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Abstract: Despite the growing interest in realized stochastic volatility models, their estimation
techniques, such as simulated maximum likelihood (SML), are computationally intensive. Based on
the realized volatility equation, this study demonstrates that, in a finite sample, the quasi-maximum
likelihood estimator based on the Kalman filter is competitive with the two-step SML estimator,
which is less efficient than the SML estimator. Regarding empirical results for the S&P 500 index, the
quasi-likelihood ratio tests favored the two-factor realized asymmetric stochastic volatility model
with the standardized t distribution among alternative specifications, and an analysis on out-of-
sample forecasts prefers the realized stochastic volatility models, rejecting the model without the
realized volatility measure. Furthermore, the forecasts of alternative RSV models are statistically
equivalent for the data covering the global financial crisis.
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1. Introduction

Over the last two decades, research on realized volatility has received significant atten-
tion in modeling and forecasting the volatility of financial returns. For the generalized au-
toregressive conditional heteroskedasticity (GARCH) class models, Engle and Gallo (2006)
and Shephard and Sheppard (2010) incorporated realized volatility for modeling and
forecasting volatility. Using the information of return and realized volatility measure
simultaneously, Hansen et al. (2012) and Hansen and Huang (2016) developed the “realized
GARCH” and “realized exponential GARCH” models, respectively.

The literature on stochastic volatility models considers a realized volatility measure to
be an estimate of latent volatility. As highlighted by Barndorff-Nielsen and Shephard (2002),
there is a gap between true volatility and its consistent estimate, referred to as the “realized
volatility error”. Since the aforementioned error is nonnegligible, Barndorff-Nielsen and
Shephard (2002); Bollerslev and Zhou (2006); Takahashi et al. (2009), and Asai et al. (2012a,
2012b) accommodate a homoscedastic disturbance as an ad hoc approach. Analogous to the
realized GARCH model, Takahashi et al. (2009) suggested the realized stochastic volatility
(RSV) model, which is based on the information of return and realized volatility measure.

As in the GARCH model, it is useful to accommodate asymmetric effects and heavy-
tailed conditional distributions in stochastic volatility models. For the former, a typical
approach is to assume a negative correlation between the return and the disturbance for
the one-step-ahead log-volatility (see Harvey and Shephard 1996; Yu 2005), known as the
leverage effect. Instead of the standard normal distribution for the conditional distributions
for return, we may consider the standardized t distribution and the generalized error
distribution. Harvey et al. (1994), Sandmann and Koopman (1998), Liesenfeld and Jung
(2000), and Asai (2008, 2009), among others, assumed the (standardized) t distribution.
Furthermore, the empirical results in Liesenfeld and Jung (2000) and Asai (2009) indicate
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that the standardized t distribution yields better fits than the generalized error distribution.
By the statistical property of the stochastic volatility models, we can analytically obtain the
fourth moment of the return series.

For estimating various RSV models, Koopman and Scharth (2013) and Shirota et al.
(2014) used the simulated maximum likelihood (SML) estimation and the Bayesian Markov
chain Monte Carlo (MCMC) technique, respectively. Both approaches are computationally
demanding. This study reconsiders the quasi-maximum likelihood (QML) method of
Harvey et al. (1994) as it is straightforward to include the realized volatility equation, and
it is expected to contribute toward improving the efficiency of the QML estimator.

Interest in modeling volatility using the information on return and realized volatility
measure is simultaneously growing. Extending the class of the GARCH, Hansen et al.
(2012) and Hansen and Huang (2016) developed the “realized GARCH” and the “realized
exponential GARCH” models, respectively. Using the stochastic volatility (SV) models (e.g.,
see Chib et al. 2009), Takahashi et al. (2009) and Koopman and Scharth (2013) considered
the “realized SV” (RSV) and the “realized asymmetric SV” (RSV-A) models, respectively.

While the realized GARCH class models can be estimated by the maximum likeli-
hood estimation (MLE) technique, RSV class models require computationally demanding
techniques. While Takahashi et al. (2009) and Shirota et al. (2014) suggested the Bayesian
MCMC method, Koopman and Scharth (2013) developed the SML technique. Note that
Koopman and Scharth (2013) suggested a two-step SML (2SML) estimator that is less
efficient but less computationally intensive than the SML estimator. The current study
applies the QML estimation Harvey et al. (1994) to the RSV models to show the practical
usefulness.

The remainder of this paper is organized as follows. The RSV-A model with the
standardized t distribution (RSVt-A) is outlined in Section 2. The asymptotic property of
the QML estimator using the Kalman filter is discussed in Section 3, and its finite sample
properties are examined and compared with that of the 2SML method of Koopman and
Scharth (2013). The empirical results for the Standard and Poor’s (S&P) 500 index using
the return and realized volatility measure are reported in Section 4. Finally, concluding
remarks are presented in Section 5.

2. Realized Stochastic Volatility Models
2.1. Model

Let yt and xt denote open-to-close return of a financial asset and the log of a realized
measure of its volatility on day t, respectively. The pair of close-to-close return and the
realized volatility measure accommodating overnight volatility can be used as in Koopman
and Scharth (2013).

