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Abstract: The parametric estimation of stochastic differential equations (SDEs) has been the subject
of intense studies already for several decades. The Heston model, for instance, is based on two
coupled SDEs and is often used in financial mathematics for the dynamics of asset prices and
their volatility. Calibrating it to real data would be very useful in many practical scenarios. It is
very challenging, however, since the volatility is not directly observable. In this paper, a complete
estimation procedure of the Heston model without and with jumps in the asset prices is presented.
Bayesian regression combined with the particle filtering method is used as the estimation framework.
Within the framework, we propose a novel approach to handle jumps in order to neutralise their
negative impact on the estimates of the key parameters of the model. An improvement in the
sampling in the particle filtering method is discussed as well. Our analysis is supported by numerical
simulations of the Heston model to investigate the performance of the estimators. In addition, a
practical follow-along recipe is given to allow finding adequate estimates from any given data.

Keywords: Heston model; estimation; Bayesian inference; particle filtering; Monte Carlo Markov chains

1. Introduction

The problem of the parameter estimation of mathematical models applied in the fields
of economy and finance is of critical importance. In order to use most of the models, such
as the ones for pricing financial instruments or finding an optimal investment portfolio,
one needs to provide values for the model parameters, which are often not easily available.
For example, a famous Nobel-prize winning Black–Scholes model for pricing European
options Black and Scholes (1973) assumes that the dynamics of the underlying asset is
what we now call the Geometric Brownian Motion (GBM)—a stochastic process, which has
two parameters commonly called the drift and the volatility. Knowing the values of those
parameters for a particular underlying instrument is required to make use of the model, as
they need to be plugged into the formulas the model provides.

Over the last decades, mathematical models describing the behaviour of observed
market quantities (e.g., prices of assets, interest rates, etc.) have become more complicated
to be able to reflect some particular characteristics of their dynamics. For instance, the
phenomenon called the volatility smile is widely observed across various types of options
and in different markets; however, it is not possible to “configure” the classical Black–
Scholes model to reproduce it Meissner and Kawano (2001). Similarly, financial markets
occasionally experience sudden drops in the value of assets traded, which can be treated
as discontinuities in their trajectories; yet, the GBM, as a model having time-continuous
sample paths, would never display any kind of a jump in the value of the modelled asset.
Therefore, a need for more complex models emerges, such as the ones of Heston (1993) and
Bates (1996), which were designed to address those two specific issues, respectively. The
problem is that more complicated models typically use more parameters, which need to be
estimated; moreover, standard estimation techniques, such as the Maximum Likelihood
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Estimators (MLE) or the Generalised Method of Moments (GMM), fail very often for them
Johannes and Polson (2010). Apart from that, most existing methods for estimating the
parameters of more complex financial models, such as the ones of Heston or Bates work
in the context of derivative instruments only, and as such, they require options prices
as an input, despite the fact that the models themselves actually describe the dynamics
of the underlying instruments. This presents two major problems. The first one is that
the mentioned models are not always used in the context of derivative instruments, as
sometimes we are only interested in modelling stock price dynamics (e.g., in research
related to stock portfolio management). The other problem is that the historical values
of basic instruments such as indices, stocks, or commodities are much more easily found
publicly on the Internet, compared to the options prices. Thus, from the data availability
perspective, the estimation tools based on the values of underlying instrument outcompete
the ones that require prices of derivatives as an input.

There is a wide range of methods that use the prices of the actual instruments, in-
stead of the prices of the derivatives for parameter estimation, but the Bayesian approach
Lindley and Smith (1972) seems to be especially effective in that field. Among the methods
based on Bayesian inference, the ones using Monte Carlo Markov chains (MCMC) are the
most prominent for complex financial models. In this group of methods, one assumes some
distribution for the value of each of the parameters of a model (called the priordistribution)
and uses it, along with the data, to produce what is called the posteriordistribution, samples
that we can treat as possible values of our parameters (see Johannes and Polson (2010) for
a great overview of the MCMC methods used for financial mathematics).

The MCMC concept can be applied in multiple ways and by utilising various different
algorithms, including Gibbs sampling or the Metropolis–Hastings algorithm Chib and
Greenberg (1995), depending on the complexity of the problem. Both are generally very
useful for the effective estimation of “single” parameters, i.e., those parameters that only
have one constant number as their value. However, some models assume that the directly
observable dynamic quantities (e.g., prices) are dependent on other dynamically changing
properties of the model. The latter are often called latent variables or state variables. In
case of the Heston model, for example, the volatility process is a state variable. Estimation
of the state variables is inherently more complicated than that of the regular parameters,
as each value, which is observed directly, is partly determined by the value of the state
variable at that particular point in time. A very elegant solution to this complication is
a methodology called particle filtering. It is based on the idea of creating a collection of
values (called particles), which are meant to represent the distribution of the latent variable
at a given point in time. Each particle then has a probability assigned to it, which serves as
a measure of how likely it is that a given value of the state variable generated the outcome
observed at a given moment of time. For an overview of particle filtering methods, we
recommend Johannes et al. (2009) and Doucet and Johansen (2009).

The methods outlined above have been studied quite thoroughly in recent years.
However, the research articles and the literature focused on the theoretical aspect of the
estimation process and often lacked precision and concreteness. This is, in fact, a serious
issue, since applying the results of theoretical research in practice almost always requires
estimation in one way or another. In our last paper, we studied the performance of various
investment portfolios depending on the assets they contained, which were represented by
trajectories of the Heston model Gruszka and Szwabiński (2021). The behaviour of those
portfolios turned out to be dependent on some of the assets’ characteristics, which are
captured by the values of certain parameters of the Heston model. Hence, an estimation
scheme would allow us to determine whether a given strategy is suitable for a particular
asset portfolio. This is just one example of how the estimation of a financial market model
can be utilised.

In this paper, we present a complete setup for parameter estimation of the Heston
model, using only the prices of the basic instrument one wants to study using the model (an
index, a stock, a commodity, etc., no derivative prices needed). We provide the estimation
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process for both the pure Heston model and its extended version, with the inclusion of
Merton-style jumps (discontinuities), which is then known as the Bates model. In Section 2,
we present the Heston model as well as its extension allowing for the appearance of jumps.
We also present a way of changing the time-character of the model from a continuous in
time one to a discrete one. In Section 3, we describe in detail the posterior distributions
from which one can sample to obtain the parameters of the model. We also provide a
detailed description of the particle filtering scheme needed to reconstruct the volatility
process. The whole procedure is summarised in an easy-to-follow pseudo-code algorithm.
An exemplary estimation, as well as the analysis of the factors that impact the quality of
the estimation in general, is presented in Section 4. Finally, some conclusions are drawn in
the last section.

2. Heston Model Without and with Jumps
2.1. Model Characterisation

The Heston model can be described using two stochastic differential equations, one
for the process of prices and one for the process of volatility Heston (1993)

dS(t) = µS(t)dt +
√

v(t)S(t)dBS(t), (1)

dv(t) = κ(θ − v(t))dt + σ
√

v(t)S(t)dBv(t), (2)

where t ∈ [0, T]. In Equation (1), the parameter µ represents the drift of the stock price.
Equation (2) is widely known as the CIR (Cox–Ingersoll–Ross) model, featuring an interest-
ing quality called mean reversion Cox et al. (1985). Parameter θ is the long-term average
from which the volatility diverges and to which it then returns, and κ is the rate of those
fluctuations (the larger the κ, the longer it takes to return to θ). Parameter σ is called the
volatility of the volatility, and it is generally responsible for the “scale” of randomness of
the volatility process.

