of instruments for [image: there is no content]([image: there is no content])[image: there is no content], which can be many due to the unknown functional form of [image: there is no content] for its endogenous components. To derive [image: there is no content], we may first estimate the equation [image: there is no content]=[image: there is no content]δ+un by the 2SLS with a fixed number of instruments to obtain an initial estimator [image: there is no content] of δ, and then estimate ρ with a fixed number of quadratic moment equations that have the form ϵn′(ρ,[image: there is no content])[image: there is no content][image: there is no content](ρ,[image: there is no content])=0, where the [image: there is no content] matrix [image: there is no content] has a zero trace, and [image: there is no content](ρ,[image: there is no content])=[image: there is no content](ρ)([image: there is no content]−[image: there is no content][image: there is no content]). (The equation ϵn′(ρ,[image: there is no content])[image: there is no content][image: there is no content](ρ,[image: there is no content])=0 is a valid moment equation since E(ϵn′[image: there is no content][image: there is no content])=[image: there is no content]tr([image: there is no content])=0 and 1n[ϵn′([image: there is no content],[image: there is no content])[image: there is no content][image: there is no content]([image: there is no content],[image: there is no content])−ϵn′[image: there is no content][image: there is no content]]=oP(1) under regularity conditions.) The estimation thus involves three stages and the derivation of approximated MSEs is more complicated due to the presence of many terms with different orders. In [11], the asymptotic distribution of the third stage estimator [image: there is no content] is not affected by the estimators in the first two stages as long as [image: there is no content] is a consistent estimator of ρ. For the approximate MSE of our GS2SLS estimator in the third stage, one may expect that it involves the asymptotic distributions of the first two stage estimators, since we use higher-order asymptotic theory for IV. However, it turns out that the variance of the dominant component related to the first two stage estimators in the expression for the GS2SLS estimator has a smaller order compared with other terms because of the i.i.d. property of [image: there is no content]’s. As a result, the leading order component of the MSE does not depend on the asymptotic distributions of the first two stage estimators and the expression for the approximate MSE is similar to that in [3] except for the filter for spatial error dependence. However, for the CGS2SLS estimator, the expression for the approximate MSE is more complicated than that in [3], because the term resulting from the estimation error of the leading order bias involves the asymptotic distributions of the first two stage estimators and an additional term appears due to the estimation of the spatial autoregressive parameter in the error process.



As [image: there is no content] is an unknown function of [image: there is no content], [image: there is no content][image: there is no content], Wn2[image: there is no content], etc., we may assume an infinite series approximation for [image: there is no content] and, in practice, use a known [image: there is no content] matrix [image: there is no content] to approximate [image: there is no content], where [image: there is no content] depends on [image: there is no content], [image: there is no content][image: there is no content] and so on. To closely approximate [image: there is no content] with a linear combination of [image: there is no content], we may need a large column number q as well as appropriate form of [image: there is no content]. The instruments for [image: there is no content][image: there is no content] can be based on [image: there is no content]. Denote the true parameters for δ and ρ by [image: there is no content] and [image: there is no content] respectively. As model (1) represents an equilibrium model, ([image: there is no content]−[image: there is no content][image: there is no content]) can be assumed to be invertible, where [image: there is no content] is the [image: there is no content] identity matrix. (The SAR model is known as a simultaneous equation model in the spatial literature because the outcomes are determined by the interactions of spatial units. By assuming ([image: there is no content]−[image: there is no content][image: there is no content]) to be invertible, we have the equilibrium vector [image: there is no content].) Then, if ||[image: there is no content][image: there is no content]||<1 for some matrix norm [image: there is no content], the equilibrium vector [image: there is no content]=([image: there is no content]−[image: there is no content][image: there is no content])−1([image: there is no content][image: there is no content]+un) can have an expansion ∑i=0∞λ0iWni([image: there is no content][image: there is no content]+un). Therefore, the instruments for [image: there is no content][image: there is no content] can be [image: there is no content][image: there is no content], Wn2[image: there is no content] and so on, and the instruments for [image: there is no content] can be taken as the [image: there is no content] matrix


[image: there is no content]=[[image: there is no content],[image: there is no content][image: there is no content],…,Wnp[image: there is no content]]



(3)




where [image: there is no content]. As an extension, we use the instrument matrix


[image: there is no content]=[[image: there is no content],[image: there is no content][image: there is no content]]



(4)




for [image: there is no content]([image: there is no content])=([image: there is no content]−[image: there is no content][image: there is no content])[image: there is no content]. (Due to technical difficulties in the presence of many IVs that involve estimated parameters in the literature, we do not use ([image: there is no content]−[image: there is no content][image: there is no content])[image: there is no content] as the instrument matrix for [image: there is no content]([image: there is no content]) (see [15]). If [image: there is no content]=[image: there is no content], then [image: there is no content][image: there is no content] generates some identical IVs as those in [image: there is no content]. In this case, we can simply take [image: there is no content]=[[image: there is no content],Wnp+1[image: there is no content]].) The asymptotic variance of the 2SLS estimator decreases when a linear combination of IVs approximates the conditional mean of the endogenous variables more closely. The efficiency (lower bound) of IV estimators is achieved when a linear combination of IVs equals the conditional mean [16]. Under regularity conditions, a linear combination of [[image: there is no content],[image: there is no content],Wn2,…,Wnp] can approximate ([image: there is no content]−ρ[image: there is no content])−1 arbitrarily well as [image: there is no content]. Thus, if a linear combination of [image: there is no content] can approximate [image: there is no content] well as [image: there is no content], a linear combination of [image: there is no content] can approximate [image: there is no content]([image: there is no content]) arbitrarily well in probability as [image: there is no content]. On the other hand, if the number of instruments increases too fast relative to the sample size, they will lead to a bias of certain order for the corresponding IV estimators. The tradeoff between variance and bias can be summarized by the MSE of the estimator. So, minimizing the (approximated) MSE can reduce inaccurate inference due to the presence of many instruments. Following [1], we consider the case that the number of instruments K increases with, but at a rate slower than, the sample size n, which facilitates the investigation of the high order asymptotics of the MSEs.



The rest of the paper is organized as follows. Section 2 establishes asymptotic properties of the GS2SLS and CGS2SLS estimators. Section 3 derives the approximated MSEs for the estimators and gives a criterion function to choose the optimal number of IVs using the approximated MSEs. Section 4 presents some Monte Carlo results on the performance of the instrumental variable selection procedure in finite samples. Section 5 concludes. A list of notations, lemmas and proofs are collected in the appendices.




2. Properties of the GS2SLS and CGS2SLS Estimators


We establish the properties of the GS2SLS and CGS2SLS estimators in this section. Let [image: there is no content](ρ)=[image: there is no content]−ρ[image: there is no content], Gn(λ)=[image: there is no content]([image: there is no content]−λ[image: there is no content]), [image: there is no content]=[image: there is no content]+ζn with [image: there is no content]=E([image: there is no content]), and [image: there is no content] be the Frobenius matrix norm for a matrix A. UB stands for boundedness of the sequences of both row and column sum matrix norms for a sequence of matrices. For simplicity, denote [image: there is no content](ρ)=[image: there is no content](ρ)[image: there is no content], [image: there is no content](ρ)=[image: there is no content](ρ)[image: there is no content], [image: there is no content], [image: there is no content](ρ)=[image: there is no content](ρ)[image: there is no content], [image: there is no content]=[image: there is no content]([image: there is no content]), and [image: there is no content]. As [image: there is no content]=([image: there is no content]−[image: there is no content][image: there is no content])−1([image: there is no content][image: there is no content]+Rn−1[image: there is no content]), [image: there is no content]=[Gn[image: there is no content][image: there is no content],[image: there is no content]] and ζn=[Gnvn[image: there is no content]+GnRn−1[image: there is no content],vn]. The following are some basic regularity conditions.




Assumption 1. 

{[image: there is no content],[image: there is no content]}’s, [image: there is no content], are i.i.d. with mean zero, E(ϵni2)=[image: there is no content], E(vni′[image: there is no content])=[image: there is no content]and E([image: there is no content][image: there is no content])=[image: there is no content]. The moments E|[image: there is no content]|4+τ, E||[image: there is no content]||4and E||[image: there is no content][image: there is no content]||2are finite, where τ is some positive constant.








Assumption 2. 

(i) The sequences of matrices {[image: there is no content]}, {[image: there is no content]}, {([image: there is no content]−[image: there is no content][image: there is no content])−1}and [image: there is no content]are UB;




	(ii) 

	
[image: there is no content]and [image: there is no content]have zero diagonals.













Since we use quadratic moments to estimate ρ in model (1), the existence of a moment of [image: there is no content] higher than the fourth order is required to properly apply the central limit theorem for linear-quadratic forms of disturbances in [17]. Some moment conditions are also imposed on [image: there is no content] and [image: there is no content][image: there is no content] in Assumption 1. Assumption 2 (i), originated in [11,18], is a condition that bounds the degree of spatial dependence; Assumption 2 (ii) implies that no spatial unit is viewed as its own neighbor.



Let [image: there is no content] be a full rank [image: there is no content] instrument matrix for [image: there is no content] in the first stage of the GS2SLS estimation. The number [image: there is no content] of IVs is at least as large as the number [image: there is no content] of columns of [image: there is no content], but is fixed for all n. Denote PFn=[image: there is no content](F0,n′[image: there is no content])−F0,n′, where [image: there is no content] is a generalized inverse for the matrix A. The first stage 2SLS estimator for δ is [image: there is no content]=(Zn′PFn[image: there is no content])−1Zn′PFn[image: there is no content]. The following assumption about [image: there is no content] is maintained.




Assumption 3. 

The instrument matrix [image: there is no content]has full column rank [image: there is no content]≥m+1for all n, lim[image: there is no content]1nF0,n′[image: there is no content]is finite and nonsingular, and [image: there is no content]is finite and has full column rank, where [image: there is no content]in [image: there is no content]has uniformly bounded elements.








Proposition 1. 

Under Assumptions 1–3, [image: there is no content]([image: there is no content]−[image: there is no content])=(1nZ¯n′PFn[image: there is no content])−11[image: there is no content]Z¯n′PFnRn−1[image: there is no content]+OP(n−1/2)→dN0,lim[image: there is no content](1nZ¯n′PFn[image: there is no content])−1[image: there is no content]nZ¯n′PFnRn−1Rn′−1PFn[image: there is no content](1nZ¯n′PFn[image: there is no content])−1.







In the second stage of the GS2SLS estimation, we use a fixed number, say [image: there is no content], of quadratic moments to estimate ρ in model (1). Let gn(ρ,[image: there is no content])=1n[ϵn′(ρ,[image: there is no content])Dn1[image: there is no content](ρ,[image: there is no content]),…,ϵn′(ρ,[image: there is no content])Dn,[image: there is no content][image: there is no content](ρ,[image: there is no content])]′, where [image: there is no content](ρ,[image: there is no content])=[image: there is no content](ρ)([image: there is no content]−[image: there is no content][image: there is no content]) and [image: there is no content] matrices [image: there is no content]’s have zero traces. The [image: there is no content]’s can be, e.g., [image: there is no content] and Mn2−[image: there is no content]tr(Mn2)/n. We maintain the following regularity condition on [image: there is no content].




Assumption 4. 

The sequences of matrices {[image: there is no content]}, j=1,…,[image: there is no content], have zero traces and are UB.







Consider a generalized moments estimator [image: there is no content] of ρ, which is


[image: there is no content]=argmin[image: there is no content]gn′(ρ,[image: there is no content])gn(ρ,[image: there is no content])



(5)




for some [image: there is no content] so that [image: there is no content] contains [image: there is no content]. It can be shown that gn′(ρ,[image: there is no content])gn(ρ,[image: there is no content])−Egn′(ρ,[image: there is no content])Egn(ρ,[image: there is no content]) converges to zero in probability uniformly over [image: there is no content]. For the identification of [image: there is no content], it requires Egn′(ρ,[image: there is no content])Egn(ρ,[image: there is no content]) to be zero uniquely at [image: there is no content]. Let [image: there is no content] for any square matrix A. Note that Egn(ρ,[image: there is no content])=[image: there is no content]2Ξn[([image: there is no content]−ρ),([image: there is no content]−ρ)2]′, where


Ξn=1ntr[([image: there is no content]Rn−1)sDn1s]tr[([image: there is no content]Rn−1)′Dn1s([image: there is no content]Rn−1)]⋮⋮tr[([image: there is no content]Rn−1)sDn,[image: there is no content]s]tr[([image: there is no content]Rn−1)′Dn,[image: there is no content]s([image: there is no content]Rn−1)]












Assumption 5. 

The smallest eigenvalue of [image: there is no content]is bounded away from zero.







Assumption 5 is satisfied if the limit of the [image: there is no content] matrix [image: there is no content] exists and is nonsingular. With Assumption 5, there exists some [image: there is no content] such that Egn′(ρ,[image: there is no content])Egn(ρ,[image: there is no content])>η for any ρ≠[image: there is no content]. Thus for any ρ≠[image: there is no content], gn′(ρ,[image: there is no content])gn(ρ,[image: there is no content])>η/2 with probability approaching 1 as [image: there is no content].




Proposition 2. 

Under Assumptions 1–5, [image: there is no content]is a consistent estimator of [image: there is no content], and


[image: there is no content]([image: there is no content]−[image: there is no content])=1[image: there is no content](ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])+OP(n−1/2)








is asymptotically normal with a finite variance, where


[image: there is no content]=[image: there is no content]n2∑j=1[image: there is no content]tr2(Dnjs[image: there is no content]Rn−1)−1∑j=1[image: there is no content]1ntr(Dnjs[image: there is no content]Rn−1)[image: there is no content]



(6)




and


[image: there is no content]=−[image: there is no content]n2∑j=1[image: there is no content]tr2(Dnjs[image: there is no content]Rn−1)−1∑j=1[image: there is no content]1ntr(Dnjs[image: there is no content]Rn−1)1nE(ϵn′Dnjs[image: there is no content]ζn)(1nZ¯n′PFn[image: there is no content])−1Z¯n′PFnRn−1



(7)




with E(ϵn′Dnjs[image: there is no content]ζn)=[tr(Dnjs[image: there is no content]Gn)[image: there is no content][image: there is no content]+[image: there is no content]tr(Dnjs[image: there is no content]GnRn−1),tr(Dnjs[image: there is no content])[image: there is no content]].







In the expression for [image: there is no content]([image: there is no content]−[image: there is no content]) above, the term 1[image: there is no content][image: there is no content][image: there is no content] with the order [image: there is no content] is due to the usage of the first stage estimator [image: there is no content]. That is to say that the asymptotic distribution of [image: there is no content] has implication on the asymptotic distribution of [image: there is no content].



We now consider the GS2SLS estimator using the transformed Equation (2). With the instrument matrix [image: there is no content] in Equation (4), the GS2SLS estimator of δ is


[image: there is no content]=[Zn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])]−1Zn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])



(8)




where [image: there is no content]=[image: there is no content](QK,n′[image: there is no content])−QK,n′.




Assumption 6. 

(i) [image: there is no content]=lim[image: there is no content][image: there is no content], where [image: there is no content]=1nZ¯n′([image: there is no content])[image: there is no content]([image: there is no content]), is a finite nonsingular [image: there is no content]matrix; (ii) for each [image: there is no content]in Equation (4), there exists [image: there is no content]such that 1n||[image: there is no content](ρ)−[image: there is no content][image: there is no content]||2→0as [image: there is no content].







Assumption 6 (i) gives a sufficient condition for the identification of [image: there is no content] in Equation (2); Assumption 6 (ii) requires [image: there is no content](ρ) to be approximated arbitrarily well by a linear combination of [image: there is no content] for large enough K and n, which is implied by Lemma 1 in Section B under some other basic assumptions. For analytical tractability, we maintain the following assumption.




Assumption 7. 

The elements of [image: there is no content]in Equation (4) are uniformly bounded constants, and lim[image: there is no content]1nQK,n′[image: there is no content]exists and is nonsingular for each K.







The GS2SLS estimator [image: there is no content] is characterized by the first order condition 1nZn′([image: there is no content])[image: there is no content][[image: there is no content]([image: there is no content])−[image: there is no content]([image: there is no content])[image: there is no content]]=0. By a Taylor expansion of this condition at [image: there is no content], the first term is 1nZn′([image: there is no content])[image: there is no content]un([image: there is no content]), which has the dominant component 1nZn′([image: there is no content])[image: there is no content][image: there is no content] by Lemma 8. The expectation of this dominant component is [image: there is no content], where


Υn(K)=E(ζn′Rn′[image: there is no content][image: there is no content])=[tr([image: there is no content])[image: there is no content][image: there is no content]+[image: there is no content]tr([image: there is no content]),tr([image: there is no content])[image: there is no content]]′=O(K)



(9)




with


[image: there is no content]=[image: there is no content][image: there is no content],[image: there is no content]=[image: there is no content][image: there is no content]Gn,and[image: there is no content]=[image: there is no content][image: there is no content]GnRn−1



(10)







Thus when [image: there is no content], the GS2SLS estimator [image: there is no content] is generally inconsistent. When [image: there is no content], [image: there is no content] is consistent, but if the number of instruments K grows somehow fast relative to the sample size n, the asymptotic distribution may not center at the true [image: there is no content]. The following proposition provides more information on this issue.




Proposition 3. 

Under Assumptions 1–7,

	(i) 

	
if [image: there is no content], then [image: there is no content]−[image: there is no content]→plim[image: there is no content]b¯nK,1, where


b¯nK,1=[Z¯n′([image: there is no content])[image: there is no content]([image: there is no content])+Ωn1(K)]−1Υn(K)=O(K/n)








with


[image: there is no content]=E(ζn′Rn′[image: there is no content][image: there is no content]ζn)=γ0′[image: there is no content][image: there is no content]tr(ΓnK,2′[image: there is no content])+[image: there is no content]tr(ΓnK,3′[image: there is no content])+2[image: there is no content][image: there is no content]tr(ΓnK,3′[image: there is no content])∗[image: there is no content][image: there is no content]tr(ΓnK,1′[image: there is no content])+σvϵ′tr(ΓnK,1′[image: there is no content])[image: there is no content]tr(ΓnK,1′[image: there is no content])



(11)




might converge to a nonzero constant;




	(ii) 

	
if [image: there is no content], then [image: there is no content]([image: there is no content]−[image: there is no content]−[image: there is no content])→dN(0,[image: there is no content][image: there is no content]−1), where


[image: there is no content]=[Zn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])]−1Υn(K)=b¯nK,2+oP(K/n)



(12)




with b¯nK,2=[Z¯n′([image: there is no content])[image: there is no content]([image: there is no content])]−1Υn(K)=O(K/n).













From the above proposition, when [image: there is no content], [image: there is no content] is consistent of [image: there is no content], but whether its asymptotic distribution is centered at [image: there is no content] or not depends on the ratio [image: there is no content] as [image: there is no content]. The following corollary shows various scenarios.




Corollary 1. 

Under Assumptions 1–7,

	(i) 

	
if [image: there is no content], [image: there is no content]([image: there is no content]−[image: there is no content])→dN(0,[image: there is no content][image: there is no content]−1);




	(ii) 

	
if [image: there is no content]and [image: there is no content], [image: there is no content]([image: there is no content]−[image: there is no content]−b¯nK,2)→dN(0,[image: there is no content][image: there is no content]−1);




	(iii) 

	
if [image: there is no content]but [image: there is no content]for some [image: there is no content], Kη([image: there is no content]−[image: there is no content])→p0.













When [image: there is no content], the number of instruments K increases slow relative to the sample size n and the asymptotic variance matrix [image: there is no content][image: there is no content]−1 achieves the efficiency lower bound for the class of IV estimators. When [image: there is no content] goes to a non-zero limit as n goes to infinity, [image: there is no content]([image: there is no content]−[image: there is no content]) is centered at lim[image: there is no content][image: there is no content]b¯nK,2, which might be a non-zero finite constant and is a many instrument bias. Due to the spatial error dependence, the matrices [image: there is no content], [image: there is no content] and [image: there is no content] in Equation (10) of the bias component in Equation (9) play important roles. Without spatial error dependence, these matrices reduce to [image: there is no content] and [image: there is no content]Gn. Although the GS2SLS estimation is based on the spatial Cochrane–Orcutt transformed model (2), the asymptotic distribution of the estimator [image: there is no content] in the transformation does not affect the asymptotic distribution of [image: there is no content], as usual for the GS2SLS estimation.



To correct the many instrument bias, we consider a bias corrected estimator based on the estimation of the leading order bias [image: there is no content] in Equation (12). Let [image: there is no content] be an instrument matrix with a fixed number of instruments and P0,n=[image: there is no content](Q0,n′[image: there is no content])−Q0,n′.




