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Abstract: A survey is provided dealing with the formulation of modelling problems for dynamic
factor models, and the various algorithm possibilities for solving these modelling problems. Emphasis
is placed on understanding requirements for the handling of errors, noting the relevance of the
proposed application of the model, be it for example prediction or business cycle determination.
Mixed frequency problems are also considered, in which certain entries of an underlying vector
process are only available for measurement at a submultiple frequency of the original process. Certain
classes of processes are shown to be generically identifiable, and others not to have this property.
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1. Introduction

The purpose of this paper1 is to survey (and provide commentary on) a collection
of contributions to do with Dynamic Factor Models developed especially by the authors,
principally the first two, over more than a decade, taking the ideas as far as a listing of
some problems of current interest. Matters which we are especially concerned to highlight
include

1. The theoretical underpinning for allowing modelling to focus on AR rather than
ARMA modelling, and the simplifications this makes possible for the identification
of models.

2. Issues arising in practice from numerical problems in attempting to build models;
some of these errors can be mitigated through the use of carefully chosen forms for
the models.

3. The difficulties arising from modelling time series of different but multiply related
periodicities, e.g., monthly and quarterly, and existing tools for resolving, at least
partly, the difficulties. These build on the ideas developed for single-periodicity
modelling.

Feeding in all these matters is the application of ideas of digital signal processing,
for which issues of handling numerical problems, and handling data streams of multiple
periodicities have been well studied. The relevance of ideas of digital signal processing to
dynamic factor modelling has perhaps not been fully recognized.

Dynamic Factor Models were introduced two decades ago, see in particular Forni et al.
(2000), Forni and Lippi (2001), Stock and Watson (2002), Bai and Ng (2002), with macroe-
conometric applications as their main purpose. The basic idea was that a small number of
factors, common to all the time-series of a large macroeconomic dataset, could be used both
in structural modeling and forecasting of some series of interest like inflation, industrial
production, unemployment. For a typical dataset, see the monthly US macroeconomic
panel, including 128 series, described in great detail in McCracken and Ng (2016).
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We begin by recalling and commenting on a number of ideas in a recent survey
we coauthored, Lippi et al. (2022). The survey confined attention to the modelling of
multivariate time series with the same sampling frequency for every component. As
foreshadowed above, in this paper, besides dealing with such material, we treat modelling
where time series data can be available with different periodicities, provided they are
integrally related, e.g., monthly and quarterly.

Throughout the paper, we shall confine attention to stationary processes.
We take some time to define what is meant by a dynamic factor model, progressively

introducing and commenting on the various assumptions that in aggregate constitute the
definition. The comments may be as important as the assumptions. The various assump-
tions reflect reality to some degree, and they also reflect the requirement to formulate a
solvable problem. We also offer commentary on the notion of errors; the comments deal
with two issues, first the need to in some way limit the errors involved in determining a
process model, given that the model is obtained from sample statistics rather than pop-
ulation data, and second, the need to choose a type of process model that is appropriate
to the application: one does not want massive errors in whatever it is desired to compute
because of sensitivities intrinsic to the model. An overall conclusion (motivated by the
signal processing literature) is that on occasions state-variable models may be preferred to
ARMA or AR. Accordingly, some discussion is also offered explaining how state-variable
models can be determined without even intermediate use of an ARMA or AR model2. Anal-
ogously to the result that AR models can often be determined from covariance data using
the Yule-Walker equations is an algorithm involving a finite number of rational calculations
for obtaining state-variable models of a canonical spectral factor from lagged covariance
data. There may well be numerical advantages in using such a state-variable model.

The last part of the paper traces developments applicable to multiple frequency
systems, or systems in which data of different periodicities is collected. More precisely,
we postulate that there is an underlying stationary zero mean vector time series (yt) =

[(y f
t )
> (ys

t)
>]> which is defined at time t = 0, 1, 2, . . . and with y f

t (the subvector of “fast”
components) observed at all t while ys

t (the subvector of “slow” components) is observed
at t = 0, J, 2J, . . . for some integer J > 1. The task is to build a canonical spectral factor
of the process (yt) using the measured second-order statistics. The whole set-up can
be embedded within a high-dimensional time-series framework of course, but this brief
statement encapsulates what is different about the mixed frequency problem.

The conclusions section of the paper sets out a number of issues which have not yet
been fully addressed.

2. Dynamic Factor Models

Dynamic factor models can roughly be described as those associated with a high di-
mension, say N, vector process (yN

t ) (normally taken with zero mean) defined at t = 0, 1, 2, . . .
and possessing an additive decomposition

yN
t = χN

t + ξN
t (1)

with (χN
t ) termed the process of common components or latent variable process, and (ξN

t )
termed the process of idiosyncratic components. Typically, (χN

t ) is regarded as the true
process of interest, with (ξN

t ) some kind of contamination intruding into the measurement
process (‘noise’ in electrical engineering parlance, which in general is colored rather than
white). However one possible alternative interpretation is that (1) displays the decomposi-
tion of stock price observations into a part (χN

t ) representing the comovements between the
variables (for instance representing the “market” effect on N different stock returns) and
individual movements (ξN

t ) (representing effects associated with each specific firm). It is
assumed that the one-dimensional processes (χit, t ∈ Z), i ∈ {1, . . . , N} are also stationary
and strongly dependent across the index i, while the processes (ξit, t ∈ Z), i ∈ {1, . . . , N}
are stationary and weakly cross-dependent (the terms strongly dependent and weakly
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cross-dependent requiring technical definitions). It is standard to allow for variation in
N above some N0, with yN

t , χN
t and ξN

t being nested, for example yN
t is the subvector of

yN+1
t formed from its first N entries. Both (χN

t ) and (ξN
t ) are zero mean and the two vector

processes are mutually independent. The spectral densities ΦN
χ (ejω), ω ∈ [−π, π] and

ΦN
ξ (ejω), ω ∈ [−π, π] are assumed to exist and (yN

t ) is then necessarily stationary with

ΦN
y (ejω) = ΦN

χ (ejω) + ΦN
ξ (ejω). (2)

These spectral matrices obviously inherit the nesting property of the underlying
processes.

We sum up the above description as follows.

Assumption 1. A nested (with N) set of observation processes (yN
t ) of zero mean arises as an

additive combination of a stationary zero mean nested common component process (χN
t ) and a

stationary zero mean nested process of idiosyncratic components (ξN
t ), as in (1). The latter two

processes are independent, the first is strongly cross-dependent (a term defined subsequently) and the
latter is weakly cross-dependent (also defined subsequently), and the spectra of the three processes
are related by (2).

Note that there is no assumption to this point that the spectra are rational, or otherwise
finitely parametrized.

To formulate a solvable identification problem, a number of other assumptions are
always invoked in considering dynamic factor models, and we will introduce them gradu-
ally and attempting a logical progression over the subsequent subsections, albeit with an
attempt to justify their relevance.

2.1. The Goal of Modelling

Exactly what should be the goal of modelling in science is as much a philosophical as it
is a scientific question, with answers often reflecting on the real-world utility of any model.
Much the same question arises in connection with economic modelling; the very highly-
cited paper Sims (1980) seeks to peer behind the mathematical formalism to understand
exactly what relation the models of economics have to the real world.

For the purposes of this paper, we will simply assert that a model may be desired
for various purposes which may not all be applicable for any one model at a particular
time. Two of these for example might be forecasting of future values of a time series, and
identification of business cycles. For modelling and especially forecasting purposes, often a
canonical (stable, miniphase) spectral factor of ΦN

χ (ejω) is desired. Such a spectral factor is
to be constructed using the data yN

t with 0 ≤ t ≤ T where T is some finite positive integer.
The dimension N may in fact exceed T, indeed theoretical studies focus on letting N rather
than T tend to infinity.

To make progress, further assumptions beyond the nesting property are needed. Some
of these assumptions bear on the ability to somehow dispose of the contaminating influence
of (ξN

t ), and we will deal with them further below, and at that time clarify the strong
and weak dependence notions. So assume temporarily that somehow we can work just
with (χN

t ).

The Issue of Errors and Continuity

Observe that there are different ways to describe a stable miniphase spectral factor,
see e.g., Hannan and Deistler (2012) and Caines (2018) for the relevant linear system theory
background. If it has a rational transfer matrix, state-variable descriptions could be used
(and then there is freedom to choose a coordinate basis). There is interest especially in those
which are of minimal dimension. Again, if the spectral factor is rational, a left or right
matrix fraction description could be used (a left matrix fraction description being an ARMA
description, subject to rules about leading coefficient matrices). There is interest especially
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in those where the fraction is coprime (common factors are generally as unhelpful in a
matrix transfer function as they are for the numerator and denominator of a scalar transfer
function). If it is known to be autoregressive, an AR description may be used. A very
different form again is provided by a series of graphical images of the values of the transfer
matrix entries as a function of ω; this might even be the most convenient form of model if
the model does not have a rational transfer function matrix.