Both stochastic processes are based on their respective Brownian motions—Bs(t) and
Bv(t). The Heston model allows for the possibility of those two processes being correlated
with an instantaneous correlation coefficient ρ,

dBS(t)dBv(t) = ρdt. (3)

To complete the setup, deterministic initial conditions for S and v need to be specified.

S(0) = S0 > 0, (4)

v(0) = v0 > 0. (5)

It is worth highlighting that the description of the Heston model outlined above is
expressed via the physical probability measure, often denoted by P, which should not be
confused with the risk-neutral measure (also called the martingale measure), often denoted
by Q Wong and Heyde (2006). Using the risk-neutral version is especially important
when the model is used for pricing derivative instruments, as the goal is to make the
discounted process of prices a martingale and hence eliminate arbitrage opportunities.
Versions of the same model under those two measures usually differ in regard to the
parameters that they feature. The classical example is the Geometric Brownian Motion,
mentioned in the introduction, which has two parameters, the drift and the volatility.
During the procedure of changing the measure, the drift variable is replaced by the risk-free
interest rate, and the volatility parameter remains in place unchanged. In case of the
Heston model, the interdependence between the parameters of the models under the P
and Q measures are more subtle and depend on additional assumptions made during the
measure-changing procedure itself; however, in most cases, there are explicit formulas to
calculate the parameter values under Q having them under P and vice versa. However, the
transformations often require some additional inputs, related to the particular derivative
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instrument being priced (e.g., its market price of risk). Throughout this work, we are only
interested in the values of the model parameters under the physical probability measure P.
For more in-depth analysis of the change in the measure problem in stochastic volatility
models, we recommend Wong and Heyde (2006).

The trajectories coming from the Heston model are continuous, although the model
itself can easily be extended to include discontinuities. The most common type of jump,
which can easily be incorporated into the model, is called the Merton log-normal jump. To
add it, one needs to augment Equation (1) with an additional term,

dS(t) = µS(t)dt +
√

v(t)S(t)dBS(t) + (eZ(t) − 1)S(t)dq(t), (6)

where Z(t) is a series of independent and identically distributed normally distributed
random variables with mean µJ and standard deviation σJ , whereas q(t) is a Poisson
counting process with constant intensity λ. The added term turns the Heston model into
the Bates model Bates (1996). The above extension has an easy real-life interpretation.
Namely, eZ(t) is the actual (absolute) rate of the difference between the price before the
jump at time t and right after it, i.e., S(t−) · eZ(t) = S(t+). So if, for example, for a given t,
eZ(t) ≈ 0.85, that means the stock experienced ∼15% drop in value at that moment.

2.2. Euler–Maruyama Discretisation

In order to make the model applicable in practice, one needs to discretise it, that is, to
rewrite the continuous (theoretical) equations in such a way that the values of the process
are given in specific equidistant points of time. To this end, we split the domain [0, T], into
n short intervals, each of length ∆t. Thus, n · ∆t = T. To properly transform the SDEs of
the model into this new time domain, a discretisation scheme is necessary. We use the
Euler–Maruyama discretisation scheme for that purpose Kloeden and Platen (1992). The
stock price Equation (1) can be discretised as

S(k∆t)− S
(
(k− 1)∆t

)
= µS

(
(k− 1)∆t

)
∆t+

S
(
(k− 1)∆t

)√
v
(
(k− 1)∆t

)
εS(k∆t)

√
∆t, (7)

where k ∈ {1, · · · , n}, and εS is a series of n independent and identically distributed
standard normal random variables.

To highlight the ratio between two consecutive values of the stock price, Equation (7)
is often rewritten as

S(k∆t)

S
(
(k− 1)∆t

) = µ∆t + 1 +
√

v
(
(k− 1)∆t

)
εS(k∆t)

√
∆t. (8)

The same discretisation scheme can be applied to Equation (2) to obtain:

v(k∆t)− v
(
(k− 1)∆t

)
= κ

(
θ − v

(
(k− 1)∆t

))
∆t+

σ

√
v
(
(k− 1)∆t

)
εv(k∆t)

√
∆t. (9)

If ρ = 0, then εv in the above formula is also a series of n independent and identically
distributed standard normal random variables. However, if ρ 6= 0, then to ensure the proper
dependency between S and v, we take

εv(k∆t) = ρεS(k∆t) +
√

1− ρ2εadd(k∆t), (10)
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where εadd is an additional series of n independent and identically distributed standard
normal random variables, which are “mixed” with the ones from εS and, hence, become
dependent on them.

3. Estimation Framework

The estimation of the Heston model consists of two major parts. The first part is
estimating the parameters of the model, i.e., µ, κ, θ, σ, and ρ, for the basic version of the
model and, additionally, λ, µJ , and σJ after the inclusion of jumps. The second part is
estimating the state variable, volatility v(t). For all the estimation procedures we present
here, we use the Bayesian inference methodology, in particular, Monte Carlo Markov chains
(for parameter estimation within the base model) and particle filtering (for estimation of
the volatility as well as the jump-related parameters).

3.1. Regular Heston Model

In order to estimate the Heston model with no jumps, we mainly use the principles of
Bayesian inference, in particular, Bayesian regression O’Hagan and Kendall (1994).

3.1.1. Estimation of µ

We start by finding a way to estimate the drift parameter µ. First, Equation (8) is
transformed to a regression form. To this end, we introduce several additional variables.
The first, η, is defined as

η = µ∆t + 1. (11)

Let R(t) be a series of ratios between consecutive prices of assets,

R(k∆t) =
S(k∆t)

S
(
(k− 1)∆t)

) , (12)

for k ∈ {1, 2, . . . , n}. Taking the above definitions into consideration, Equation (8) can be
rewritten as:

R(k∆t) = η +

√
v
(
(k− 1)∆t

)
εS(k∆t)

√
∆t. (13)

Now, let us divide both sides of this equation by
√

v
(
(k− 1)∆t

)√
∆t, as ∆t is known,

and at this stage, we consider v(t) to be known too. Let us now introduce another two new
variables, yS(t) as

yS(k∆t) =
1√

v
(
(k− 1)∆t

)√
∆t

R(k∆t) (14)

and xS(t) as

xS(k∆t) =
1√

v
(
(k− 1)∆t

)√
∆t

. (15)

Inserting them into Equation (13) gives

yS(k∆t) = ηxS(k∆t) + εS(k∆t). (16)

The last expression has the form of a linear regression with yS(t) explained by xS(t).
We want to treat it with the Bayesian regression framework. To this end, we first collect
all the discretised values of yS(t) and xS(t) into n-element column vectors—yS and xS,
respectively,

yS =
1√
∆t

[
R(∆t)√

v(0)
R(2∆t)√

v(∆t)
. . . R(n∆t)√

v
(
(n−1)∆t

)]′, (17)
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xS =
1√
∆t

[
1√
v(0)

1√
v(∆t)

. . . 1√
v
(
(n−1)∆t

)]′, (18)

where the prime symbol is used for the transpose.
Assuming a prior distribution for η to be normal with mean µ