Assumption 8. 

The instrument matrix [image: there is no content]has full column rank [image: there is no content]for all n, lim[image: there is no content]1nQ0,n′[image: there is no content]is finite and nonsingular, and lim[image: there is no content]1nQ0,n′[image: there is no content]([image: there is no content])is finite and has full column rank.







The GS2SLS estimator


[image: there is no content]=[Zn′([image: there is no content])P0,n[image: there is no content]([image: there is no content])]−1Zn′([image: there is no content])P0,n[image: there is no content]([image: there is no content])



(13)




and [image: there is no content] together can be used to estimate [image: there is no content]. Let Γ˜nK,1=[image: there is no content][image: there is no content]([image: there is no content]), Γ˜nK,2=[image: there is no content][image: there is no content]([image: there is no content])Gn([image: there is no content]), Γ˜nK,3=[image: there is no content][image: there is no content]([image: there is no content])Gn([image: there is no content])Rn−1([image: there is no content]), [image: there is no content]=1n([image: there is no content]−[image: there is no content][image: there is no content])′Rn′([image: there is no content])[image: there is no content]([image: there is no content])([image: there is no content]−[image: there is no content][image: there is no content]) and [image: there is no content]=1n([image: there is no content]−[image: there is no content][image: there is no content])′Rn′([image: there is no content])[image: there is no content]. A bias-corrected GS2SLS ( CGS2SLS) estimator is


[image: there is no content]=[image: there is no content]−b˜n,K



(14)




where b˜n,K=[Zn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])]−1Υ˜n(K) with [image: there is no content].




Proposition 4. 

Under Assumptions 1–8, if [image: there is no content], then [image: there is no content]([image: there is no content]−[image: there is no content])→dN(0,[image: there is no content][image: there is no content]−1).







Note that the asymptotic distribution of [image: there is no content] in Equation (14) when [image: there is no content] is the same as that of [image: there is no content] in Equation (8) when [image: there is no content]. So the bias correction procedure has effectively relaxed some requirement on K in order for the corrected estimator to have a properly centered asymptotic distribution. The asymptotic distributions of the initial estimators [image: there is no content] in Equation (13) and [image: there is no content] in Proposition 2 used for the bias correction do not enter into the asymptotic distribution of [image: there is no content], when only the first order asymptotic expansion is considered. But when we investigate the approximated MSE of [image: there is no content] later, as high order asymptotic expansions are considered, the asymptotic distributions of the estimators [image: there is no content] and [image: there is no content] used for the bias correction will generate additional terms for the approximated MSE.




3. Approximated MSE and Optimal K


For an estimator [image: there is no content] satisfying [image: there is no content]([image: there is no content]−[image: there is no content])=H^n−1[image: there is no content], [1] have derived a lemma that gives conditions on the decompositions of [image: there is no content] and [image: there is no content] such that the leading order term of the MSE depending on K is [image: there is no content], in the sense that


n([image: there is no content]−[image: there is no content])([image: there is no content]−[image: there is no content])′=L^n(K)+r^n(K)



(15)




where E[L^n(K)]=[image: there is no content][image: there is no content]+Sn(K)+Tn(K), and [image: there is no content] and [image: there is no content] are remainder terms that diminish faster than [image: there is no content], such that [image: there is no content] as [image: there is no content]. A criterion function for the optimal K can be [image: there is no content], the leading order MSE depending on K for a linear combination ξ′[image: there is no content]. In particular, one may use the unweighted version [image: there is no content] as a practical criterion. Let [image: there is no content] be an estimator of [image: there is no content], then K can be chosen by minimizing the function [image: there is no content].



In this section, we first derive the expression for [image: there is no content] for both the GS2SLS and CGS2SLS estimators and then show that the chosen K by minimizing [image: there is no content] is asymptotically optimal in a sense in Equation (20) originated in [1]. Intuitively, this indicates that the error in the use of the feasible [image: there is no content] criterion in place of the actual ideal [image: there is no content] is asymptotically negligible.




Assumption 9. 

(i) 1Ktr([image: there is no content])→c, where [image: there is no content], as [image: there is no content];




	(ii) 

	
[image: there is no content]for [image: there is no content], as [image: there is no content], where [image: there is no content]is the [image: there is no content]th element of [image: there is no content];




	(iii) 

	
[image: there is no content]and E(ϵni2[image: there is no content])=0.













Assumption 9 (i) is for analytical tractability; Assumption 9 (ii) simplifies the expression for [image: there is no content] by imposing a restriction on the rate at which K increases with n; Assumption 9 (iii) is also a condition that simplifies [image: there is no content]. These simplifications are adopted in [1,3]. (Without Assumption 9 (iii), [image: there is no content] for the GS2SLS will have an additional term 1n[image: there is no content]{Z¯n′([image: there is no content])[E(ϵni2[image: there is no content])[image: there is no content]vecD([image: there is no content])+μ3vecD([image: there is no content]),E(ϵni2[image: there is no content])vecD([image: there is no content])]}s[image: there is no content], and [image: there is no content] for the CGS2SLS has an additional term that is much more complicated due to the estimator of ρ in the second stage of the GS2LS estimation and its use to correct the many instrument bias. Without Assumption 9 (ii), [image: there is no content] for the GS2SLS is not affected, but [image: there is no content] for the CGS2SLS has an additional term. Those additional terms can be estimated along with other terms, but they are not included here for simplicity.)




Proposition 5. 

Under Assumptions 1–9, if [image: there is no content]and [image: there is no content]≠0, then Equation (15) for the GS2SLS estimator [image: there is no content]is satisfied with


Sn(K)=1n[image: there is no content][[image: there is no content]Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])+Ωn2(K)][image: there is no content]



(16)




where [image: there is no content].







Note that [image: there is no content] above has a similar form as that in [3] except for the transformation [image: there is no content] involved due to the spatial error dependence. The [image: there is no content] has a similar interpretation as that in [3]: [image: there is no content]n[image: there is no content]Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])[image: there is no content] is a variance term, which becomes smaller as a linear combination of [image: there is no content] approximates the mean of [image: there is no content]([image: there is no content]) better; [image: there is no content] is the leading order term in the MSE of 1[image: there is no content][image: there is no content]ζn′Rn′[image: there is no content][image: there is no content] with the dominant component being from its expectation, which stands for the many instrument bias and increases as K increases. The minimization of a criterion function [image: there is no content] thus takes into account the trade-off between the bias and variance.




Proposition 6. 

Under Assumptions 1–9, if [image: there is no content]and [image: there is no content]≠0, then Equation (15) for the CGS2SLS estimator [image: there is no content]is satisfied with


Sn(K)=1n[image: there is no content][[image: there is no content]Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])+Πn1(K)+Πn2(K)+Πn3(K)][image: there is no content]



(17)




where [image: there is no content], [image: there is no content]and [image: there is no content]are given in Equations (21), (22) and (25) respectively.







The first term in Equation (17) is the same as that in Equation (16). The second term [image: there is no content] is the leading order term in the variance of 1[image: there is no content][image: there is no content][ζn′Rn′[image: there is no content][image: there is no content]−E(ζn′Rn′[image: there is no content][image: there is no content])]. The third term [image: there is no content] is due to the estimation error of the lead order bias of the GS2SLS estimator. This term becomes much more complicated than that for the SAR model because of the spatial error dependence. The last term [image: there is no content] is an additional term compared with [image: there is no content] in [3], which is due to the estimation of ρ. (Thus, the [image: there is no content] in [image: there is no content] is from [image: there is no content] used for the bias correction, and the [image: there is no content] in [image: there is no content] is from [image: there is no content] in the spatial Cochrane–Orcutt transformation of the GS2SLS estimation.) The [image: there is no content] is a sum of different variance terms, because the bias terms have smaller orders compared with the variance terms.



We now consider the estimation of [image: there is no content]. Estimators for the parameters in [image: there is no content] can be constructed using a GS2SLS estimator. For the GS2SLS estimator, let the first stage IV matrix be [image: there is no content] with [image: there is no content] instruments, the matrices for the quadratic moments in the second stage be [image: there is no content], and the last stage IV matrix be Q[image: there is no content],n=[[image: there is no content],[image: there is no content][image: there is no content]]. (The [image: there is no content] needs to increase with n so that the estimators for [image: there is no content], [image: there is no content] and [image: there is no content] defined below are consistent.) Then the first stage estimator for δ is δ˙=(Zn′PF¯n[image: there is no content])−1Zn′PF¯n[image: there is no content] with PF¯n=[image: there is no content](F[image: there is no content],n′[image: there is no content])−F[image: there is no content],n′, and the last stage estimator for δ is [image: there is no content]=[Zn′([image: there is no content])P[image: there is no content],n[image: there is no content]([image: there is no content])]−1Zn′([image: there is no content])P[image: there is no content],n[image: there is no content]([image: there is no content]) with P[image: there is no content],n=Q[image: there is no content],n(Q[image: there is no content],n′Q[image: there is no content],n)−Q[image: there is no content],n′ and [image: there is no content] being the estimator for ρ in the second stage. Let the estimators for [image: there is no content], [image: there is no content] and [image: there is no content] be, respectively, [image: there is no content], [image: there is no content] and [image: there is no content], where ϵ^n=[image: there is no content]([image: there is no content])−[image: there is no content]([image: there is no content])[image: there is no content] and v^n=([image: there is no content]−PF¯n)[image: there is no content]. An estimator for [image: there is no content], [image: there is no content], can be derived by replacing the parameters with their respective estimators. An estimator for [image: there is no content] is [image: there is no content]=1nZn′([image: there is no content])P[image: there is no content],n[image: there is no content]([image: there is no content]). For 1nZ¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content]), note that


1nE[Zn′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])]=1nE{[[image: there is no content]([image: there is no content])+[image: there is no content]ζn]′([image: there is no content]−[image: there is no content])[[image: there is no content]([image: there is no content])+[image: there is no content]ζn]}=1nZ¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])+1nE(ζn′Rn′[image: there is no content]ζn)−1nΩn1(K)








where [image: there is no content] is in Equation (11), thus 1nZ¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content]) can be estimated, up to an additive constant not depending on K, by 1nZn′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])+1nΩ^n1(K), where [image: there is no content] is an estimator for [image: there is no content], derived by replacing the parameters in [image: there is no content] by their estimators. Hence, for the GS2SLS, [image: there is no content] can be estimated, up to an additive constant not depending on K, by


S^n,ξ(K)=1nξ′H^n−1[σ^ϵ2Zn′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])+σ^ϵ2Ω^n1(K)+Ω^n2(K)]H^n−1ξ



(18)







Similarly, for the CGS2SLS, [image: there is no content] can be estimated, up to an additive constant not depending on K, by


S^n,ξ(K)=1nξ′H^n−1[σ^ϵ2Zn′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])+σ^ϵ2Ω^n1(K)+Π^n1(K)+Π^n2(K)+Π^n3(K)]H^n−1ξ



(19)




where [image: there is no content] is an estimator of [image: there is no content] derived by replacing the parameters in [image: there is no content] by their estimators, [image: there is no content] is given in Equation (26) and [image: there is no content] is given in Equation (27).



The optimal choice of K is the minimizer [image: there is no content] of [image: there is no content]. The [image: there is no content] is optimal in the sense that Sn,ξ([image: there is no content]) is asymptotically as small as [image: there is no content], i.e.,


Sn,ξ([image: there is no content])[image: there is no content]→p1



(20)








Assumption 10. 

 (i) [image: there is no content]([image: there is no content]−[image: there is no content])=OP(1), [image: there is no content]→p[image: there is no content], σ^ϵ2→p[image: there is no content], σ^vϵ→p[image: there is no content]and Σ^v→p[image: there is no content];




	(ii) 

	
For the GS2SLS, [image: there is no content], and for the CGS2SLS, [image: there is no content], for some constant [image: there is no content], where [image: there is no content]=1ntr[Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])].














Assumption 11. 

For both the GS2SLS and CGS2SLS, [image: there is no content].







We assume the [image: there is no content]-consistency of [image: there is no content] and consistency of other preliminary estimators in Assumption 10 (i). Assumption 10 (ii) and Assumption 11 are similar to those in [3]. For the GS2SLS, from the proof of Proposition 5, the trace of the positive semi-definite matrix [image: there is no content] has exactly the same order as [image: there is no content], then [image: there is no content] has the order [image: there is no content]. Assumption 10 (ii) requires [image: there is no content] for the GS2SLS to have exactly the same order as [image: there is no content]. A similar condition on [image: there is no content] for the CGS2SLS is imposed. Assumption 11 imposes a restriction on the set of possible K.




Proposition 7. 

Under Assumptions 1–11, for [image: there is no content]=argminKS^n,ξ(K), Equation (20) is satisfied for both the GS2SLS and CGS2SLS.








4. Monte Carlo Study


We demonstrate the finite sample performance of our instrument selection procedure with Monte Carlo experiments. Except for the additional spatial error dependence, most parts of the experimental design follow [3]. The model considered is


[image: there is no content]=[image: there is no content][image: there is no content][image: there is no content]+[image: there is no content][image: there is no content]+un,un=[image: there is no content][image: there is no content]un+[image: there is no content],[image: there is no content]=[image: there is no content][image: there is no content]+vn








where [image: there is no content], [image: there is no content] and [image: there is no content] is a vector. The ([image: there is no content],[image: there is no content])’s are i.i.d. normal with mean zero, [image: there is no content] and [image: there is no content] both have unit variance, and the correlation coefficient between [image: there is no content] and [image: there is no content] is [image: there is no content], which will be varied by design. In the experiments, [image: there is no content], [image: there is no content], and [image: there is no content]=0.1 or [image: there is no content]. Elements of the [image: there is no content] matrix [image: there is no content] are random samples from the standard normal distribution. The specification implies a theoretical first stage coefficient of determination [image: there is no content] (with the spatial dependence being ignored), according to [19]. The [image: there is no content] will be designed later on.



As in [3], we consider two models with different specifications of [image: there is no content]. In Model 1, the coefficients are decreasing, i.e., the jth element of [image: there is no content] is


β0j=c([image: there is no content])1−j[image: there is no content]+14,forj=1,…,[image: there is no content]








where c([image: there is no content]) is chosen such that [image: there is no content] is equal to some specified value in the experiments; in Model 2, the coefficients are all equal, i.e.,


β0j=[image: there is no content][image: there is no content](1−[image: there is no content]),forj=1,…,[image: there is no content]








These two specifications stand for, respectively, the case that some instruments are more important than others and the other case that no instrument should be preferred over others [1]. In the experiments, [image: there is no content] is equal to [image: there is no content] or [image: there is no content], [image: there is no content] is equal to [image: there is no content], [image: there is no content] or [image: there is no content], and [image: there is no content] or 490. The [image: there is no content] is a block diagonal matrix with each block in the diagonal being the row normalized matrix used for the study of crimes across 49 districts in Columbus, OH in [20]. The spatial weights matrix [image: there is no content] in the error process is set to be the same as the spatial weights matrix [image: there is no content]. The number of Monte Carlo repetitions is 2000.



Let [image: there is no content] be a matrix consisting of the first q columns of [image: there is no content], and [image: there is no content]=[[image: there is no content],[image: there is no content][image: there is no content],…,Wnp[image: there is no content]], for [image: there is no content] and q=1,2,…,[image: there is no content]. For [image: there is no content], we set [image: there is no content] and [image: there is no content]=5; for [image: there is no content], we set [image: there is no content] and [image: there is no content]=10. The following estimators are considered:

	(i)

	
GS2SLS-min: the GS2SLS with [image: there is no content] (as the instrument matrix in the third stage);




	(ii)

	
GS2SLS-max: the GS2SLS with Qp¯,[image: there is no content];




	(iii)

	
GS2SLS-op: the GS2SLS with [image: there is no content], where [image: there is no content] minimizes [image: there is no content] in Equation (18) with [image: there is no content];




	(iv)

	
CGS2SLS-max: the CGS2SLS with Qp¯,[image: there is no content];




	(v)

	
CGS2SLS-op: the CGS2SLS with [image: there is no content], where [image: there is no content] minimizes [image: there is no content] in Equation (19) with [image: there is no content].






The leading order bias for the CGS2SLS and the approximated MSEs are estimated using the GS2SLS with Q2,[image: there is no content] as the instrument matrix in the third stage. For all the GS2SLS and CGS2SLS estimators considered, the instrument matrix used in the first stage is Q2,[image: there is no content], and the matrices used for the quadratic moments in the second stage are [image: there is no content] and Wn2−[image: there is no content]tr(Wn2)/n. (As [image: there is no content] is relatively large compared with the sample size, for the first stage estimator of the GS2SLS estimation and the estimator for the bias correction, we use [image: there is no content] as suggested by [11].)



For each estimator, the following robust measures of central tendency and dispersion are reported: (There are some outliers in the GS2SLS and CGS2SLS estimates, thus the mean and variance of the estimators are not reported.) the median bias (MB), the median of the absolute deviations (MAD), the difference between the 0.1 and 0.9 quantiles (DQ) in the empirical distribution, and the coverage rate (CR) of a nominal 95% confidence interval.



The summary statistics of the estimators for Model 1 are reported in Table 1, Table 2, Table 3 and Table 4. We first compare GS2SLS-min, GS2SLS-max and GS2SLS-op. The GS2SLS-max has the largest median bias in most cases, and the GS2SLS-op has the smallest median bias for half of the cases when [image: there is no content] but it has the intermediate medium bias when [image: there is no content]. The GS2SLS-max has the smallest MAD and DQ in all cases, the GS2SLS-op of [image: there is no content] has the intermediate MAD and DQ, and GS2SLS-op of [image: there is no content] has the intermediate MAD and DQ when [image: there is no content]=0.02 but largest MAD and DQ when [image: there is no content]=0.1. The CR of GS2SLS-op is closest to the nominal level in most cases, while the CR of GS2SLS-max is significantly lower than the nominal level in many cases. The CGS2SLS-max generally reduces the bias of GS2SLS-max significantly, has similar magnitudes of MAD and DQ to those of GS2SLS-max, and has a CR closer to the nominal level compared with GS2SLS-max but still significantly lower than the nominal level in many cases. Compared with the GS2SLS-op, in most cases, the CGS2SLS-op has much larger MAD and DQ, similar CR, and has smaller median bias for [image: there is no content] but larger median bias for [image: there is no content].



Table 1. Estimation of Model 1 with [image: there is no content]=0.02 and [image: there is no content].