Consider the realized asymmetric SV model with the standardized t distribution
as follows:

yt = zt exp
(

1
2

ht

)
, zt =

εt√
wt/(ν− 2)

, wt ∼ χ2(ν), (1)

ht = c + αt, αt+1 = φαt + ηt, (2)

xt = ξ + ht + ut, (3) εt
ηt
ut

 ∼ N

 0
0
0

,

 1 ρση 0
ρση σ2

η 0
0 0 σ2

u

, (4)

where c, φ, ση , ρ, ν, ξ, and σu are parameters. According to the structure, zt follows a
standardized t distribution with the degree-of-freedom parameter ν. Note that E(zt) = 0,
E(z2

t ) = 1, E(z3
t ) = 0, and E(z4

t ) = 3(ν− 2)/(ν− 4) > 3. To guarantee the stationarity
of the process and the existence of the fourth moment, we assume |φ| < 1 and ν > 4,
respectively. As ρ is the correlation coefficient between εt and ηt, it satisfies |ρ| < 1. If the
realized volatility measure, xt, is a consistent estimate of ht, ξ is expected to be zero. By
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specification, non-zero ξ implies the (finite sample) bias in xt. We denote the model (1)–(4)
as the “RSVt-A”. The model reduces to the asymmetric SV model with the standardized
t distribution when we omit Equation (3) (see Harvey and Shephard 1996; Asai 2008).
Without the leverage effect, that is, ρ = 0, we obtain the RSVt model. By setting ν → ∞,
the model reduces to the RSV-A model. As in Asai (2008) and Koopman and Scharth
(2013), we can consider multi-factor models by allowing multiple factors in log-volatility as
ht = c + ∑m

i=1 αit.
Following Harvey et al. (1994) and Harvey and Shephard (1996), we obtain the state

space for the RSVt-A model. The logarithmic transformation of the squared yt yields(
log y2

t
xt

)
=

(
c + µlog z2

c + ξ

)
+ ιαt +

(
ζt
ut

)
, (5)

where ι is the 2× 1 vector of ones, µlog z2 = E(log z2
t ), and ζt = log z2

t − µlog z2 . By Equa-
tion (26.3.46) in Abramovits and Stegun (1970), we obtain µlog z2 = ψ(1/2) − ψ(ν/2) +
log(ν− 2) and V(log z2

t ) = V(ζt) = ψ′(1/2) + ψ′(ν/2), where ψ(x) is the digamma func-
tion defined by ψ(x) = d log Γ(x)

dx .
By the transformation log y2

t , we lose the information of the sign of yt. To recover
such information, we define the sign of yt as st = I(yt > 0)− I(yt ≤ 0), where I(A) is the
indicator function, which takes one if the condition A holds, and zero otherwise. As in
Harvey and Shephard (1996), we can modify Equation (2) as follows:

αt+1 = φαt + η∗t , (6)

with

E

 ζt
η∗t
ut

∣∣∣∣∣∣st

 =

 0
ast
0

, V

 ζt
η∗t
ut

∣∣∣∣∣∣st

 =

 σ2
ζ bst 0

bst σ2
η − a2 0

0 0 σ2
u

, (7)

where σ2
ζ = ψ′(1/2) + ψ′(ν/2), a = E(ηt|st = 1) = ρση

√
2/π = 0.7979ρση , and

b = ρσηE(|εt| log ε2
t ) − ρση

√
2/πE(log ε2

t ) = 1.1061ρση . Hence, the measurement in
Equation (5) and the transition in Equation (6) form the state-space model. By apply-
ing the Kalman filter to the state-space form in (5) and (6), it is straightforward to construct
the quasi-log-likelihood function (see Appendix A).

As in Koopman and Scharth (2013), the assumption on the covariance matrix in
Equation (4) can be relaxed by considering dependence between conditional return and
measurement noise. This modification requires a change in Equation (3) using st to construct
the state-space model, as in Equations (6) and (7).

2.2. Realized Kernel Estimator

As a realized volatility measure, we adopt the realized kernel (RK) estimator developed
by Barndorff-Nielsen et al. (2008), since it is a consistent estimator of the quadratic variation
and is robust to microstructure noise and jumps. This subsection explains the RK estimator
concisely.

Consider that the latent log-price p∗ follows a Brownian semimartingale plus jump
process given by

p∗t =
∫ t

0
µsds +

∫ t

0
σsdWs + Jt,

where µt is a predictable locally bounded drift; σt is a càdlàg process of volatility; Wt is a
process of Brownian motion; and Jt = ∑Nt

i=1 Ci is a finite activity jump process, which has
a finite number of jumps in any bounded interval of time. More precisely, Nt counts the
number of jumps that have occurred in the interval [0, t] and Nt < ∞ for any t.
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The quadratic variation of p∗ is given by

[p∗] =
∫ τ

0
σ2

s ds +
Nt

∑
i=1

C2
i ,

where
∫ τ

0 σ2
s ds is the integrated variance. The estimator of Barndorff-Nielsen et al. (2008)

for the quadratic variation is based on the noisy observation of log-price, pt = p∗t + vt
(t = τ0, τ1, . . . , τn) with τ0 = 0 and τn = τ, where E(vt) = 0 and Var(vt) = ω2.