No matter what means are used to construct a model for the process (χN
t ), it is clear

that one needs to be certain that a small error in (say) the lagged covariance sequence values
(due say to use of sample rather than population statistics) will ultimately flow through to a
small error in the quantities obtained in whatever particular application is envisaged when
using the model. Since the model is the tool underpinning the application, it is reasonable
to seek further assurance that the small error in the lagged covariance values (which in
almost all cases are the raw data from which any model is constructed) will also give rise to
a small error in the actual model of the minimum phase transfer function, be it frequency
domain description, AR, ARMA, or general state-variable. Thus, if the model is being
used for prediction, one ultimately wants a small error in the estimation variance of the
predictions, and an accurate AR model may consequently be sought (assuming existence of
an AR model is guaranteed). On the other hand, and even if an AR model should exist, if
the model is being used to look for spectral peaks capturing some oscillatory phenomenon,
or to understand the different bandwidths of the processes of interest, one is more likely
to want a small error in the frequency domain description of the model, or even the pole
positions of the model, as opposed to the AR coefficients.

Evidently then, some kind of a continuity is being sought (small errors in data used
for generating the model should give small errors in the ultimate answer in the appli-
cation for which the model is being used), but evidently also the particular parameters
relevant to considering continuity, including continuity within the model description, are
application dependent.

The most common sort of continuity in a model to which attention is given is the
continuity of coefficients in a finite dimensionally parameterised model. One thinks of
the class of systems of interest as collection of subsets, where the subsets are obtained by
performing (data driven) model selection or by making various assumptions about integer
parameters associated with the dimension of the innovations process, or a minimal state
variable realization. However, such thinking may exclude certain systems at the start, and
on occasions continuity of a frequency domain plot may be of more interest than continuity
of a parameter in a model of some assumed order.

Because so much work in econometrics is linked to forecasting, there is a justified
preference for using (when they exist) autoregressive models. The crucial part of the
modelling to get right is to have accurate AR coefficients, which (in the event that Yule-
Walker equations are used to derive the coefficients) probably requires a well-conditioned
and thus more easily invertible matrix of lagged covariance coefficients, in addition to some
suitable level of accuracy in the lagged covariance coefficients themselves. [More precisely,
since on occasions a singular matrix may appear in the Yule-Walker equations, one will
want a modified form of well-conditioning as indicated below.] One should note that
the conditioning of the matrix in question can be related to an important property of the
associated multivariate spectrum. Let νmax denote the maximum over ω of the maximum
eigenvalue of the Hermitian matrix ΦN

χ (ejω), and let νmin denote the minimum over ω of
the smallest nonzero eigenvalue of ΦN

χ (ejω). (Zero eigenvalues arise if the matrix is singular
and these are for this purpose discarded; it is assumed the number of zero eigenvalues
is the same for all ω). The condition number of the block Toeplitz matrix inverted in a
Yule-Walker calculation is known to approach νmax/νmin as the size of the matrix goes
to infinity, Miranda and Tilli (2000); Serra (1999), with modification in the singular case.
Thus, ill-conditioning in a Yule-Walker calculation may be an automatic consequence of the
nature of the spectrum being modelled.
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In a sense, if we use an information criterion such as AIC for estimating the AR order
p, such a problem is unlikely to occur Shibata (1980).

In contrast however to the use of a model for prediction, if bandwidth determination
and oscillatory phenomena or accuracy of pole positions in the model are issues of concern,
it is a well-established, indeed now old, fact in digital signal processing that autoregressive
(and ARMA) models (known often in the relevant literature as direct models) can be
very dangerous, in the sense that pole positions and frequency peaks can be extremely
sensitive to the AR coefficients, e.g., Mitra (2011); Rabiner and Gold (1975). MATLAB
(Signal Processing Toolbox) even allows the determination of “lattice-form” state-variable
realizations of a prescribed transfer function that will have low or even minimum sensitivity
in the frequency response to truncation or round-off errors associated with the coefficients
in the realization, or minimum round-off errors in calculations using the coefficients in the
realization to compute outputs from inputs.

Using an AR representation for the canonical spectral factor will likely be a bad idea
in this situation: the numerical parameters in the model may need to be known to an
unreasonable degree of accuracy. At the same time, as the signal processing literature
indicates, there may be a state-variable model for which much less demanding accuracy
requirements apply to the numerical parameters in the model, in order to learn from the
model what is desired.

Note further that if multi-step prediction is in contemplation, rather than one-step-
ahead prediction, recursion using AR coefficients will also be risky for those systems with
pole positions which are very sensitive functions of the AR coefficients. In the event though
that prediction was required for a certain fixed number of steps, h say, ahead, as opposed to
an interval extending some distance into the future, one could potentially avoid recursion
by directly estimating an h-step prediction model by minimizing the h-step prediction
errors by least squares. See for example Bhansali and Ghosh (1999), which distinguishes
the two approaches with the names “plug-in method” and “direct method”.

To sum up then, we must be concerned about two things:

1. If there is a true underlying process with an associated canonical spectral factor, and
a canonical spectral factor obtained using approximate values of lagged covariance
coefficients, there will be an error between the two.

2. We should use a description of the computed canonical spectral factor that is ap-
propriate to the application, in the sense that the error mechanisms in the relevant
computations will not cause significant errors in the quantities computed as part of
the application.

In connection with the first issue of continuity of the canonical spectral factor frequency
response, reference Anderson (1985) provides a sufficient condition for continuity: the
derivative (with respect to ω) of ΦN

χ (ejω) must be bounded, to ensure that a small L∞ error
in the spectrum gives rise to a small L∞ error in the canonical spectral factor frequency
response. To relate this to a covariance sequence condition, observe that

ΦN
χ (ejω) =

∞

∑
s=−∞

E[χN
t+s(χ

N
t )>]e−jωs.

Formal differentiation yields

d
dω

ΦN
χ (ejω) =

∞

∑
s=−∞

(−j)sE[χN
t+s(χ

N
t )>]e−jωs

and by the Weierstrass M-test, uniform convergence in ω will occur provided

∞

∑
s=−∞

s‖E[χN
t+s(χ

N
t )>]‖ < ∞.

A sufficient condition ensuring this property is incorporated in the following:
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Assumption 2. The derivative (with respect to ω) of ΦN
χ (ejω) is bounded, which is guaranteed if

the covariance sequence E[χN
t+s(χ

N
t )>] goes to zero faster than (1/s)α for any α > 2.

As explained in Anderson (1985), in the absence of a derivative bound, an arbitrarily
small variation of a scalar spectrum can produce an arbitrary phase shift anywhere in (0, π)
in the associated spectral factor (though the spectral factor magnitude is obviously simply
given by taking the square root of the spectrum value at each frequency, and so continuity
applies to the magnitude). Evidently, without the Assumption, the spectral factorization
problem is almost ill-posed for any real world situation.

As noted above, this assumption is relevant to securing accuracy in frequency domain
behavior of the miniphase spectral factor. It is at best indirectly relevant to securing
accuracy in say an AR model being used for prediction purposes, if such is known to exist.
Nevertheless, if by virtue of some other assumptions or argument, a stable AR model (and
surely stability is a requirement) exists, then this imposes an exponential rate of decay
(with increasing lag) on the lagged covariances, and the assumption is fulfilled. Thus,
the assumption is not offensive to custom. Actually, the ratio νmax/νmin is also partially
relevant to the assumption: the greater is this ratio, the more sensitive appears to be the
spectral factor frequency response to variations in the power spectrum, Anderson (1985).

2.2. Controlling the Number of Parameters to Be Estimated

It is clear that any canonical spectral factor of practical use has to be parametrised by a
finite number of quantities, be they integers or real parameter values. One way to ensure
this can occur is simply to lay down an assumption that the spectrum is rational:

Assumption 3. For each N, ΦN
χ (ejω) is rational and therefore bounded in ejω.

The boundedness assumption rules out the inclusion of a deterministic component.
On the face of it, a rationality assumption is a leap of faith–there seems no reason

grounded in physics or economics that suggests this is reasonable, apart perhaps from a
belief in the general applicability of an Occam’s Razor principle. What makes it reasonable
and less instrumentalist though is to recognize that a very minor and more reasonable
variant on it will be satisfactory. Using the crucial fact that any covariance sequence
satisfying Assumption 2 (corresponding to a stationary process) can be approximated
arbitrarily closely in Lp norm for any p ∈ [1, ∞) by a covariance with rational spectrum3, it
follows that if the true spectrum is not rational, under the decay condition of Assumption 2,
the rationality assumption of Assumption 3 becomes in practical terms acceptable, as it can
apply to a spectrum arbitrarily close to that of the true process. There is however a caution:
while the approximation idea is valid for a fixed N, the assumption says nothing about
what happens when N goes to infinity, and the next and less innocent assumption given
below is needed to address the issue.