	

	

	
[image: there is no content]

	

	
[image: there is no content]=1.0




	

	

	
MB

	
MAD

	
DQ

	
CR

	
MB

	
MAD

	
DQ

	
CR






	

	
[image: there is no content]=0.1




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.174

	
0.375

	
2.327

	
1.000

	

	
−0.011

	
0.612

	
3.618

	
1.000




	

	
GS2SLS-max

	
0.242

	
0.083

	
0.323

	
0.810

	

	
−0.065

	
0.175

	
0.654

	
0.992




	

	
GS2SLS-op

	
0.171

	
0.297

	
1.702

	
0.999

	

	
0.015

	
0.468

	
2.307

	
1.000




	

	
CGS2SLS-max

	
−0.046

	
0.125

	
0.667

	
0.870

	

	
0.098

	
0.295

	
1.248

	
0.974




	

	
CGS2SLS-op

	
−0.375

	
0.581

	
10.489

	
0.991

	

	
0.332

	
0.719

	
8.277

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.157

	
0.428

	
2.917

	
1.000

	

	
0.188

	
0.582

	
3.415

	
1.000




	

	
GS2SLS-max

	
0.156

	
0.071

	
0.279

	
0.921

	

	
0.347

	
0.154

	
0.609

	
0.932




	

	
GS2SLS-op

	
0.129

	
0.235

	
1.357

	
1.000

	

	
0.333

	
0.382

	
1.883

	
0.999




	

	
CGS2SLS-max

	
−0.008

	
0.081

	
0.374

	
0.958

	

	
0.407

	
0.246

	
0.983

	
0.824




	

	
CGS2SLS-op

	
−0.190

	
0.383

	
5.713

	
0.999

	

	
0.501

	
0.531

	
4.274

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.148

	
0.295

	
2.039

	
1.000

	

	
0.293

	
0.456

	
3.633

	
0.982




	

	
GS2SLS-max

	
0.064

	
0.031

	
0.120

	
0.968

	

	
0.791

	
0.081

	
0.306

	
0.033




	

	
GS2SLS-op

	
0.074

	
0.129

	
0.814

	
1.000

	

	
0.700

	
0.291

	
1.492

	
0.782




	

	
CGS2SLS-max

	
0.032

	
0.034

	
0.136

	
0.997

	

	
0.723

	
0.152

	
0.608

	
0.189




	

	
CGS2SLS-op

	
0.011

	
0.160

	
1.544

	
1.000

	

	
0.628

	
0.355

	
2.091

	
0.820




	

	
[image: there is no content]=0.5




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.349

	
0.342

	
2.413

	
0.992

	

	
0.026

	
0.572

	
3.234

	
1.000




	

	
GS2SLS-max

	
0.344

	
0.059

	
0.241

	
0.414

	

	
−0.070

	
0.176

	
0.696

	
0.992




	

	
GS2SLS-op

	
0.310

	
0.272

	
1.755

	
0.984

	

	
0.031

	
0.428

	
2.375

	
1.000




	

	
CGS2SLS-max

	
0.057

	
0.160

	
1.432

	
0.720

	

	
0.049

	
0.330

	
1.544

	
0.967




	

	
CGS2SLS-op

	
−0.137

	
0.730

	
10.221

	
0.972

	

	
0.203

	
0.810

	
7.607

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.262

	
0.347

	
2.225

	
1.000

	

	
0.195

	
0.556

	
3.487

	
1.000




	

	
GS2SLS-max

	
0.261

	
0.053

	
0.208

	
0.503

	

	
0.335

	
0.155

	
0.578

	
0.934




	

	
GS2SLS-op

	
0.227

	
0.208

	
1.342

	
0.991

	

	
0.350

	
0.403

	
2.108

	
1.000




	

	
CGS2SLS-max

	
0.092

	
0.077

	
0.401

	
0.855

	

	
0.400

	
0.254

	
1.022

	
0.848




	

	
CGS2SLS-op

	
−0.085

	
0.368

	
6.524

	
0.996

	

	
0.464

	
0.565

	
4.658

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.228

	
0.219

	
1.672

	
0.992

	

	
0.339

	
0.460

	
3.461

	
0.973




	

	
GS2SLS-max

	
0.181

	
0.027

	
0.103

	
0.224

	

	
0.775

	
0.066

	
0.264

	
0.023




	

	
GS2SLS-op

	
0.191

	
0.114

	
0.659

	
0.952

	

	
0.690

	
0.262

	
1.390

	
0.768




	

	
CGS2SLS-max

	
0.140

	
0.029

	
0.124

	
0.546

	

	
0.705

	
0.127

	
0.542

	
0.165




	

	
CGS2SLS-op

	
0.115

	
0.133

	
1.600

	
0.966

	

	
0.639

	
0.310

	
2.055

	
0.809








MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.








Table 2. Estimation of Model 1 with [image: there is no content]=0.1 and [image: there is no content].
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[image: there is no content]=1.0
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MB

	
MAD

	
DQ

	
CR






	

	
[image: there is no content]=0.1




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.081

	
0.283

	
1.528

	
1.000

	

	
−0.024

	
0.240

	
1.026

	
1.000




	

	
GS2SLS-max

	
0.225

	
0.076

	
0.302

	
0.835

	

	
−0.062

	
0.135

	
0.548

	
0.995




	

	
GS2SLS-op

	
0.116

	
0.254

	
1.437

	
1.000

	

	
0.001

	
0.288

	
1.365

	
1.000




	

	
CGS2SLS-max

	
−0.033

	
0.109

	
0.558

	
0.887

	

	
0.039

	
0.197

	
0.829

	
0.979




	

	
CGS2SLS-op

	
−0.212

	
0.379

	
5.158

	
0.997

	

	
0.211

	
0.461

	
3.997

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.082

	
0.231

	
1.368

	
1.000

	

	
−0.031

	
0.255

	
1.127

	
1.000




	

	
GS2SLS-max

	
0.149

	
0.066

	
0.263

	
0.903

	

	
0.206

	
0.136

	
0.534

	
0.965




	

	
GS2SLS-op

	
0.078

	
0.213

	
1.203

	
0.998

	

	
0.147

	
0.312

	
1.452

	
1.000




	

	
CGS2SLS-max

	
−0.004

	
0.080

	
0.361

	
0.961

	

	
0.174

	
0.174

	
0.693

	
0.949




	

	
CGS2SLS-op

	
−0.155

	
0.283

	
3.963

	
0.999

	

	
0.312

	
0.381

	
2.418

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.103

	
0.270

	
1.683

	
1.000

	

	
0.027

	
0.298

	
1.763

	
0.995




	

	
GS2SLS-max

	
0.075

	
0.044

	
0.171

	
0.914

	

	
0.595

	
0.095

	
0.368

	
0.207




	

	
GS2SLS-op

	
0.071

	
0.182

	
1.185

	
0.998

	

	
0.284

	
0.357

	
1.671

	
0.928




	

	
CGS2SLS-max

	
0.022

	
0.049

	
0.210

	
0.985

	

	
0.407

	
0.153

	
0.605

	
0.598




	

	
CGS2SLS-op

	
−0.034

	
0.190

	
2.795

	
1.000

	

	
0.374

	
0.394

	
2.175

	
0.913




	

	
[image: there is no content]=0.5




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.253

	
0.313

	
1.991

	
0.996

	

	
0.021

	
0.273

	
1.243

	
1.000




	

	
GS2SLS-max

	
0.327

	
0.059

	
0.237

	
0.412

	

	
−0.058

	
0.146

	
0.568

	
0.995




	

	
GS2SLS-op

	
0.257

	
0.253

	
1.611

	
0.983

	

	
0.019

	
0.290

	
1.374

	
1.000




	

	
CGS2SLS-max

	
0.055

	
0.127

	
1.086

	
0.766

	

	
0.020

	
0.229

	
1.014

	
0.981




	

	
CGS2SLS-op

	
−0.159

	
0.472

	
6.950

	
0.972

	

	
0.144

	
0.557

	
5.132

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.197

	
0.280

	
1.646

	
0.997

	

	
0.002

	
0.278

	
1.253

	
1.000




	

	
GS2SLS-max

	
0.268

	
0.055

	
0.213

	
0.444

	

	
0.214

	
0.138

	
0.527

	
0.959




	

	
GS2SLS-op

	
0.217

	
0.232

	
1.415

	
0.991

	

	
0.166

	
0.316

	
1.515

	
1.000




	

	
CGS2SLS-max

	
0.087

	
0.083

	
0.421

	
0.826

	

	
0.197

	
0.192

	
0.802

	
0.941




	

	
CGS2SLS-op

	
−0.047

	
0.309

	
4.120

	
0.987

	

	
0.282

	
0.400

	
2.706

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.222

	
0.262

	
1.671

	
0.994

	

	
0.013

	
0.239

	
1.165

	
0.995




	

	
GS2SLS-max

	
0.217

	
0.030

	
0.118

	
0.156

	

	
0.488

	
0.080

	
0.322

	
0.334




	

	
GS2SLS-op

	
0.216

	
0.190

	
1.288

	
0.958

	

	
0.148

	
0.246

	
1.216

	
0.968




	

	
CGS2SLS-max

	
0.140

	
0.043

	
0.185

	
0.669

	

	
0.310

	
0.129

	
0.527

	
0.753




	

	
CGS2SLS-op

	
0.077

	
0.185

	
2.591

	
0.966

	

	
0.249

	
0.327

	
1.756

	
0.947








MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.








Table 3. Estimation of Model 1 with [image: there is no content]=0.02 and [image: there is no content].
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MAD

	
DQ

	
CR






	

	
[image: there is no content]=0.1




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.124

	
0.348

	
2.079

	
1.000

	

	
0.000

	
0.383

	
1.736

	
1.000




	

	
GS2SLS-max

	
0.245

	
0.040

	
0.147

	
0.168

	

	
−0.116

	
0.094

	
0.360

	
0.958




	

	
GS2SLS-op

	
0.158

	
0.210

	
1.203

	
0.995

	

	
−0.009

	
0.307

	
1.431

	
1.000




	

	
CGS2SLS-max

	
−0.023

	
0.056

	
0.310

	
0.866

	

	
0.046

	
0.149

	
0.603

	
0.904




	

	
CGS2SLS-op

	
−0.326

	
0.433

	
7.033

	
0.993

	

	
0.265

	
0.425

	
4.096

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.145

	
0.322

	
1.972

	
1.000

	

	
0.024

	
0.364

	
1.766

	
1.000




	

	
GS2SLS-max

	
0.156

	
0.031

	
0.117

	
0.367

	

	
0.306

	
0.080

	
0.302

	
0.587




	

	
GS2SLS-op

	
0.117

	
0.166

	
0.984

	
1.000

	

	
0.301

	
0.276

	
1.301

	
0.998




	

	
CGS2SLS-max

	
0.014

	
0.035

	
0.138

	
0.978

	

	
0.299

	
0.135

	
0.502

	
0.587




	

	
CGS2SLS-op

	
−0.128

	
0.269

	
4.360

	
1.000

	

	
0.364

	
0.360

	
1.961

	
0.999




	
[image: there is no content]

	
GS2SLS-min

	
0.143

	
0.271

	
1.772

	
0.999

	

	
0.016

	
0.295

	
1.569

	
0.995




	

	
GS2SLS-max

	
0.067

	
0.016

	
0.061

	
0.514

	

	
0.757

	
0.041

	
0.155

	
0.000




	

	
GS2SLS-op

	
0.089

	
0.183

	
1.014

	
0.998

	

	
0.348

	
0.274

	
1.361

	
0.898




	

	
CGS2SLS-max

	
0.038

	
0.019

	
0.076

	
0.934

	

	
0.558

	
0.088

	
0.342

	
0.043




	

	
CGS2SLS-op

	
−0.011

	
0.163

	
1.762

	
1.000

	

	
0.423

	
0.284

	
1.513

	
0.850




	

	
[image: there is no content]=0.5




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.241

	
0.333

	
2.121

	
0.996

	

	
0.009

	
0.382

	
1.682

	
1.000




	

	
GS2SLS-max

	
0.338

	
0.029

	
0.111

	
0.001

	

	
−0.111

	
0.098

	
0.370

	
0.948




	

	
GS2SLS-op

	
0.248

	
0.220

	
1.452

	
0.978

	

	
0.015

	
0.331

	
1.472

	
1.000




	

	
CGS2SLS-max

	
0.057

	
0.079

	
0.723

	
0.634

	

	
0.015

	
0.188

	
0.860

	
0.855




	

	
CGS2SLS-op

	
−0.241

	
0.530

	
9.160

	
0.936

	

	
0.218

	
0.572

	
5.418

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.241

	
0.266

	
1.641

	
0.996

	

	
0.030

	
0.315

	
1.491

	
1.000




	

	
GS2SLS-max

	
0.265

	
0.025

	
0.094

	
0.002

	

	
0.308

	
0.079

	
0.311

	
0.552




	

	
GS2SLS-op

	
0.230

	
0.163

	
0.956

	
0.971

	

	
0.274

	
0.284

	
1.231

	
1.000




	

	
CGS2SLS-max

	
0.106

	
0.038

	
0.179

	
0.575

	

	
0.302

	
0.140

	
0.551

	
0.572




	

	
CGS2SLS-op

	
−0.077

	
0.292

	
4.467

	
0.984

	

	
0.344

	
0.358

	
2.332

	
0.999




	
[image: there is no content]

	
GS2SLS-min

	
0.218

	
0.263

	
1.765

	
0.994

	

	
0.075

	
0.294

	
1.820

	
0.995




	

	
GS2SLS-max

	
0.184

	
0.012

	
0.046

	
0.000

	

	
0.754

	
0.037

	
0.138

	
0.000




	

	
GS2SLS-op

	
0.204

	
0.161

	
0.961

	
0.963

	

	
0.377

	
0.256

	
1.220

	
0.887




	

	
CGS2SLS-max

	
0.142

	
0.015

	
0.058

	
0.032

	

	
0.580

	
0.084

	
0.319

	
0.031




	

	
CGS2SLS-op

	
0.111

	
0.151

	
2.019

	
0.950

	

	
0.421

	
0.287

	
1.530

	
0.836








MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.








Table 4. Estimation of Model 1 with [image: there is no content]=0.1 and [image: there is no content].
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[image: there is no content]=0.1




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.032

	
0.154

	
0.801

	
0.999

	

	
−0.016

	
0.131

	
0.526

	
1.000




	

	
GS2SLS-max

	
0.214

	
0.037

	
0.144

	
0.257

	

	
−0.068

	
0.076

	
0.274

	
0.984




	

	
GS2SLS-op

	
0.126

	
0.211

	
1.258

	
0.999

	

	
−0.004

	
0.296

	
1.475

	
1.000




	

	
CGS2SLS-max

	
0.007

	
0.044

	
0.176

	
0.970

	

	
0.009

	
0.093

	
0.362

	
0.979




	

	
CGS2SLS-op

	
−0.172

	
0.301

	
3.807

	
0.999

	

	
0.209

	
0.388

	
2.928

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.045

	
0.150

	
0.834

	
0.999

	

	
−0.015

	
0.136

	
0.553

	
1.000




	

	
GS2SLS-max

	
0.165

	
0.031

	
0.121

	
0.290

	

	
0.199

	
0.067

	
0.260

	
0.792




	

	
GS2SLS-op

	
0.097

	
0.221

	
1.402

	
1.000

	

	
0.110

	
0.301

	
1.433

	
1.000




	

	
CGS2SLS-max

	
0.029

	
0.035

	
0.139

	
0.967

	

	
0.112

	
0.086

	
0.328

	
0.922




	

	
CGS2SLS-op

	
−0.113

	
0.258

	
3.874

	
1.000

	

	
0.248

	
0.338

	
2.203

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.053

	
0.147

	
0.975

	
1.000

	

	
−0.003

	
0.136

	
0.574

	
0.998




	

	
GS2SLS-max

	
0.114

	
0.019

	
0.073

	
0.144

	

	
0.503

	
0.044

	
0.167

	
0.003




	

	
GS2SLS-op

	
0.107

	
0.182

	
1.080

	
0.996

	

	
0.106

	
0.220

	
0.980

	
0.986




	

	
CGS2SLS-max

	
0.060

	
0.026

	
0.103

	
0.861

	

	
0.217

	
0.075

	
0.273

	
0.643




	

	
CGS2SLS-op

	
−0.046

	
0.216

	
2.924

	
1.000

	

	
0.280

	
0.364

	
2.083

	
0.957




	

	
[image: there is no content]=0.5




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.072

	
0.189

	
1.255

	
0.996

	

	
0.003

	
0.131

	
0.525

	
1.000




	

	
GS2SLS-max

	
0.316

	
0.030

	
0.115

	
0.006

	

	
−0.054

	
0.073

	
0.287

	
0.983




	

	
GS2SLS-op

	
0.211

	
0.238

	
1.563

	
0.986

	

	
0.020

	
0.276

	
1.241

	
1.000




	

	
CGS2SLS-max

	
0.079

	
0.054

	
0.277

	
0.718

	

	
0.014

	
0.108

	
0.431

	
0.957




	

	
CGS2SLS-op

	
−0.137

	
0.382

	
5.654

	
0.967

	

	
0.205

	
0.453

	
3.517

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.097

	
0.173

	
1.275

	
0.993

	

	
−0.006

	
0.140

	
0.595

	
1.000




	

	
GS2SLS-max

	
0.264

	
0.025

	
0.101

	
0.006

	

	
0.200

	
0.068

	
0.263

	
0.776




	

	
GS2SLS-op

	
0.191

	
0.219

	
1.377

	
0.991

	

	
0.116

	
0.258

	
1.184

	
0.999




	

	
CGS2SLS-max

	
0.110

	
0.034

	
0.150

	
0.570

	

	
0.108

	
0.092

	
0.361

	
0.910




	

	
CGS2SLS-op

	
−0.028

	
0.291

	
4.901

	
0.985

	

	
0.206

	
0.330

	
2.157

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.098

	
0.156

	
1.341

	
0.989

	

	
−0.005

	
0.148

	
0.638

	
0.999




	

	
GS2SLS-max

	
0.210

	
0.017

	
0.064

	
0.000

	

	
0.482

	
0.044

	
0.167

	
0.004




	

	
GS2SLS-op

	
0.150

	
0.180

	
1.114

	
0.977

	

	
0.120

	
0.191

	
0.833

	
0.996




	

	
CGS2SLS-max

	
0.138

	
0.022

	
0.088

	
0.183

	

	
0.195

	
0.078

	
0.300

	
0.702




	

	
CGS2SLS-op

	
0.039

	
0.213

	
3.970

	
0.974

	

	
0.205

	
0.307

	
1.865

	
0.969








MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.
















Table 5, Table 6, Table 7 and Table 8 report the summary statistics of the estimators for Model 2. Among GS2SLS-min, GS2SLS-max and GS2SLS-op, in most cases, the GS2SLS-max has the largest median bias, the GS2SLS-op of [image: there is no content] has the smallest median bias, and the GS2SLS-op of [image: there is no content] has the intermediate median bias. The GS2SLS-max has the smallest MAD and DQ, and the GS2SLS-op has the intermediate MAD and DQ. The CR of GS2SLS-op is closest to the nominal level, while the CR of GS2SLS-max is significantly lower than the nominal level in many cases. The performance of CGS2SLS-max for Model 2 is similar to that for Model 1. Compared with the GS2SLS-op, the CGS2SLS-op has much larger MAD and DQ in most cases, similar CR, and has smaller median bias in more than half of the cases when [image: there is no content]=0.5 but larger median bias in most cases when [image: there is no content]=0.1.



Table 5. Estimation of Model 2 with [image: there is no content]=0.02 and [image: there is no content].
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[image: there is no content]=0.1




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.246

	
0.611

	
3.434

	
1.000

	

	
0.046

	
0.774

	
4.234

	
1.000




	

	
GS2SLS-max

	
0.250

	
0.082

	
0.317

	
0.797

	

	
−0.079

	
0.177

	
0.661

	
0.994




	

	
GS2SLS-op

	
0.198

	
0.326

	
2.034

	
0.999

	

	
0.059

	
0.472

	
2.364

	
1.000




	

	
CGS2SLS-max

	
−0.055

	
0.132

	
0.730

	
0.849

	

	
0.107

	
0.299

	
1.340

	
0.967




	

	
CGS2SLS-op

	
−0.391

	
0.602

	
10.313

	
0.992

	

	
0.360

	
0.766

	
7.293

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.160

	
0.354

	
2.317

	
1.000

	

	
0.408

	
0.796

	
4.989

	
1.000




	

	
GS2SLS-max

	
0.155

	
0.065

	
0.250

	
0.910

	

	
0.338

	
0.146

	
0.576

	
0.943




	

	
GS2SLS-op

	
0.128

	
0.216

	
1.228

	
1.000

	

	
0.399

	
0.393

	
1.964

	
1.000




	

	
CGS2SLS-max

	
−0.008

	
0.078

	
0.354

	
0.960

	

	
0.418

	
0.233

	
0.949

	
0.845




	

	
CGS2SLS-op

	
−0.204

	
0.361

	
6.722

	
0.998

	

	
0.572

	
0.531

	
4.621

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.050

	
0.210

	
1.433

	
1.000

	

	
0.741

	
0.523

	
3.243

	
0.963




	

	
GS2SLS-max

	
0.063

	
0.032

	
0.133

	
0.968

	

	
0.793

	
0.080

	
0.316

	
0.038




	

	
GS2SLS-op

	
0.051

	
0.121

	
0.699

	
1.000

	

	
0.763

	
0.238

	
1.278

	
0.775




	

	
CGS2SLS-max

	
0.030

	
0.036

	
0.155

	
0.993

	

	
0.721

	
0.147

	
0.609

	
0.193




	

	
CGS2SLS-op

	
−0.006

	
0.148

	
1.445

	
1.000

	

	
0.714

	
0.286

	
2.544

	
0.800




	

	
[image: there is no content]=0.5




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.289

	
0.363

	
2.264

	
0.994

	

	
0.059

	
0.829

	
5.260

	
1.000




	

	
GS2SLS-max

	
0.342

	
0.061

	
0.238

	
0.367

	

	
−0.091

	
0.180

	
0.712

	
0.991




	

	
GS2SLS-op

	
0.267

	
0.274

	
1.645

	
0.985

	

	
0.071

	
0.523

	
3.235

	
1.000




	

	
CGS2SLS-max

	
0.063

	
0.160

	
1.484

	
0.698

	

	
0.023

	
0.356

	
1.665

	
0.958




	

	
CGS2SLS-op

	
−0.167

	
0.675

	
9.228

	
0.966

	

	
0.254

	
0.807

	
7.433

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.277

	
0.342

	
2.408

	
0.997

	

	
0.303

	
0.694

	
4.551

	
1.000




	

	
GS2SLS-max

	
0.264

	
0.052

	
0.203

	
0.449

	

	
0.330

	
0.151

	
0.585

	
0.934




	

	
GS2SLS-op

	
0.226

	
0.196

	
1.324

	
0.986

	

	
0.356

	
0.394

	
2.001

	
0.999




	

	
CGS2SLS-max

	
0.100

	
0.073

	
0.372

	
0.844

	

	
0.356

	
0.242

	
1.027

	
0.853




	

	
CGS2SLS-op

	
−0.098

	
0.362

	
7.297

	
0.989

	

	
0.475

	
0.584

	
5.336

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.182

	
0.181

	
1.172

	
0.992

	

	
0.689

	
0.470

	
2.978

	
0.962




	

	
GS2SLS-max

	
0.184

	
0.027

	
0.105

	
0.240

	

	
0.777

	
0.073

	
0.285

	
0.024




	

	
GS2SLS-op

	
0.179

	
0.109

	
0.682

	
0.969

	

	
0.762

	
0.220

	
1.184

	
0.779




	

	
CGS2SLS-max

	
0.144

	
0.030

	
0.130

	
0.568

	

	
0.710

	
0.137

	
0.559

	
0.183




	

	
CGS2SLS-op

	
0.099

	
0.146

	
1.737

	
0.972

	

	
0.700

	
0.299

	
2.223

	
0.812








MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.