Barndorff-Nielsen et al. (2008) suggested a non-negative estimator that takes the
following form:

K(p) =
G

∑
−G

k
(

g
G + 1

)
γg, γg =

n

∑
j=|g|+1

ýjýj−|g|,

where ýj is the jth high-frequency return calculated over the interval [τj−1, τj], and k(x) is a
kernel weight function. For practical purposes, Barndorff-Nielsen et al. (2009) focused on
the Parzen kernel function, defined by

k(x) =


1− 6x2 + 6x3 0 ≤ x ≤ 1/2
2(1− x)3 1/2 ≤ x ≤ 1
0 x > 1.

Barndorff-Nielsen et al. (2008, 2009) provided an estimator for the bandwidth of G. Un-
der mild regularity conditions, Barndorff-Nielsen et al. (2008) demonstrated that K(p)
converges to [p∗] in probability, as n→ ∞.

For practical purposes, it is convenient to work with the log of the RK estimator for its
stability. Even though the RK estimator is consistent, it has finite sample bias and noise,
and Equation (3) accommodates the constant term and the disturbance.

3. QML Estimation via Kalman Filter
3.1. QML Estimation

Define θ = (c, φ, σ2
η , ρ, ν, ξ, σ2

u)
′. For the state-space form (5) and (6), applying the

Kalman filtering algorithm produces the quasi-log-likelihood function:

L(θ) =
T

∑
t=1

lt(θ), lt(θ) = − ln(2π)− 1
2

ln |Ft| −
1
2

v′tF
−1
t vt.

where vt (2× 1) and Ft (2× 2) can be obtained as described in Appendix A. Maximizing
the quasi-log-likelihood derives the QML estimator, θ̂. Although the vector of errors has a
non-Gaussian distribution, the state-space form has the martingale property and at least
the finite fourth moment. Based on the results in Dunsmuir (1979), it is straightforward to
demonstrate the consistency and the asymptotic normality of the QML estimator, as follows:

plim θ̂ = θ0,
√

T(θ̂− θ0)
d−→ N(0, C(θ0)),

where θ0 is the vector of true parameters. The covariance matrix C(θ0) is equivalent to that
of the MLE based on the Whittle likelihood. Using the equivalence, we can demonstrate
that the quasi-likelihood ratio (QLR) statistic has an asymptotic χ2 distribution under the
null hypothesis (e.g., see the proof of Theorem 3.1.3 in Taniguchi and Kakizawa 2000).

Koopman and Scharth (2013) developed the SML approach and its two-step version,
while Durbin and Koopman (2001) suggested a general approach for obtaining the simu-
lated likelihood function for non-Gaussian state-space models and Koopman and Scharth
(2013) applied it to the RSVA-t model. For the SML method, the likelihood function can
be arbitrarily approximated precisely by decomposing it into a Gaussian part, constructed
with a Kalman filter, and a remainder function, for which the expectation is evaluated
through simulation. The decomposition reduces the computational time, but the SML is still
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computer-intensive since it requires a T-dimensional Monte Carlo integration for the latent
variables whenever the log-likelihood function is evaluated. To avoid this problem, Koop-
man and Scharth (2013) developed the 2SML estimator. The first-step estimation provides
estimates via the Kalman filter for the state-space model consisting of Equations (2) and (3),
while the second maximizes the remaining part of the likelihood function to obtain the
remaining parameter and to correct the bias caused by neglecting (1) in the first step (see
Appendix B for details).

Compared with the SML estimator, the 2SML and QML estimators are less efficient
owing to the fluctuations caused by the asymptotic variance of the first-step estimator
and the non-Gaussianity in ζt in Equation (5), respectively. Hence, the inefficiency of
these two estimators derives from different reasons, and the finite sample properties of
the 2SML and QML estimators are worth examining. Note that the QML estimation is
faster than the 2SML method, since the former has no additional step using the simulated
quantity. Recently, Asai et al. (2017) developed a two-step estimation method based on the
Whittle likelihood for the RSV-A model. While their approach requires two steps, the QML
estimation using the Kalman filter needs no additional step, implying that the two-step
Whittle likelihood estimator is less efficient than the QML estimator.

3.2. Finite Sample Property of QML Estimator

In this subsection, we conducted a Monte Carlo experiment to investigate the finite
sample properties of the QML estimator, with a comparison with the 2SML estimator.
Although the QML and 2SML estimator are asymptotically less efficient than the SML
estimator, these estimation methods are computationally faster than the SML approach.
Hence, it is worth comparing the QML and 2SML estimators. The experiments follow
the framework in Koopman and Scharth (2013) with the two data-generating processes
(DGP) based on Equations (1)–(4). The first DGP was the RSV-A model with the true
parameters reported in Table 1, while the second was the RSVt model based on the true
parameters in Table 2. The sample size was T = 2500. While Koopman and Scharth (2013)
set the number of replications as 250 for the computationally intensive SML method, we
considered 2000 replications for fast estimation procedures, that is, the QML and 2SML
methods. For details regarding the 2SML estimation, see Appendix B. All the experiments
were run on MATLAB R2022b, using the interior-point algorithm and starting from the
true parameter values.

Table 1. Monte Carlo results for QML and 2SML estimators for RSV-A.

