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Abstract: In this study, we leverage geographical coordinates and firm-level panel data to uncover
variations in production across different locations. Our approach involves using a semiparametric
proxy variable regression estimator, which allows us to define and estimate a customized production
function for each firm and its corresponding location. By employing kernel methods, we estimate
the nonparametric functions that determine the model’s parameters based on latitude and longitude.
Furthermore, our model incorporates productivity components that consider various factors that
influence production. Unlike spatially autoregressive-type production functions that assume a
uniform technology across all locations, our approach estimates technology and productivity at both
the firm and location levels, taking into account their specific characteristics. To handle endogenous
regressors, we incorporate a proxy variable identification technique, distinguishing our method from
geographically weighted semiparametric regressions. To investigate the heterogeneity in production
technology and productivity among Norwegian grain farmers, we apply our model to a sample of
farms using panel data spanning from 2001 to 2020. Through this analysis, we provide empirical
evidence of regional variations in both technology and productivity among Norwegian grain farmers.
Finally, we discuss the suitability of our approach for addressing the heterogeneity in this industry.

Keywords: firm- and location-specific production function; semiparametric regression; proxy variable
estimation; spatial analysis

1. Introduction

Some of the more common assumptions in the econometric estimation of production
function are related to the independence and homogeneity of the production units. That
is, the production technology is assumed to be homogeneous, and possible externalities
(spillover effects) are ruled out. However, in the context of farming, where production
is primarily a biological process, this may not be the case. For this reason, the analysis
of agricultural production should typically be more nuanced and account for differences
in technology that satisfy the environmental and social conditions within which farms
operate. Farming is also a somewhat unique industry in terms of the extent to which it
is possible to get a handle on the natural characteristics of land that determine natural
advantages, such as soil type and moisture, plant fertility, the potential for crop diseases
and weed infestations, the gradient of the land, the climate, etc. (e.g., Holmes and Lee 2012;
Postiglione et al. 2022). As an example, farmers usually choose to grow varieties that are
best suited to the environmental and climatic conditions in which the farms operate.

Heterogeneity also arises because of the way the economic system works. Some
farms have advantages because they are located close to markets (which implies lower
transportation costs, either to the local market or to food processing) and/or have easier
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access to labor, human capital, and expert advisors. It can also be due to differences between
farms and regions in terms of government restrictions, support systems, etc. (e.g., Capello
2009). All of the above-mentioned aspects require agricultural production analyses (and
their corresponding production functions) to account for heterogeneity. Further, existing
studies in the literature support the idea that producers do not even operate on the basis of
a single homogeneous technology (e.g., Dosi and Nelson 2010; Eberhardt and Teal 2013;
Just and Pope 2001; Mundlak 2001; Syverson 2011).

For this reason, many existing studies control for the possibility of heterogeneous
technology. One way is to use classification (e.g., firm location) or cluster analysis (statistical
classification based on some observed variables) to estimate different production functions
for each class or group (e.g., Álvarez et al. 2008). This “observed” classification to deal
with heterogeneity among firms is challenging. The identification of heterogeneity requires
comprehensive spatial modeling of soil as well as agronomic and climatic properties,
including changes through time. This identification then requires processing of large
quantities of data acquired at a very fine spatial resolution. In practice, it is hard or even
sometimes impossible to gain access to all these data for “observed” classification, and
researchers often need to rely on only a few control variables. Therefore, a drawback of
this “observed” classification approach of splitting a sample of observations (firms) is that
differences in technology will typically be the result of both observed and unobserved
heterogeneity (Billé et al. 2018).

Modeling unobserved heterogeneity can be accomplished via finite mixture/latent
class methods, nonparametric methods, and fixed/random effects panel data analyses
(e.g., Greene 2005; Kumbhakar and Tsionas 2010; O’Donnell and Griffiths 2006; Orea and
Kumbhakar 2004; Saint-Cyr et al. 2019; Sauer and Paul 2013). However, this approach
cannot strictly identify which technology is used by which firm.