Table 6. Estimation of Model 2 with [image: there is no content]=0.1 and [image: there is no content].
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MB

	
MAD

	
DQ

	
CR






	

	
[image: there is no content]=0.1




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.199

	
0.439

	
2.673

	
1.000

	

	
−0.001

	
0.482

	
2.470

	
1.000




	

	
GS2SLS-max

	
0.230

	
0.076

	
0.295

	
0.804

	

	
−0.064

	
0.151

	
0.573

	
0.996




	

	
GS2SLS-op

	
0.190

	
0.290

	
1.703

	
0.999

	

	
0.017

	
0.364

	
1.702

	
1.000




	

	
CGS2SLS-max

	
−0.039

	
0.115

	
0.562

	
0.892

	

	
0.069

	
0.209

	
0.839

	
0.983




	

	
CGS2SLS-op

	
−0.285

	
0.461

	
6.720

	
0.994

	

	
0.206

	
0.479

	
3.688

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.002

	
0.385

	
2.408

	
1.000

	

	
0.198

	
0.669

	
4.025

	
1.000




	

	
GS2SLS-max

	
0.137

	
0.068

	
0.266

	
0.907

	

	
0.217

	
0.135

	
0.531

	
0.963




	

	
GS2SLS-op

	
0.058

	
0.217

	
1.323

	
1.000

	

	
0.198

	
0.337

	
1.710

	
1.000




	

	
CGS2SLS-max

	
−0.003

	
0.076

	
0.335

	
0.964

	

	
0.177

	
0.178

	
0.709

	
0.942




	

	
CGS2SLS-op

	
−0.173

	
0.302

	
4.685

	
0.999

	

	
0.263

	
0.364

	
2.475

	
0.999




	
[image: there is no content]

	
GS2SLS-min

	
0.058

	
0.364

	
2.209

	
0.999

	

	
0.260

	
0.504

	
3.843

	
0.992




	

	
GS2SLS-max

	
0.102

	
0.042

	
0.170

	
0.887

	

	
0.522

	
0.085

	
0.333

	
0.311




	

	
GS2SLS-op

	
0.103

	
0.231

	
1.521

	
0.999

	

	
0.369

	
0.282

	
2.034

	
0.958




	

	
CGS2SLS-max

	
0.039

	
0.053

	
0.220

	
0.982

	

	
0.331

	
0.134

	
0.528

	
0.728




	

	
CGS2SLS-op

	
−0.023

	
0.197

	
2.793

	
1.000

	

	
0.339

	
0.268

	
1.738

	
0.955




	

	
[image: there is no content]=0.5




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.290

	
0.364

	
2.446

	
0.998

	

	
0.053

	
0.601

	
3.690

	
1.000




	

	
GS2SLS-max

	
0.319

	
0.068

	
0.265

	
0.454

	

	
−0.064

	
0.162

	
0.632

	
0.989




	

	
GS2SLS-op

	
0.252

	
0.278

	
1.901

	
0.991

	

	
0.056

	
0.443

	
2.357

	
1.000




	

	
CGS2SLS-max

	
0.063

	
0.120

	
1.088

	
0.777

	

	
0.016

	
0.251

	
1.169

	
0.966




	

	
CGS2SLS-op

	
−0.149

	
0.495

	
7.195

	
0.970

	

	
0.220

	
0.642

	
5.969

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.244

	
0.309

	
1.949

	
0.997

	

	
0.329

	
0.728

	
4.353

	
1.000




	

	
GS2SLS-max

	
0.268

	
0.051

	
0.203

	
0.440

	

	
0.233

	
0.129

	
0.507

	
0.961




	

	
GS2SLS-op

	
0.243

	
0.214

	
1.317

	
0.986

	

	
0.222

	
0.366

	
1.924

	
1.000




	

	
CGS2SLS-max

	
0.091

	
0.082

	
0.445

	
0.825

	

	
0.213

	
0.182

	
0.780

	
0.944




	

	
CGS2SLS-op

	
−0.052

	
0.321

	
5.613

	
0.988

	

	
0.259

	
0.395

	
2.986

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.163

	
0.261

	
1.781

	
0.984

	

	
0.088

	
0.387

	
2.616

	
0.991




	

	
GS2SLS-max

	
0.196

	
0.038

	
0.150

	
0.307

	

	
0.487

	
0.086

	
0.330

	
0.371




	

	
GS2SLS-op

	
0.149

	
0.184

	
1.207

	
0.970

	

	
0.290

	
0.247

	
1.503

	
0.965




	

	
CGS2SLS-max

	
0.117

	
0.050

	
0.220

	
0.774

	

	
0.291

	
0.141

	
0.556

	
0.787




	

	
CGS2SLS-op

	
0.049

	
0.195

	
3.284

	
0.978

	

	
0.279

	
0.270

	
1.742

	
0.970








MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.








Table 7. Estimation of Model 2 with [image: there is no content]=0.02 and [image: there is no content].
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[image: there is no content]=0.1




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.193

	
0.416

	
2.823

	
1.000

	

	
0.070

	
0.704

	
4.351

	
1.000




	

	
GS2SLS-max

	
0.242

	
0.037

	
0.145

	
0.160

	

	
−0.100

	
0.093

	
0.351

	
0.967




	

	
GS2SLS-op

	
0.169

	
0.218

	
1.220

	
0.998

	

	
0.014

	
0.347

	
1.673

	
1.000




	

	
CGS2SLS-max

	
−0.017

	
0.056

	
0.273

	
0.893

	

	
0.040

	
0.144

	
0.580

	
0.919




	

	
CGS2SLS-op

	
−0.348

	
0.468

	
11.234

	
0.992

	

	
0.321

	
0.517

	
5.647

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.130

	
0.354

	
2.272

	
1.000

	

	
0.259

	
0.652

	
3.957

	
1.000




	

	
GS2SLS-max

	
0.154

	
0.031

	
0.120

	
0.389

	

	
0.316

	
0.078

	
0.297

	
0.557




	

	
GS2SLS-op

	
0.104

	
0.171

	
0.980

	
1.000

	

	
0.349

	
0.288

	
1.408

	
0.999




	

	
CGS2SLS-max

	
0.015

	
0.033

	
0.136

	
0.977

	

	
0.303

	
0.132

	
0.502

	
0.581




	

	
CGS2SLS-op

	
−0.153

	
0.293

	
3.525

	
1.000

	

	
0.405

	
0.384

	
2.560

	
0.999




	
[image: there is no content]

	
GS2SLS-min

	
0.100

	
0.263

	
1.769

	
1.000

	

	
0.412

	
0.541

	
4.162

	
0.986




	

	
GS2SLS-max

	
0.070

	
0.015

	
0.059

	
0.472

	

	
0.748

	
0.041

	
0.159

	
0.000




	

	
GS2SLS-op

	
0.086

	
0.155

	
0.995

	
1.000

	

	
0.546

	
0.263

	
1.447

	
0.860




	

	
CGS2SLS-max

	
0.041

	
0.020

	
0.074

	
0.925

	

	
0.538

	
0.083

	
0.338

	
0.051




	

	
CGS2SLS-op

	
−0.008

	
0.169

	
2.335

	
1.000

	

	
0.490

	
0.247

	
1.964

	
0.863




	

	
[image: there is no content]=0.5




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.322

	
0.398

	
2.574

	
0.997

	

	
−0.005

	
0.723

	
3.984

	
1.000




	

	
GS2SLS-max

	
0.338

	
0.029

	
0.110

	
0.002

	

	
−0.115

	
0.099

	
0.382

	
0.940




	

	
GS2SLS-op

	
0.271

	
0.243

	
1.508

	
0.976

	

	
−0.008

	
0.407

	
2.041

	
1.000




	

	
CGS2SLS-max

	
0.060

	
0.082

	
0.657

	
0.634

	

	
0.014

	
0.189

	
0.862

	
0.855




	

	
CGS2SLS-op

	
−0.300

	
0.587

	
11.233

	
0.939

	

	
0.252

	
0.675

	
6.906

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.251

	
0.281

	
1.692

	
0.997

	

	
0.291

	
0.661

	
3.651

	
1.000




	

	
GS2SLS-max

	
0.263

	
0.025

	
0.096

	
0.004

	

	
0.306

	
0.082

	
0.307

	
0.553




	

	
GS2SLS-op

	
0.239

	
0.172

	
1.055

	
0.971

	

	
0.337

	
0.295

	
1.385

	
0.998




	

	
CGS2SLS-max

	
0.104

	
0.038

	
0.181

	
0.576

	

	
0.302

	
0.140

	
0.554

	
0.580




	

	
CGS2SLS-op

	
−0.086

	
0.316

	
6.578

	
0.984

	

	
0.375

	
0.373

	
2.944

	
0.999




	
[image: there is no content]

	
GS2SLS-min

	
0.252

	
0.236

	
1.595

	
0.991

	

	
0.240

	
0.400

	
3.186

	
0.988




	

	
GS2SLS-max

	
0.184

	
0.012

	
0.046

	
0.000

	

	
0.754

	
0.037

	
0.142

	
0.000




	

	
GS2SLS-op

	
0.212

	
0.134

	
0.943

	
0.961

	

	
0.534

	
0.256

	
1.511

	
0.831




	

	
CGS2SLS-max

	
0.142

	
0.015

	
0.059

	
0.035

	

	
0.584

	
0.082

	
0.320

	
0.026




	

	
CGS2SLS-op

	
0.098

	
0.156

	
2.048

	
0.958

	

	
0.503

	
0.263

	
1.808

	
0.823








MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.








Table 8. Estimation of Model 2 with [image: there is no content]=0.1 and [image: there is no content].
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CR
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MAD

	
DQ
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[image: there is no content]=0.1




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.138

	
0.318

	
1.886

	
1.000

	

	
0.019

	
0.342

	
1.584

	
1.000




	

	
GS2SLS-max

	
0.215

	
0.038

	
0.147

	
0.246

	

	
−0.073

	
0.075

	
0.282

	
0.983




	

	
GS2SLS-op

	
0.123

	
0.241

	
1.339

	
1.000

	

	
0.000

	
0.295

	
1.242

	
1.000




	

	
CGS2SLS-max

	
0.008

	
0.044

	
0.182

	
0.956

	

	
0.002

	
0.099

	
0.368

	
0.982




	

	
CGS2SLS-op

	
−0.261

	
0.416

	
7.521

	
0.998

	

	
0.128

	
0.393

	
2.719

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.143

	
0.279

	
1.654

	
1.000

	

	
0.037

	
0.322

	
1.661

	
1.000




	

	
GS2SLS-max

	
0.164

	
0.032

	
0.121

	
0.286

	

	
0.201

	
0.072

	
0.269

	
0.784




	

	
GS2SLS-op

	
0.094

	
0.223

	
1.218

	
0.999

	

	
0.120

	
0.273

	
1.162

	
1.000




	

	
CGS2SLS-max

	
0.028

	
0.035

	
0.138

	
0.970

	

	
0.108

	
0.091

	
0.343

	
0.912




	

	
CGS2SLS-op

	
−0.181

	
0.357

	
7.336

	
1.000

	

	
0.129

	
0.384

	
2.341

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.193

	
0.206

	
1.298

	
1.000

	

	
0.056

	
0.316

	
1.821

	
0.997




	

	
GS2SLS-max

	
0.118

	
0.019

	
0.075

	
0.117

	

	
0.476

	
0.045

	
0.182

	
0.005




	

	
GS2SLS-op

	
0.117

	
0.185

	
1.127

	
0.997

	

	
0.236

	
0.196

	
1.018

	
0.981




	

	
CGS2SLS-max

	
0.059

	
0.027

	
0.106

	
0.854

	

	
0.200

	
0.071

	
0.285

	
0.703




	

	
CGS2SLS-op

	
−0.073

	
0.284

	
5.465

	
0.998

	

	
0.069

	
0.275

	
1.452

	
0.994




	

	
[image: there is no content]=0.5




	
[image: there is no content]=0.1

	
GS2SLS-min

	
0.236

	
0.269

	
1.706

	
0.992

	

	
0.026

	
0.275

	
1.236

	
1.000




	

	
GS2SLS-max

	
0.319

	
0.030

	
0.113

	
0.008

	

	
−0.057

	
0.071

	
0.275

	
0.982




	

	
GS2SLS-op

	
0.224

	
0.220

	
1.365

	
0.988

	

	
0.030

	
0.237

	
1.036

	
1.000




	

	
CGS2SLS-max

	
0.078

	
0.054

	
0.306

	
0.724

	

	
0.009

	
0.102

	
0.402

	
0.967




	

	
CGS2SLS-op

	
−0.160

	
0.389

	
6.310

	
0.962

	

	
0.065

	
0.298

	
1.734

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.255

	
0.245

	
1.559

	
0.993

	

	
0.082

	
0.374

	
1.865

	
1.000




	

	
GS2SLS-max

	
0.267

	
0.026

	
0.098

	
0.005

	

	
0.215

	
0.073

	
0.267

	
0.740




	

	
GS2SLS-op

	
0.202

	
0.216

	
1.233

	
0.987

	

	
0.139

	
0.253

	
1.200

	
1.000




	

	
CGS2SLS-max

	
0.109

	
0.037

	
0.162

	
0.566

	

	
0.136

	
0.097

	
0.385

	
0.882




	

	
CGS2SLS-op

	
−0.112

	
0.372

	
7.572

	
0.988

	

	
0.091

	
0.406

	
2.593

	
1.000




	
[image: there is no content]

	
GS2SLS-min

	
0.250

	
0.200

	
1.235

	
0.986

	

	
0.060

	
0.271

	
1.456

	
0.996




	

	
GS2SLS-max

	
0.211

	
0.015

	
0.059

	
0.000

	

	
0.492

	
0.042

	
0.158

	
0.001




	

	
GS2SLS-op

	
0.186

	
0.160

	
0.987

	
0.973

	

	
0.247

	
0.172

	
0.857

	
0.978




	

	
CGS2SLS-max

	
0.142

	
0.022

	
0.089

	
0.164

	

	
0.211

	
0.076

	
0.299

	
0.667




	

	
CGS2SLS-op

	
0.022

	
0.249

	
4.416

	
0.985

	

	
0.078

	
0.266

	
1.447

	
0.993








MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9 quantiles; CR: coverage rate of a nominal 95% confidence interval.
















From the Monte Carlo results of both models, we can see that the proposed CGS2SLS estimator can effectively reduce the many instrument bias, and the estimators derived by choosing the number of instruments to minimize their respective approximated MSEs, GS2SLS-op and CGS2SLS-op, have coverage rates closer to the nominal level than the estimators using very few or many instruments, i.e., GS2SLS-op and CGS2SLS-op can make inference more reliable. Between GS2SLS-op and CGS2SLS-op, no one is always better than the other in terms of central tendency or coverage rate, but the GS2SLS-op has much smaller dispersion in most cases.



The summary statistics of the estimated p and q are presented in Table 9 and Table 10. Consistent with [3], in most cases for both models, only the first spatial lag ([image: there is no content]) is used. For Model 1, in most cases, [image: there is no content] is 1 or 2 with [image: there is no content], and is larger with [image: there is no content] but is smaller than the maximum number of instruments [image: there is no content]=10. For Model 2, [image: there is no content] tends to be larger, which might be due to the fact that the variables in [image: there is no content] of Model 2 are equally important but the importance of the variables in [image: there is no content] of Model 1 is in decreasing order. For both models, [image: there is no content] tends to be larger with a larger [image: there is no content].



Table 9. The Distributions of [image: there is no content] and [image: there is no content] in Model 1.
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[image: there is no content]=0.02, [image: there is no content]=0.1, [image: there is no content]=0.1
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[image: there is no content]=0.02, [image: there is no content]=0.5, [image: there is no content]=0.1
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[image: there is no content]=0.1, [image: there is no content]=0.1, [image: there is no content]=0.1
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[image: there is no content]=0.1, [image: there is no content]=0.5, [image: there is no content]=0.1
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MO: mode; LQ: 0.1 quantile; ME: median; UQ: 0.9 quantile.








Table 10. The Distributions of [image: there is no content] and [image: there is no content] in Model 2.
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MO: mode; LQ: 0.1 quantile; ME: median; UQ: 0.9 quantile.













5. Conclusions


In this paper, we derive an approximated MSE of the GS2SLS estimator and a bias corrected GS2SLS (CGS2SLS) estimator for the SARAR model in the presence of endogenous variables and many instruments. We propose a instrument selection procedure by minimizing the approximated MSEs. Our Monte Carlo experiments show that the CGS2SLS can effectively correct the many instrument bias and the instrument selection procedure generally makes inference in finite samples more accurate.
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Appendix


A. Notations


[image: there is no content] for a square matrix A.



[image: there is no content] is the Frobenius matrix norm for a matrix A.



[image: there is no content] is a column vector whose elements are the diagonal elements of a square matrix A.



[image: there is no content]=[image: there is no content]([image: there is no content]) and [image: there is no content], where [image: there is no content](ρ)=[image: there is no content]−ρ[image: there is no content] and Gn(λ)=[image: there is no content]([image: there is no content]−λ[image: there is no content])−1.



[image: there is no content](ρ)=[image: there is no content](ρ)[image: there is no content], [image: there is no content](ρ)=[image: there is no content](ρ)[image: there is no content], [image: there is no content](ρ)=[image: there is no content](ρ)[image: there is no content] and [image: there is no content].



[image: there is no content]=[image: there is no content]+vn, where [image: there is no content]=E([image: there is no content]).



[image: there is no content]=[[image: there is no content][image: there is no content],[image: there is no content]]=[image: there is no content]+ζn, where [image: there is no content]=E([image: there is no content])=[Gn[image: there is no content][image: there is no content],[image: there is no content]] and ζn=[Gnvn[image: there is no content]+GnRn−1[image: there is no content],vn].



[image: there is no content]=[image: there is no content](QK,n′[image: there is no content])−QK,n′, where (QK,n′[image: there is no content])− is a generalized inverse of QK,n′[image: there is no content].



[image: there is no content]=[image: there is no content][image: there is no content], [image: there is no content]=[image: there is no content][image: there is no content]Gn and [image: there is no content]=[image: there is no content][image: there is no content]GnRn−1.



[image: there is no content]=1ntr[Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])] and [image: there is no content]=1ntr[Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content]].



hn=1[image: there is no content]Z¯n′([image: there is no content])[image: there is no content] and [image: there is no content]=1nZ¯n′([image: there is no content])[image: there is no content]([image: there is no content]).