Parameter True
QML 2SML

Mean Std. Dev. RMSE/|θi| Mean Std. Dev. RMSE/|θi|
φ 0.98 0.9786 (0.0042) [0.0045] 0.9784 (0.0045) [0.0048]
σ2

η 0.05 0.0501 (0.0034) [0.0675] 0.0501 (0.0035) [0.0703]
ξ 0.10 0.1002 (0.0444) [0.4442] 0.0928 (0.0290) [0.2988]

σ2
u 0.05 0.0500 (0.0027) [0.0545] 0.0500 (0.0029) [0.0572]
c 0.40 0.3998 (0.2021) [0.5055] 0.4092 (0.2216) [0.5545]
ρ −0.30 −0.3020 (0.0298) [0.0994] −0.2999 (0.0280) [0.0932]

Table 2. Monte Carlo results for QML and 2SML estimators for RSVt.

Parameter True
QML 2SML

Mean Std. Dev. RMSE/|θi| Mean Std. Dev. RMSE/|θi|
φ 0.98 0.9786 (0.0044) [0.0048] 0.9787 (0.0045) [0.0047]
σ2

η 0.05 0.0500 (0.0033) [0.0653] 0.0500 (0.0033) [0.0658]
ξ 0.10 0.0899 (0.0645) [0.6523] 0.0584 (0.4538) [4.5541]

σ2
u 0.05 0.0500 (0.0028) [0.0564] 0.0500 (0.0028) [0.0569]
c 0.40 0.4022 (0.2268) [0.5671] 0.4289 (0.5024) [1.2579]
ν 10.00 10.365 (4.0983) [0.4114] 10.547 (0.8452) [0.0998]
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Regarding the QML and 2SML estimates for the RSV-A model, Table 1 reports the
sample means, standard deviations, and root mean squared errors (RMSEs) divided by the
absolute value of the corresponding true parameters. As presented in Table 1, the sample
mean of the QML estimates were close to the true value, implying that the finite sample
biases are negligible. The RMSE/|θi| (i = 1, . . . , 6) takes a values less than 0.51. The finite
sample biases for the 2SML estimator are negligible, except for c. The bias is caused by
the fluctuations in the first-step estimator, and it will disappear as sample size increases.
Compared with the result of the 2SML estimator, the values of the QML estimator are close
to those corresponding to the former except for ξ. The QML estimator for ξ has a higher
value of RMSE/|θi|, implying an inefficiency when estimating the constant term in the
volatility equation caused by including the log y2

t equation. Regarding c and ρ, the QML
estimator has smaller standard deviations and RMSEs, implying an inefficiency caused by
the first-step estimate on 2SML.

The simulation results for the RSVt model are reported in Table 2, implying that the
finite sample biases are negligible. The results of RMSE/|θi| for the QML estimator indicate
that the QML and 2SML estimators are competitive. Owing to the inefficiency caused
by the two-step estimation and bias correction, the 2SML estimator has greater values
for RMSE/|θi| for (c, ξ). On the other hand, the 2SML estimator has a smaller value of
RMSE/|θi| for ν, indicating the inefficiency caused by approximating the log of the squared
t variable as a normal distribution on the QML estimation.

The 2SML method estimates (φ, σ2
η , ξ∗, σ2

u) using the information of xt in the first
step, while the QML estimation uses that of (log(y2

t ), xt, st) to obtain the estimates of all
parameters. These estimations are based on the Kalman filtering algorithm and common
parameters are (φ, σ2

η , σ2
u). Hence, it is possible to examine the contributions of log(y2

t ) for
estimating (φ, σ2

η , σ2
u) via the Kalman filter. According to Tables 1 and 2, the differences are

negligible for (φ, σ2
η , σ2

u), indicating that the contribution of log(y2
t ) in the state-space form

is negligible for estimating these parameters. The difference in the variance between ζt and
ut supports the results, 4.93 and 0.05, respectively.

The Monte Carlo results imply that the QML estimator based on the Kalman fil-
ter is competitive with the 2SML estimator in Koopman and Scharth (2013). Owing to
computational simplicity, the QML estimator is a fast and useful alternative to the 2SML
estimator.

4. Empirical Analysis
4.1. Estimation Results

To estimate alternative RSV models using the QML method based on the Kalman
filter, we use a daily return and realized volatility measure for the S&P 500 index. For
the realized volatility measure, we selected the RK estimator in Barndorff-Nielsen et al.
(2008) as it is robust to microstructure noise and jumps, as explained above. As the realized
volatility is calculated using intraday data, the open-to-close return is used for yt, as in
Hansen et al. (2012). The data are obtained from the Oxford Man Institute of Quantitative
Finance, and the sample period is from 22 December 2005 and to 4 December 2017, giving
3000 observations. The first T = 2500 observations are used for estimating parameters,
and the remaining F = 500 are reserved for forecasting. The descriptive statistics for the
whole sample are presented in Table 3. The standardized variable was calculated using
yt exp(−0.5xt), as xt is the log of RK. The return and RK have heavy tails, whereas the
kurtoses of xt and the standardized variable are close to three. Compared with the return,
the standardized variable is close to the Gaussian distribution.
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Table 3. Descriptive statistics for S&P 500.

Data Mean Std. Dev. Skewness Kurtosis

Return 0.0222 1.3138 −0.2989 14.419
RK 1.0535 8.5195 14.260 359.30

log(RK) −0.8240 1.3799 0.5697 3.5821
Std. Var. 0.1316 1.1649 −0.0053 2.6944

Note: The standardized variable is calculated by dividing the return by the square root of the RK.