The extension beyond the cross-sectional input use and outcome of the production
function analysis framework so far in the agricultural production economics literature has
mostly been on the temporal dimension (i.e., the time series aspects of the analysis) and
firm/farm heterogeneity (as reviewed briefly before). In other words, in the literature on
agricultural production economics, the temporal analysis of economic development and
firm heterogeneity has received the most attention, and the variable “space” has typically
received less attention and is often neglected (e.g., Capello 2009; Eberhardt and Teal 2013;
Isard 1954). This is clearly pointed out by Just and Pope (2001) (p. 651): 1

“Spatial dimensions of input groupings may be particularly important in agricul-
ture because the inputs must be tailored to the heterogeneity of firm resources,
which differ substantially by climate and land quality (location).”

There are several commonly given reasons for this, including the need to simplify the
treatment and models (Capello 2009), data limitations (Just and Pope 2001), and lack of
access to computer power for estimation.

There are two distinguishable spatial effects that can be identified: spatial dependency
and spatial heterogeneity. Spatial dependency, which involves analyzing the transfer of
effects between locations, is a specific case of cross-sectional dependence. It arises from
the correlation or covariance structure between random variables at different locations,
determined by their relative positions (distances) in geographic space. Analyzing spatial
dependency often requires specialized techniques, such as spatial lag models (SLM), spatial
autoregressive models (SAR), spatial cross-regressive models (SLX), or spatial error models
(SEM) (Anselin 2010). Although these approaches consider spatial relationships in terms
of output/input quantities at the local level, they assume that the production technology
remains consistent for all firms or farms. In other words, these methods do not account
for the spatial heterogeneity in production technology across different locations. Among
others, the concept of spatial dependency in agricultural production economics has been
used to analyze crop diversification (e.g., Holmes and Lee 2012), drivers of technology
adoption (e.g., Läpple and Kelley 2015; Läpple et al. 2017; Schmidtner et al. 2012), land
rental intentions (e.g., Skevas et al. 2018), pesticide use (e.g., Aida 2018), variation in
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farmland values (e.g., Wang 2018), and analysis of policy intervention (e.g., Storm et al.
2015).

Spatial heterogeneity is a special case of unobserved heterogeneity. This framework
accounts for the absence of stability and implies estimating parameters that vary over
space. In contrast to spatial dependency, this framework does not always require a separate
set of methods. Spatial heterogeneity provides the basis for the specification or structure
of heterogeneity in a spatial model (Anselin 2010). In the literature, we find several
studies that have used locally weighted regression (LWR) (McMillen and Redfearn 2010) or
geographically weighted semiparametric regressions (GWR) (Brunsdon et al. 1996). Past
applications within agricultural production economics include analysis of spatial regimes
in olive farm technology in Italy (Billé et al. 2018), factors affecting fertilizer use efficiency
in China (Bai et al. 2021), and space–time patterns of regional industrial resilience among
Italian wine producers (Canello and Vidoli 2020).

In this study, we employ the spatial heterogeneity approach proposed by Malikov et al.
(2022) to examine the productivity of the Norwegian grain farming sector. This approach
entails estimating a production function that is specific to each firm and location, using a
semiparametric proxy variable regression estimator. The parameters of the model are non-
parametric functions derived from the geographical coordinates (latitude and longitude) of
the firms, which are estimated using kernel methods. The model incorporates productiv-
ity components to account for the factors that influence productivity. This methodology
enables us to estimate technologies that are specific to each firm and location, as well as
productivity measures that are specific to each firm and location. Unlike, for example, the
GWR approach mentioned earlier, our method can handle endogenous regressors through
a proxy variable estimation technique. We applied this model to analyze the productivity of
Norwegian grain farmers using panel data at the farm level, covering the period from 2001
to 2020. The significance of our study lies in evaluating the effectiveness of utilizing the
aforementioned approach, which incorporates location- and firm-specific semiparametric
production functions with longitude/latitude coordinates as a means to capture spatial
variations among firms/farms and locations when analyzing production technology and
productivity within the farming industries.