For the GS2SLS,


Sn(K)=1n[image: there is no content][[image: there is no content]Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])+Ωn2(K)][image: there is no content]








where


[image: there is no content]








with


Υn(K)=E(ζn′Rn′[image: there is no content][image: there is no content])=[tr([image: there is no content])[image: there is no content][image: there is no content]+[image: there is no content]tr([image: there is no content]),tr([image: there is no content])[image: there is no content]]′











For the CGS2SLS,


Sn(K)=1n[image: there is no content][[image: there is no content]Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])+Πn1(K)+Πn2(K)+Πn3(K)][image: there is no content]








where [image: there is no content] is a symmetric matrix equal to


Πn1(K)=γ0′σvϵ′[image: there is no content][image: there is no content]tr(ΓnK,22)+[image: there is no content]γ0′[image: there is no content][image: there is no content]tr([image: there is no content]ΓnK,2′)+σϵ4tr([image: there is no content]ΓnK,3s)+2[image: there is no content][image: there is no content][image: there is no content]tr([image: there is no content]ΓnK,3s)∗σvϵ′[image: there is no content][image: there is no content]tr([image: there is no content][image: there is no content])+[image: there is no content][image: there is no content][image: there is no content]tr(ΓnK,1′[image: there is no content])+[image: there is no content]σvϵ′tr([image: there is no content]ΓnK,1s)∗



(21)




with the [image: there is no content]th block being σvϵ′[image: there is no content]tr(ΓnK,12)+[image: there is no content][image: there is no content]tr(ΓnK,1′[image: there is no content]),


[image: there is no content]=−[Πn2,1(K),Πn2,2(K)]s−2[image: there is no content]Ωn1(K)



(22)




where


[image: there is no content]=E(ζn′Rn′[image: there is no content][image: there is no content]ζn)=γ0′[image: there is no content][image: there is no content]tr(ΓnK,2′[image: there is no content])+[image: there is no content]tr(ΓnK,3′[image: there is no content])+2[image: there is no content][image: there is no content]tr(ΓnK,3′[image: there is no content])∗[image: there is no content][image: there is no content]tr(ΓnK,1′[image: there is no content])+σvϵ′tr(ΓnK,1′[image: there is no content])[image: there is no content]tr(ΓnK,1′[image: there is no content])[image: there is no content]=V1n[[image: there is no content]tr([image: there is no content][image: there is no content]Rn−1)−[image: there is no content]tr([image: there is no content][image: there is no content]GnRn−1)−tr([image: there is no content][image: there is no content]Gn)[image: there is no content][image: there is no content]]+V2n[tr([image: there is no content]Gn)[image: there is no content][image: there is no content]+[image: there is no content]tr([image: there is no content]GnRn−1),[image: there is no content]tr([image: there is no content])]′+V3n[image: there is no content]tr([image: there is no content])+V4ntr([image: there is no content])



(23)




and


[image: there is no content]=−V1n[image: there is no content]tr([image: there is no content][image: there is no content])+V3ntr([image: there is no content])



(24)




with V1n=[image: there is no content]nZ¯n′([image: there is no content])Fn′V2n=[image: there is no content]Im+1


V3n=[image: there is no content]nZ¯n′([image: there is no content])[image: there is no content]−[image: there is no content]n2Z¯n′([image: there is no content])Fn′[image: there is no content]tr([image: there is no content]Rn−1)−[image: there is no content]n(Z¯n′Rn′[image: there is no content]+[[image: there is no content][image: there is no content]tr([image: there is no content]Gn)+σvϵ′tr(Gn),[image: there is no content]tr([image: there is no content])]′)








and


V4n=−2σϵ4n2Z¯n′([image: there is no content])Fn′tr([image: there is no content]Rn−1)−2[image: there is no content]n[tr([image: there is no content]Gn)[image: there is no content][image: there is no content]+[image: there is no content]tr(Gn),[image: there is no content]tr([image: there is no content])]′








and


Πn3(K)=−[image: there is no content]n2{Z¯n′([image: there is no content])Fn′[E(un′Mn′[image: there is no content][image: there is no content]ζn)+E(ϵn′[image: there is no content][image: there is no content]ζn)]}s



(25)




with


E(un′Mn′[image: there is no content][image: there is no content]ζn)=[[image: there is no content][image: there is no content]tr(Rn′−1Mn′[image: there is no content])+[image: there is no content]tr(Rn′−1Mn′[image: there is no content]),[image: there is no content]tr(Rn′−1Mn′[image: there is no content])]








and


E(ϵn′[image: there is no content][image: there is no content]ζn)=[[image: there is no content][image: there is no content]tr([image: there is no content][image: there is no content]Gn)+[image: there is no content]tr([image: there is no content][image: there is no content]GnRn−1),[image: there is no content]tr([image: there is no content][image: there is no content])]











Let V^1n=σ^ϵ2nZn′([image: there is no content])F^n′, [image: there is no content],


V^3n=σ^ϵ2n[Zn′([image: there is no content])[image: there is no content]−E^(ζn′Rn′vn)]−σ^ϵ2n2Zn′([image: there is no content])F^n′σ^vϵtr([image: there is no content]R^n−1)−σ^ϵ2nZn′R^n′[image: there is no content]








and


V^4n=−2σ^ϵ4n2Zn′([image: there is no content])F^n′tr([image: there is no content]R^n−1)−2σ^ϵ2n[tr(R^nG^n)σ^vϵγ^n+σ^ϵ2tr(G^n),σ^vϵtr(R^n)]′








where R^n=[image: there is no content]([image: there is no content]), G^n=Gn([image: there is no content]), [image: there is no content] and [image: there is no content] is an estimator of [image: there is no content] in (7) derived by replacing [image: there is no content] by [image: there is no content] and true parameters by their estimators. An estimation for [image: there is no content] is


[image: there is no content]



(26)




where [image: there is no content], [image: there is no content] and [image: there is no content] are derived respectively from [image: there is no content], [image: there is no content] and [image: there is no content] by replacing [image: there is no content]’s by [image: there is no content]’s and the rest of involved parameters by their respective estimators.



An estimator for [image: there is no content] is


Π^n3(K)=−σ^ϵ2n2{Zn′([image: there is no content])F^n′[E^(un′Mn′[image: there is no content][image: there is no content]ζn)+E^(ϵn′[image: there is no content][image: there is no content]ζn)]}s



(27)




where E^(ζn′Rn′[image: there is no content][image: there is no content]un) and E^(ζn′Mn′[image: there is no content][image: there is no content]) are derived by replacing the parameters in, respectively, E(ζn′Rn′[image: there is no content][image: there is no content]un) and E(ζn′Mn′[image: there is no content][image: there is no content]) by their estimators.




B. Lemmas


The following lemma gives sufficient conditions under which [image: there is no content](ρ) can be approximated arbitrarily well by a linear combination of [image: there is no content] as [image: there is no content]. When the approximation of [image: there is no content](ρ) becomes better as the number of instruments K increases, the variance part of the MSE becomes smaller.




Lemma 1. 

Suppose that supn||[image: there is no content][image: there is no content]||∞<1, elements of [image: there is no content]are uniformly bounded constants, and there exists [image: there is no content]such that ||[image: there is no content]−[image: there is no content][image: there is no content]||∞→0as [image: there is no content]. Then, for [image: there is no content]=[[image: there is no content],[image: there is no content][image: there is no content],…,Wnp[image: there is no content]], where [image: there is no content]as [image: there is no content],

	(i) 

	
there exists [image: there is no content]such that 1n||[image: there is no content]−[image: there is no content][image: there is no content]||2→0as [image: there is no content],




	(ii) 

	
1n||[image: there is no content](ρ)−[image: there is no content]πKn,1||2≤cn||[image: there is no content]−[image: there is no content][image: there is no content]||2for some [image: there is no content], where [image: there is no content], which implies that 1n||[image: there is no content](ρ)−[image: there is no content]πKn,1||2→0as [image: there is no content].














Proof. 

(i) is Lemma 2.1 in [3]. The argument is as follows. Let


[image: there is no content]=0([image: there is no content][image: there is no content])′([image: there is no content][image: there is no content][image: there is no content])′…(λ0p−1[image: there is no content][image: there is no content])′[image: there is no content]00…0′















Then, [image: there is no content][image: there is no content]=[[image: there is no content]∑j=0p−1λ0jWnj[image: there is no content][image: there is no content][image: there is no content],[image: there is no content][image: there is no content]]=[([image: there is no content]−λ0pWnp)Gn[image: there is no content][image: there is no content][image: there is no content],[image: there is no content][image: there is no content]] and


[image: there is no content]−[image: there is no content][image: there is no content]=[λ0pWnpGn[image: there is no content][image: there is no content]+([image: there is no content]−λ0pWnp)Gn([image: there is no content]−[image: there is no content][image: there is no content])[image: there is no content],[image: there is no content]−[image: there is no content][image: there is no content]]











Thus


||[image: there is no content]−[image: there is no content][image: there is no content]||∞≤||[image: there is no content][image: there is no content]||∞p||Gn||∞||[image: there is no content][image: there is no content]||∞+(1+||[image: there is no content][image: there is no content]||∞p)||Gn||∞||[image: there is no content]−[image: there is no content][image: there is no content]||∞||[image: there is no content]||∞+||[image: there is no content]−[image: there is no content][image: there is no content]||∞→0,








as [image: there is no content]. Since 1n||[image: there is no content]−[image: there is no content][image: there is no content]||2≤(||[image: there is no content]−[image: there is no content][image: there is no content]||∞)2, the result follows.



(ii) Let Rn′(ρ)[image: there is no content](ρ)=R1n′(ρ)R2n(ρ)R1n(ρ) be an eigenvalue-eigenvector decomposition, where [image: there is no content] is a diagonal matrix whose diagonal elements are the eigenvalues of Rn′(ρ)[image: there is no content](ρ) and [image: there is no content] is an orthonormal matrix whose columns are eigenvectors of Rn′(ρ)[image: there is no content](ρ). Then,


1n||[image: there is no content](ρ)−[image: there is no content]πKn,1||2=1n||[image: there is no content](ρ)([image: there is no content]−[image: there is no content][image: there is no content])||2=1ntr[([image: there is no content]−[image: there is no content][image: there is no content])′Rn′(ρ)[image: there is no content](ρ)([image: there is no content]−[image: there is no content][image: there is no content])]=1ntr[([image: there is no content]−[image: there is no content][image: there is no content])′R1n′(ρ)R2n(ρ)R1n(ρ)([image: there is no content]−[image: there is no content][image: there is no content])]≤1n[image: there is no content]tr[([image: there is no content]−[image: there is no content][image: there is no content])′([image: there is no content]−[image: there is no content][image: there is no content])]








where [image: there is no content] is the largest eigenvalue of Rn′(ρ)[image: there is no content](ρ). By the spectral radius theorem,


[image: there is no content]≤||Rn′(ρ)[image: there is no content](ρ)||∞≤||Rn′(ρ)||∞||[image: there is no content](ρ)||∞≤c








for some [image: there is no content] and all n. Thus (ii) holds.       ☐



The following lemma, Lemma A.1 in [1], gives conditions on the decomposition of an estimator, such that the dominant component of the MSE depending on the number of instruments can be derived.




Lemma 2. 

For an estimator given by [image: there is no content]([image: there is no content]−[image: there is no content])=H^n−1[image: there is no content], suppose that there is a decomposition, [image: there is no content]=hn+Tnh+Znh, [image: there is no content]=[image: there is no content]+TnH+ZnH,


[image: there is no content]








such that

	(i) 

	
[image: there is no content], [image: there is no content], [image: there is no content]=O(1),




	(ii) 

	
the determinant of [image: there is no content]is bounded away from zero,




	(iii) 

	
[image: there is no content],




	(iv) 

	
[image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content],




	(v) 

	
E[A^n(K)]=[image: there is no content][image: there is no content]+[image: there is no content]Sn(K)[image: there is no content]+o([image: there is no content]).






Then (15) is satisfied.








Lemma 3. 

Let [image: there is no content]and [image: there is no content]be [image: there is no content]matrices, then

	(i) 

	
E(ϵn′Anvn)=[image: there is no content]tr(An),




	(ii) 

	
E(ϵn′An[image: there is no content])=σϵ2tr(An),




	(iii) 

	
E(vn′Anvn)=[image: there is no content]tr(An),




	(iv) 

	
E(vn′An[image: there is no content]ϵn′Bnvn)=[E(ϵni2vni′[image: there is no content])−2σvϵ′[image: there is no content]−[image: there is no content][image: there is no content]]vecD′(An)vecD(Bn)+σvϵ′[image: there is no content][tr(An)tr(Bn)+tr(AnBn′)]+[image: there is no content][image: there is no content]tr(AnBn),




	(v) 

	
E(ϵn′An[image: there is no content]ϵn′Bnvn)=[E(ϵni3[image: there is no content])−3[image: there is no content][image: there is no content]]vecD′(An)vecD(Bn)+[image: there is no content][image: there is no content][tr(An)tr(Bn)+tr(AnBns)],




	(vi) 

	
E(ϵn′An[image: there is no content]ϵn′Bn[image: there is no content])=(μ4−3σϵ4)vecD′(An)vecD(Bn)+σϵ4[tr(An)tr(Bn)+tr(AnBns)],




	(vii) 

	
E(vn′Anvnvn′Bnvn)=[E(vni′[image: there is no content])2−Σv2−E(vni′vnjvnj′[image: there is no content])−E(vni′vnj)2]vecD′(An)vecD(Bn)+Σv2tr(An)tr(Bn)+E(vni′vnjvnj′[image: there is no content])tr(AnBn)+E(vni′vnj)2tr(AnBn′).














Proof. 

For (i)–(iii), we only prove (i), as the other two follow similarly; for (iv)–(vii), we only prove (iv) for the same reason.







For (i), ϵn′Anvn=∑i=1nan,ii[image: there is no content][image: there is no content]+∑i=1n∑[image: there is no content]an,ij[image: there is no content]vnj. As E([image: there is no content][image: there is no content])=[image: there is no content] and E([image: there is no content]vnj)=0 for [image: there is no content], the result follows. For (iv),


E(vn′An[image: there is no content]ϵn′Bnvn)=∑i=1n∑j=1n∑r=1n∑s=1nan,ijbn,rsE(vni′vns[image: there is no content]ϵnr)








where E(vni′vns[image: there is no content]ϵnr)≠0 in one of the following situations: [image: there is no content]; [image: there is no content] and [image: there is no content], but [image: there is no content]; [image: there is no content] and [image: there is no content], but [image: there is no content]; [image: there is no content] and [image: there is no content], but [image: there is no content]. Then


E(vn′An[image: there is no content]ϵn′Bnvn)=∑i=1nan,iibn,iiE(vni′[image: there is no content]ϵni2)+∑i=1n∑[image: there is no content]E[(an,iibn,jj+an,ijbn,ij)vni′[image: there is no content]vnj[image: there is no content]+an,ijbn,jivni′[image: there is no content]ϵnj2]=[E(ϵni2vni′[image: there is no content])−2σvϵ′[image: there is no content]−[image: there is no content][image: there is no content]]vecD′(An)vecD(Bn)+σvϵ′[image: there is no content][tr(An)tr(Bn)+tr(AnBn′)]+[image: there is no content][image: there is no content]tr(AnBn)








☐




Lemma 4. 

Suppose that [image: there is no content]matrices [image: there is no content]and [image: there is no content]are UB, [image: there is no content]=[image: there is no content]An=[cn,ij]and Dn=[image: there is no content]Bn=[dn,ij]. Then

	(i) 

	
tr([image: there is no content])=K,




	(ii) 

	
[image: there is no content], [image: there is no content]and [image: there is no content],




	(iii) 

	
[image: there is no content] and [image: there is no content].














Proof. 

(i) and (ii) are Lemma B.2 in [21]; (iii) By the Cauchy–Schwarz inequality,


[image: there is no content]








and


[image: there is no content]








where tr([image: there is no content]Cn′)=tr([image: there is no content]AnAn′) and tr(DnDn′)=tr([image: there is no content]BnBn′), thus the results follow by (ii). ☐








Lemma 5. 

Suppose that [image: there is no content]and [image: there is no content]are [image: there is no content]matrices that are UB and [image: there is no content]=An[image: there is no content]Bn, then

	(i) 

	
1nϵn′An[image: there is no content]=OP(1), [image: there is no content], and [image: there is no content];




	(ii) 

	
1[image: there is no content][ϵn′An[image: there is no content]−E(ϵn′An[image: there is no content])]=OP(1), 1[image: there is no content][ϵn′Anvn−E(ϵn′Anvn)]=OP(1), and 1[image: there is no content][vn′Anvn−E(vn′Anvn)]=OP(1);




	(iii) 

	
1[image: there is no content][ϵn′[image: there is no content][image: there is no content]−E(ϵn′[image: there is no content][image: there is no content])]=OP(K/n), 1[image: there is no content][ϵn′[image: there is no content]vn−E(ϵn′[image: there is no content]vn)]=OP(K/n), and 1[image: there is no content][image: there is no content]=OP(K/n).














Proof. 

All the results follow by Chebyshev’s inequality and Lemmas 3–4. We only prove the last result in (iii). Let [image: there is no content] be the ith column of the [image: there is no content] identity matrix. Then the variance of the [image: there is no content]th element of [image: there is no content] is 1nE{ei′[image: there is no content]ejej′[image: there is no content]′[image: there is no content]}, which is smaller than or equal to


1nE{ei′[image: there is no content][image: there is no content]′[image: there is no content]}=1nei′[E(vn′[image: there is no content]vnvn′Cn′vn)−E(vn′[image: there is no content]vn)E(vn′Cn′vn)][image: there is no content]=O(K/n)








by Lemmas 3–4. Thus, the [image: there is no content]th element of 1[image: there is no content][ϵn′[image: there is no content]vn−E(ϵn′[image: there is no content]vn)] is [image: there is no content] by Chebyshev’s inequality. The result follows as i and j are arbitrary.     ☐








Lemma 6. 

Suppose that [image: there is no content]is a sequence of [image: there is no content]matrices that are bounded in the column sum matrix norm, the elements of the [image: there is no content]matrix [image: there is no content]are uniformly bounded, and [image: there is no content]’s in [image: there is no content]are i.i.d. with zero mean and finite variance [image: there is no content]. Then 1[image: there is no content]Cn′An[image: there is no content]=OP(1).



Furthermore, if the limit of 1nCn′AnAn′[image: there is no content]exists and is positive definite, then


1[image: there is no content]Cn′An[image: there is no content]→dN(0,lim[image: there is no content][image: there is no content]nCn′AnAn′[image: there is no content])
















Proof. 

See [22].      ☐







The following two lemmas show the orders of relevant terms in deriving the decompositions for the GS2SLS and CGS2SLS estimators.




Lemma 7. 

Suppose that [image: there is no content]matrices [image: there is no content]are UB, then

	(i) 

	
[image: there is no content]=1ntr[Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])]=o(1),




	(ii) 

	
[image: there is no content]=1ntr[Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content]]=o(1),




	(iii) 

	
1n||Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])||=O([image: there is no content][image: there is no content])and 1nZ¯n′Mn′([image: there is no content]−[image: there is no content])An[image: there is no content]([image: there is no content])=O([image: there is no content]),




	(iv) 

	
1[image: there is no content]Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])An[image: there is no content]=OP(ΔnK,11/2), 1[image: there is no content]Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])Anvn=OP(ΔnK,11/2), 1[image: there is no content]Z¯n′Mn′([image: there is no content]−[image: there is no content])An[image: there is no content]=OP(ΔnK,21/2)and 1[image: there is no content]Z¯n′Mn′([image: there is no content]−[image: there is no content])Anvn=OP(ΔnK,21/2),




	(v) 

	
1ntr[Z¯n′Mn′([image: there is no content]−[image: there is no content])AnAn′([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content]]=O([image: there is no content]),




	(vi) 

	
[image: there is no content], [image: there is no content], K[image: there is no content]/n=o[image: there is no content]and [image: there is no content].














Proof. 

(i) By Assumption 6, there exists [image: there is no content] such that 1n||[image: there is no content]([image: there is no content])−[image: there is no content][image: there is no content]||2→0 as [image: there is no content]. Then


[image: there is no content]=1ntr[([image: there is no content]([image: there is no content])−[image: there is no content][image: there is no content])′([image: there is no content]−[image: there is no content])([image: there is no content]([image: there is no content])−[image: there is no content][image: there is no content])]≤1ntr[([image: there is no content]([image: there is no content])−[image: there is no content][image: there is no content])′([image: there is no content]([image: there is no content])−[image: there is no content][image: there is no content])]=1n||[image: there is no content]([image: there is no content])−[image: there is no content][image: there is no content]||2=o(1)















(ii) As ρ[image: there is no content][image: there is no content]=[image: there is no content](0)−[image: there is no content](ρ), there exist [image: there is no content] such that 1n||[image: there is no content][image: there is no content]−[image: there is no content][image: there is no content]||2→0 as [image: there is no content]. Then (ii) holds by an argument similar to that for (i).



(iii) By the Cauchy–Schwarz inequality,


|1nei′Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])ej|2≤1nei′Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content][image: there is no content]·1nej′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])ej≤[image: there is no content][image: there is no content]








where [image: there is no content] denotes the ith column of the [image: there is no content] identity matrix. Thus the first result follows. The second result in (iii) follows by


|1nei′Z¯n′Mn′([image: there is no content]−[image: there is no content])An[image: there is no content]([image: there is no content])ej|2≤1nei′Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content][image: there is no content]·1nej′Z¯n′([image: there is no content])An′An[image: there is no content]([image: there is no content])ej=O([image: there is no content])











(iv) By Chebyshev’s inequality,


P(|1[image: there is no content]ei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])An[image: there is no content]|>η)≤[image: there is no content]nη2ei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])AnAn′([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])[image: there is no content]








for some [image: there is no content]. Let [image: there is no content], where [image: there is no content] is an orthonormal matrix whose columns are [image: there is no content]’s eigenvectors and [image: there is no content] is a diagonal matrix with the diagonal elements being [image: there is no content]’s eigenvalues. Then


1nei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])AnAn′([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])[image: there is no content]=1nei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content]A1n′([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])[image: there is no content]≤1n[image: there is no content]ei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])[image: there is no content]≤1n||AnAn′||∞ei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])[image: there is no content]=O([image: there is no content])








where [image: there is no content] is the largest eigenvalue of [image: there is no content] and the last inequality follows by the spectral radius theorem. Thus 1[image: there is no content]ei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])An[image: there is no content]=OP(ΔnK,11/2) and 1[image: there is no content]Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])An[image: there is no content]=OP(ΔnK,11/2). Other results follow similarly.