This section compares six models: SV, RSV, RSV-A, RSVt, RSVt-A, and two-factor RSVt-A
(2fRSVt-A). Among these, the last model is defined by Equations (1) and (3), with

ht = c + α1t + α2t, α1,t+1 = φα1t + η1t, α2,t+1 = φ2α2t + η2t, (8)
εt
η1t
η2t
ut

 ∼ N




0
0
0
0

,


1 ρση ρ2ση,2 0

ρση σ2
η 0 0

ρ2ση,2 0 σ2
η,2 0

0 0 0 σ2
u


. (9)

As discussed in the previous section, the model comparison is based on the QLR test.
The QML estimates for the six models are reported in Table 4, indicating that all

parameters are significant at the five percent level. The estimates of (c, φ, σ2
η ) for the SV

model are typical values in empirical analysis. For the RSV model, the estimates of (c, φ, σ2
η )

are similar to those of the SV model. As discussed in Section 3.2, the contribution of the
log y2

t equation is negligible for estimating (φ, σ2
η ) in the RSV model. In other words, the

finite sample bias of the QML estimator for (φ, σ2
η ) in the SV model is corrected in the RSV

model owing to the contribution of the realized volatility equation to construct the RSV
model. As the estimate of φ decreases, the value of σ2

η increases, keeping the variance
of αt, σ2

η /(1− φ2) at a similar level. The estimate of ξ is negative and significant, which
may be caused by finite sample bias in the RK estimates. Note that it is inappropriate to
compare the quasi-log-likelihood of the SV and RSV models, since the former excludes the
information of xt. The estimates for the RSV-A model are close to those of the RSV model.
The estimate of ρ is negative and significant, implying the existence of the leverage effect.
The QLR test rejects the null hypothesis ρ = 0. For the RSVt model, the estimate of ν is 11.2.
In contrast, the QLR test failed to reject the null hypothesis of the Gaussian distribution,
ν = ∞. As implied by the Monte Carlo results in Table 2, there is an inefficiency on
estimating ν, which may derive an ambiguous result for the inference on ν. Note that the
descriptive statistics for the standardized variable in Table 3 support the results of the QLR
tests. The QLR tests in Table 4 indicate that the RSVt-A is preferred to the RSV and RSVt
model. For the 2fRSVt-A model, the estimates of φ and |ρ| in the first factor are larger than
the corresponding values in the second factor. The QLR test rejects the null hypothesis of
the one factor model; the tests selected the 2fRSVt-A model among the six models.

Table 4. QML estimates via the Kalman filter for S&P 500.

Parameter SV RSV RSV-A RSVt RSVt-A 2fRSVt-A

c −0.4605 −0.4588 −0.3243 −0.3843 −0.2946 −0.2113
(0.0045) (0.0029) (0.0023) (0.0033) (0.0028) (0.0029)

φ 0.9820 0.9539 0.9583 0.9542 0.9583 0.9714
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

σ2
η 0.0411 0.0989 0.0761 0.0982 0.0760 0.0482

(0.0002) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001)
ρ −0.6034 −0.6048 −0.5737

(0.0007) (0.0007) (0.0009)
φ2 0.2188

(0.0015)
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Table 4. Cont.

Parameter SV RSV RSV-A RSVt RSVt-A 2fRSVt-A

σ2
η,2 0.2128

(0.0005)
ρ2 −0.1216

(0.0006)
ξ −0.1807 −0.1927 −0.2553 −0.2207 −0.1950

(0.0009) (0.0009) (0.0018) (0.0017) (0.0011)
σ2

u 0.1567 0.1839 0.1572 0.1840 0.0026
(0.0002) (0.0002) (0.0002) (0.0002) (0.0005)

ν 15.0751 37.8286 102.1949
(0.2884) (1.9073) (6.6828)

QLogLike −5734.4 −7756.8 −7641.5 −7756.3 −7641.4 −7590.8
H0 ρ = 0 ν = ∞ ρ = 0 1 factor

QLR test 230.61 0.9698 229.80 101.27
[0.0000] [0.3247] [0.0000] [0.0000]

Note: Standard errors are in parentheses. p-values are in brackets.

4.2. Forecasting Performance

We compare out-of-sample forecasts of the SV and the five RSV models. For these six
models, the Kalman filter prediction for the state-space form in (5) and (6) provides the
one-step-ahead forecast, x̂T+1, and σ̂2

T+1 = exp(x̂T+1) is a forecast of the quadratic varia-
tion for day T + 1. By updating the parameter estimates, we calculate the forecasts σ̂2

T+j
(j = 1, . . . , F) using the rolling window of the model for recent T = 2500 observations. An
alternative forecast can be considered as follows. Under the Gaussianity of ζt, the distribu-
tion of αt+1 conditional on the past observations is N(at+1, Pt+1), where at and Pt are de-
fined in Appendix A. Then, the conditional distribution of σ2

t+1 = exp(ξ + c+ αt+1) follows
the log-normal distribution, which gives the conditional mean exp(ξ + c + at+1 + 0.5Pt+1).
Define σ̂2∗

T+1 = exp(x̂T+1 + 0.5PT+1) where x̂t+1 = ξ̂ + ĉ + at+1. Then, σ̂2∗
T+1 can be a fore-

cast as an alternative to σ̂2
T+1.