2. Locational Heterogeneity in Production

Consider firm i (i = 1, . . . , n) during time period t (t = 1, . . . , T). In line with the
existing productivity literature (e.g., see Ackerberg et al. 2015; Blundell and Bond 2000;
Collard-Wexler and De Loecker 2015; Doraszelski and Jaumandreu 2013; Konings and
Vanormelingen 2015; Levinsohn and Petrin 2003; Olley and Pakes 1996), we make the as-
sumption that the firm employs physical capital Kit, labor Lit, land Nit, and an intermediate
input such as materials Mit to generate a single output Yit using Cobb–Douglas production
technology, which incorporates unobserved Hicks-neutral productivity:

Yit = A0(si)K
αK(si)
it LαL(si)

it NαN(si)
it MαM(si)

it exp{ωit + ηit}, (1)

where si = (s1i, s2i)
′ represents the fixed location of firm i, and s1i and s2i are the latitude

and longitude coordinates of the firm’s location. A0(si) is a firm- and location-specific scalar
constant; (αK(si), αL(si), αN(si), αM(si))

′ are firm- and location-specific input elasticities;
and ωit is the firm’s persistent productivity, which is known to the firm at time t but
unknown to others and which, as we discuss later, follows an evolution process that
is also specific to firm location. By incorporating location-specific heterogeneity in the
elasticities of inputs and persistent productivity, we account for the effects of technology
spillovers and agglomeration economies, which are influenced by local neighborhood
effects. Additionally, following the literature, we introduce ηit as a random, independent,
and identically distributed (i.i.d.) productivity shock. We assume that ηit is a random
i.i.d. productivity shock such that E[ηit|Iit] = E[ηit] = 0, where Iit is the information set
available to firm i for making period t production decisions. Thus, the expectation of
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exponential random shock ηit is θ ≡ E[exp{ηit}| Iit] = E[exp{ηit}], which is a constant.
As such, θ does not play an important role; it is a nuisance parameter. Since the production
shock is unknown due to the presence of η, the conventional procedure is to eliminate it by
assuming the expected profit maximization (shown later in Equation (4)), which involves
the expectation of E[exp{ηit}].

Following the productivity literature (e.g., Gandhi et al. 2020; Malikov and Lien 2021;
Malikov and Zhao 2021; Malikov et al. 2020, 2022), physical capital Kit, labor Lit, and land
Nit are subject to adjustment frictions (e.g., time-to-install, hiring/training costs). The firm
optimizes these inputs dynamically at time t− 1, making them predetermined (quasi-fixed)
state variables at time t. Materials Mit are determined statically by the firm at time t,
making it a freely varying (flexible) input. Thus, Kit, Lit, and Nit are state variables that
follow the dynamic laws of motion, viz.,

Kit = Iit−1 + (1− δ)Kit−1, Lit = Hit−1 + Lit−1, and Nit = Nit−1 + ∆Nit−1, (2)

where Iit, Hit, δ, and ∆Nit−1 are gross investment, net hiring, the depreciation rate, and net
change in land use, respectively.

Building on insights from the proxy variable literature (e.g., De Loecker 2013; Do-
raszelski and Jaumandreu 2013; Gandhi et al. 2020; Malikov and Lien 2021; Malikov and
Zhao 2021; Malikov et al. 2020, 2022), we utilize a first-order Markov process to capture
the dynamics of firm productivity ωit. The evolution of ωit, representing the productivity
of the firm, is shaped by a range of factors, denoted as X, which are specific to the partic-
ular empirical context. Thus, ωit is modeled according to a location-varying controlled
first-order Markov process:

ωit = h|si
(ωit−1, Xit−1) + ζit, (3)

where h|si
(·) is the conditional mean function of ωit, which varies across space, and ζit is a

random innovation in persistent productivity that is unanticipated by the firm at period
t− 1: E[ζit|Iit−1] = E[ζit|ωit−1, Xit−1] = E[ζit] = 0.