(v) Use the expression [image: there is no content] as in the proof of (iv), then


1ntr[Z¯n′Mn′([image: there is no content]−[image: there is no content])AnAn′([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content]]≤1n[image: there is no content]tr[Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content]A1n′([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content]]=1n[image: there is no content]tr[Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content]]=O([image: there is no content])











(vi) The first two results are Lemma A.3 (vi) in [1]. For the third result, either [image: there is no content], in which case K[image: there is no content]/n/[image: there is no content]=0, or K[image: there is no content]/n/[image: there is no content]=1K2/nK[image: there is no content]+n[image: there is no content]/K≤12K→0, by the inequality of arithmetic and geometric means. Thus the result follows. The last result follows similarly.     ☐




Lemma 8. 

With [image: there is no content]and [image: there is no content]defined, respectively, in Lemma 7 (i) and (ii),

	(i) 

	
1nZn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])=[image: there is no content]+T1nH+T2nH+T3nH+T4nH,



where

	(a) 

	
[image: there is no content]=1nZ¯n′([image: there is no content])[image: there is no content]([image: there is no content])=O(1),




	(b) 

	
T1nH=−1nZ¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])=O([image: there is no content]),




	(c) 

	
T2nH=1n[Z¯n′([image: there is no content])[image: there is no content]ζn+ζn′Rn′[image: there is no content]([image: there is no content])]=OP(n−1/2),




	(d) 

	
T3nH=1nζn′Rn′[image: there is no content][image: there is no content]ζn=OP(K/n)and




	(e) 

	
T4nH=−1n[Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]ζn+ζn′Rn′([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])]=OP([image: there is no content]/n)=oP(K/n+[image: there is no content]).










	(ii) 

	
1nZn′([image: there is no content])[image: there is no content][image: there is no content][image: there is no content]=1nZ¯n′([image: there is no content])[image: there is no content][image: there is no content]+O([image: there is no content][image: there is no content])+OP(n−1/2)+OP(K/n)+oP(K/n+[image: there is no content])+OP([image: there is no content]/n).




	(iii) 

	
1nZn′Mn′[image: there is no content][image: there is no content][image: there is no content]=1nZ¯n′Mn′[image: there is no content][image: there is no content]+O([image: there is no content])+OP(n−1/2)+OP(K/n)+OP([image: there is no content]/n).




	(iv) 

	
1[image: there is no content]Zn′([image: there is no content])[image: there is no content][image: there is no content]=hn+T1nh+T2nh,



where hn=1[image: there is no content]Z¯n′([image: there is no content])[image: there is no content]=OP(1), T1nh=−1[image: there is no content]Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]=OP(ΔnK,11/2)and T2nh=1[image: there is no content]ζn′Rn′[image: there is no content][image: there is no content]=OP(K/[image: there is no content]).




	(v) 

	
1[image: there is no content]Zn′([image: there is no content])[image: there is no content][image: there is no content]un=1[image: there is no content]Z¯n′([image: there is no content])[image: there is no content]un+OP(ΔnK,11/2)+1[image: there is no content]ζn′Rn′[image: there is no content][image: there is no content]un,



where 1[image: there is no content]ζn′Rn′[image: there is no content][image: there is no content]un=OP(K/[image: there is no content]).




	(vi) 

	
1[image: there is no content]Zn′Mn′[image: there is no content][image: there is no content]=1[image: there is no content]Z¯n′Mn′[image: there is no content]−1[image: there is no content]Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content]+1[image: there is no content]ζn′Mn′[image: there is no content][image: there is no content],



where 1[image: there is no content]Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content]=OP(ΔnK,21/2)and 1[image: there is no content]ζn′Mn′[image: there is no content][image: there is no content]=OP(K/[image: there is no content]).




	(vii) 

	
1[image: there is no content]Zn′Mn′[image: there is no content][image: there is no content]un=1[image: there is no content]Z¯n′Mn′[image: there is no content]un+OP(ΔnK,21/2)+OP(K/[image: there is no content]).




	(viii) 

	
1[image: there is no content][ζn′Rn′[image: there is no content][image: there is no content]ζn−E(ζn′Rn′[image: there is no content][image: there is no content]ζn)]=OP(K/n)and 1[image: there is no content][ζn′An[image: there is no content]−E(ζn′An[image: there is no content])]=OP(K/n),



where An=Mn′[image: there is no content], Rn′[image: there is no content]or Rn′[image: there is no content][image: there is no content]Rn−1.














Proof. 

(i) Because [image: there is no content]=[image: there is no content]+ζn, we have the decomposition that 1nZn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])=[image: there is no content]+T1nH+T2nH+T3nH+T4nH. Since elements of [image: there is no content] are uniformly bounded, [image: there is no content]=O(1). By Lemma 7 (i), T1nH=O([image: there is no content]). By Lemma 6, [image: there is no content]. By Lemmas 3 and 4, [image: there is no content], and, hence, [image: there is no content] by Markov’s inequality. By Lemma 7 (iv) and (vi), T4nH=OP([image: there is no content]/n)=oP(K/n+[image: there is no content]).







(ii) and (iii) follow similarly to (i).



(iv) Because [image: there is no content]=[image: there is no content]+ζn, we have 1[image: there is no content]Zn′([image: there is no content])[image: there is no content]un=hn+T1nh+T2nh. By Lemma 6, [image: there is no content]. By Lemma 7 (iv), [image: there is no content]. As ζn=[Gnvn[image: there is no content]+GnRn−1[image: there is no content],vn], by Lemmas 3 and 4, [image: there is no content], and, hence, T2nh=OP(K/[image: there is no content]) by Chebyshev’s inequality.



(v), (vi) and (vii) follow similarly to (iv). (viii) follows directly by Lemma 5.  ☐



The following lemma shows the orders of some expectation terms, which are helpful in determining the approximated MSEs of the GS2SLS and CGS2SLS estimators.




Lemma 9. 

(i) E[(ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])[image: there is no content]ϵn′]is UB, where [image: there is no content]and [image: there is no content]are given in Proposition 2.




	(ii) 

	
Let the elements of [image: there is no content]matrices [image: there is no content]be uniformly bounded, then elements of E([image: there is no content]ϵn′Anvn)and E([image: there is no content]ϵn′An[image: there is no content])are uniformly bounded.




	(iii) 

	
Let the elements of [image: there is no content]matrices [image: there is no content]be uniformly bounded, where m is a finite fixed number, then E([image: there is no content]ϵn′Bnvn′)is UB.




	(iv) 

	
Let the elements of n-dimensional vectors {[image: there is no content]}be uniformly bounded, then E([image: there is no content]ϵn′[image: there is no content]ϵn′)is UB.














Proof. 

(i) Let [image: there is no content]=[dn,ij] and [image: there is no content]=[fn1,…,fnn]. The [image: there is no content]th element of E[(ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])[image: there is no content]ϵn′] is


E(ϵni4)dn,ii+μ3fni+σϵ4[tr([image: there is no content])−dn,ii]=[E(ϵni4)−σϵ4]dn,ii+μ3fni








and the [image: there is no content]th element for [image: there is no content] is [image: there is no content]. Since [image: there is no content] is UB and elements of [image: there is no content] are uniformly bounded, E[(ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])[image: there is no content]ϵn′] is UB.







(ii) Let [image: there is no content], then the ith row of E([image: there is no content]ϵn′Anvn) is ∑r=1n∑s=1nan,rsE([image: there is no content]ϵnrvns)=an,iiE(ϵni2[image: there is no content]). Thus elements of E([image: there is no content]ϵn′Anvn) are uniformly bounded. Similarly, elements of E([image: there is no content]ϵn′An[image: there is no content]) are uniformly bounded.



(iii) Let [image: there is no content], then the [image: there is no content]th element of E([image: there is no content]ϵn′Bnvn′) is ∑l=1nbnlE(ϵnl[image: there is no content]vnj′), which is equal to [image: there is no content] when [image: there is no content] and 0 otherwise. Thus E([image: there is no content]ϵn′Bnvn′) is UB.



(iv) follows similarly to (iii).     ☐




Lemma 10. 

The sequence of matrices {([image: there is no content]−λ[image: there is no content])−1}is UB in a neighborhood of [image: there is no content]and [image: there is no content]is UB in a neighborhood of [image: there is no content].








Proof. 

See [22].      ☐







The following lemma shows the dominant components of estimation errors for parameters of the model or for [image: there is no content] in (9), which help to derive the approximated MSE of the CGS2SLS estimator.




Lemma 11. 

Let L1n=1[image: there is no content](ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])as in Proposition 2, then

	(i) 

	
the GS2SLS estimator [image: there is no content]=[Zn′([image: there is no content])P0,n[image: there is no content]([image: there is no content])]−1Zn′([image: there is no content])P0,n[image: there is no content]([image: there is no content])satisfies [image: there is no content]([image: there is no content]−[image: there is no content])=L2n+oP(1), where L2n=[1nZ¯n′([image: there is no content])P0,n[image: there is no content]([image: there is no content])]−11[image: there is no content]Z¯n′([image: there is no content])P0,n[image: there is no content],




	(ii) 

	
[image: there is no content]([image: there is no content]−[image: there is no content])′=L3n+oP(1), where


L3n=[image: there is no content](1nvn′[image: there is no content]−σvϵ′)+1[image: there is no content]Z¯2n′[image: there is no content]−σvϵ′ntr([image: there is no content]Rn−1)L1n−1n[Z¯2n′[image: there is no content][image: there is no content]+E(vn′[image: there is no content]ζn)]L2n








with E(vn′[image: there is no content]ζn)=[tr([image: there is no content]Gn)[image: there is no content][image: there is no content]+tr(Gn)σvϵ′,[image: there is no content]tr([image: there is no content])],




	(iii) 

	
[image: there is no content]([image: there is no content]−[image: there is no content])=L4n+oP(1), where


L4n=[image: there is no content](1nϵn′[image: there is no content]−σvϵ′)−2σϵ2ntr([image: there is no content]Rn−1)L1n−2nE(ϵn′[image: there is no content]ζn)L2n








with E(ϵn′[image: there is no content]ζn)=[tr([image: there is no content]Gn)[image: there is no content][image: there is no content]+tr(Gn)σϵ2,[image: there is no content]tr([image: there is no content])]




	(iv) 

	
1[image: there is no content][Υ˜n(K)−Υn(K)]=1n(a1′,a2′)′+oP(K/n)=OP(K/n), where


[image: there is no content]=[[image: there is no content]tr([image: there is no content][image: there is no content]Rn−1)−[image: there is no content]tr([image: there is no content][image: there is no content]GnRn−1)−tr([image: there is no content][image: there is no content]Gn)[image: there is no content][image: there is no content]]L1n+[tr([image: there is no content]Gn)[image: there is no content][image: there is no content]+[image: there is no content]tr([image: there is no content]GnRn−1),[image: there is no content]tr([image: there is no content])]L2n+tr([image: there is no content])γ0′L3n+tr([image: there is no content])L4n








and [image: there is no content]=−σvϵ′tr([image: there is no content][image: there is no content])L1n+tr([image: there is no content])L3n.














Proof. 

(i) The [image: there is no content] satisfies


[image: there is no content]([image: there is no content]−[image: there is no content])=[1nZn′([image: there is no content])[image: there is no content](1nQ0,n′[image: there is no content])1nQ0,n′[image: there is no content]([image: there is no content])]−11nZn′([image: there is no content])[image: there is no content](1nQ0,n′[image: there is no content])−11[image: there is no content]Q0,n′un([image: there is no content]).








Note that 1[image: there is no content]Q0,n′un([image: there is no content])=1[image: there is no content]Q0,n′[image: there is no content]+1nQ0,n′[image: there is no content]Rn−1[image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content]) and


1nQ0,n′[image: there is no content]([image: there is no content])=1nQ0,n′[image: there is no content]([image: there is no content])+1nQ0,n′[image: there is no content]ζn+[1nQ0,n′[image: there is no content][image: there is no content]+1nQ0,n′[image: there is no content]ζn]([image: there is no content]−[image: there is no content]).








By Lemma 6, 1nQ0,n′[image: there is no content]ζn=oP(1), 1nQ0,n′[image: there is no content]ζn=oP(1) and 1nQ0,n′[image: there is no content]Rn−1[image: there is no content]=oP(1). By Proposition 2, [image: there is no content]([image: there is no content]−[image: there is no content])=L1n+oP(1)=OP(1). Furthermore, 1nQ0,n′[image: there is no content]([image: there is no content])=O(1) and 1nQ0,n′[image: there is no content][image: there is no content]=O(1). Thus


[image: there is no content]([image: there is no content]−[image: there is no content])=[1nZ¯n′([image: there is no content])P0,n[image: there is no content]([image: there is no content])]−11[image: there is no content]Z¯n′([image: there is no content])P0,n[image: there is no content]+oP(1)















(ii) Write [image: there is no content] as


[image: there is no content]=1nZ2n′[[image: there is no content]+([image: there is no content]−[image: there is no content])[image: there is no content]][un+[image: there is no content]([image: there is no content]−[image: there is no content])]=1nZ2n′[image: there is no content]+1nZ2n′[image: there is no content]un([image: there is no content]−[image: there is no content])+1nZ2n′[image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])+1nZ2n′[image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])([image: there is no content]−[image: there is no content])








By Lemmas 5 and 6,

	(a)

	
1nZ2n′[image: there is no content]un=1nE(vn′[image: there is no content]un)+oP(1)=σvϵ′ntr([image: there is no content]Rn−1)+oP(1)=OP(1),




	(b)

	
1nZ2n′[image: there is no content][image: there is no content]=1nE(Z2n′[image: there is no content][image: there is no content])+oP(1) with E(Z2n′[image: there is no content][image: there is no content])=Z¯2n′[image: there is no content][image: there is no content]+[tr([image: there is no content]Gn)[image: there is no content][image: there is no content]+tr(Gn)σvϵ′,[image: there is no content]tr([image: there is no content])]=O(n), and




	(c)

	
1nZ2n′[image: there is no content][image: there is no content]=OP(1).






Then


[image: there is no content]([image: there is no content]−[image: there is no content])′=[image: there is no content](1nvn′[image: there is no content]−σvϵ′)+1[image: there is no content]Z¯2n′[image: there is no content]+σvϵ′ntr([image: there is no content]Rn−1)[image: there is no content]([image: there is no content]−[image: there is no content])+1nE(Z2n′[image: there is no content][image: there is no content])[image: there is no content]([image: there is no content]−[image: there is no content])+oP(1)








The result follows as [image: there is no content]([image: there is no content]−[image: there is no content])=L1n+oP(1) by Proposition 2 and [image: there is no content]([image: there is no content]−[image: there is no content])=L2n+oP(1) by (i).



(iii) Note that


[image: there is no content]([image: there is no content])([image: there is no content]−[image: there is no content][image: there is no content])=[[image: there is no content]+([image: there is no content]−[image: there is no content])[image: there is no content]][un+[image: there is no content]([image: there is no content]−[image: there is no content])]=[image: there is no content]+([image: there is no content]−[image: there is no content])[image: there is no content]un+[image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])+[image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])([image: there is no content]−[image: there is no content])








then by an argument similar to that for (ii),


[image: there is no content]([image: there is no content]−[image: there is no content])=[image: there is no content](1nϵn′[image: there is no content]−[image: there is no content])+2nϵn′[image: there is no content]Rn−1[image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])+2nϵn′[image: there is no content][image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])+oP(1)








where

	(a)

	
1nϵn′[image: there is no content]Rn−1[image: there is no content]=1nE(ϵn′[image: there is no content]Rn−1[image: there is no content])+oP(1) with E(ϵn′[image: there is no content]Rn−1[image: there is no content])=[image: there is no content]tr([image: there is no content]Rn−1)=O(n), and




	(b)

	
1nϵn′[image: there is no content][image: there is no content]=1nE(ϵn′[image: there is no content]ζn)+oP(1) with E(ϵn′[image: there is no content]ζn)=[tr([image: there is no content]Gn)[image: there is no content][image: there is no content]+tr(Gn)[image: there is no content],Σvϵtr([image: there is no content])]=O(n).









The result follows by using the expressions for [image: there is no content]([image: there is no content]−[image: there is no content]) and [image: there is no content]([image: there is no content]−[image: there is no content]).



(iv) By the mean value theorem,


1[image: there is no content][Υ˜n(K)−Υn(K)]=1ntr([image: there is no content]R¨nG¨n2)[image: there is no content][image: there is no content]+[image: there is no content]tr([image: there is no content]R¨nG¨n2R¨n−1)[image: there is no content]tr([image: there is no content]R¨nG¨n)00[image: there is no content]([image: there is no content]−[image: there is no content])+1n−tr([image: there is no content][image: there is no content]G¨n)[image: there is no content][image: there is no content]+[image: there is no content][−tr([image: there is no content][image: there is no content]G¨nR¨n−1)+tr([image: there is no content]R¨nG¨nR¨n−1[image: there is no content]R¨n−1)]−σ¨vϵ′tr([image: there is no content][image: there is no content])[image: there is no content]([image: there is no content]−[image: there is no content])+1ntr([image: there is no content]R¨nG¨nR¨n−1)0[image: there is no content]([image: there is no content]−[image: there is no content])+1ntr([image: there is no content]R¨nG¨n)γ¨n′tr([image: there is no content]R¨n)Im[image: there is no content]([image: there is no content]−[image: there is no content])′








where [image: there is no content] is between [image: there is no content] and [image: there is no content], [image: there is no content] is between [image: there is no content] and [image: there is no content], [image: there is no content] is between [image: there is no content] and [image: there is no content], R¨n=[image: there is no content]([image: there is no content]) with [image: there is no content] being between [image: there is no content] and [image: there is no content], and [image: there is no content] with [image: there is no content] being between [image: there is no content] and [image: there is no content]. Let tr([image: there is no content]A¨n) stand for a trace term that appeared in the above equation and tr([image: there is no content]An) be the term evaluated at the true [image: there is no content] and [image: there is no content]. Using the mean value theorem once again, then 1n[tr([image: there is no content]A¨n)−tr([image: there is no content]An)]=oP(K/n) by Lemmas 10 and 4. Thus by (ii), (iii) and Propositions 1 and 2, 1[image: there is no content][Υ˜n(K)−Υn(K)]=1n(a1′,a2′)′+oP(K/n), where [image: there is no content] and [image: there is no content].       ☐



The following lemma, Lemma A.9 in [1], gives a sufficient condition that the chosen K by the minimization of [image: there is no content], say [image: there is no content], is asymptotically optimal.




Lemma 12. 

If supK|S^n,ξ(K)−Sn,ξ(K)|[image: there is no content]→p0, then Sn,ξ([image: there is no content])infKSn,ξ(K)→p1.







The following is a central limit theorem for linear-quadratic forms of disturbances from [17].




Lemma 13. 

Suppose that [image: there is no content]is a sequence of symmetric [image: there is no content]matrices that are UB, [image: there is no content]=(bnK,1,…,bnn)′is a vector such that [image: there is no content]for some [image: there is no content], and [image: there is no content]’s in [image: there is no content]are mutually independent, with mean zero, variance [image: there is no content]and finite moment of order higher than four such that E(|[image: there is no content]|4+η2)for some [image: there is no content]are uniformly bounded for all n and i. Let [image: there is no content]be the variance of [image: there is no content]where [image: there is no content]=ϵn′An[image: there is no content]+bn′[image: there is no content]−∑i=1nan,ii[image: there is no content]. Assume that [image: there is no content]/nis bounded away from zero.







Then, [image: there is no content]/σ[image: there is no content]→dN(0,1).




C. Proofs



Proof of Proposition 1. 

As [image: there is no content]=[image: there is no content]+(Zn′PFn[image: there is no content])−1Zn′PFnRn−1[image: there is no content],


[image: there is no content]([image: there is no content]−[image: there is no content])=[1nZn′[image: there is no content](1nF0,n′[image: there is no content])−11nF0,n′[image: there is no content]]−11nZn′[image: there is no content](1nF0,n′[image: there is no content])−11[image: there is no content]F0,n′Rn−1[image: there is no content].