More specifically and given Assumption 3, there will in fact be three critical N-
dependent integers associated with the spectral factor of ΦN

χ (ejω):

1. The dimension n of a minimal state-space realization of the canonical spectral factor
(or its McMillan degree)

2. The number of columns q in the minimal state-space factor, or the dimension of an
innovations sequence (this being a white noise sequence, known in this context as the
dynamic factor sequence)

3. The rank r of γN(0) := E[χN
t (χN

t )>], which is the dimension of the space spanned by
χ1t, χ2t, . . . , χNt.
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While the existence of n (for fixed N) is a direct consequence of Assumption 3, the
other two integers deserve some comment. The rationality assumption implies there is a
rational canonical spectral factor for (χN

t ), thus

xt+1 = Fxt + Gwt+1 (3)

χN
t = HN xt,

where F ∈ Rn×n, G ∈ Rn×q with rank q, HN ∈ RN×n with rank r, and the matrices HN are
nested; this means we can write for n-dimensional row vectors h1, h2, . . . ,

HN =


h1
h2
...

hN

 (4)

The process (wt) is zero mean white noise with E[wtw>t ] = Iq. Stability and the
miniphase property correspond to

ρ(F) < 1, rank
[

I − Fz −G
HN 0

]
= n + q for |z| ≤ 1 (5)

We note that one can also write

χN
t = HN(I − Fz)−1Gwt = KN(z)wt (6)

with obvious definition of the N × q transfer matrix KN(z). As is well known, such
a stable and miniphase transfer function satisfying the spectral factorization equation
ΦN

χ (ejω) = KN(ejω)(KN(e−jω))> is unique up to right multiplication by a real orthogonal
matrix, here of dimension q× q, but through normalization can be made unique.

Since GG> is of size n× n, and the number of columns of G, viz. q, is minimal in a
canonical spectral factor, it is immediate that q ≤ n. Further, since

γN(0) = E[HN x(0)x>(0)(HN)>],

we see that r is bounded by the dimension of the square matrix E[x(0)x>(0)], i.e., r ≤ n.
However, also, γN(0) is related to the spectrum by

γN(0) =
1

2π

∫ π

−π
ΦN

χ (ejω)dω

which shows that r ≥ q.
All three integers evidently depend on N, and one of our interests is to let N vary.

However, using these integers, we introduce by fiat an almost natural strengthening of
the nesting property of the underlying processes and their spectral densities and thereby
almost ‘define away’ the dependence on N:

Assumption 4. There exists a positive integer N0 such that for all N ≥ N0, the integers n, q, r are
independent of N.

By way of heuristic explanation or even justification, we comment that as N increases,
the parameter count in the canonical spectral factor increases, linearly with N. However, the
assumption means that the number of independent driving signals which are the ultimate cause
of the output of the canonical spectral factor (the dimension of what is termed the dynamic
factors of the model) remains constant at q, the complexity (minimal state-space dimension)
n of the model stays constant, and once the output vector has become sufficiently big (of
size r), all further outputs are linear combinations of other ones, and not even delayed versions



Econometrics 2022, 10, 35 8 of 26

of others. There is almost no new information in these further outputs4, other than that
explaining how they are related to earlier outputs. Implicit then in the assumption is a sort
of Occam’s Razor principle, limiting the rate of increase in complexity (the parameter count
effectively) of the model to the least amount consistent with increase in N.

A physical analogy arises if one considers χt as like a vector of vibrations arising in a
piece of machinery, or electrical thermal noise at the ports of a linear circuit. There may be a
limited number q of sources of the vibrations (resistors in the circuit analogy), and one could
add more and more sensors (corresponding to N) to the set-up. Their presence would not
change the underlying dynamical behavior of the machinery or circuit, governed by a set
of differential equations with ‘complexity’ n. At some point when adding sensors (but with
no associated sensor noise since that is to be bundled in with ξt in this analogy), say when
N = r, essentially no new information is provided by an additional sensor: the additional
sensor just provides a linear combination of the measurements from other sensors.

The assumption that q is independent of N is shared by all works on dynamic factor
models. A large majority in that literature also shares the assumption that r (and n) is
independent of N. However, as the following simple example shows, q can be independent
of N without r being independent of N. Let

χit = (1− αiz)−1wt = wt + αiwt−1 + · · · ,

where wt is a scalar white noise, so that in this case q = 1. Now, if the αi ∈ [0, .9] and
αi 6= αj for all i 6= j, then the dimension of the space spanned by χit, i = 1, . . . , N is N, so
that Assumption 4 does not hold, see Forni et al. (2015) for details.

Henceforth, we shall neglect the dependence of n, q, r on N for small values of N.
We summarize the inequalities linking the three key integer parameters and the

minimum allowed value N0 of N in the following theorem:

Theorem 1. With notation as above and under Assumptions 2–4, there holds q ≤ r ≤ n and
r ≤ N0, (with r, q, n independent of N ≥ N0).

Actually, r > q has always been observed in empirical applications to large macroeco-
nomic data sets, Barigozzi et al. (2021). One can observe also that as N grows, the number
of parameters grows linearly with N, in fact as O(nN).

Given covariance data for (χN
t ), one way the integer r can be obtained is to use the

fact that for large enough N,
r = rank E[χN

t (χN
t )>]

Sample averages have to replace the population averages, and methods such as
singular value decomposition could be used to execute the calculations.

For future reference, we note that the equation

ΦN
χ (ejω) = KN(ejω)(KN(e−jω))>

implies that the McMillan degree of KN (the dimension of a minimal realization of KN ,
i.e., n) is one half the McMillan degree of ΦN

χ (ejω), or equal to the McMillan degree of
the transfer matrix with associated impulse response the lagged covariance sequence
γN(0), γN(1), . . . , with γN(s) = E[χN

t (χN
t−s)

>], see, e.g., Anderson (1969).

2.3. Strong and Weak Cross-Dependence

Strong dependence captures the notion that as N tends to infinity, the effect of the
input signals, and all the dynamic complexity showing up in the state variable, continue to
show up in a nondecreasing way in the progressively added output components. This can
be captured formally by
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Assumption 5. For all ω ∈ [−π, π], the largest q eigenvalues of ΦN
χ (ejω) diverge linearly with

N as N → ∞, while the other eigenvalues are zero. In addition, the r largest eigenvalues of
T−1 ∑T

1 χN
t (χN

t )> diverge to infinity linearly with N, while the other eigenvalues are bounded.

Note that the second part of the assumption is not a consequence of the first part,
Lippi et al. (2022).

Weak dependence in a sense is the converse. The different components of ξN
t do not

‘reinforce’ one another due to some common dependences, but rather have very limited
dependence between each other:

Assumption 6. The largest eigenvalue of ΦN
ξ (ejω) is bounded for all N and all ω ∈ [−π, π].

Evidently, for any fixed T, the larger N becomes, the greater is the ‘signal-to-noise’
ratio between χN

t , t ∈ {0, 1, 2, . . . , T} and ξN
t , t ∈ {0, 1, 2, . . . , T}. Motivated by commu-

nication engineering, λmax(Φχ(ejω))/λmax(Φξ(ejω)) can be regarded as a surrogate for
signal-to-noise ratio. This might prompt us to contemplate the possibility of ‘denoising’,
i.e., separating out the (χN

t ) process from (yN
t ) for large enough N. Note that in using

terminology with the word ‘noise’, we acknowledge that this interpretation of the (χN
t )

process will not be appropriate in some applications.
There are similar but not identical ways to introduce assumptions of this type which,

taken in conjunction with the earlier assumptions, are just as suitable. Discussion with
comparison can be found in Lippi et al. (2022).

This concludes the setting out of assumptions on the processes being examined. We
turn now to the procedures used for modelling.

3. Obtaining the Common Component Process from the Measurement Process

The key to achieving an additive decomposition of the measurement process is to
appeal to the strong dependence of the processes (χN

it ) and the weak cross-dependence of
the processes (ξN

it ).
It was shown in Stock and Watson (2002), Forni et al. (2009) that under the earlier

assumptions a consistent estimator of χN
t can be obtained by using a static PCA of yN

t . At a
similar time, Bai and Ng (2002) demonstrated consistent estimation of r; the work relies
also on using asymptotic principal components, is nonparametric, and does not require a
low value of n. As for the input dimension of the canonical spectral factor of the common
component process, Hallin and Liška (2007), Amengual and Watson (2007), Bai and Ng
(2007), Onatski (2009) allow estimation of q.

As noted in Forni et al. (2009), it is evident that for all N ≥ N0, the dimension of
the space, call it SN

t , spanned by χit, i = 1, 2, . . . , N is r. Let ( ft) be an r-dimensional
process such that ft forms a basis for SN

t and ft = SχN
t where S is an r× N selector matrix

independent of t and picking out a spanning set of entries5 of χit for i limited to the set
i = 1, 2, . . . , N0. It follows also that

χN
t = LN ft

for some factor loading matrix N× r matrix LN independent of t. The entries of ft are often
termed minimal static factors.

Actually, in place of the selector matrix S, one can use any left multiple TS with T
nonsingular and r× r.6 A minimal static factor is then seen to be unique up to premulti-
plication by a constant nonsingular matrix T, with the factor loading matrix unique up to
postmultiplication by T−1. Note that the way LN has been constructed, the successive (with
N) matrices are nested. It is possible to eliminate the nonuniqueness using normalizing
procedures, see, e.g., Lippi et al. (2022).