η
0 and standard deviation

σ
η
0 , it follows from the Bayesian regression general results O’Hagan and Kendall (1994) that

the posterior distribution for η is also normal with precision (inverse of variance) τη , which
can be calculated as

τη =
(

xS
)′
· xS + τ

η
0 . (19)

Here, τ
η
0 is the precision of the prior distribution, i.e., τ

η
0 = 1

(σ
η
0 )

2 . The mean µη of the

posterior distribution is of the following form

µη =
1

τη

(
τ

η
0 µ

η
0 +

(
xS
)′
· xSη̂

)
, (20)

where η̂ is a classical ordinary-least-square (OLS) estimator of η, i.e.,

η̂ =

((
xS
)′
· xS
)−1(

xS
)′

yS. (21)

Hence, we can sample the realisations of η as follows:

ηi ∼ N
(

µη ,
1√
τη

)
, (22)

where i indicates the i-th sample from the posterior distribution, which has been found for
η. Having a realisation of η in form of ηi, we can quickly turn it into a realisation of the µ
parameter itself by a simple transform, inverse to Equation (11)

µi =
ηi − 1

∆t
. (23)

3.1.2. Estimation of κ, θ, and σ

In order to estimate the parameters related to the volatility process, i.e., κ, θ, and σ,
we conduct a similar exercise but this time using the volatility process. Let us first rewrite
Equation (9) as

v(k∆t) = κθ∆t + (1− κ∆t)v
(
(k− 1)∆t

)
+

σ

√
v
(
(k− 1)∆t

)
εv(k∆t)

√
∆t. (24)

Now, let us introduce two new parameters,

β1 = κθ∆t (25)

and
β2 = 1− κ∆t. (26)

From Equations (24)–(26), we obtain

v(k∆t) = β1 + β2v
(
(k− 1)∆t

)
+ σ

√
v
(
(k− 1)∆t

)
εv(k∆t)

√
∆t. (27)

In a fashion similar to the equation for the stock price, we can rewrite this last expres-
sion as
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v(k∆t)
√

∆t
√

v
(
(k− 1)∆t

) =
β1

√
∆t
√

v
(
(k− 1)∆t

)+
β2v
(
(k− 1)∆t

)
√

∆t
√

v
(
(k− 1)∆t

) + σεv(k∆t). (28)

Introducing the following vectors,

β =

[
β1
β2

]
, (29)

yv =
1√
∆t

[
v(2∆t)√

v(∆t)
v(3∆t)√

v(2∆t)
. . . v(n∆t)√

v
(
(n−1)∆t

)]′, (30)

xv
1 =

1√
∆t

[
1√

v(∆t)
1√

v(2∆t)
. . . 1√

v
(
(n−1)∆t

)]′, (31)

xv
2 =

1√
∆t

[
v(∆t)√

v(∆t)
v(2∆t)√

v(2∆t)
. . .

v
(
(n−1)∆t

)√
v
(
(n−1)∆t

)]′ =
1√
∆t

[√
v(∆t)

√
v(2∆t) . . .

√
v
(
(n− 1)∆t

)]′
, (32)

allows us to rewrite the original volatility equation in form of a linear regression

yv = Xvβ + σεv, (33)

where
Xv =

[
xv

1 xv
2
]
, (34)

and
εv =

[
εv(∆t) εv(2∆t) . . . εv((n− 1)∆t

)]
. (35)

Using the formulas for Bayesian regression and assuming a multivariate (two-
dimensional) normal prior for β with a mean vector µ

β
0 and a precision matrix Λ

β
0 , we

obtain the conjugate posterior distribution that is also multivariate normal with a precision
matrix given by

Λβ = (Xv)′ · Xv + Λ
β
0 (36)

and mean vector given by

µβ =
(

Λβ
)−1(

Λ
β
0 µ

β
0 + (Xv)′ · Xv β̂

)
, (37)

where again β̂ is a standard OLS estimator of β,

β̂ =
(
(Xv)′ · Xv

)−1
(Xv)′yv. (38)

We can then use this posterior distribution of β for sampling

βi ∼ N (µβ, σ2
i−1(Λ

β)−1). (39)

It is worth noting that the realisation of σ appears in Equation (39); however, we
have not defined it yet. This is because the distribution of β is dependent on σ, and the
distribution of σ is dependent on β. Hence, we suggest taking the realisation of σ from the
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previous iteration here (which is indicated by the i− 1 subscript). We address the order of
performing calculations in more detail later in this article.

Obtaining realisations of the actual parameters is very easy; one simply needs to
inverse the equations defining β1 and β2:

κi =
1− βi[2]

∆t
, (40)

and

θi =
βi[1]
κi∆t

, (41)

where βi[1] and βi[2] are, respectively, the first and the second component of the βi vector.
The most common approach for estimating σ is assuming the inverse-gamma prior

distribution for σ2. If the parameters of the prior distribution are aσ
0 and bσ

0 , then the
conjugate posterior distribution is also inverse gamma

(σi)
2 ∼ IG(aσ, bσ), (42)

where
aσ = aσ

0 +
n
2

, (43)

and

bσ = bσ
0 +

1
2

(
(yv)′ · yv +

(
µ

β
0

)′
Λ

β
0 µ

β
0 −

(
µβ
)′

Λβµβ

)
. (44)

3.1.3. Estimation of ρ

For the estimation of ρ, we follow an approach presented in Jacquier et al. (2004). We
first define the residuals for the stock price equation.

eρ
1(k∆t) =

R(k∆t)− µi∆t− 1
√

∆t
√

v
(
(k− 1)∆t

) , (45)

and for the volatility equation,

eρ
2(k∆t) =

v(k∆t)− v
(
(k− 1)∆t

)
− κi

(
θi − v

(
(k− 1)∆t

))
∆t

√
∆t
√

v
(
(k− 1)∆t

) . (46)

By calculating those residuals, we try to retrieve the error terms from
Equations (1) and (2), εS(t) and σεv(t), respectively, as we know they are tied with each
other by a relationship given by Equation (10). Taking this fact into consideration, we end
up with the following equation

eρ
2(k∆t) = σρeρ

1(k∆t) + σ
√

1− ρ2εadd(k∆t). (47)

We now introduce two new variables, traditionally called ψ = σρ and ω = σ2(1− ρ2).
It is not difficult to deduce that the relationship between ρ and the newly-introduced
variables ψ and ω is

ρ =
ψ√

ψ2 + ω
. (48)

Then, Equation (47) becomes

eρ
2(k∆t) = ψeρ

1(k∆t) +
√

ωεadd(k∆t), (49)



Econometrics 2023, 11, 15 9 of 26

which is again a linear regression of eρ
2(t) on eρ

1 . Thus, we can use the exact same estimation
scheme as in case of the previously described regressions. We first collect the values of eρ

1
and eρ

2 in two n-element vectors:

eρ
1 =

[
eρ

1(∆t) eρ
1(2∆t) . . . eρ

1(n∆t)
]′, (50)

eρ
2 =

[
eρ

2(∆t) eρ
2(2∆t) . . . eρ

2(n∆t)
]′. (51)

Then we appose both vectors, forming them into an n-by-2 matrix:

eρ =
[
eρ

1 eρ
2

]
. (52)

Next, we define a 2-by-2 matrix Aρ as

Aρ = (eρ)′ · eρ. (53)