By Lemma 6, [image: there is no content] and 1[image: there is no content]F0,n′Rn−1[image: there is no content]→dN(0,lim[image: there is no content][image: there is no content]nF0,n′Rn−1Rn′−1[image: there is no content]). Hence,


[image: there is no content]([image: there is no content]−[image: there is no content])=(1nZ¯n′PFn[image: there is no content])−11[image: there is no content]Z¯n′PFnRn−1[image: there is no content]+OP(n−1/2)→dN0,lim[image: there is no content](1nZ¯n′PFn[image: there is no content])−1[image: there is no content]nZ¯n′PFnRn−1Rn′−1PFn[image: there is no content](1nZ¯n′PFn[image: there is no content])−1








by Slutsky’s lemma.     ☐








Proof of Proposition 2. 

The consistency of [image: there is no content] follows from the uniform convergence that


gn′(ρ,[image: there is no content])gn(ρ,[image: there is no content])−Egn′(ρ,[image: there is no content])Egn(ρ,[image: there is no content])=oP(1)uniformlyinρ∈[image: there is no content]








and the identification uniqueness condition ([23] [Theorem 3.4]).







To prove the uniform convergence, we first show that gn(ρ,[image: there is no content])−gn(ρ,[image: there is no content])=oP(1) uniformly in [image: there is no content]. As [image: there is no content](ρ,[image: there is no content])=[image: there is no content](ρ)([image: there is no content]−[image: there is no content][image: there is no content])=[image: there is no content](ρ)[un+[image: there is no content]([image: there is no content]−[image: there is no content])],


12nϵn′(ρ,[image: there is no content])Dnjs[image: there is no content](ρ,[image: there is no content])−12nϵn′(ρ,[image: there is no content])Dnjs[image: there is no content](ρ,[image: there is no content])=1nϵn′(ρ,[image: there is no content])Dnjs[image: there is no content](ρ)[image: there is no content]([image: there is no content]−[image: there is no content])+12n([image: there is no content]−[image: there is no content])′Zn′Rn′(ρ)Dnjs[image: there is no content](ρ)[image: there is no content]([image: there is no content]−[image: there is no content])











Note that [image: there is no content]=[image: there is no content]+ζn, 1nϵn′(ρ,[image: there is no content])Dnjs[image: there is no content](ρ)[image: there is no content]=OP(1) and 1nZn′Rn′(ρ)Dnjs[image: there is no content](ρ)[image: there is no content]=OP(1) by Lemmas 5 and 6. Then 12nϵn′(ρ,[image: there is no content])Dnjs[image: there is no content](ρ,[image: there is no content])−12nϵn′(ρ,[image: there is no content])Dnjs[image: there is no content](ρ,[image: there is no content])=oP(1), as [image: there is no content]−[image: there is no content]=oP(1). Since [image: there is no content] is quadratic in ρ, it follows that


gn(ρ,[image: there is no content])−gn(ρ,[image: there is no content])=oP(1)uniformlyinρ∈[image: there is no content]








By Lemma 5, gn(ρ,[image: there is no content])−Egn(ρ,[image: there is no content])=oP(1) uniformly in [image: there is no content]. Thus,


gn(ρ,[image: there is no content])−Egn(ρ,[image: there is no content])=oP(1)uniformlyinρ∈[image: there is no content]








Furthermore, Egn(ρ,[image: there is no content])=O(1) uniformly in [image: there is no content]. Hence,


gn′(ρ,[image: there is no content])gn(ρ,[image: there is no content])−Egn′(ρ,[image: there is no content])Egn(ρ,[image: there is no content])=2[gn(ρ,[image: there is no content])−Egn(ρ,[image: there is no content])]′Egn(ρ,[image: there is no content])+[gn(ρ,[image: there is no content])−Egn(ρ,[image: there is no content])]′[gn(ρ,[image: there is no content])−Egn(ρ,[image: there is no content])]=oP(1)








uniformly in [image: there is no content].



We now show that the identification uniqueness condition holds. Note that Egn(ρ,[image: there is no content])=[image: there is no content]2Ξn[([image: there is no content]−ρ),([image: there is no content]−ρ)2]′. Let [image: there is no content] and [image: there is no content] be the eigenvalues of [image: there is no content]. Write [image: there is no content], where [image: there is no content] is a [image: there is no content] diagonal matrix with diagonal elements [image: there is no content] and [image: there is no content], and [image: there is no content] is an orthonormal matrix containing the eigenvectors of [image: there is no content]. By Assumption 5, there exists some constant [image: there is no content] such that [image: there is no content]>η and [image: there is no content]>η for all n. Obviously, Egn′([image: there is no content],[image: there is no content])Egn([image: there is no content],[image: there is no content])=0. Then,


Egn′(ρ,[image: there is no content])Egn(ρ,[image: there is no content])−Egn′([image: there is no content],[image: there is no content])Egn([image: there is no content],[image: there is no content])=σϵ44[[image: there is no content]−ρ,([image: there is no content]−ρ)2]Ξ1n′[image: there is no content]Ξ1n[[image: there is no content]−ρ,([image: there is no content]−ρ)2]′≥ησϵ44[[image: there is no content]−ρ,([image: there is no content]−ρ)2]Ξ1n′Ξ1n[[image: there is no content]−ρ,([image: there is no content]−ρ)2]′=ησϵ44[([image: there is no content]−ρ)2+([image: there is no content]−ρ)4]>0








for any ρ≠[image: there is no content]. Thus the identification uniqueness condition holds.



The consistency of [image: there is no content] follows from the uniform convergence and identification uniqueness.



For the asymptotic distribution, by the mean value theorem, we have


0=∂gn′([image: there is no content],[image: there is no content])∂ρgn([image: there is no content],[image: there is no content])=∂gn′([image: there is no content],[image: there is no content])∂ρ[gn([image: there is no content],[image: there is no content])+∂gn([image: there is no content],[image: there is no content])∂ρ([image: there is no content]−[image: there is no content])]








where [image: there is no content] is between [image: there is no content] and [image: there is no content]. Then


[image: there is no content]([image: there is no content]−[image: there is no content])=−∂gn′([image: there is no content],[image: there is no content])∂ρ∂gn([image: there is no content],[image: there is no content])∂ρ−1∂gn′([image: there is no content],[image: there is no content])∂ρ[image: there is no content]gn([image: there is no content],[image: there is no content])











The ith element of ∂gn([image: there is no content],[image: there is no content])∂ρ is −1nϵn′([image: there is no content],[image: there is no content])Dnjs[image: there is no content]([image: there is no content]−[image: there is no content][image: there is no content]), which can be expanded by using [image: there is no content]−[image: there is no content][image: there is no content]=un+[image: there is no content]([image: there is no content]−[image: there is no content]) and [image: there is no content]([image: there is no content],[image: there is no content])=[[image: there is no content]+([image: there is no content]−[image: there is no content])[image: there is no content]][un+[image: there is no content]([image: there is no content]−[image: there is no content])]. By Lemmas 5 and 6, the terms involving ([image: there is no content]−[image: there is no content]) or ([image: there is no content]−[image: there is no content]) are [image: there is no content]. Therefore,


−1nϵn′([image: there is no content],[image: there is no content])Dnjs[image: there is no content]([image: there is no content]−[image: there is no content][image: there is no content])=−1nϵn′Dnjs[image: there is no content]Rn−1[image: there is no content]+OP(n−1/2)=−1n[image: there is no content]tr(Dnjs[image: there is no content]Rn−1)+OP(n−1/2)=OP(1)








by Lemma 5. Thus, ∂gn([image: there is no content],[image: there is no content])∂ρ=E∂gn([image: there is no content],[image: there is no content])∂ρ+OP(n−1/2)=OP(1), where


E∂gn([image: there is no content],[image: there is no content])∂ρ=−[image: there is no content]n[tr(Dn1s[image: there is no content]Rn−1),…,tr(Dn,[image: there is no content]s[image: there is no content]Rn−1)]′











Similarly, ∂gn([image: there is no content],[image: there is no content])∂ρ=E∂gn([image: there is no content],[image: there is no content])∂ρ+OP(n−1/2)=OP(1). Thus,


[image: there is no content]([image: there is no content]−[image: there is no content])=−E∂gn′([image: there is no content],[image: there is no content])∂ρE∂gn([image: there is no content],[image: there is no content])∂ρ−1E∂gn′([image: there is no content],[image: there is no content])∂ρ[image: there is no content]gn([image: there is no content],[image: there is no content])+OP(n−1/2)











For [image: there is no content]gn([image: there is no content],[image: there is no content]), the ith element is


1[image: there is no content][[image: there is no content]+[image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])]′[image: there is no content][[image: there is no content]+[image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])]=1[image: there is no content]ϵn′[image: there is no content][image: there is no content]+1nϵn′Dnjs[image: there is no content][image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])+OP(n−1/2)








By Lemmas 5 and 6,


1nϵn′Dnjs[image: there is no content][image: there is no content]=1nϵn′Dnjs[image: there is no content]([image: there is no content]+ζn)=1nE(ϵn′Dnjs[image: there is no content]ζn)+OP(n−1/2)=OP(1)








where


E(ϵn′Dnjs[image: there is no content]ζn)=[tr(Dnjs[image: there is no content]Gn)[image: there is no content][image: there is no content]+[image: there is no content]tr(Dnjs[image: there is no content]GnRn−1),tr(Dnjs[image: there is no content])[image: there is no content]]








By Proposition 1,


[image: there is no content]([image: there is no content]−[image: there is no content])=(1nZ¯n′PFn[image: there is no content])−11[image: there is no content]Z¯n′PFnRn−1[image: there is no content]+OP(n−1/2)








Then the ith element of [image: there is no content]gn([image: there is no content],[image: there is no content]) is [image: there is no content], where


Ani=1[image: there is no content]ϵn′[image: there is no content][image: there is no content]−1nE(ϵn′Dnjs[image: there is no content]ζn)(1nZ¯n′PFn[image: there is no content])−11[image: there is no content]Z¯n′PFnRn−1[image: there is no content]








Hence,


[image: there is no content]([image: there is no content]−[image: there is no content])=[image: there is no content]n2∑j=1[image: there is no content]tr2(Dnjs[image: there is no content]Rn−1)−1∑j=1[image: there is no content]1ntr(Dnjs[image: there is no content]Rn−1)Ani+OP(n−1/2)=1[image: there is no content](ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])+OP(n−1/2)








where [image: there is no content] and [image: there is no content] are in, respectively, (6) and (7). Note that tr([image: there is no content])=0, then [image: there is no content]([image: there is no content]−[image: there is no content]) is asymptotically normal with a finite variance by Lemma 13.   ☐




Proof of Proposition 3. 

The GS2SLS estimator [image: there is no content] satisfies


[image: there is no content]([image: there is no content]−[image: there is no content]−[image: there is no content])=[1nZn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])]−11[image: there is no content][Zn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])un−E(ζn′Rn′[image: there is no content][image: there is no content])]








where


E(ζn′Rn′[image: there is no content][image: there is no content])=[tr([image: there is no content])[image: there is no content][image: there is no content]+[image: there is no content]tr([image: there is no content]),tr([image: there is no content])[image: there is no content]]′=O(K)








by Lemma 4. Write [image: there is no content]([image: there is no content])=[image: there is no content]([image: there is no content])+([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content], then


1nZn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])=1nZn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])+1n[Zn′Mn′[image: there is no content][image: there is no content]([image: there is no content])]s([image: there is no content]−[image: there is no content])+1nZn′Mn′[image: there is no content][image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])2








By Lemma 8 (i)–(iii),

	(a)

	
if [image: there is no content], 1nZn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])=[image: there is no content]+1nζn′Rn′[image: there is no content][image: there is no content]ζn+oP(1)=OP(1), 1nZn′Mn′[image: there is no content][image: there is no content]([image: there is no content])=OP(1) and 1nZn′Mn′[image: there is no content][image: there is no content][image: there is no content]=OP(1);




	(b)

	
if [image: there is no content], 1nZn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])=[image: there is no content]+oP(1)=OP(1), 1nZn′Mn′[image: there is no content][image: there is no content]([image: there is no content])=OP(1) and 1nZn′Mn′[image: there is no content][image: there is no content][image: there is no content]=OP(1).






By Lemma 5, 1nζn′Rn′[image: there is no content][image: there is no content]ζn−1nΩn1(K)=OP(K/n), where [image: there is no content] by Lemma 4. By Proposition 1, [image: there is no content]([image: there is no content]−[image: there is no content])=OP(1). Hence,

	(c)

	
if [image: there is no content], 1nZn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])=[image: there is no content]+1nΩn1(K)+oP(1)=OP(1) and [image: there is no content]−b¯nK,1=oP(1);




	(d)

	
if [image: there is no content], 1nZn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])=[image: there is no content]+oP(1)=OP(1) and [image: there is no content]−b¯nK,2=oP(K/n).













As [image: there is no content]un=[image: there is no content], [image: there is no content]([image: there is no content])=[image: there is no content]([image: there is no content])+([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content] and [image: there is no content]([image: there is no content])=[image: there is no content]+([image: there is no content]−[image: there is no content])[image: there is no content],


1[image: there is no content][Zn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])un−E(ζn′Rn′[image: there is no content][image: there is no content])]=1[image: there is no content]Z¯n′([image: there is no content])[image: there is no content]−1[image: there is no content]Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]+1[image: there is no content][ζn′Rn′[image: there is no content][image: there is no content]−E(ζn′Rn′[image: there is no content][image: there is no content])]+1nZn′Mn′[image: there is no content][image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])+1nZn′([image: there is no content])[image: there is no content][image: there is no content]Rn−1[image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])+1nZn′Mn′[image: there is no content][image: there is no content]Rn−1[image: there is no content][image: there is no content]([image: there is no content]−[image: there is no content])2.











The terms on the right hand side have the following properties:

	(1)

	
By Lemma 8 (iv), 1[image: there is no content]Z¯n′([image: there is no content])[image: there is no content]=OP(1) and 1[image: there is no content]Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]=OP(ΔnK,11/2)=oP(1);




	(2)

	
by Lemma 8 (viii), 1[image: there is no content][ζn′Rn′[image: there is no content][image: there is no content]−E(ζn′Rn′[image: there is no content][image: there is no content])]=OP(K/n);




	(3)

	
by Lemma 8 (vi), 1nZn′Mn′[image: there is no content][image: there is no content]=OP(n−1/2)+OP([image: there is no content]/n)+OP(K/n);




	(4)

	
by Lemma 8 (v), 1nZn′([image: there is no content])[image: there is no content][image: there is no content]Rn−1[image: there is no content]=OP(n−1/2)+OP([image: there is no content]/n)+OP(K/n);




	(5)

	
by Lemma 8 (vii), 1nZn′Mn′[image: there is no content][image: there is no content]Rn−1[image: there is no content]=OP(n−1/2)+OP([image: there is no content]/n)+OP(K/n).









Therefore,

	(e)

	
if [image: there is no content], 1n[Zn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])un−E(ζn′Rn′[image: there is no content][image: there is no content])]=oP(1), and [image: there is no content]−[image: there is no content]−b¯nK,1→p0;




	(f)

	
if [image: there is no content], 1[image: there is no content][Zn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])un−E(ζn′Rn′[image: there is no content][image: there is no content])]=1[image: there is no content]Z¯n′([image: there is no content])[image: there is no content]+oP(1), and [image: there is no content]([image: there is no content]−[image: there is no content]−[image: there is no content])→dN(0,[image: there is no content][image: there is no content]−1) by Lemma 6.   ☐










Proof of Proposition 4. 

By Proposition 3, it is sufficient to show that [image: there is no content](b˜n,K−[image: there is no content])=oP(1). Furthermore, as 1nZn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])=OP(1), we only need to show that


1[image: there is no content]Υ˜n(K)−1[image: there is no content]Υn(K)=oP(1)








By Lemma 4, as [image: there is no content]−[image: there is no content]=OP(n−1/2),


1[image: there is no content][tr(Γ˜nK,1)−tr([image: there is no content])]=1[image: there is no content]([image: there is no content]−[image: there is no content])tr([image: there is no content][image: there is no content])=OP(K/n)=oP(1)








By the mean value theorem,


1[image: there is no content][tr(Γ˜nK,2)−tr([image: there is no content])]=1[image: there is no content]([image: there is no content]−[image: there is no content])tr[[image: there is no content][image: there is no content]Gn([image: there is no content])]+1[image: there is no content]([image: there is no content]−[image: there is no content])tr[[image: there is no content][image: there is no content]([image: there is no content])Gn2([image: there is no content])]=OP(K/n)








as [image: there is no content]−[image: there is no content]=OP(n−1/2), [image: there is no content]−[image: there is no content]=OP(n−1/2), and Gn([image: there is no content]) is UB in probability by Proposition 10, where [image: there is no content] is between [image: there is no content] and [image: there is no content], and [image: there is no content] is between [image: there is no content] and [image: there is no content]. Similarly,


1[image: there is no content][tr(Γ˜nK,3)−tr([image: there is no content])]=OP(K/n)=oP(1)








By Proposition 11, σ˜ϵ2−[image: there is no content]=OP(n−1/2) and [image: there is no content]−[image: there is no content]=OP(n−1/2). Furthermore, tr([image: there is no content])=O(K), tr([image: there is no content])=O(K) and tr([image: there is no content])=O(K). Then


1[image: there is no content][tr(Γ˜nK,2)[image: there is no content][image: there is no content]+[image: there is no content]tr(Γ˜nK,3),tr(Γ˜nK,1)[image: there is no content]]−1[image: there is no content][tr([image: there is no content])[image: there is no content][image: there is no content]+[image: there is no content]tr([image: there is no content]),tr([image: there is no content])[image: there is no content]]=oP(1)








and the result in the proposition holds.   ☐








Proof of Proposition 5. 

We find a decomposition for [image: there is no content]([image: there is no content]−[image: there is no content]) as in Lemma 2 and show that all the conditions in the lemma are satisfied.







Let [image: there is no content], where [image: there is no content] is in Equation (16). We first establish some order properties for [image: there is no content]. The [image: there is no content] is equal to


[image: there is no content]=[image: there is no content]ntr[([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])[image: there is no content][image: there is no content]Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])]+1nΥn′(K)[image: there is no content][image: there is no content]Υn(K)≤[image: there is no content][image: there is no content]ntr[([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])]+[image: there is no content]nΥn′(K)Υn(K)








where [image: there is no content] is the largest eigenvalue of [image: there is no content], which is bounded from above because limn→[image: there is no content] is finite and nonsingular. Furthermore, as [image: there is no content] for some constant [image: there is no content] by Lemma 4, [image: there is no content]=O[image: there is no content]. By a similar argument but with a lower bound for [image: there is no content] by using the smallest eigenvalue of [image: there is no content] and by Assumption 9 (i), as [image: there is no content]≠0, lim[image: there is no content][image: there is no content]/[image: there is no content]>c for some constant [image: there is no content]. These together mean that [image: there is no content] has exactly the same order as [image: there is no content]. This order of [image: there is no content] together with [image: there is no content] are helpful to determine the orders of the terms in the decomposition of [image: there is no content]([image: there is no content]−[image: there is no content]).



The [image: there is no content] satisfies


[image: there is no content]([image: there is no content]−[image: there is no content])=H^n−1[image: there is no content]








where [image: there is no content]=1[image: there is no content]Zn′([image: there is no content])[image: there is no content]un([image: there is no content]), and


[image: there is no content]=1nZn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])+1n([image: there is no content]−[image: there is no content])[Zn′([image: there is no content])[image: there is no content][image: there is no content][image: there is no content]+Zn′Mn′[image: there is no content][image: there is no content]([image: there is no content])]+1n([image: there is no content]−[image: there is no content])2Zn′Mn′[image: there is no content][image: there is no content][image: there is no content]











because [image: there is no content]([image: there is no content])=[image: there is no content]([image: there is no content])+([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content]. By Lemma 8 (i)–(iii) and Lemma 7 (vi),


1nZn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])=[image: there is no content]+T1nH+T2nH+T3nH+T4nH








where [image: there is no content]=O(1), T1nH=O([image: there is no content]), [image: there is no content], T3nH=OP(K/n)=oP([image: there is no content]) and T4nH=oP(K/n+[image: there is no content])=oP([image: there is no content]);


1n[image: there is no content]Zn′([image: there is no content])[image: there is no content][image: there is no content][image: there is no content]=1n[image: there is no content]Z¯n′([image: there is no content])[image: there is no content][image: there is no content]+O([image: there is no content][image: there is no content]/n)+OP(n−1)+OP(Kn−3/2)+oP(Kn−3/2+n−1/2[image: there is no content])+OP([image: there is no content]/n)=1n[image: there is no content]Z¯n′([image: there is no content])[image: there is no content][image: there is no content]+oP([image: there is no content])








and 1n2Zn′Mn′[image: there is no content][image: there is no content][image: there is no content]=OP(1/n)+OP(K/n2)=oP([image: there is no content]). As


[image: there is no content]([image: there is no content]−[image: there is no content])=1[image: there is no content](ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])+OP(n−1/2)=OP(1)








it follows that


1n([image: there is no content]−[image: there is no content])[Zn′([image: there is no content])[image: there is no content][image: there is no content][image: there is no content]+Zn′Mn′[image: there is no content][image: there is no content]([image: there is no content])]=T5nH+oP([image: there is no content])








where T5nH=−1n2(ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])[Z¯n′([image: there is no content])[image: there is no content][image: there is no content]+Z¯n′Mn′[image: there is no content]([image: there is no content])]=OP(n−1/2). Then, [image: there is no content]=[image: there is no content]+TnH+oP([image: there is no content]) with [image: there is no content].