The connection with the earlier model of (3) is straightforward to see. Evidently, for
some r× n matrix H̃, there holds

ft = H̃xt (7)
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with
HN = LN H̃ (8)

The process ( ft) in a sense is now the real process of interest. Of course, its dimension
does not grow with N. Its determination however depends on using large N, in order that
(χN

t ) can be extracted from (yN
t ), and then ( ft) is extracted from (χN

t ).
Importantly, it now becomes computationally practical to consider the determina-

tion of the integer n from the lagged covariance sequence determined by ft. By way of
background, recall, see, e.g., Hannan and Deistler (2012); Ho and Kalman (1966) that n is
available as the rank of all sufficiently large square block Hankel matrices formed from the
covariance data

E[ ft f>t ],E[ ft f>t−1],E[ ft f>t−2], . . .

Singular value decomposition (SVD) is a computationally effective way to determine
the rank. Of course, given that the covariances are actually determined using sample rather
than population averages, and using finite rather than infinite values of N and T to extract
(χN

t ) from (yN
t ), judgment will have to be used to deal with the computational errors; SVD

really is a tool for estimating rather than determining the rank. Further details appear in a
later section.

Two Alternative Approaches to Additive Decomposition of the Spectral Matrix

For completeness, we summarize here two ways, see Lippi et al. (2022), whereby the
spectra ΦN

χ (ejω) and ΦN
ξ (ejω) can be derived from ΦN

y (ejω).
First, an assumption is made that the idiosyncratic process vector is a vector of in-

dependent second order processes. Under such a special assumption, it is in principle
possible using partial fraction expansion of the power spectrum ΦN

y (ejω) to separate the
two spectra ΦN

χ (ejω) and ΦN
ξ (ejω). Second, dropping the rationality assumption but retain-

ing the assumption that the idiosyncratic process vector is a vector of independent second
order AR processes, and by considering (q + 1)× (q + 1) submatrices of ΦN

χ (ejω) which
contain precisely one diagonal entry (this requires N > 2q), and which therefore have all
entries known from ΦN

y (ejω) except for that diagonal entry, the singularity of the matrix
generically enables recovery of the diagonal entry.

The diagonality assumption on ΦN
χ (ejω) in both procedures is stronger than the weak

cross-dependence and can be seen as a misspecification of the general model. However,
Doz et al. (2012) argues that: (i) under diagonal ΦN

ξ (ejω) the model can be estimated by
Maximum Likelihood, (ii) as N tends to infinity the effect of the misspecification vanishes.
Whether the effect also vanishes in the procedures outlined above is unknown.

4. Tall Stable Miniphase Spectral Factors and Singular Rational Spectra

An important property is (for N > q) the tallness of the transfer function matrix
HN(I − Fz)−1G, which is linked with the singularity of ΦN

χ (ejω). Likewise, the transfer
function matrix between the innovations and the minimal static factor process ( ft), being
given by H̃(I − Fz)−1G is r× q, and while always r ≥ q, as noted earlier r > q is normally
encountered in practice.

In this section, we recall results appearing in Anderson and Deistler (2008, 2009);
Anderson et al. (2012b); Chen et al. (2012) stemming from this property. The first key result
deals with the zeros of the generating model.

Theorem 2 (Anderson and Deistler (2008)). Consider the stable, miniphase model (3) with
N > q and assume that the entries of the matrices F, G, HN take generic values. Then the model
has the zero free property7

rank
[

I − Fz −G
−HN 0

]
= n + q ∀ z (9)
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In Theorem 2 we make the assumption that the entries of F, G, HN take generic values,
with the requirements of stability and the miniphase property. The inclusion of these
requirements is dealt with further below. Genericity of course can only be defined with
respect to a well specified parameter space. In Theorem 2, in agreement with the Anderson
and Deistler’s papers mentioned above, the parameter space is implicitly defined as a
minimum-restriction set. Precisely, the parameter space is an open subset of Rg, contained
in Rg − G, where g is the total number of entries of F, G, HN and G is the subset of Rg

where either the stability or the miniphase condition does not hold. If the system is zero
free, that is consistent with the miniphase requirement, and it is clear that if the system
is zero free for one set of parameter values, it will be free for almost all, given that it is
a rank condition. (Note also that an inessential variant to the count can occur if some of
the entries are fixed at zero, or one, as can occur if a square matrix is a companion matrix
or a block companion matrix for example. Such fixed entries are not part of the count.)
In other words, apart from the stability and miniphase conditions, we assume that each
parameter can vary independently of the others. Throughout the paper genericity will
always be implicitly defined with respect to such minimum-restriction parameter spaces.
See however the Conclusions for further considerations on this issue.

Zero freeness with N > q implies a number of properties:

1. Suppose that for polynomial matrices ĀN(z) ∈ RN×N [z], B̄N(z) ∈ RN×q[z] with ĀN

and B̄N left coprime8 there holds KN(z) = (ĀN)−1B̄N . Then zero freeness implies
B̄N ∈ RN×q has full rank for all z. Accordingly, there exists a polynomial unimodular
(constant determinant) common premultiplier UN(z) of ĀN , B̄N such that a new
polynomial fraction description of KN(z) exists with

KN(z) = (UN(z)ĀN(z))−1(UN(z)B̄N(z)) = (AN(z))−1BN

where BN is a constant matrix. We have stressed earlier that N can increase; note
though that det AN(z) will have degree n as a polynomial in z for all N ≥ N0.

2. The system (3) is left invertible with unknown initial state, that is, there exists an
integer L ≤ n such that from the sequence χN

k , χN
k+1, . . . , χM

k+L−1 the state xk and the
sequence wk+1, wk+2, . . . , wk+L−1 can be determined.

Other characterizations and properties to be found in Anderson and Deistler (2008)
deal with the Smith-McMillan form, the impulse response of KN(z), and the absence of
nontrivial so-called output-nulling subspaces.

There is of course a very minor restatement of the above Theorem and the two follow-
ing comments based on the canonical spectral factor generating ft rather than χN

t . It too is
(normally) zero free, due to the tallness inequality r > q. However, in working with an AR
description of ft and setting χN

t = LN ft, rather than working with an AR description of
χN

t , the reduction in parameter count is substantial, and varies as O(N) rather than O(N2).
To this point, the stability of the model (3) and its connection with a spectrum have

not been appealed to. To bring in those ideas, continue to assume the underlying stable
miniphase spectral model of ΦN

χ is (3) and the matrices in a state-variable description
are generic.

Theorem 3 (Anderson and Deistler (2008, 2009); Anderson et al. (2012b); Chen et al. (2012)).
Adopt the same hypotheses as Theorem 2. Then

1. The spectrum ΦN
χ can be generated by a singular autoregressive process

[I + AN
1 z + AN

2 z2 + · · ·+ AN
m zm]χN

t = BNwt (10)

where BN ∈ RN×q has rank q and wt is a unit covariance innovations process; the AN
i and

BN are computable in a finite number of rational calculations from the lagged covariances
E[χN

t (χN
t )>],E[χN

t (χN
t−1)

>], . . . .
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2. Suppose the rational spectral matrix ΦN
χ (ejω) is written in the form

H̄N(I − zF̄)−1Q̄N + (Q̄N)>(I − z−1 F̄>)−1(H̄N)> − H̄NQ̄N , z = ejω

where the triple {F̄, H̄N , Q̄N} is minimal (controllable and observable) in the state-variable
sense and all eigenvalues of F̄ have magnitude less than 1, such matrices being computable in a
finite number of rational calculations from the lagged covariancesE[χN

t (χN
t )>],E[χN

t (χN
t−1)

>],
. . . . Then

(a) there exists ḠN such that the stable miniphase (canonical) spectral factor can be written
in the form H̄N(I − zF̄)−1ḠN

(b) ḠN is computable in a finite number of rational calculations from F̄, H̄N and Q̄N , and
(c) the triple {F̄, H̄N , ḠN} is minimal.

3. In the event that ḠN defined above is independent of N, say G = ḠN , then Q̄N = P(H̄N)>

for some positive definite P which is independent of N, with P the unique solution of P−
F̄PF̄> = GG>.

The following statement is a quite obvious consequence of the previous Theorems:

Theorem 4. Consider the ARMA process

A(z)xt = B(z)ut,

where A(z) is an m×m stable polynomial matrix, B(z) is an m× q polynomial matrix. Suppose
that m > q, so that xt is a singular ARMA process. Then for generic values of the coefficients of the
entries of B(z), B(z) is zeroless, so that xt has a finite AR representation.

The relevance of AR processes in our context is not a new idea of course, see Stock and
Watson (2005), Forni et al. (2009), Stock and Watson (2016), Forni et al. (2020). These papers
apply Theorem 4, in which xt is replaced by ft, while singularity is a consequence of the
assumption that r > q, so that we are again working with a generically zero-free model.

The first statement of the Theorem 3 above is little more than a restatement of the
first statement of Theorem 2. As a side comment, note that BN can be uniquely specified
by multiplying on the right by an orthogonal matrix rendering it triangular. Reference
Anderson et al. (2012b) contains further information concerning exploitation of the freedoms
that remain after such a normalization, and the associated parameter counts, including
the value of m. The row degrees in particular of the matrix I + AN

1 z + · · ·+ AN
m zm can be

minimized in a certain sense. Notwithstanding, the number of nonzero parameters in the
singular AR description is essential proportional to N2, which is an unattractive feature,
contrasting with the linear dependence on N of the parameter count for a state-variable
model. In a different direction, a different aspect of the awkwardness of working with
the singular AR model is that the nesting property for N ≥ N0 is not simply captured. Of
course, in the event one seeks, as noted above, an AR model for ( ft) rather than (χN

t ) the
difficulty of working with large N is no longer present. Not only does one have χN

t = LN ft,
with N is now responsible for only linear growth in the number of parameters, but the
nesting property holds, in particular being handled by LN .