If we assume a normal prior for ψ with mean µ
ψ
0 and precision τ

ψ
0 , the posterior

distribution for ψ is also normal with the mean µψ given by

µψ =
Aρ

12 + µ
ψ
0 τ

ψ
0

Aρ
11 + τ

ψ
0

(54)

and the precision τψ equal to
τψ = Aρ

11 + τ
ψ
0 , (55)

where Aρ
11, Aρ

12, and Aρ
22 are the elements of the matrix Aρ on positions (1, 1), (1, 2), and

(2, 2) respectively.
Assuming the inverse gamma prior with parameters aω

0 and bω
0 for ω, the conjugate

posterior distribution is also the inverse gamma with parameters

aω = aω
0 +

n
2

(56)

and

bω = bω
0 +

1
2

(
Aρ

22 −
(Aρ

12)
2

Aρ
11

)
. (57)

Thus, sampling from the posterior distribution of ω can be summarised as

ωi ∼ IG(aω, bω), (58)

while when it comes to sampling from ψ it is

ψi ∼ N
(

µψ,
√

ωi√
τψ

)
. (59)

To obtain ρ, we simply make use of Equation (48).

3.1.4. Estimation of v(t)—Particle Filtering

For all the estimation procedures shown in the previous sections, we assumed v(t) to
be known. However, in practice, the volatility is not a directly observable quantity, it is
“hidden” in the process of prices, to which we have access. Hence, we need a way to extract
the volatility from the price process, and the particle filtering methodology is extremely useful
for that purpose. Here, we only sketch the outline of the particle filtering logic, namely the
SIR algorithm, which we utilise to obtain the volatility estimator. For a more in-depth review
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of particle filtering, we suggest the works of Johannes et al. (2009) and Doucet and Johansen
(2009). Here, we follow a procedure similar to the one presented in Christoffersen et al. (2007).

We start by fixing the number of particles N. In each moment of time t = k∆t, we
produce N particles, which represent various possible values of the volatility at that point
in time. By averaging out all of those particles, we obtain an estimate of the true volatility
v(t). The process of creating the particles is as follows: at the time t = 0, we create N initial
particles, all with the initial value of the volatility, which we assume to be the long-term
average θ. Denoting each of the particles by Vj, for j ∈ {1, 2, . . . N}, we have

Vj(0) = θi. (60)

For any subsequent moment of time, except the last one t = k∆t, k /∈ {0, n}, we define
three sequences of size N. ε j is a series of independent standard normal random variables

ε j(k∆t) ∼ N (0, 1). (61)

The series zj contains residuals from the stock price process, where the past values of
volatility are replaced by the values of the particles from the previous time step

zj(k∆t) =
R(k∆t)− µi∆t− 1
√

∆t
√

Vj

(
(k− 1)∆t

) . (62)

Finally, the series wj, which incorporates the possible dependency between the stock
process and the volatility particles, is

wj(k∆t) = zj(k∆t)ρi + ε j(k∆t)
√

1− (ρi)2. (63)

Having all that, the candidates for the new particles Ṽj are created as follows

Ṽj(k∆t) = Vj

(
(k− 1)∆t

)
+ κi

(
θi −Vj

(
(k− 1)∆t

))
∆t+

σi
√

∆t
√

Vj

(
(k− 1)∆t

)
wj. (64)

Each candidate for a particle is evaluated based on how probable it is that such a value
of the volatility would generate the return that was actually observed. The measure of this
probability W̃j is a value of a normal distribution PDF function designed specifically for
this purpose1,

W̃j(k∆t) =
1√

2πṼj(k∆t)∆t
exp

−1
2

(
R
(
(k + 1)∆t

)
− µi∆t− 1

)2

Ṽj(k∆t)∆t

. (65)

To be able to treat the values of the proposed measure along with the values of particles
as a proper probability distribution on its own, we normalise them, so that their sum is
equal to 1,

W̆j(k∆t) = W̃j(k∆t)

(
N

∑
j=1

W̃j(k∆t)

)−1

. (66)

Now, we combine the particles with their respective probabilities, forming two-element
vectors Uj

Uj(k∆t) =
(
Ṽj(k∆t), W̆j(k∆t)

)
. (67)
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We now want to sample from the probability distribution described by Uj to obtain the
true “refined” particles. Most sources suggest drawing from it, treating it as a multinomial
distribution. However, this makes all the “refined” particles have the same values as the
“raw” ones, with just the proportions changed (the same “raw” particle can be drawn
several times, if it has a higher probability than the others). To address this problem, we
conduct the sampling in a different way. We first need to sort the values of particles in
ascending order. Mathematically speaking, we create another sequence and call it Ṽsort

j ,
ensuring that the following conditions are all met:

1. The particle with the smallest value is the first in the new sequence, i.e.,

Ṽsort
1 (k∆t) = min

j∈{1,2,...,N}
{Ṽj(k∆t)}, (68)

2. The particle with the largest value is the last in the new sequence, i.e.,

Ṽsort
N (k∆t) = max

j∈{1,2,...,N}
{Ṽj(k∆t)}, (69)

3. For any j ∈ {2, 3, . . . N − 1}, we have

Ṽsort
j−1 (k∆t) < Ṽsort

j (k∆t) < Ṽsort
j+1 (k∆t). (70)

We also want to keep track of the probabilities of our sorted particles; so, we order the
probabilities in the same way, by defining another probability sequence W̆sort

j ,

W̆sort
j (k∆t) = W̆m(k∆t) for m, such that Ṽsort

j (k∆t) ∈ Um(k∆t). (71)

This step is necessary to ensure that each element of the sorted sequence of particle
values Ṽsort

j still has an original normalised probability W̆sort
j assigned to it. This is why

it was necessary to pair up the particles and their normalised probabilities into two-
element vectors, under Equation (67). These pairs now help us approximate a continuous
distribution, from which we can sample the refined particles. The “extreme” particles, Ṽsort

1
and Ṽsort

N , will become the edges of the support of this new continuous distribution. The
CDF function is given by the formula below (the time labels have been dropped for the
sake of legibility, as all the variables are evaluated at t = k∆t):

FṼsort(v) =



0 if v 6 Ṽsort
1

v−Ṽsort
1

Ṽsort
2 −Ṽsort

1
(W̆sort

1 + 1
2 W̆sort

2 ) if v ∈ (Ṽsort
1 , Ṽsort

2 ](
j−1

∑
m=1

W̆sort
m +

1
2

W̆sort
j

)
+

v− Ṽsort
j

Ṽsort
j+1 − Ṽsort

j

(
1
2

W̆sort
j +

1
2

W̆sort
j+1

)
if v ∈ (Ṽsort

j , Ṽsort
j+1 ]

for j ∈ {2, 3, . . . N − 2}(
N−2

∑
m=1

W̆sort
m +

1
2

W̆sort
N−1

)
+

v− Ṽsort
N−1

Ṽsort
N − Ṽsort

N−1

(
1
2

W̆sort
N−1 + W̆sort

N

)
if v ∈ (Ṽsort

N−1, Ṽsort
N ]

1 if v > Ṽsort
N

. (72)

The formula might seem overwhelming, but there is a very easy-to-follow interpreta-
tion behind it (see Figure 1). The new “refined” particles can be generated by drawing from
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the distribution given by FṼsort ; the simplest way to do so is to use the inverse transform
sampling.