For comparison, we obtain forecasts based on the RSV, RSV-A, and RSVt models using
the 2SML method, as explained in Koopman and Scharth (2013) For the RSV-A model,
we first compute the Kalman filter prediction of xT+1 and subsequently add the leverage
effect E(ηt|εt) = ρσηεt by calculating ε̂t = yt × E(exp(−0.5ht)|x1, . . . , xt). Since the RSV
and RSVt have no leverage effect, they are free from the latter part.

For comparing the out-of-sample forecasts, Patton (2011) suggested an approach using
imperfect volatility proxies. Patton (2011) examined the functional form of the loss function
for comparing volatility forecasts, such that the forecasts are robust to the presence of noise
in the proxies. According to the definition in Patton (2011), a loss function is “robust” if
the ranking of any two forecasts of the co-volatility matrix, σ̂

2(1)
T+j and σ̂

2(2)
T+j , by expected

loss is the same whether the ranking is performed using the true covariance matrix or an
unbiased volatility proxy, σ̀2

t . Patton (2011) demonstrated that squared forecast error and
quasi-likelihood type loss functions, defined by

MSFE : LFm
i,T+j = LFm(σ̀2

T+j, σ̂
2(i)
T+j) =

(
σ̀2

T+j − σ̂
2(i)
T+j

)2
, (10)

QLIKE : LFq
i,T+j = LFq(σ̀2

T+j, σ̂
2(i)
T+j) =

σ̀2
T+j

σ̂
2(i)
T+j

+ log σ̂
2(i)
T+j, (11)

are robust to the forecast error σ̀2
T+j − σ̂

2(i)
T+j and the standardized forecast error σ̀2

T+j/σ̂
2(i)
T+j,

respectively.
For these loss functions in (10) and (11), the MCS procedure in Hansen et al. (2011)

enables us to determine the set of models, M∗, that consist of the best model(s) from
a collection of models, M0. Define dik,t = LFi,t − LFk,t and d̄ik = F−1 ∑F

j=1 dik,T+j as the
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difference in the loss functions of two competitive models and its sample mean, respectively.
Under the null hypothesis H0 : E(dik,t) = 0 (i > k, ∀i, k ∈ Mk), Hansen et al. (2011)
considered two kinds of test statistics:

tR = max
i,k∈Mk

∣∣∣∣∣∣ d̄ik√
V̂ar(d̄ik)

∣∣∣∣∣∣, tSQ = ∑
i,k∈Mk ,i>k

 d̄ik√
V̂ar(d̄ik)

2

, (12)

where V̂ar(d̄ik) is a bootstrap estimate of the variance of d̄ik, and the p-values of the test
statistics are determined using a bootstrap approach. If the null hypothesis is rejected at a
given confidence level, the worst performing model is excluded (rejection is determined on
the basis of bootstrap p-values under the null hypothesis). Such a model is identified as
follows:

i = arg max
i∈Mk

(
∑

k∈Mk

d̄ik

){
V̂ar

(
∑

k∈Mk

d̄ik

)}−1/2

, (13)

where the variance is computed using a bootstrap method.
The means of the MSFE and QLIKE, defined by (10) and (11), for the six models for the

two volatility forecasts, that is, σ̂2
T+j and σ̂2∗

T+j (j = 1, . . . , F), based on the QML estimation
are presented in Table 5, which reports three models for the 2SML method. Generally, the
Kalman filtering prediction, σ̂2

T+j, has a smaller MSFE, while adjusted forecast, σ̂2∗
T+j, has the

smaller QLIKE. MSFE selects the 2fRSV-t (QML) based on the Kalman filtering prediction,
while QLIKE chooses the simple RSV (QML) using the adjusted value. The p-values of the
MCS for the best model based on the tR statistic are presented in brackets in Table 5. We
omitted the results for tSQ as these are similar. The differences in model performance are
explained using the p-values. The forecast made by the SV model is significantly different
from those of alternative RSV models for both loss functions. Among the RSV models, the
differences may be negligible for the datasets. In general, the QML method produces better
forecasts than the 2SML estimations, but the differences are statistically insignificant.

Table 5. Out-of-Sample Forecast Evaluation.

MSFE QLIKE

Model σ̂2
T+1 σ̂2∗

T+1 σ̂2
T+1 σ̂2∗

T+1

SV (QML) 5.7010 [0.000] 9.0803 [0.000] 1.0754 [0.000] 1.2688 [0.000]
RSV (QML) 0.0816 [0.750] 0.0817 [0.750] −0.5990 [0.337] −0.6043 [1.000]

RSV-A (QML) 0.0800 [0.967] 0.0813 [0.750] −0.5937 [0.337] −0.5978 [0.337]
RSVt (QML) 0.0817 [0.750] 0.0817 [0.750] −0.5989 [0.337] −0.6042 [0.426]

RSVt-A (QML) 0.0800 [0.967] 0.0812 [0.750] −0.5938 [0.337] −0.5979 [0.426]
2fRSVt-A (QML) 0.0799 [1.000] 0.0841 [0.750] −0.5905 [0.337] −0.5956 [0.337]

RSV (2SML) 0.0829 [0.750] 0.0824 [0.750] −0.5964 [0.337] −0.6017 [0.426]
RSV-A (2SML) 0.0815 [0.750] 0.0821 [0.750] −0.5904 [0.242] −0.5972 [0.337]
RSVt (2SML) 0.0829 [0.750] 0.0824 [0.750] −0.5964 [0.337] −0.6017 [0.426]

Note: The table reports the means of MSFE and QLIKE, defined by (10) and (11), respectively. σ̂2
T+1 and σ̂2∗

T+1 are
the one-step-ahead volatility forecast and its adjusted value based on the log-normal assumption. The minimum
values for MSFE and QLIKE are highlighted in bold. The values in brackets are the p-value obtained via the model
confidence set (MCS) procedure (Equations (12) and (13)) on the 18 sets of forecasts for the two loss functions.