The relationship between ωit and the control variables Xit incorporates a lagged
structure in the evolutionary process, as defined by Equation (3). This acknowledgment
implicitly recognizes that activities aimed at enhancing productivity and learning incur
costs and may require time to produce tangible results. Additionally, in E[ζit| Iit−1] = 0,
we assume that, given the adjustment costs, firms do not experience changes in their
productivity-related investments in light of productivity innovation. That is, a firm cannot
anticipate innovation ζit and chooses the level of Xit−1 in period t− 1 based on its knowl-
edge of the contemporaneous productivity ωit−1. These structural timing assumptions
about ζit are common in models with controlled productivity processes (e.g., Van Biese-
broeck 2005; Doraszelski and Jaumandreu 2013, 2018; De Loecker 2013; Malikov et al. 2020,
2022) and are needed to identify productivity-enhancing learning effects.

Given the intermediate input Mit is freely varying and thus affects profits only in the
current period, the risk-neutral firm chooses its optimal level of freely varying input Mit via
solving the (static) restricted expected profit-maximization problem subject to the already
optimal dynamic choice of quasi-fixed inputs:

max
Mit

PY
t A0(si)K

αK(si)
it LαL(si)

it NαN(si)
it MαM(si)

it exp{ωit}θ − PM
t Mit, (4)

where PY
t and PM

t are the output and material prices, respectively, both of which are
competitively determined, and θ ≡ E[exp{ηit}| Iit]. The firm’s conditional demand for
Mit is derived by applying the first-order condition with respect to the input variable M.
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Following Doraszelski and Jaumandreu (2013, 2018), the firm’s dynamic optimization
problem is described by the following Bellman equation:

Vt
(
Ξit
)
= max

Iit ,Hit ,∆Nit ,Xit

{
Πt|si

(Ξit)−CI
t (Iit)−CH

t (Hit)−C∆N
t (∆Nit)−CX

t (Xit)+

E
[
Vt+1

(
Ξit+1

)∣∣∣Ξit, Iit, Hit, ∆Nit, Xit

] }
,

(5)

where Ξit = (Kit, Lit, Nit, ωit)
′ ∈ Iit are the state variables;2 Πt|si

(Ξit) is the restricted profit
function derived as a value function corresponding to the static problem in (4); and Cκ

t (·)
is the cost function for capital (κ = I), labor (κ = H), land (κ = ∆N), and productivity-
enhancing activities (κ = X). In the dynamic problem above, the level of productivity-
enhancing activities Xit+1 is chosen in the time period t + 1, unlike the amounts in the
dynamic inputs Kit+1, Lit+1, and Nit+1, which are chosen by the firm in the time period
t (through Iit, Hit, and ∆Nit, respectively). By solving (5), we obtain the optimal policy
functions for Iit, Hit, ∆Nit, and Xit.

3. Methodology
3.1. Proxy Variable Identification

Taking the logarithm of the locationally varying production function in (1) for both
sides and substituting for the Markov process ωit using (3), we obtain:

yit = βK(si)kit + βL(si)lit + βN(si)nit + βM(si)mit + h|si
(ωit−1, Xit−1) + ζit + ηit, (6)

where the lower-case variables correspond to the log forms of the corresponding upper-
case variables.

According to our structural assumptions, all the regressors on the right-hand side
of (6) are predetermined and weakly exogenous with respect to ζit + ηit, except for the
freely varying input mit. The firm chooses the freely varying input mit in period t based
on its knowledge of ωit, which makes it correlated with ζit. Therefore, mit is endogenous.
Before tackling the endogeneity of mit, to consistently estimate (6), we first need to address
the latency of firm productivity ωit−1. Following the established methodology in the
productivity literature, we adopt a proxy measure to capture latent productivity. This
is accomplished by utilizing the structural relationship between the production function
and the firm’s (static) first-order condition associated with the input which can be freely
adjusted.