Vj(k∆t) ∼ FṼsort . (73)

After following the described procedure for each k ∈ {1, 2, . . . , n− 1}, we can specify
the actual estimate of the volatility process as the mean of the “refined” particles.

v(k∆t) =
1
N

N

∑
j=1

Vj(k∆t). (74)

For k = n, we can simply assume v(n∆t) = v
(
(n− 1)∆t

)
, which should not have any

tangible negative impact on any procedure using the v(t) estimate for a sufficiently dense
time discretisation grid.

Figure 1. Visualisation of the process of resampling particles according to their probabilities. The
values of the raw particles are the places, where the empirical cumulative distribution function (ECDF
in short) jumps, and each jump size represents the probability of a respective raw particle. The
connected CDF is a continuous modification of the ECDF, built according to Formula (72). In order to
resample, a uniform random variable u is generated, and then its inverse through the connected CDF
function becomes a new resampled particle, Vj.

3.2. Heston Model with Jumps

The above estimation framework can be used with minor changes to also estimate
the Heston model with jumps. The model’s SDE is defined in Equation (6). After the
incorporation of jumps, changes are needed particularly in the particle filtering part of the
estimation procedure. The particles need to be created not only for various possible values
of volatility Vj(t) but also for the possibility of a jump at that particular moment in time,
Jj(t), and the size of that jump, Zj(t). So, one can think of a particle as of a three-element
“tuple” (Vj, Jj, Zj). Generating “raw” values for Jj and Zj is easy; for each j ∈ {0, 1, . . . , N},
Jj is simply a random variable from a Bernoulli distribution with parameter λth,

J̃j(k∆t) ∼ B(λth). (75)
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Parameter λth ∈ [0, 1) can be thought of as a “threshold” value—a proportion of the
number of particles that encodes the occurrence of a jump to all the particles. If the number
of jumps is expected to be significant, it is good to increase the value of λth, hence increasing
the number of particles suggesting the jump in each step. The values of λth, which we
observe to work reasonably well for most datasets, are between 0.1 and 0.35. There is a
multitude of ways in which one can assess a rational value of this parameter, and one of the
most basic ones is visualising the returns of the asset in question and assessing the number
of distinct downward spikes on the plot. The ratio of this number and the length of the
sample should be a good indication of the region of the interval [0.1, 0.35] from which λth

should be taken.
The raw particles for Zj are simply independent normal random variables with mean

µJ
0 and standard deviation σJ

0 , which depict our “prior” beliefs about the size and variance
of the jumps

Z̃j(k∆t) ∼ N (µJ
0, σJ

0). (76)

Assigning probabilities to the particles is different as well, since the normal PDF
function that we use is different when there is a jump. Hence, Equation (65) needs to be
updated to

W̃j(k∆t) =



1√
2πṼj

(
(k− 1)∆t

)
∆t
×

exp

(
−1

2

(
R(k∆t)− µi∆t− 1

)2

Ṽj
(
(k− 1)∆t

)
∆t

)
if J̃j = 0

1

exp
(
Z̃j(k∆t)

)√
2πṼj

(
(k− 1)∆t

)
∆t
×

exp

−1
2

(
R(k∆t)− exp

(
Z̃j(k∆t)

)
(µi∆t + 1)

)2

exp
(
2Z̃j(k∆t)

)
Ṽj
(
(k− 1)∆t

)
∆t

 if J̃j = 1

. (77)

We then normalise W̃j so that it sums to 1 and resample Ṽj, as in the case with no
jumps; additionally, we resample Z̃j in the exact same way as Ṽj, i.e., we sort the particles
and draw from the distribution FZ̃sort to obtain the “refined” particles Zj,

Zj(k∆t) ∼ FZ̃sort . (78)

Finally, for the estimate of λ, for each k ∈ {1, 2, . . . n}, one needs to sum the cumulative
value of all particles declaring a jump. That way, we obtain a probability that a jump took
place at the time t = k∆t,

λ(k∆t) =
N

∑
j=1

Jj(k∆t)W̆j(k∆t). (79)

To obtain the actual estimate of λ, one needs to average λ(t) across all the time points
obtained for different values of k,

λi =
1
T

n

∑
k=1

λ(k∆t). (80)

Similarly, to obtain the estimate of µJ and σJ , for each k, one needs to first calculate the
average size of a jump from the refined particles,

Z(k∆t) =
1
N

N

∑
j=1

Zj(k∆t), (81)
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and then calculate the mean and standard deviation of the results, weighed by the proba-
bility of a jump at time moment t indicated by λ(t). For the weighted mean of the jumps,
we obtain

µJ
i =

(
n

∑
k=1

Z(k∆t)λ(k∆t)

)(
n

∑
k=1

λ(k∆t)

)−1

, (82)

and for the standard deviation, we obtain

σJ
i =

√√√√( n

∑
k=1

λ(k∆t)
(
Z(k∆t)− µJ

i
)2
)(

n− 1
n

n

∑
k=1

λ(k∆t)

)−1

. (83)

The presence of jumps also influences the estimation of other parameters; some of the
procedures presented in the previous subsection are not equally applicable, as jumps added
to the stock price will additionally increase or more likely decrease the returns. To improve
that, a correction of the definitions of R(t) is needed in order to “neutralise” the impact of
the jumps on the parameters. In other words, Equation (12) should be replaced with

R(k∆t) =
S(k∆t)

S
(
(k− 1)∆t)

)(1− λ(k∆t)
(

1− exp
(
− Z(k∆t)

)))
. (84)

Note that the added term has a value very close to 1 when λ(t) is close to 0, which
indicates there was no jump at time t; so, the correction to the “original” value of R(t) is
very minor. However, if λ(t) is close to 1, which means there was a jump, the value of
the term becomes close to exp

(
− Z(t)

)
, which is an inverse of the jump factor (with the

estimated jump size Z(t)). Multiplying by that inverse brings the value of R(t) to a level as
if there was no jump at time t (see Figure 2), and the estimation of the parameters of the
model can be carried out as before.

Figure 2. Comparison of the returns for a process with jumps calculated based on Formula (12) (blue
line) and (84) (orange line). It can be clearly seen that the jumps have been “neutralised” in the
latter case.



Econometrics 2023, 11, 15 15 of 26

3.3. Estimation Procedure

The Bayesian estimation framework presented above relies on several parameters for
the prior distributions that cannot be calculated within the procedure itself. They are often
referred to as metaparameters. For example, for the estimation of the µ parameter, the
values of two metaparameters are required, µ

η
0 and τ

η
0 (see Equations (19) and (20)). Their

values should reflect our preexisting beliefs regarding the value of the parameter that we
are trying to estimate, µ in this case. Let us say that for a given trajectory of the Heston
model process, we assume the value of µ to be around 0.5. What values should we then
choose for the metaparameters? First of all, we need to note that µ

η
0 and τ

η
0 are not the

parameters of the prior distribution for µ directly. They are parameters of another random
variable, which we introduced to utilise the Bayesian framework, namely η. The connection
between µ and η is known and given by Equation (11). Hence, if we assume µ to be around
a certain value, then using this relationship, we can deduce the value of η. In addition,
since the prior distibution of η is normal, with the mean µ

η
0 and the variance σ

η
0 = 1

τ
η
0

, we

can propose the value of the mean of this distribution to be whatever η is for the supposed
value of µ. Selecting a value for σ

η
0 (and thus τ

η
0 ) is even more equivocal; it should reflect

the level of confidence that we have for choosing a mean parameter. That is, if we feel that
the value we chose for µ

η
0 would bring us close to the true µ, we should choose a smaller

value for σ
η
0 . However, if we are not as sure about it, a larger value of σ

η
0 should be used. A

similar analysis can be repeated for choosing the values of the other metaparameters. We
need to be aware that the prior used always in some way influences the final estimate of a
given parameter. More detailed analysis on this topic is given in Section 4.2.