The second statement is more subtle: the fact that the same pair F̄, H̄N can be used
for state variable realizations of the covariance sequence associated with ΦN

χ (ejω) and
the associated stable miniphase spectral factor is an old though not well-known result,
see, e.g., Anderson (1969); it is not restricted to the zero-free (autoregressive) case. The
multivariate version of the result is not easy to prove, in contrast to the converse (which
states that a triple ‘realizing’ the covariance sequence can inherit two of the component
matrices of the triple ‘realizing’ the spectral factor). What is novel in the zero-free case
is that the determination of the spectral factor requires no more than a finite number of
rational calculations. These calculations involve solving a recursive discrete time matrix
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Riccati equation involving F̄, H̄N and Q̄N over a finite interval of length O(n) or (what
is nontrivially equivalent) performing a Cholesky decomposition on a (square) Toeplitz
matrix with O(nN) rows, formed from F̄, H̄N and Q̄N , see Anderson and Deistler (2009).
In the event that N is large and the realization of the covariance sequence is available, this
is an attractive idea: with both approaches, the computational complexity is linear in N. Of
course, it is the zero-free property of the canonical spectral factor that assures the finite-time
convergence of the Riccati equation.

The third statement simply captures, and is also an extension of, the nesting property.
Though not contained in Anderson and Deistler (2009), a proof is contained in Appendix A.

5. Obtaining Parameters in the AR and State-Variable Models

We suppose in this section that from the sample data (yN
t ) collected over a time

interval and with a large value of N, using PCA or an equivalent, an estimate of (χN
t ) is

obtained over effectively the same interval. This is not even a sample of a process over a
finite interval, but only an estimate of it. Finding a model for the ‘true’ process (χN

t ) based
on the estimates then has to proceed using the assumptions that n, q, r are known, that
N ≥ N0, and that closeness of the sample-derived lagged covariance data and population
lagged covariances assure closeness of the associated canonical spectral factors. Thus, the
Assumptions introduced earlier need to all be in force.

Consider first the determination of the coefficient matrices in an AR model for (χN
t ).

What we say will be very little modified if we choose instead to model ft, and so we omit
any detailed discussion of this alternative in this section.

The fact that the spectrum of interest is generated by a (singular) autoregression as
in (10) suggests that a stable miniphase spectral factor may be obtainable by Yule-Walker
equations–the usual tool for obtaining an AR model (when one is known to exist) from
covariance data. Indeed, this possibility was examined in Deistler et al. (2010). The Yule-
Walker equations in general take the form

[AN
1 AN

2 . . . AN
N ]ΓN = [γ1 γ2 . . . γN ] (11)

where γj is the lagged covariance E[χN
t (χN

t−j)
>] and ΓN is the N × N block Toeplitz matrix

with first row [γ0 γ1 . . . γN−1]. However, a difficulty immediately arises. For a singular
covariance, there is no guarantee that ΓN is nonsingular. Nevertheless, it is established in
Deistler et al. (2010) that the choice

[AN
1 AN

2 . . . AN
N ] = [γ1 γ2 . . . γN ]Γ†

N (12)

where use of a pseudoinverse to replace the regular inverse ensures that the resulting
AR model defines a stationary process, i.e., the associated matrix polynomial [I + AN

1 z +
AN

2 z2 + . . . AN
NzN ] has all determinantal zeros in |z| > 1, which is a rephrasing of the

stability condition. The paper Chen et al. (2011), which imposes fewer assumptions than
are incorporated here, takes this further: under some circumstances, there may be unit
circle determinantal zeros, corresponding to a deterministic component of the process.
(The assumptions in this paper rule out this possibility.) Further, if one does not use a
pseudoinverse (which delivers a minimum norm solution of (11)) but uses some other
procedure to define the matrices AN

i to satisfy (11), the AR system so defined may not
be stable. Note that the quantities γi will actually be replaced by estimates which are
consistent as N, T → ∞.

For completeness, we recall the potential numerical hazards arising when the key
Toeplitz matrix is ill-conditioned, as discussed in Section 2.1.

The procedure for determining a state-space model is of course different. The starting
point is the sample calculations giving estimates of E[χN

t (χN
t−s)

>] for s = 0, 1, 2, . . . . If
these were exact population second moments corresponding to a system satisfying the
assumptions, particularly the rational spectrum assumption, an algorithm due to Ho and
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Kalman (1966) will determine a minimal dimension state variable triple realizing the
sequence, i.e., a triple {F̄, Q̄N , H̄N} for which

H̄N F̄sQ̄N = E[χN
t (χN

t−s)
>], s = 0, 1, 2, . . .

with F̄ of minimal dimension. (Such a triple is only unique up to a nonsingular trans-
formation T, replacing {F̄, Q̄N , H̄N} by {TF̄T−1, TQ̄N , H̄NT−1}). Subsequently, Zeiger
and McEwen (1974) presented a variant that generates approximate finite dimensional
realizations of low dimension from approximate data, as needed here. The algorithm uses
truncated singular value decomposition, which means that for O(N)-dimensioned matrices
of much lower rank than N the complexity appears to be O(N). Of course, once the triple
{F̄, Q̄N , H̄N} has been determined, the construction of G using the ideas of Theorem 3 can
be attempted.

Once again, it may well make more sense to seek a state variable triple realizing the
sequence E[ ft( ft−s)>], s = 0, 1, 2, . . . , rather than E[χN

t (χN
t−s)

>], s = 0, 1, 2, . . .
The bulk of the suggested algorithms in this subsection have not been simulated

with real data. However, even if they do not perform particularly well, they offer the
opportunity to obtain a first estimate of a model, using which an iterative algorithm to
refine the estimate can be used, Shumway and Stoffer (1982). This algorithm, based on
expectation maximization, is a maximum likelihood algorithm which at each step always
increases the likelihood, and necessarily therefore reaches a maximum, though it may not
be a global maximum. The use of a well-chosen initialization can however promote that
desired outcome.

The algorithm of Shumway and Stoffer (1982) appears to offer no straightforward
technique for incorporating a rank constraint on the input coupling matrix G of the canoni-
cal spectral factor, or simply the zero-free property. Consequently, while it uses Kalman
filtered and smoothed estimates, it is not immediately clear how one should exploit the
notion that such estimates in the zero-free case can be exactly determined using a finite
number of measurements as set out in the commentary immediately following Theorem 3.

6. Mixed Frequency Systems

Some econometric time series may be collected monthly, others may be collected
quarterly. A methodology is needed to allow graceful combination of the two periodicities,
and the modelling of high dimension time series. Starting with this section, there appears a
summary of ideas developed by authors Anderson and Deistler with their colleagues in
treating such problems. Note importantly that mixed frequency problems are of interest
outside the ‘high dimensionality’ context, and some limited conclusions are drawn here
that do not appeal to properties such as zero freeness.

The historical roots of the applicable techniques lie in signal processing, which has
treated with a technique termed ‘blocking’ or ‘lifting’ problems involving time series with
integrally related periodicities, with a view to bringing to bear tools applicable to single
frequency systems, such as rational transfer functions, and their descriptions and properties
involving for example state-variable realizations, poles and zeros, see, e.g., (Mitra 2011,
see Chapters 13 and 14). The book Bittanti and Colaneri (2009) also contains, or contains
references to, many of the relevant ideas, and has a more control systems flavour.

6.1. Blocked Linear Systems

We draw on Chen et al. (2012) for initial ideas, which cover change of periodicity as
opposed to treatment of simultaneous multiple periodicities. Once change of periodicity is
understood, it is straightforward to introduce multiple periodicities.

Consider a time-invariant finite-dimensional linear system with input sequence ut
and output sequence yt given by xt+1 = Axt + But, yt = Cxt + Dut with t = 0, 1, 2, . . . .
Imagine then that blocks of J successive inputs and outputs are collected into N-vectors
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Ut = [u>t u>t−1, . . . , u>t−J+1]
> and Yt = [y>t y>t−1, . . . , y>t−J+1]

>. Then one can write the
following equations for a ‘blocked’ or ‘lifted’ system:

xt+1 = Abxt−J+1 + BbUt (13)

Yt = Cbxt−J+1 + DbUt

where

Ab = AJ Bb = [B AB . . . AJ−1B] (14)

Cb =


CAJ−1

CAJ−2

...
CA
C

 Db =


D CB . . . C J−2B
0 D . . . CAJ−3B
...

...
. . .