The out-of-sample forecast performance indicates that the data prefer the RSV models
to the SV model. For the datasets, there are no statistical differences among the two forecasts
of the six RSV models. The data contain the period of the global financial crisis caused
by the collapse of the Lehman Brothers, starting from 15 September 2008. The statistical
indifference among the RSV models may be caused by the effects of turbulence in the data.
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5. Conclusions

This study examined the QML method using the Kalman filter for RSVt-A models.
The Monte Carlo experiments reveal that the finite sample property of the QML estimator is
competitive with the 2SML estimator in Koopman and Scharth (2013). The QML estimation
is useful for its computational speed and simplicity. The empirical results for the S&P 500
index indicate that the 2fRSVt-A model is preferred over alternative RSV models, while
the analysis of the out-of-sample forecasts favors the RSV models rejecting the simple SV
model. Furthermore, the forecasts of alternative RSV models are statistically equivalent to
the simple RSV for the data covering the global financial crisis.

Compared with the SML, 2SML, and Bayesian MCMC methods, the computational
load of the QML estimation is negligible and useful for practical purposes. There are
several directions for extending the current research. First, we can consider estimating a
multivariate model with dynamic correlations, extending the work of Asai and McAleer
(2009). Second, we can develop the QML technique for the long-memory volatility model,
as in Shirota et al. (2014). Third, it is straightforward to include multiple components for
the volatility equation, as in Engle and Gallo (2006). We leave such tasks for future research.
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2fRSVt-A Two-factor realized asymmetric stochastic volatility with standardized t distribution
2SML Two-step simulated maximum likelihood
GARCH Generalized autoregressive conditional heteroskedasticity
MCMC Markov chain Monte Carlo
MSFE Mean squared forecast error
QLIKE Quasi-likelihood
QLR Quasi-likelihood ratio
QML Quasi-maximum likelihood
RK Realized kernel
RSV Realized stochastic volatility
RSV-A Realized asymmetric stochastic volatility
RSVt Realized stochastic volatility with standardized t distribution
RSVt-A Realized asymmetric stochastic volatility with standardized t distribution
S&P Standard and Poor’s
SML Simulated maximum likelihood
SV Stochastic volatility

Appendix A. Kalman Filtering and Smoothing

Consider a linear state-space model for m× 1 vector yt:

yt = c + Zαt + εt, εt ∼ N(0, Ht),

αt+1 = dt + Tαt + Rηt, ηt ∼ N(0, Qt), t = 1, . . . , T,
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where α1 ∼ N(a1, P1). The Kalman filter recursion is given by

vt = yt − c− Zαt, Ft = ZPtZ′ + Ht,

Kt = TPtZ′F−1
t , Lt = T − KtZ,

at+1 = dt + Tat + Ktvt, Pt+1 = TPtL′t + RQtR′.

Note that at+1 = E(αt+1|y1, . . . , yt; θ) and Pt+1 = Var(αt+1|y1, . . . , yt; θ). Since vt ∼ N(0, Ft),
we obtain the log-likelihood function as follows:

L(θ) =
T

∑
t=1

lt(θ), lt(θ) = −
m
2

ln(2π)− 1
2

ln |Ft| −
1
2

v′tF
−1
t vt.

If the distribution of εt is non-Gaussian, L(θ) becomes the quasi-log-likelihood function.
We can compute the smoothed estimate, α̂t = E(αt|y1, . . . , yT ; θ), and the correspond-

ing covariance matrix, Vt = Var(αt|y1, . . . , yt; θ), using the backward state-smoothing
equations:

rt−1 = Z′F−1
t vt + L′trt, Nt−1 = Z′Ft−1Z + L′tNtLt,

α̂t = at + Ptrt−1, Vt = Pt − PtNt−1Pt,

with the starting values rT = 0 and NT = O.
de Jong (1989) developed the deletion-smoothing algorithm to obtain the estimate

ὰt = E(αt|y\t; θ) and the associated covariance matrix V̀t = Var(αt|y\t; θ), where y\t is the
interpolation set {y1, . . . , yt−1, yt+1, . . . , yT}. Define forward equations as follows:

wt = F−1
t vt − K′trt, Wt = F−1

t + K′tNtKt, Mt = LtNtKt − Z′F−1
t . (A1)

As demonstrated by Theorem 5 in de Jong (1989), we obtain the following:

ὰt = α̂t + Pt MtW−1
t wt, V̀t = V̂t + Pt MtW−1

t M′tPt. (A2)

We can obtain the deletion-smoothing estimate of α∗t = (αt, ηt)′ by redefining the state
space model,

yt = c + Z∗α∗t + εt, εt ∼ N(0, Ht),

α∗t+1 = d∗t + T∗α∗t + R∗η∗t , η∗t ∼ N(0, Qt),
(A3)

where

d∗t =

[
dt

Oq×1

]
, Z∗ =

[
Z Om×q

]
, T∗ =

[
T R

Op×r Oq×q

]
, R∗ =

[
Or×q

Iq

]
,

to apply the deletion-soothing algorithms in (A1) and (A2) to the model in (A3).