For [image: there is no content], we have


[image: there is no content]=1[image: there is no content]Zn′([image: there is no content])[image: there is no content][image: there is no content]+1[image: there is no content]([image: there is no content]−[image: there is no content])[Zn′Mn′[image: there is no content][image: there is no content]+Zn′([image: there is no content])[image: there is no content][image: there is no content]un]+1[image: there is no content]([image: there is no content]−[image: there is no content])2Zn′Mn′[image: there is no content][image: there is no content]un,








where, by Lemma 8 (iv)–(vii) and Lemma 7 (vi),

	(a)

	
1[image: there is no content]Zn′([image: there is no content])[image: there is no content][image: there is no content]=hn+T1nh+T2nh with [image: there is no content], [image: there is no content] and T2nh=OP(K/[image: there is no content]),




	(b)

	
1nZn′Mn′[image: there is no content][image: there is no content]=1nZ¯n′Mn′[image: there is no content][image: there is no content]+OP(K/n)=OP(n−1/2),




	(c)

	
1nZn′([image: there is no content])[image: there is no content][image: there is no content]un=1nZ¯n′([image: there is no content])[image: there is no content]un+oP([image: there is no content]), and




	(d)

	
n−3/2Zn′Mn′[image: there is no content][image: there is no content]un=oP([image: there is no content]).






Thus, [image: there is no content]=hn+Tnh+oP([image: there is no content]), where [image: there is no content] with


[image: there is no content]=−n−3/2(ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])Z¯n′([image: there is no content])[image: there is no content]un=OP(1/[image: there is no content])








and


[image: there is no content]=−n−3/2(ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])Z¯n′Mn′[image: there is no content][image: there is no content]=OP(1/[image: there is no content])











Corresponding to the terms of the decomposition in Lemma 2, we have Znh=[image: there is no content]−hn−Tnh, ZnH=[image: there is no content]−[image: there is no content]−TnH,


A^n(K)=(hn+T1nh+T2nh)(hn+T1nh+T2nh)′+[([image: there is no content]+[image: there is no content])hn′]s−(hnhn′[image: there is no content]TnH′)s








and


ZnA(K)=[(T1nh+T2nh)([image: there is no content]+[image: there is no content])′]s+([image: there is no content]+[image: there is no content])([image: there is no content]+[image: there is no content])′=oP([image: there is no content])











We shall check that all conditions in Lemma 2 are satisfied and derive the explicit expression for [image: there is no content]. As hn+T1nh+T2nh=1[image: there is no content]Z¯n′([image: there is no content])[image: there is no content][image: there is no content]+1[image: there is no content]ζn′Rn′[image: there is no content][image: there is no content], then under the assumption that μ3=E(ϵni2[image: there is no content])=0, we have


E[(hn+T1nh+T2nh)(hn+T1nh+T2nh)′]=[image: there is no content]nZ¯n′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])+1nE(ζn′Rn′[image: there is no content][image: there is no content]ϵn′[image: there is no content][image: there is no content]ζn)











Since ζn=[Gnvn[image: there is no content]+GnRn−1[image: there is no content],vn], the matrix E(ζn′Rn′[image: there is no content][image: there is no content]ϵn′[image: there is no content][image: there is no content]ζn)−Ωn2(K), where


Ωn2(K)=E(ζn′Rn′[image: there is no content][image: there is no content])E(ϵn′[image: there is no content][image: there is no content]ζn)








can be expanded as a [image: there is no content] block matrix, with each block being of the order [image: there is no content] by Lemmas 3 and 4. Thus,


E(ζn′Rn′[image: there is no content][image: there is no content]ϵn′[image: there is no content][image: there is no content]ζn)=Ωn2(K)+O(K)











Then,


E[(hn+T1nh+T2nh)(hn+T1nh+T2nh)′]=[image: there is no content]nZ¯n′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])+Ωn2(K)+oP([image: there is no content])











Note that


E([image: there is no content]hn′)=−1n2Z¯n′([image: there is no content])[image: there is no content]Rn−1E[(ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])[image: there is no content]ϵn′][image: there is no content]([image: there is no content])








and


E([image: there is no content]hn′)=−1n2Z¯n′Mn′[image: there is no content]E[(ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])[image: there is no content]ϵn′][image: there is no content]([image: there is no content])








where E[(ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])[image: there is no content]ϵn′] is UB by Lemma 9 (i), then E([image: there is no content]hn′)=O(1/n)=o([image: there is no content]), and


E([image: there is no content]hn′)=−1n2Z¯n′Mn′E[(ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])[image: there is no content]ϵn′][image: there is no content]([image: there is no content])+1n2Z¯n′Mn′([image: there is no content]−[image: there is no content])E[(ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])[image: there is no content]ϵn′][image: there is no content]([image: there is no content])=O(1/n)+O([image: there is no content]/n)=o([image: there is no content])








by Lemma 7 (ii). As E(hnhn′[image: there is no content]T1nH′)=−[image: there is no content]nZ¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content]), and, by Lemma 9, E(hnhn′[image: there is no content]T2nH′)=O(1/n)=oP([image: there is no content]) and E(hnhn′[image: there is no content]T5nH′)=O(1/n)=oP([image: there is no content]), we have


[image: there is no content]=[image: there is no content]nZ¯n′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])+1nΩn2(K)+2[image: there is no content]nZ¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])+oP([image: there is no content])=[image: there is no content][image: there is no content]+[image: there is no content]nZ¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])+1nΩn2(K)+oP([image: there is no content])








Let [image: there is no content] be given by (16), then all conditions of Lemma 2 are satisfied.  ☐




Proof of Proposition 6. 

The proof follows by modifying that of Proposition 5. Now [image: there is no content]=tr(Sn(K))=O(K/n+[image: there is no content]). The [image: there is no content] satisfies


[image: there is no content]([image: there is no content]−[image: there is no content])=H^n−1[image: there is no content]with[image: there is no content]=1nZn′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])and[image: there is no content]=1[image: there is no content][Zn′([image: there is no content])[image: there is no content]un([image: there is no content])−Υ˜n(K)]








By Lemma 8 (viii), [image: there is no content], where T3nH=1nζn′Rn′[image: there is no content][image: there is no content]ζn is defined in Lemma 8 and [image: there is no content] with [image: there is no content] given in Equation (11).







Define [image: there is no content]. Then, from the proof of Proposition 5,


[image: there is no content]=[image: there is no content]+TnH+oP([image: there is no content]),whereTnH=T1nH+T2nH+T5nH+T6nH








For [image: there is no content], we have


[image: there is no content]=hn+T1nh+T5nh−1[image: there is no content][Υ˜n(K)−Υn(K)]+1[image: there is no content]([image: there is no content]−[image: there is no content])[Zn′Mn′[image: there is no content][image: there is no content]+Zn′([image: there is no content])[image: there is no content][image: there is no content]un]+1[image: there is no content]([image: there is no content]−[image: there is no content])2Zn′Mn′[image: there is no content][image: there is no content]un








where T5nh=1[image: there is no content][ζn′Rn′[image: there is no content][image: there is no content]−E(ζn′Rn′[image: there is no content][image: there is no content])]=OP(K/n) by Lemma 8 (viii). By Proposition 11 (iv),


−1[image: there is no content][Υ˜n(K)−Υn(K)]=T6nh+oP([image: there is no content])withT6nh=−1n(a1′,a2′)′=OP(K/n)








where [image: there is no content] and [image: there is no content] are defined in Proposition 11 (iv). By Lemma 8 (v)–(viii), 1nZn′Mn′[image: there is no content][image: there is no content]=1nZ¯n′Mn′[image: there is no content][image: there is no content]+1nE(ζn′Mn′[image: there is no content][image: there is no content])+oP([image: there is no content]),


1nZn′([image: there is no content])[image: there is no content][image: there is no content]un=1nZ¯n′([image: there is no content])[image: there is no content]un+1nE(ζn′Rn′[image: there is no content][image: there is no content]un)+oP([image: there is no content])








and 1n3/2Zn′Mn′[image: there is no content][image: there is no content]un=oP([image: there is no content]). Therefore,


[image: there is no content]=hn+Tnh+oP([image: there is no content]),whereTnh=T1nh+T5nh+T6nh+[image: there is no content]+[image: there is no content]+T7nh








with [image: there is no content] and [image: there is no content] defined in the proof of Proposition 5; and


T7nh=−n−3/2(ϵn′[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])[E(ζn′Mn′[image: there is no content][image: there is no content])+E(ζn′Rn′[image: there is no content][image: there is no content]un)]=OP(K/n)











For the decomposition in Lemma 2, take ZnA(K)=(hn+Tnh)(hn+Tnh)′−(hnhn′[image: there is no content]TnH′)s−A^n(K), and


A^n(K)=(hn+T1nh)(hn+T1nh)′+[hn([image: there is no content]+[image: there is no content]+T5nh+T6nh+T7nh)′]s+(T1nhT5nh′)s+T5nhT5nh′−(hnhn′[image: there is no content]TnH′)s








Then [image: there is no content]. To check that the conditions in Lemma 2 are satisfied, we now investigate [image: there is no content]. First,


E[(hn+T1nh)(hn+T1nh)′]=1nE(Z¯n′([image: there is no content])[image: there is no content][image: there is no content]ϵn′[image: there is no content][image: there is no content]([image: there is no content]))=[image: there is no content]nZ¯n′([image: there is no content])[image: there is no content][image: there is no content]([image: there is no content])








By the proof of Proposition 5, E[hn(T3nh′+T4nh′)]=oP([image: there is no content]). Under the assumption that E(ϵni3)=E(ϵni2[image: there is no content])=0, we have [image: there is no content], [image: there is no content],


E(hnT7nh′)=−[image: there is no content]n2Z¯n′([image: there is no content])Fn′[E(ζn′Mn′[image: there is no content][image: there is no content])+E(ζn′Rn′[image: there is no content][image: there is no content]un)]′








and


[image: there is no content]








where [image: there is no content] and [image: there is no content] are given in (23) and (24) respectively. The expression for [image: there is no content] can be derived by Lemma 3. Under Assumption 9 (ii), vecD′(ΓnK,i)vecD([image: there is no content])=o(K) for [image: there is no content]. Then [image: there is no content], where [image: there is no content] is given in (21). By the proof of Proposition 5, E[hnhn′[image: there is no content](T2nH+T5nH)′]=oP([image: there is no content]). Furthermore,


E[hnhn′[image: there is no content](T1nH+T6nH)′]=−[image: there is no content]nZ¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])+[image: there is no content]T6nH








Therefore,


E(A^n(K))=[image: there is no content][image: there is no content]+[image: there is no content]nZ¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])+1nΠn1(K)+1nΠn2(K)+1nΠn3(K)+oP([image: there is no content])








where 1nΠn2(K)=E[(hnT6nh′)s]−2[image: there is no content]T6nH and [image: there is no content]. Let [image: there is no content] be given by (17), then all conditions in Lemma 2 are satisfied and the result in the proposition holds.    ☐




Proof of Proposition 7. 

As [image: there is no content]([image: there is no content])=[image: there is no content]([image: there is no content])+([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content] and [image: there is no content]=[image: there is no content]+ζn, we have


Zn′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])=Zn′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])+([image: there is no content]−[image: there is no content])[Zn′Mn′([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])]s+([image: there is no content]−[image: there is no content])2Zn′Mn′([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content]








where


Zn′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])=Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])+[Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]ζn]s+ζn′Rn′[image: there is no content]ζn−ζn′Rn′[image: there is no content][image: there is no content]ζn








Let


S˜n,ξ(K)=S^n,ξ(K)−σ^ϵ2nξ′H^n−1[ζn′Rn′[image: there is no content]ζn+([image: there is no content]−[image: there is no content])(ζn′Mn′[image: there is no content]ζn)s+([image: there is no content]−[image: there is no content])2ζn′Mn′[image: there is no content]ζn]H^n−1ξ








As [image: there is no content] does not depend on K, [image: there is no content]. By lemma:sk, we only need to show that supK|S˜n,ξ(K)−Sn,ξ(K)|[image: there is no content]→p0.







Let [image: there is no content] be the ith column of the [image: there is no content] identity matrix. Since σ^ϵ2=[image: there is no content]+oP(1) and [image: there is no content]=[image: there is no content]+oP(1)=OP(1), for the GS2SLS, by the triangular inequality, it is sufficient to show the following:

	(i)

	
[image: there is no content] for some constant [image: there is no content] and [image: there is no content];




	(ii)

	
supK|ei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])ej|/[nSn,ξ(K)]→0;




	(iii)

	
[image: there is no content] for some constant [image: there is no content], [image: there is no content] and supK|ei′[ζn′Rn′[image: there is no content][image: there is no content]ζn−Ωn1(K)]ej|/[nSn,ξ(K)]→p0;




	(iv)

	
supK|ei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]ζnej|/[nSn,ξ(K)]→p0, and




	(v)

	
supK|ei′{([image: there is no content]−[image: there is no content])[Zn′Mn′([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])−ζn′Mn′[image: there is no content]ζn]s+([image: there is no content]−[image: there is no content])2[Zn′Mn′([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content]−ζn′Mn′[image: there is no content]ζn]}ej|/[nSn,ξ(K)]→p0.









For the CGS2SLS, we need to show (ii)–(v) and

	(i’)

	
[image: there is no content] for some constant [image: there is no content] and [image: there is no content].









We first show (i) and (i’). By Lemma 4,


[image: there is no content]








for some constant [image: there is no content]. By Assumption 10 (ii), for the GS2SLS, [image: there is no content] for some [image: there is no content]. Then [image: there is no content] for some constant [image: there is no content]. For tr[[image: there is no content][image: there is no content]([image: there is no content])Gn(λ^n)], by the mean value theorem,


|tr[[image: there is no content][image: there is no content]([image: there is no content])Gn(λ^n)]−tr([image: there is no content])|=|(λ^n−[image: there is no content])tr[[image: there is no content][image: there is no content]([image: there is no content])Gn2([image: there is no content])]−([image: there is no content]−[image: there is no content])tr[[image: there is no content][image: there is no content]Gn([image: there is no content])]|≤Kc(λ^n−[image: there is no content])2+([image: there is no content]−[image: there is no content])2








in probability for some constant [image: there is no content], by Lemmas 10 and 4. As all parameter estimates used in [image: there is no content] are consistent, applying similarly the mean value theorem to other terms in [image: there is no content], we can see that [image: there is no content] in probability, where [image: there is no content] does not depend on K. Thus (i) holds. For the CGS2SLS, (i’) holds similarly.



The (ii) holds because |ei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])ej|≤c1[image: there is no content] for some [image: there is no content], and nSn,ξ(K)>c[image: there is no content] for some constant [image: there is no content] by Assumption 10 (ii).



For (iii), the first two results are similar to those in (i), thus we only show that


supK|ei′[ζn′Rn′[image: there is no content][image: there is no content]ζn−Ωn1(K)]ej|/[nSn,ξ(K)]→p0








By Chebyshev’s inequality, for any [image: there is no content],


P(supK|ei′[ζn′Rn′[image: there is no content][image: there is no content]ζn−Ωn1(K)]ej|/[nSn,ξ(K)]≥η)≤∑KE{ei′[ζn′Rn′[image: there is no content][image: there is no content]ζn−Ωn1(K)]ejej′[ζn′Rn′[image: there is no content][image: there is no content]ζn−Ωn1(K)][image: there is no content]}/[η2n2Sn,ξ2(K)]≤∑KE{ei′[ζn′Rn′[image: there is no content][image: there is no content]ζn−Ωn1(K)][ζn′Rn′[image: there is no content][image: there is no content]ζn−Ωn1(K)][image: there is no content]}/[η2n2Sn,ξ2(K)]≤∑KKc/[η2n2Sn,ξ2(K)]≤∑Kc1/[η2nSn,ξ(K)]








for some constants [image: there is no content] and [image: there is no content], where the third inequality follows by Lemmas 3 and 4, and the last inequality holds since [image: there is no content] for some constant [image: there is no content] by Assumption 10 (ii). The result then follows by Assumption 11.



For (iv), by Chebyshev’s inequality, for any [image: there is no content],


P(supK|ei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]ζnej|/[nSn,ξ(K)]>η)≤∑KE[ei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]ζnejej′ζn′Rn′([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])][image: there is no content]/[η2n2Sn,ξ2(K)]≤∑Kei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]E(ζnζn′)Rn′([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])[image: there is no content]/[η2n2Sn,ξ2(K)]≤∑K[image: there is no content]ei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])[image: there is no content]/[η2n2Sn,ξ2(K)]≤∑Kc/[η2nSn,ξ(K)]








for some constant c, where [image: there is no content] denotes the largest eigenvalue of Rn′E(ζnζn′)[image: there is no content], and the last inequality holds because Rn′E(ζnζn′)[image: there is no content] is UB and Sn,ξ(K)>c1[image: there is no content] for some [image: there is no content]. Thus the result holds.



For (v), as [image: there is no content]=[image: there is no content]+ζn and [image: there is no content]([image: there is no content]−[image: there is no content])=OP(1), we show the following:

	(1)

	
supK|ei′Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])ej|/[n[image: there is no content]Sn,ξ(K)]→0 and supK|ei′Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content]ej|/[n2Sn,ξ(K)]→0;




	(2)

	
supK|ei′Anζnej|/[n[image: there is no content]Sn,ξ(K)]→p0, where An=Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content], Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content] or Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content];




	(3)

	
supK|ei′E[ζn′Mn′[image: there is no content][image: there is no content]ζn]ej|/[n[image: there is no content]Sn,ξ(K)]→0, supK|ei′E[ζn′Mn′[image: there is no content][image: there is no content]ζn]ej|/[n[image: there is no content]Sn,ξ(K)]→0,supK|ei′{ζn′Mn′[image: there is no content][image: there is no content]ζn−E[ζn′Mn′[image: there is no content][image: there is no content]ζn]}ej|/[n[image: there is no content]Sn,ξ(K)]→p0, and supK|ei′{ζn′Mn′[image: there is no content][image: there is no content]ζn−E[ζn′Mn′[image: there is no content][image: there is no content]ζn]}ej|/[n[image: there is no content]Sn,ξ(K)]→p0.






By Lemma 7 (iii), we have


supK|ei′Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content]([image: there is no content])ej|/[n[image: there is no content]Sn,ξ(K)]≤supKc[image: there is no content]/Sn,ξ(K)[image: there is no content]/[nSn,ξ(K)]








for some [image: there is no content]. Since supK[image: there is no content]/[nSn,ξ(K)]≤∑K[image: there is no content]/[nSn,ξ(K)] and [image: there is no content]=o(1), the first result in (1) holds by Assumption 10 (ii). The second result in (1) holds since


supK|ei′Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content][image: there is no content]ej|/[n2Sn,ξ(K)]≤supKc[image: there is no content]/[nSn,ξ(K)]








for some [image: there is no content]. For (2), similar to (iv), for any [image: there is no content], we have


P(supK|ei′Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content]ζnej|/[n[image: there is no content]Sn,ξ(K)]>η)≤cη−2∑K([image: there is no content]/[nSn,ξ(K)])[nSn,ξ(K)]−1,P(supK|ei′Z¯n′([image: there is no content])([image: there is no content]−[image: there is no content])[image: there is no content]ζnej|/[n[image: there is no content]Sn,ξ(K)]>η)≤cη−2∑K([image: there is no content]/[nSn,ξ(K)])[nSn,ξ(K)]−1,








and


P(supK|ei′Z¯n′Mn′([image: there is no content]−[image: there is no content])[image: there is no content]ζnej|/[n[image: there is no content]Sn,ξ(K)]>η)≤cη−2∑K([image: there is no content]/[nSn,ξ(K)])[nSn,ξ(K)]−1








for some [image: there is no content]. (3) is similar to (i).      ☐
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