...
0 0 . . . CB
0 0 . . . D


These are equations of a time-invariant linear system, of different input and output

dimension but the same state dimension as the original. One can regard this second system
as updating every J time instants, thus at (for example) t = 0, J, 2J, . . . . Note that even if
the ‘direct feedthrough’ term Dut is absent in the unblocked system as when D = 0, a
nonzero direct feedthrough term does appear in the blocked system in general. The transfer
function of the blocked system is Db + Cbz(I − zAb)

−1Bb.
The paper Chen et al. (2011) records many connections between the original and

‘blocked’ transfer functions and state-variable realizations (some being novel to the paper),
in particular, the carrying over of controllability and observability and minimality, con-
nections between the normal ranks, a formula connecting the first column of the blocked
transfer function and the original transfer function, relations between the poles and, sepa-
rately, the finite and infinite zeros of the two transfer functions, implying that one is stable
(or miniphase) if and only if the other is stable (or miniphase), and one is zero free if and
only if the other is zero free.

In this connection, note that if the dimension of yt exceeds that of ut, the same is true
of the dimensions of Yt and Ut. Moreover, if the original A, B, C, D matrices are generic, the
unblocked and therefore the blocked system are zero free.

The property of zero-free carryover becomes relevant also in considering time series
with multiple periodicities.

6.2. Systems with Multiple Periodicities in Their Outputs

Again our starting point is the linear system defined by xt+1 = Axt + But, yt =
Cxt + Dut, with t = 0, 1, 2, . . . . However we now suppose that the vector yt is partitioned
into two subvectors of dimensions p1 and p2, thus

yt =

[
y f

t
ys

t

]

The process (y f
t ) is observed at all time instants, while the process (ys

t) is observed
at time instants 0, J, 2J, . . . even though it is known to exist for all time instants. From the
observer’s point of view, (y f

t ) and (ys
t) constitute ‘fast’ and ‘slow’ processes. Evidently

the observed output comprises two (in general multivariate) time series with different
integrally related periodicities. As set out in, e.g., Anderson et al. (2016a, 2016b), We can
establish a single frequency system by blocking the fast process (y f

t ).
In more detail, consistent with the partition of yt, we also adopt the corresponding

partitions

C =

[
C f

Cs

]
D =

[
D f

Ds

]
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To obtain a blocked model, we block ut as before, but only use the observed values
within each yt for blocking, which means that for t = 0, J, 2J, . . . ,

Ut =


ut

ut−1
...

ut−J+1

 Yt =



y f
t

y f
t−1
...

y f
t−J+1
ys

t


(15)

It is straightforward to obtain matrices Ab, Cb, Cb, Db constituting a state-variable
realization for the system taking the sequence U0, UJ , . . . to Y0, YJ , . . . , see Zamani et al.
(2011). In particular,

Ab = AJ Bb = [B AB . . . AJ−1B] (16)

Cb =



C f AJ−1

C f AJ−2

...
C f A
C f

Cs


Db =



D f C f B . . . C f AJ−2B
0 D f . . . C f AJ−3B
...

...
. . .

...
0 0 . . . C f B
0 0 . . . D f

Ds CsB . . . Cs AJ−2B


xt+1 = Abxt−J+1 + BbUt

Yt = Cbxt−J+1 + DbUt

This system is self-evidently a purely time-invariant system, governed by a single
period which happens to be that defined by the observed slow process (ys

t), despite the
system containing within its outputs all the information from the fast process (y f

t ). Of
course, there is no attempt in this model to interpolate the missing (nonobserved) values of
the slow process.

The original system and the blocked system have the same state-space dimension. It is
natural then to ask if minimality carries over. This question is examined in Anderson et al.
(2016b). If the original system is controllable, then it is straightforward to establish that
there can be no nonzero vector w and constant λ for which w>Ab = λw>, w>Bb = 0, i.e.,
the blocked model is controllable. The argument does not work for observability because
there may be modes solely observed by Cs which at the high frequency are distinct, but
when sampled every J time instants, merge. This can occur if for example A has two distinct
eigenvalues with the same J-th power. Such a situation is nongeneric however, and one can
show that if A is generic (and in particular has distinct eigenvalues whose J-th powers are
also distinct), observability of the underlying system implies observability of the blocked
system. Of course, if the underlying system is observable from y f alone, the blocked system
is observable irrespective of the genericity of A, this following by essentially the same
argument as used to study the carrying over of controllability. Furthermore, if the original
system is uncontrollable, or unobservable, the same property necessarily holds for the
blocked system. Evidently then, for generic A, the original system and the blocked system
are either both minimal, or both nonminimal.

Going on from this, it follows that if the underlying system has {A, B, C, D} and
{TAT−1, TB, CT−1, D} as two minimal state variable quadruples for some nonsingular T,
the corresponding two blocked systems are {Ab, Bb, Cb, Db} and {TAbT−1, TBb, CbT−1, Db},
and if any minimal realization of the blocked system is known, it must be expressible in
terms of an associated underlying system via the formula (16).

Summing up, we can state:
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Theorem 5. Consider an underlying linear system defined by xt+1 = Axt + But, yt = Cxt +Dut,
with t = 0, 1, 2, . . . and where the vector yt and matrices C, D are partitioned into blocks with p1
and p2 rows, as

yt =

[
y f

t
ys

t

]
C =

[
C f

Cs

]
D =

[
D f

Ds

]
The process (y f

t ) is observed at all time instants, while the process (ys
t) is observed at time

instants 0, J, 2J, . . . . Then the associated observed block model, with input and output given by (15),
has a state-variable realization given by (16). Moreover, controllability of either the underlying
system or the blocked observed system implies the same property for the other. If A is generic, the
same holds true in respect of observability. Coordinate basis change and blocking commute.

We also note by way of a side remark that there is a new sort of prediction problem
indirectly presenting itself here: nowcasting, which can be described roughly as prediction
of the immediate but unobserved past, present or immediate future. This will apply for
those time instants between those at which the slow process is measured.

Following on from the preceding theorem, it is also relevant to consider what happens
when the underlying system is a canonical spectral factor generating the process (yt).
Under some circumstances, the blocked system will not have this property simply because
of its input, state and output dimensions, and there is more than one reason why this
can happen:

1. Depending on the value of J and the dimensions of ut, yt, the dimension of Ut may
end up larger than that of Yt, i.e., the transfer function of the blocked system may be
fat, as noted in Anderson et al. (2016b).

2. Depending on the value of J and the dimensions of ut, xt, the dimension of Ut may
end up greater than that of xt (which is the state dimension of the blocked system).

Apart from this, the helpful property of zero freeness, which in many applications
will be a property of the underlying system, is not guaranteed to carry over to the blocked
system, although , as shown in Zamani et al. (2011), if the dimension of y f

t alone exceeds
that of ut, and the matrices A, B, C, D are generic, then the system defined by Ab, Cb, Cb, Db
is zero free.

The overarching problem is one of identifying the underlying system using the mixed
frequency observations. The key is to work via the blocked system. Unsurprisingly, if the
blocked system is indeed zero free, the process is much more straightforward.

In econometric applications, the condition for the zero-free property of the blocked
system may well be fulfilled. However, this may not be the case, even though the underlying
system is zero free. This is the main scenario treated in the next section.

7. Mixed Frequency System Identification

There are two broad thrusts to this section. First, we postulate that the underlying
system has an AR description, and exploit that fact. Second, we exploit the structure of
the blocked system (but at a certain point, also appeal to the zero-free structure of the
underlying system).

7.1. Mixed Frequency System Identificaiton with an AR Underlying System

It is well known that the AR property is not preserved under marginalization. There-
fore, even if the underlying process is AR but some of its entries are only observed every J
time instants, one cannot expect that the observed process is AR. (This is roughly equivalent
to observing that even if the underlying process is zero-free, the blocked process may not
have this property). More to the point, even if it is AR, the associated parameters in the
defining matrices of the AR equation cannot be straightforwardly related to those of the
underlying process. Nevertheless, using an approach based on exploiting Yule-Walker
equations, progress can be made on identification. This idea was originally observed in
Chen and Zadrozny (1998) and further developed in Anderson et al. (2012a). Subsequently,
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it was shown in Anderson et al. (2016a) that for systems with generic parameter values,
the suggested algorithm could always be executed. The key here was to ensure utilization
of all observed second order moments, in contrast to Chen and Zadrozny (1998) which
omitted use of some.

Suppose that the underlying process is

yt =

[
y f

t
ys

t

]
=

[
a f f (1) a f s(1)
as f (1) ass(1)

][
y f

t−1
ys

t−1

]
+ · · ·+ (17)

+

[
a f f (p) a f s(p)
as f (p) ass(p)

][
y f

t−p
ys

t−p

]
+

[
w f

t
ws

t

]

with innovations covariance

E
[[w f

t
ws

t

]
[(w f

t )
> (ws

t)
>]
]
= Σ =

[
Σ f f Σ f s
Σs f Σss

]
The innovations covariance may be singular. The identifiability question is whether the

coefficient matrices a f f (i), a f s(i), etc and the entries of Σ can be identified from covariance

data associated with the time series (y f
t ), t = 0, 1, 2, . . . and (ys

t), t = 0, J, 2J, . . . .
As asserted above, this problem can be tackled by generating ‘extended’ Yule-Walker

equations, which are obtained by multiplying (17) on the right by the fast components of
y>t−k, k = 1, 2, . . . and forming expectations. The resulting equations are linear in the AR
coefficients and, crucially, it can be proved that they are generically solvable, i.e., for almost
all values of the coefficient and entries of Σ, a unique solution exists, see Anderson et al.
(2016a). (An example is given below). Once these coefficients have been found, the entries
of Σ can be computed, except again on a set of parameter values of measure zero. The
corresponding estimators are however not “good” and in particular not asymptotically
efficient, also because observed lags of the covariances of the slow process are not exploited.