Another problem that emerges when applying Bayesian inference (especially for more
complex models) is that estimating one parameter often requires knowing the value of
some of the others and vice versa. Hence, there is not an obvious way of how to start the
whole procedure. One way to address this problem is to provide the initial guesses for the
values of all the parameters (as described in the paragraph above) and use them in the first
round of samplings. A well-designed MCMC estimation algorithm should bring us closer
to the true values of parameters with each new round of samplings. In Algorithms 1 and 2,
our procedure for the Heston model without and with jumps is shown, respectively. The
meaning of all symbols is briefly summarised in Appendix A.

Algorithm 1 Estimating the Heston model

Require:
number of samples: ns
time step ∆t
maturity T
prices S(k∆t) for k ∈ {0, 1, . . . , n}, so that n∆t = T
number of particles N
initial value of µ: µ0
initial value of κ: κ0
initial value of θ: θ0
initial value of σ: σ0
initial value of ρ: ρ0
prior distribution parameters for η: µ

η
0 and τ

η
0

prior distribution parameters for β: µ
β
0 and Λ

β
0

prior distribution parameters for σ2: aσ
0 and bσ

0
prior distribution parameters for ψ: µ

ψ
0 and τ

ψ
0

prior distribution parameters for ω: aω
0 and bω

0
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Ensure:
estimate of parameter µ: µ̂
estimate of parameter κ: κ̂
estimate of parameter θ: θ̂
estimate of parameter σ: σ̂
estimate of parameter ρ: ρ̂
estimate of the volatility process: v(t)

for k = 1→ n do
set R(k∆t), as shown in Equation (12)

end for
for i = 0→ ns do

for k = 1→ n− 1 do . particle filtering procedure
for j = 1→ N do

obtain Vj(k∆t), as shown in Equations (60)–(73)
end for
obtain v(k∆t), as shown in Equation (74)

end for
obtain µi, as shown in Equations (13)–(23)
obtain κi, θi, and σi, as shown in Equations (25)–(44)
obtain ρi, as shown in Equations (45)–(59)

end for
set µ̂ = 1

ns
∑ns

i=1 µi

set κ̂ = 1
ns

∑ns
i=1 κi

set θ̂ = 1
ns

∑ns
i=1 θi

set σ̂ = 1
ns

∑ns
i=1 σi

set ρ̂ = 1
ns

∑ns
i=1 ρi

Algorithm 2 Estimating the Heston model with jumps

Require:
number of samples: ns
time step ∆t
maturity T
prices S(k∆t) for k ∈ {0, 1, . . . , n}, so that n∆t = T
number of particles N
initial value of µ: µ0
initial value of κ: κ0
initial value of θ: θ0
initial value of σ: σ0
initial value of ρ: ρ0
prior distribution parameters for η: µ

η
0 and τ

η
0

prior distribution parameters for β: µ
β
0 and Λ

β
0

prior distribution parameters for σ2: aσ
0 and bσ

0
prior distribution parameters for ψ: µ

ψ
0 and τ

ψ
0

prior distribution parameters for ω: aω
0 and bω

0
ratio of particle indicating jumps: λth

prior distribution parameters for Z: µJ
0 and σJ

0
Ensure:

estimate of parameter µ: µ̂
estimate of parameter κ: κ̂
estimate of parameter θ: θ̂
estimate of parameter σ: σ̂
estimate of parameter ρ: ρ̂
estimate of the volatility process: v(t)
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for k = 1→ n do
set R(k∆t), as shown in Equation (12)

end for
for i = 0→ ns do

for k = 1→ n do . particle filtering procedure
for j = 1→ N do

generate J̃j(k∆t), as shown in Equation (75)
generate Z̃j(k∆t), as shown in Equation (76)
obtain Vj

(
(k− 1)∆t

)
, as shown in Equations (61)–(73) and (77)

end for
obtain v(k∆t), as shown in Equation (74)
obtain Z(k∆t) and λ(k∆t), as shown in Equations (78)–(79) and (81)

end for
for k = 1→ n do

update R(k∆t), as shown in Equation (84)
end for
obtain µi, as shown in Equations (13)–(23)
obtain κi, θi, and σi as shown in Equations (25)–(44)
obtain ρi, as shown in Equations (45)–(59)
obtain λi, as shown in Equation (80)
obtain µJ

i , as shown in Equation (82)
obtain σJ

i , as shown in Equation (83)
end for
set µ̂ = 1

ns
∑ns

i=1 µi

set κ̂ = 1
ns

∑ns
i=1 κi

set θ̂ = 1
ns

∑ns
i=1 θi

set σ̂ = 1
ns

∑ns
i=1 σi

set ρ̂ = 1
ns

∑ns
i=1 ρi

set λ̂ = 1
ns

∑ns
i=1 λi

set µ̂J = 1
ns

∑ns
i=1 µJ

i

set σ̂J = 1
ns

∑ns
i=1 σJ

i

4. Analysis of the Estimation Results
4.1. Exemplary Estimation

We present here an exemplary estimation of the Heston model with jumps, to show the
outcomes of the entire procedure. We assumed relatively noninformative prior distributions,
with expected values shifted from the true parameters to make the task more challenging
for the algorithm and to better reflect the real-life situation in which the priors used do
not match the true parameters exactly most of the time, but they should be rather close
to them. Table 1 lists all the values of the priors we used. Table 2 summarises the results
obtained, and Figure 3 elaborates on those results by showing the empirical distributions
of the samples for all parameters of the model.

Analysing the sample estimates for each of the parameters (presented in Figure 3),
one can observe that for most of them (Figure 3a–e,h), the true value of the parameter was
within the support of the distribution of all samples. However, in case of two parameters,
λ and µJ (Figure 3f and Figure 3g, respectively), the scope of the samples generated by the
estimation procedure seemed not even to include the parameter’s true value. This was due
to the fact that those parameters were related to the intensity and size of the jumps, and for
the simulation parameters we chose, those jumps did not occur frequently (as in case of
real-life price falls). Hence, even though the procedure correctly identified the moments
of the jumps and estimated their sizes, those estimates were relatively far from the true
values, simply because there was very little source material for the estimation in the first
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place. To be precise, the stock price simulated for our exemplary estimation experienced
four jumps, and the times of those jumps were easily identified by our procedure with
almost 100% certainty. Thus, since the length of time of the price observation (in years)
was T = 3, the most probable value of the jump intensity λ was around 4

3 (compared to
the actual result in Table 2), although, obviously, the other values of λ (slightly smaller or
larger) could also have led to four jumps, and this was exactly what happened in our case,
as our true intensity was λ = 1 (again, see Table 2). Similarly, in the case of µJ , the reason
for the estimated average jump to be larger (in terms of magnitude) than the actual one
was that the four jumps, which were simulated, all happened to be more severe than the
true value of µJ would suggest (by pure chance), and this “pushed” the procedure towards
overestimating the (absolute) size of the jump.