Appendix B. Two-Step SML (2SML) Estimation

Appendix B.1. Framework

Let y = (y1, . . . , yT), x = (x1, . . . , xT), and α = (α1, . . . , αT). For the vector of un-
known parameters, define ψ = (ψ′y, ψ∗′x , ψ′α)

′, where ψy = (c, ρ, ν)′, ψ∗x = (ξ∗, σ2
u)
′,

ψα = (φ, σ2
η) with ξ∗ = c + ξ. The density of (y, x) is expressed as follows:



Econometrics 2023, 11, 18 12 of 13

p(y, x; ψ) =
∫

p(y, x, α; ψ)dα

=
∫

p(y|x, α; ψy)p(x|α; ψ∗x)p(α; ψα)dα

=
∫ T

∏
t=1

p(yt|xt, αt, ηt; ψy)p(xt|αt; ψ∗x)p(αt|αt−1; ψα)dα.

(A4)

Koopman and Scharth (2013) documented that the likelihood function based on the
density (A4) can be approximated via

L(ψ; y, x) = p(x; ψ∗x, ψα)× p(y|x; ψy, ψα), (A5)

where

p(x; ψ∗x, ψα) =
∫ T

∏
t=1

p(xt|αt; ψ∗x)p(αt|αt−1; ψα)dα,

p(y|x; ψ) =
T

∏
t=1

p(yt|x\t; ψ), p(yt|x\t; ψ) =
∫

p(yt|αt, ηt; ψ)p(αt, ηt|x\t; ψ)dαtdηt,

(A6)

with the interpolation set x\t = {x1, . . . , xt−1, xt+1, . . . , xT}. Intuitively, the idea of Koop-
man and Scharth (2013) is to evaluate the marginal density p(x; ψ∗x, ψα) via the Kalman
filter and to estimate the remaining part p(y|x; ψ) via numerical integration or quasi-Monte
Carlo integration. Maximizing log p(x; ψ∗x, ψα) gives the first-step estimator for ψx and ψα.
Conditional on the estimate, maximizing the remaining part with respect to ψy gives the
second-step estimate. The details of the second-step estimation for the models with and
without the asymmetric effect are explained in the rest of the appendix.

Appendix B.2. Estimation for Model without Asymmetric Effect

For the model without asymmetric effects, the conditional density for yt in (A6)
reduces to

p(yt|x\t; ψ) =
∫

p(yt|αt; ψy)p(αt|x\t; ψ)dαt.

As discussed in Koopman and Scharth (2013), p(αt|x\t; ψ) is the normal density function
with mean E(αt|x\t; ψ) and variance Var(αt|x\t; ψ), which can be obtained via the deletion
smoothing algorithm (see Appendix A). Koopman and Scharth (2013) recommended using
the Gaussian quadrature for approximating p(yt|x\t; ψy, ψ̂x, ψ̂α), where ψ̂x and ψ̂α are
estimates obtained via the first-step. This current study adopts the Gaussian–Legendre
quadrature based on six points since there is no major improvement from increasing the
number of points after six.

Using the approximated density

p̂(y|x; ψy, ψ̂
∗
x, ψ̂α) =

T

∏
t=1

p̂(yt|x\t; ψy, ψ̂
∗
x, ψ̂α),

it is straightforward to obtain the second-step estimator by maximizing the log of the
simulated likelihood function for the 2SML estimation. Note that the constant term in (3)
needs correcting by ξ̂ = ξ̂∗ − ĉ using ĉ in the second step.

Appendix B.3. Estimation for Model with Asymmetric Effect

For the model without asymmetric effects, Koopman and Scharth (2013) suggested
approximating p(yt|x\t; ψ) via quasi-Monte Carlo integration using the Halton sequence
(see Train 2003 for instance):
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p̂(yt|x\t; ψ) =
1
S

S

∑
s=1

p(yt|α(s)t , η
(s)
t ; ψy, ψ̂α),

where (α
(s)
t , η

(s)
t ) is obtained via the two-dimensional Halton sequence, which is controlled

by the mean and the covariance matrix of p(αt, ηt|x\t; ψ̂
∗
x, ψ̂α). The deletion-smoothing

algorithm for the redefined state (αt, ηt) is explained in Appendix A. For the case of
the normal distribution for εt, p(yt|αt, ηt; ψy, ψ̂α) is the normal distribution with mean
(ρηt/σ̂η) exp(0.5ht) and variance (1− ρ2) exp(0.5ht), with ht = c + αt, respectively. For the
case of non-normal distribution, Koopman and Scharth (2013) used a copula function for
the dependence. Maximizing the log of the simulated likelihood gives the second-step SML
estimator, as above.

The approximation error of the quasi-Monte Carlo integration is of the order
O(S−1(log S)2). As discussed in Asmussen and Glynn (2007), the convergence rate of
the quasi-Monte Carlo method in practice is usually much faster than its theoretical upper
bound. The Monte Carlo experiments in Koopman and Scharth (2013) set S = 100, and the
current study follows this approach.
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