7.2. A Simple AR(1) Example

In this subsection, and following Anderson et al. (2016b), we consider what is almost
the simplest possible case of a mixed frequency AR system. The underlying system is
AR(1), and has two scalar outputs, one of which is observed at every second time instant.
We also assume regularity of the underlying system, so the zero-lag covariance Σ of the
driving white noise is nonsingular. We investigate to what extent the parameters of the
process before observation loss can be recovered from the observed process statistics.

Before loss of observations, the process is[
y f

t
ys

t

]
=

[
a f f a f s
as f ass

][
y f

t−1
ys

t−1

]
+

[
w f

t
ws

t

]
E
[[w f

t
ws

t

]
[w f

t ws
t ]
]
= Σ =

[
σf f σf s
σs f σss

]
(18)

Set

A =

[
a f f a f s
as f ass

]
With every second value of the ‘slow’ process (ys

t) being observed, it is easy to see that y f
t

ys
t

y f
t−1

 =

[
A2 0

a f f a f s 0

]y f
t−2

ys
t−2

y f
t−3

+

[
Awt−1 + wt

w f
t−1

]
= Ã

y f
t−2

ys
t−2

y f
t−3

+ w̃t (19)
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with obvious definitions of Ã and w̃t. It is straightforward to check that

Ã =

 a2
f f + a f sas f a f f a f s + a f sass 0

assa f f + assas f as f a f s + a2
ss 0

a f f a f s 0

 (20)

and

E[w̃w̃>] = Σ̃ =

σf f σf s 0
σs f σss 0
0 0 0

+

a f f a f s
as f ass
1 0

[σf f σf s
σs f σss

][
a f f as f 1
a f s ass 0

]
(21)

The crucial question at this point is now: given the AR process generated in (19), and
an identification using the process measurements of the entries of Ã and Σ̃ (presumably
using Yule-Walker equations which will yield unique values in the regular case), can the
entries of A and Σ then be inferred?

The high level answer is that for generic values of the parameters, they can indeed be
inferred. The more detailed answer is that the values cannot be inferred if and only if all
three of the following conditions (defining a semi-algebraic set of parameters of measure
zero) are fulfilled (for details, see Anderson et al. (2016b), which builds on a simpler version
of the problem assuming diagonal Σ treated in Anderson et al. (2012a)):

a f s = 0 as f +
σs f

σf f
(ass − a f f ) = 0 ass 6= 0

As noted in Anderson et al. (2016b), if the underlying process continues to have a lag
of 1, the approach is generalizable to multivariate y f

t and ys
t , except that the definition of

nongeneric values of parameters becomes more involved.
Generalization to lags greater than 1 is however not possible using the framework

given in this subsection; this is because the AR structure of the original system no longer
yields an AR structure for the blocked system. This is unsurprising, given the nonclosure of
AR systems under marginalization. Nevertheless, the general approach based on modified
Yule-Walker equations remains available Anderson et al. (2016b).

7.3. Mixed Frequency System Identification Exploiting Blocked System Structure

In this subsection, we record ideas originally presented in Anderson et al. (2016b) for
the case where the slow process comprises every second value in the time sequence of the
relevant entries of the underlying process. However, here we describe the situation when
every J-th value rather than every second value is used. While the underlying system is
zero free, the blocked system is not assumed to have this property.

To begin, suppose the underlying system state variable realization {A, B, C, D} is
minimal. Then generically, the same is true of the blocked system, defined by the quadruple
{Ab, Bb, Cb, Db}. The blocked system itself may not be a canonical miniphase system, but
as argued in Anderson et al. (2016b), there is a minimal state-variable realization of the
canonical miniphase system (yielding the same spectrum) with the same Cb and Ab. It
follows that if we identify a minimal state-variable realization of the canonical miniphase
system for the blocked system, and this includes state-update and state-to-output coupling
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matrices Ãb, C̃b, then for some nonsingular T, there will hold Ãb = T−1 AbT, C̃b = TCb.
From these two matrices, one seeks matrices Ã, C̃ f , C̃s such that

Ãb = ÃJ , C̃b =



C̃ f ÃJ−1

C̃ f ÃJ−2

...
C̃ f Ã
C̃ f

C̃s


(22)

Of course, C̃ f and C̃s are immediately obtained from the second equation. With A
sufficiently generic that no two eigenvalues have the same J-th power, the matrix Ã (which
has the same property) is determined up to a finite number of possibilities corresponding
to different possible choices for the J-th root of each eigenvalue of Ãb. It may be that
knowledge of C̃ f Ã, C̃ f Ã2, . . . then suffices to achieve disambiguation. Alternatively the
set can be disambiguated to identify just one of the possible choices by invoking a further
appeal to genericity (still excluding a semi-algebraic set of measure zero, but one which
contains the set ensuring that no two eigenvalues of A have the same J-th power). Exclusion
from the larger semi-algebraic set guarantees the observability of (A, C f ) or equivalently
of (Ã, C̃ f ), which is enough to secure disambiguation.

As noted above, we must be able to identify matrices Ãb, C̃b which are part of a
quadruple of matrices defining a state-variable realization of the canonical spectral factor
of the blocked system. We do not however need to identify all matrices of a realization of
the canonical spectral factor. We can in fact identify the relevant matrices by identifying
a state-variable realization of the covariance sequence associated with the spectrum of
Yt—see the discussion following Theorem 3—and this is a relatively straightforward matter,
using the algorithm earlier cited, Zeiger and McEwen (1974).

Now suppose in fact that the underlying system is a VAR process of order p, thus

yt = A1yt−1 + · · ·+ Apyt−p + νt (23)

with (νt) a white noise process. Of course, the system is assumed to be stable. This system
can also be described by the state-variable equations

 yt
...

yt−p+1


︸ ︷︷ ︸

xt+1

=


A1 . . . Ap−1 Ap
I . . . 0 0
...

. . .
...

...
0 . . . I 0


︸ ︷︷ ︸

A

yt−1
...

yt−p


︸ ︷︷ ︸

xt

+


b
0
...
0


︸︷︷︸

B

εt (24)

yt = [A1 . . . Ap]︸ ︷︷ ︸
C

xt + b︸︷︷︸
D

εt

It is explained in Anderson et al. (2016a) how the coefficient matrices Ai can be deter-
mined from the observable pair (Ã, C̃) (where C̃ = [(C̃ f )> (C̃s)>]>) under the additional
genericity assumptions that Ap is nonsingular, as is the covariance of the white noise
process νt.

In the earlier part of this paper, we stressed the potential numerical hazards when
working with AR descriptions of high dimensional processes. The same warning of course
applies here if the processes are typical econometric processes. This means that procedures
for reducing the problem dimensionality by exploiting the singularity of the zero lag
covariance of the output are desirable. How best to do this when measured signals have
two periodicities (whether or not at the blocked system level) has not however been
addressed in any depth in the literature. Note though that the minimal static factors can be
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constructed as easily for the mixed frequency case as for the single frequency case, since
they are effectively determined using the zero lag covariance of the measured outputs.
Another comparatively untreated issue for mixed frequency systems is that of passing
to the common components process from a measurement process in which idiosyncratic
components are additively embedded.

7.4. VARMA and VMA System Identification

The content of this subsection is not especially relevant to Dynamic Factor Models,
but is related to the earlier material of this and the previous section, in that it focusses on
further questions of identifiability when not all output values of an underlying process
are observed.

An alternative starting point for the underlying process is to assume a different model
class, where one postulates a model

yt + A1yt−1 + · · ·+ Apyt−p = B0wt + B1wt−1 + · · ·+ Bswt−s (25)

with Ai, Bi of dimension N × N. For convenience, make the definitions

a(z) = I + A1z + · · ·+ Apzp b(z) = B0 + B1z + . . . Bszs (26)

It is assumed that yt = [(y f
t )
> (ys

t)
>]> with ys

t observed at time t = 0, J, 2J, . . . for
some integer J > 1. The stability and miniphase properties are captured by the assumptions

det a(z) 6= 0, det b(z) 6= 0 |z| ≤ 1 (27)

With the degrees of a(z) and b(z) assumed known, the identification task is to estimate
the entries of the coefficient matrices in a(z), b(z).

Of course, (wt) is a zero mean white noise sequence; we also assume E[wtw>t ] = Σ. If
rank Σ = q < N, the system is singular. Otherwise it is regular.

Note that this problem setting does not have to arise in a context of high-dimensional
time series (though it may), which means that non-AR modelling becomes relevant.