Table 1. Priors for the exemplary estimation procedure.

Prior Parameter Value

µ
η
0 1.00125

σ
η
0 0.001

Λ0

[
10 0
0 5

]
µ0

[
35× 10−6

0.988

]
aσ

0 149
bσ

0 0.025

µ
ψ
0 −0.45

σ
ψ
0 0.3

aω
0 1.03

bω
0 0.05

λth 0.15
µJ

0 −0.96
σJ

0 0.3

Table 2. Results of the exemplary estimation procedure.

Parameter True Value Estimated Value Relative Error [%]

µ 0.1 0.09829 1.77
κ 1 1.2190 21.90
θ 0.05 0.0493 1.92
σ 0.01 0.0108 8.55
ρ −0.5 0.4379 12.40
λ 1 1.3349 33.49
µJ −0.8 −0.9651 20.64
σJ 0.2 0.2298 14.88
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Empirical PDFs of the exemplary Heston parameter estimates. (a) parameter µ. (b) pa-
rameter κ. (c) parameter θ. (d) parameter σ. (e) parameter ρ. (f) parameter λ. (g) parameter µJ .
(h) parameter σJ .
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4.2. Important Findings

Although estimation through the joint forces of Bayesian inference, Monte Carlo
Markov chains, and particle filtering is generally considered very effective Johannes and
Polson (2010), it has several areas the user needs to be aware of while using this estimation
scheme. One of the issues worth considering is the impact of the prior parameters. A
Bayesian estimator of any kind needs to be fed with the parameters of the prior distribution,
which should reflect our preexisting beliefs of what the value of the actual estimated
parameter could be. The amount of information conveyed by a prior can be different,
depending on several factors. One of these is the parameters of the prior distribution
itself. Consider µ

η
0 and σ

η
0 , mentioned already in the previous section. They are the prior

parameters for η, the predecessor for the µ estimates. The larger the σ
η
0 we take, the more

volatile the estimates of η and µ are going to be. This is a pretty intuitive fact, being a direct
consequence of the Bayesian approach itself. A more subtle influence of priors is hidden in
the alternation between the MCMC sampling and particle filtering procedures.

As mentioned in the previous section, the MCMC and particle filtering depend on
one another. As can be seen in Algorithms 1 and 2, we took the approach that the particle
filtering procedure should be conducted first, and the singular parameters that it needed
should be the expected values of the prior distributions that we assumed. Having the
volatility estimated this way, we can estimate the parameters and, based on them, re-
estimate the volatility process, and so on. Although we can keep alternating that way as
many times as we want, until the planned end of the estimation procedure, one might
be tempted to perform the particle filtering procedure fewer times, as it is much more
computationally expensive than the MCMC draws. The premise for this would be that
after several trials, the volatility estimate becomes “good enough”, and from that point
onward, one could solely generate more MCMC samples. A critical observation that we
have made is that the quality of the initial volatility estimates depends very highly on the
prior parameters that were used to initiate it. With a small number of particle filtering
procedures followed by multiple MCMC draws, the entire scheme does not have “enough
time” to properly calibrate, and the results tend to stick to the priors that are used. That
means for a prior leading exactly to the true value of the parameter, the estimator returns
almost error-free results; however, if one uses a prior leading to value of the true parameter,
e.g., 20% larger than it really is, the estimate will probably be off by roughly 20%, which
does not make the estimator very useful. A counterproposal can then be made to perform
particle filtering as long as possible. This, however, is not an ideal solution either. Firstly, as
we said, it is very computationally expensive, and secondly, a very long chain of samples
increases the probability that the estimation procedure would at some point return an
“outlier”, i.e., an estimate far away from the true value of the parameter, which is especially
likely if we use metaparameters responsible for such a parameter’s larger variance (e.g., σ

η
0

for η). The appearance of such “outliers” is especially unfavourable in case of the MCMC
methods, since its nature is that each sample is directly dependent on the previous one; so,
the whole procedure is likely to “stay” in the given “region” of the parameter space for
some number of subsequent simulations, thus impacting the final estimate of the parameter
(which is the mean of all the observed samples). Therefore, a clear tradeoff appears. If we
believe strongly that the prior we use is rather correct and only needs some “tweaking” to
adjust it to the particular dataset, a modest amount of particle filtering can be applied2,
followed by an arbitrary number of MCMC draws. If, however, we do not know much
about our dataset and do not want to convey too much information through the prior,
even at the cost of slightly worse final results, we should run particle filtering for a larger
number of times. The visual interpretation of this rule is presented in Figures 4 and 5.
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(a) (b)
Figure 4. Empirical distributions of the estimate samples for the θ parameter in the case when the
mean of the prior distribution exactly matches the true parameter and when it is twice as large. The
distributions in (a) were based on 10 sampling cycles and in (b) on 500 cycles. One can observe that
for the first figure, the distribution with the exact prior gives very good results, much better than the
shifted one. In the second figure, both distributions are comparable.

Figure 5. Sequences of estimate samples for a procedure in which particle filtering was conducted
only for the first 5% of samplings and another one in which the particle filtering was conducted for all
the samplings. In both cases, the mean of the prior distribution was shifted by 100% compared to its
true value. It can be observed that the samples of the first procedure remained around the value close
to the one dictated by the prior, whereas the samples of the other procedure converged to the true
value of the parameter, which led to the better final result, less dependent on the prior parameters.

Another factor which should be taken into consideration using the Bayesian approach
for estimating the Heston model is that the quality of results depends highly on the very
parameters we try to estimate. The σ parameter seems to play a critical role for the Heston
model, in particular. This can be observed in Figure 6. To produce it, an identical estimation
procedure was performed for two sample paths (which we can think of as of two different
stocks). They were simulated with the same parameters, except for σ. Path no. 1 was
simulated with σ = 0.01 and path no. 2 with σ = 0.1, ten times larger. The histograms
present the distribution of the estimated values of the κ parameter; the true κ was κ = 1,
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and the red vertical line illustrates this true value. It is clearly visible that for the value of
σ = 0.01, the samples were much more concentrated around the true value, while for a
larger value of σ = 0.1, they were more dispersed, and the variance of the distribution was
significantly larger. This incommodity cannot be easily resolved, as the true values of the
parameters of the trajectories are idiosyncratic; they cannot be influenced by the estimation
procedure itself. However, we wanted to sensitise the reader to the fact that the larger the
value of σ, the less trustworthy the results of the estimation of the other parameters might be.

Figure 6. Empirical distributions of the estimate samples for the κ parameter of two different
trajectories of the Heston model—one with σ = 0.01 and the other with σ = 0.1. The distribution of
the estimate samples of the trajectory with a smaller value of σ is narrower and more concentrated;
hence, it is likely to give less variable final estimates.

4.3. Towards Real-Life Applications

At the end, we wanted to emphasise the applicability of the methods described
above to real market data. We briefly mentioned in the Introduction that the results
yielded by some investment strategies are dependent on the character of the asset, which
might be accurately captured by parameters of the models we used to model this asset
(see Gruszka and Szwabiński (2021) for more details). Having a tool for obtaining the
values of those parameters from the data opens up a new field of investigation relying on
comparing synthetically generated stock price trajectories to the real ones and selecting
optimal portfolio management strategies based on the results of such comparisons. We
explore the possibility of utilising parameter estimates this exact way in our other work; see
Gruszka and Szwabiński (2023).