Identifiability of such models is linked to the question of uniqueness of the polynomials
making up the transfer function a−1(z)b(z). In the regular case, one can require left
coprimeness of the pair a(z), b(z) and then enforce through multiplication of each of a, b by
the same unimodular (constant determinant) multiplier a canonical form. In the singular
case, the situation is more complicated. For example, even for an AR system, the pair (a, b)
with b(z) = B0 may not be left coprime. Even when they are left coprime, the Yule-Walker
equations which are usually used to obtain the Ai from covariances may not have a unique
solution, in contrast to the regular case.

In case s ≤ p, the reference Anderson et al. (2016a) establishes that for generic values
of the entries of the coefficient matrices, identifiability can be achieved. A two-step process
is used. First, analogously to the procedure outlined in Section 7.1, a modified set of
Yule-Walker equations can be obtained in which only known covariance data appears,
and from these, the denominator matrix a(z) can be obtained, given generic values of the
coefficient matrices in a(z) and b(z). Then by using the knowledge of all the Ai and some of
the covariances E[yty>t−s], it turns out that all the missing covariance data can be obtained.
Following that, the matrix polynomial b(z) is straightforward to obtain.

One might wonder whether the condition s ≤ p is important. It appears so. One can
in fact show, see Deistler et al. (2017),

Theorem 6. Consider the MA model obtained from (25) by setting A1 = A2 = · · · = Ap = 0.

Suppose that E[wtw>t ] is nonsingular. With yt = [(y f
t )
> (ys

t)
>]>] and ys

t observed for t =
0, J, 2J . . . for some integer J > 1, the parameter matrices Bi are not identifiable.
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The underlying reason for this conclusion is that there are more parameters to identify
than there is relevant covariance data available to identify them.

A very simple example, drawn from Anderson et al. (2016a), establishes the point. In
obvious notation, consider the following system where yt has dimension 2:[

y f
t

ys
t

]
=

[
w1

t
w2

t

]
+ B1

[
w1

t−1
w2

t−1

]
(28)

Suppose first that all covariance data is available, viz. γ(0) = E[yty>t ] and γ(1) =
E[yty>t−1]. It is easy to check that

Σ + B1ΣB>1 = γ(0) B1Σ = γ(1) (29)

Identification is the task of solving these equations for the seven unknown parameters
defining B1 and Σ. The number of independent scalar equations is seven; though there
are multiple solutions, they can be disambiguated by the miniphase condition requiring
det b(z) 6= 0 when |z| ≤ 1.

Now consider the situation where every second entry of ys
t is observed. Then the

22 entry of γ(1) is simply unavailable, being E[ys
t ys

t−1]. A continuum of values is possible
for this entry, and hence a continuum of values for the entries of Σ and B1.

It is perhaps surprising to find in the mixed frequency case that with an underlying
AR process with lag 1 one has identifiability, while with an underlying MA process with
lag 1 one does not have identifiability.

8. Conclusions

In the course of this survey of a number of results, we have highlighted several issues
that are worth re-emphasising here. Furthermore, some open issues, both in the theory and
applications to data are pointed out.

First, we have recorded a number of issues arising in modelling. Though there are
exceptions, most problem statements with their assumptions need to guarantee that an
estimated model is continuously dependent on the data from which it is obtained. Once an
explicit assumption of rationality of the model transfer function has been made, continuity
of the real-valued parameters for a given (and possibly estimated) set of integer-valued
specification parameters with respect to the data is almost always guaranteed. Before
such a rationality assumption is made however, continuity (in the L∞ sense) of a canonical
spectral factor is not automatic, and depends on some additional assumption such as
boundedness of the derivative of the spectrum. It is also useful to identify which particular
form of model of an entity such as a canonical spectral factor is most preferable. One can
think of ARMA/AR, state-variable, or even a frequency-based description involving plots
of the different entries of the spectral factor against frequency. Moreover, the proposed
application for a model (and the calculations using in addressing that application) may
be a determinant of the best type of model. For some applications, e.g., those involving
business cycles, state-variable models exhibiting pole positions in diagonal blocks of the
state update matrix, or frequency domain plots, may be clearly preferable to AR models.
For forecasting, AR models are likely to be preferable. Let us recall too that while some of
the assumptions used in ensuring solvability of the identification (or modelling) problem
are grounded in intuitively reasonable hypotheses, others are of a more instrumentalist
character, thus invoked to ensure mathematical solvability rather than to reflect some
underlying natural truth.

As a second theme, we have emphasised through much of the paper both the occur-
rence of and benefit from the zero-free property of canonical spectral factors arising in
dynamic factor modelling. It is of great utility, and deserves to be accorded significant
recognition for this fact. This observation is also relevant in the mixed frequency case.
Another, perhaps less important, idea flowing from linear systems considerations is the
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fact that state-variable realizations of a covariance sequence and a canonical spectral factor
for the associated power spectrum can be assumed to have the state transition matrix and
state to output coupling matrices identical. This underpins an ability to compute from a
covariance sequence a canonical spectral factor using quite different calculations to those of
a Yule-Walker procedure (and thereby possibly avoid numerical problems which can arise).

A third major theme is that of mixed frequency identification problems. Several key
conclusions emerge here. First, it is evident that their treatment is not as mature as the treat-
ment of single frequency problems. Second, issues of genericity become more important.
Third, certain mixed frequency identification scenarios are provably nonidentifiable (as
indicated in our discussion of VARMA and MA modelling).

What now of the future? Among the outstanding issues worthy of investigation, we
would certainly include the following:

1. The zero-free property has been applied to macroeconomic analysis as a means to
solve the fundamentalness problem. Further work is ongoing on this and, we hope,
the zero-free property will increasingly become familiar to macroeconomists, see the
literature cited below Theorem 4.

2. An important observation on the zero-free property in statements like Theorem 4 is
that its genericity is usually obtained with respect to a parameterization in which
each parameter is free to vary independently of all the others, see the comment below
Theorem 2. However, in applications to macroeconomic models, structural restrictions
may prevent such free variability and can therefore interfere with the genericity of
zero-freeness. For an attempt to solve this issue, see Forni et al. (2020).

3. Another observation on Theorem 4 is that an AR representation may exist also for
non-generic parameters, for which zerolessness does not hold but the zeros of B(z) lie
outside the unit circle. However, in that case the AR would not be of finite length.

4. In some cases, we have outlined algorithms which have not yet been tried on real
data. It would be worthwhile to investigate them using real data.

5. A full treatment (algorithms through to testing on real data) including the decomposi-
tion into common components and idiosyncratic processes is needed for systems with
multiple frequencies.
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Appendix A. Proof of Theorem 3, Part 3

Suppose that for any N ≥ N0, the transfer function HN(I − zF̄)−1G is a spectral factor
of ΦN

χ (ejω) with {F̄, G, H̄N} a minimal state-space realization. Define P to be the unique
positive definite matrix satisfying

P− F̄PF̄> = GG>.

Note that P is positive definite since λi(F̄) < 1 and F̄, G is a controllable pair. Then
one can verify using the identity P− F̄PF̄> = (I − zF̄)P + P(I − z−1F>)− (I − zF̄)P(I −
z−1 F̄>) that

H̄N(I − zF̄)−1GG>(I − z−1 F̄>)−1(H̄N)> (A1)

= H̄N(I − zF̄)−1(P− F̄PF̄>)(I − z−1 F̄>)−1(H̄N)>

= H̄N(I − zF̄)−1[(I − zF̄)P + P(I − z−1 F̄>)

− (I − zF̄)P(I − z−1 F̄>)](I − z−1 F̄>)−1(H̄N)>

= H̄N(I − zF̄)−1P(H̄N)> + H̄N P(I − z−1 F̄>)−1(H̄N)>)− H̄N P(H̄N)>

The expression on the right is also the spectrum, and so it follows that

H̄N(I − zF̄)−1P(H̄N)> = H̄N(I − zF̄)−1Q̄N

By observability of F̄, H̄N , there must hold P(H̄N)> = Q̄N , as required.

Notes
1 This paper underpins a lecture by the first author presented at the 5th Vienna Workshop on High-dimensional Time Series in

Macroeconomics and Finance, and celebrating the 80th birthday of Manfred Deistler.
2 State space models have larger equivalences classes and therefore more flexibility when choosing “nice” representatives. Special

representatives, in echelon form, can yield state space models with the same parameters as ARMA models.
3 This is an easy consequence of the celebrated solution of the partial realization problem for covariance sequences, Byrnes and

Lindquist (1997).
4 In a practical situation, given that sensors normally are not noise free, the introduction of more sensors is likely to aid the

de-noising process. Our remarks here pertain to the process of common components.
5 Such a spanning set of entries can be obtained by identifying the rows defining an r × r nonsingular principal submatrix of

E[χN
t (χN

t )>]
6 As an alternative, PCA can also be used to obtain a minimal static factor.
7 For a scalar rational transfer function written as a ratio of coprime polynomials n(z)/d(z), the zero free property is equivalent to

n(z) being a nonzero constant. The idea generalizes to coprime matrix fraction representations of a rational transfer function
matrix

8 Coprimeness means there exists no polynomial CN(z) ∈ RN×N [z] with nonconstant determinant and matrices ÃN ∈ RN×N [z], B̃N ∈
RN×q[z] such that ĀN = CN ÃN and B̄N = CN B̃N
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