5. Conclusions

In this paper, a complete estimation procedure of the Heston model without and with
jumps in the asset prices was presented. Bayesian regression combined with the particle
filtering method was used as the estimation framework. Although some parts of the
procedure have been used in the past, our work provides the first complete follow-along
recipe of how to estimate the Heston model for real stock market data. Moreover, we
presented a novel approach to handle jumps in order to neutralize their negative impact on
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the estimates of the key parameters of the model. In addition, we proposed an improvement
of the sampling in the particle filtering method to obtain a better estimate of the volatility.

We extensively analysed the impact of the prior parameters as well as the number of
MCMC samplings and particle filtering iterations on the performance of our procedure.
Our findings may help to avoid several difficulties related with the Bayesian methods and
apply them successfully to the estimation of the model.

Our results have an important practical impact. In one of our recent papers, Gruszka and
Szwabiński (2021), we showed that the relative performance of several investment strategies
within the Heston model varied with the values of its parameters. In other words, what
turned out to be the best strategy in one range of the parameter values may have been the
worst one in the others. Thus, determining which parameter of the model corresponds to a
given stock market will allow one to choose the optimal investment strategy for that market.
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Appendix A. Table of Symbols

Table A1. Table of symbols used throughout the article.

Quantity Explanation

T max time (i.e., t ∈ [0, T])
S(t) asset price (with S(0) ≡ S0)
v(t) volatility (with v(0) ≡ v0)
BS(t) Brownian motion for the price process
Bv(t) Brownian motion for the volatility process
µ drift
κ rate of return to the long-time average
θ long-time average
σ volatility of the volatility
ρ correlation between prices and volatility
Z(t) size of the jump
µJ mean of the jump size
σJ standard deviation of the jump size
q(t) Poisson process counting jumps
λ intensity of jumps
∆t time step (also known as the discretisation constant)
n number of time steps (also known as the length of data)
εS(t) price process random component
εv(t) volatility process random component
εadd(t) additional random component—see Equation (10))
η regression parameter for drift estimation—see Equation (11)
R(t) ratio between neighbouring prices—see Equations (12) and (84)
yS(t) series of dependent variables for the drift estimation—see Equation (14)
xS(t) series of independent variables for the drift estimation—see Equation (15)
yS vector of the dependent variable for the drift estimation—see Equation (17)
xS vector of the independent variable for the drift estimation—see Equation (18)
µ

η
0 mean of the prior distribution of η

σ
η
0 standard deviation of the prior distribution of η
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Table A2. Table of symbols used throughout the article (continued).

Quantity Explanation

τ
η
0 precision of the prior distribution of η

η̂ OLS estimator of η—see (21)
µη mean of the posterior distribution of η—see (20)
τη precision of the posterior distribution of η—see (19)
ηi i-th sample of η—see (22)
µi i-th estimate of the drift—see (23)
β1 regression parameter for volatility parameters estimation—see Equation (25)
β2 regression parameter for volatility parameters estimation—see Equation (26)
β vector of regression parameters for volatility parameters estimation—see Equation (29)
yv vector of the dependent variable for the volatility parameter estimation—see Equation (30)
xv

1 vector of the independent variable for the volatility parameter estimation—see Equation (31)
xv

2 vector of the independent variable for the volatility parameter estimation—see Equation (32)
Xv matrix of the independent variable for the volatility parameter estimation—see Equation (34)
εv noise vector of the volatility parameter estimation—see Equation (35)
µ

β
0 mean vector of the prior distribution of β

Λ
β
0 precision matrix of the prior distribution of β

µβ mean vector of the posterior distribution of β—see Equation (37)
Λβ precision matrix of the posterior distribution of β—see (36)
β̂ OLS estimator of β—see (38)
βi i-th sample of β—see (39)
κi i-th estimate of κ—see (40)
θi i-th estimate of θ—see (41)
aσ

0 shape parameter of the prior distribution of σ2

bσ
0 scale parameter of the prior distribution of σ2

aσ shape parameter of the posterior distribution of σ2

bσ scale parameter of the posterior distribution of σ2

σi i-th estimate of the σ—see (42)
eρ

1(t) series of residuals of the price equation—see (45)
eρ

2(t) series of residuals of the volatility equation—see (46)
ψ regression parameter for ρ estimation, ψ = σρ—see (47)
ω regression parameter for ρ estimation, ω = σ2(1ρ2)—see (47)
eρ

1(t) series of independent variables for the estimation of ρ—see (45)
eρ

2(t) series of dependent variables for the estimation of ρ—see (46)
eρ

1 vector of the independent variables for the estimation of ρ—see (50)
eρ

2 vector of the dependent variables for the estimation of ρ—see (51)
eρ matrix of residuals—see (52)
Aρ auxiliary matrix for solving ρ regression—see (53)
µ

ψ
0 mean of the prior distribution of ψ

τ
ψ
0 precision of the prior distribution of ψ

µψ mean of the posterior distribution of ψ—see (54)
τψ precision of the posterior distribution of ψ—see (55)
aω

0 shape parameter of the prior distribution of ω
bω

0 scale parameter of the prior distribution of ω
aω shape parameter of the posterior distribution of ω—see (56)
bω scale parameter of the posterior distribution of ω—see (57)
ψi i-th sample of ψ—see (59)
ωi i-th sample of ω—see (58)
ε j(t) j-th sample of particle filtering independent errors—see (61)
zj(t) j-th sample of particle filtering residuals—see (62)
wj(t) j-th sample of particle filtering correlated—see (62)
Ṽj(t) j-th raw volatility particle—see (64)
W̃j(t) j-th particle likelihood measure—see (65) and (77)
W̆j(t) j-th particle probability—see (66)
Uj(t) j-th particle-probability vector—see (67)
Ṽsort

j (t) j-th raw volatility particle in a sorted sequence—see (68), (69), and (70)
W̆sort

j (t) probability of the j-th particle in the sorted sequence—see (71)
FṼsort (v) continuous CDF of resampled particles—see (72)
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Table A3. Table of symbols used throughout the article (continued).

Quantity Explanation

Vj(t) j-th final volatility particle—see (73)
λth proportion of particles encoding a jump
J̃j(t) j-th raw moment-of-a-jump particle—see (75)
µJ

0 mean of the raw size-of-a-jump particle
σJ

0 standard deviation of the raw size-of-a-jump particle
Z̃j(t) j-th raw size-of-a-jump particle—see (76)
Zj(t) j-th resampled size-of-a-jump particle—see (78)
λ(t) probability of a jump—see (79)
λi i-th estimate of λ—see (80)
Z(t) estimate of an average size of a jump—see (81)
µJ

i i-th estimate of µJ—see (82)
σJ

i i-th estimate of σJ—see (83)

Notes
1 Equation (65) is the reason we cannot run this procedure for k = n, as we would not be able to obtain R

(
(n + 1)∆t

)
, since the last

available value is R(n∆t).
2 For applications in finance, this task is sometimes easier than for some other fields of science, as numerous works have been

published already, presenting the results of the estimates of well-known stocks or market indices within various models. See, e.g.,
Eraker et al. (2003)
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