First step. We first identify the material elasticity function βM(si). To achieve this, we
investigate the optimality condition of the firm regarding Mit in Equation (4), which can be
expressed in logarithmic form as:

ln PY
t + βK(si)kit+βL(si)lit + βN(si)nit+

ln βM(si) + [βM(si)− 1]mit + ωit + ln θ = ln PM
t .

(7)

Using the production function in (6), we rewrite the first-order condition in terms of
the following location-specific material share equation:

vit = ln[βM(si)θ]− ηit, (8)

where vit ≡ ln
(

PM
t Mit

)
− ln

(
PY

t Yit
)

is the log intermediate input share of output, which
is observable in the data. Thus, we can identify βM(si)× θ using the moment condition
E[ηit|Iit] = E[ηit|si] = 0:

ln[βM(si)θ] = E[vit|si]. (9)

We then identify θ from:

θ ≡ E[exp{ηit}] = E[exp{E[vit|si]− vit}]. (10)
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Combining (9) and (10), we identify the firm’s material elasticity βM(si) as:

βM(si) = exp{E[vit|si]}/E[exp{E[vit|si]− vit}]. (11)

Using the already identified material elasticity βM, we rewrite (6) as follows:

y∗it = βK(si)kit + βL(si)lit + βN(si)nit + h|si
(ωit−1, Xit−1) + ζit + ηit, (12)

where y∗it ≡ yit − βM(si)mit on the left-hand side is already identified/observable and,
hence, the regressors in (12) are all exogenous. However, we cannot estimate (12) as is
because ω is unobserved. In the next step, we express ω in terms of observables.

Second step. To identify the remaining parameters of the production function, includ-
ing latent firm productivity, we employ (7) to derive the explicit form of the conditional
demand function for Mit. We then invert this function to serve as a proxy for the un-
observable scalar ωit. In other words, by utilizing the inverted (log) material function
ωit = ln[PM

t /PY
t ] − βK(si)kit − βL(si)lit − βN(si)nit − ln[βM(si)θ] + [1− βM(si)]mit, we

substitute ωit−1 into Equation (12), to obtain:

y∗it =βK(si)kit + βL(si)lit + βN(si)nit+

h|si

([
ν∗it−1 − βK(si) + kit−1 − βL(si)lit−1 − βN(si)nit−1

]
, Xit−1

)
+ ζit + ηit,

(13)

where ν∗it−1 = ln[PM
t−1/PY

t−1] − ln[βM(si)θ] + [1 − βM(si)]mit−1 is already identified/
observable and is predetermined with respect to ζit + ηit. Since all the regressors included
in Equation (13) are weakly exogenous, we can establish the identification of Equation (13)
by employing the moment conditions:

E[ζt + ηt| kit, lit, kit−1, lit−1, nit−1, Xit−1, ν∗it−1(mit−1), si] = 0. (14)

After obtaining the parameters of the identified production function and the pro-
ductivity shock ηit, we can easily recover ωit up to a constant via ωit = yit − βK(si)kit −
βL(si)lit − βN(si)nit − βM(si)mit − ηit.

3.2. Semiparametric Estimation

To estimate location-varying production technology and the evolution of productivity,
we employ the local-constant kernel fitting method for the first- and second-step estimations
in (8) and (13).

Denote the unknown term ln[βM(si)θ] as a non-parametric function specific to the
location si. We represent this function as bM(si). Assuming that these input elasticity
functions are smooth and twice-continuously differentiable in the neighborhood of si =
s, we can approximate the unknown bM(si) at points si close to s via bM(si) ≈ bM(s).
Therefore, for locations si close to s, (8) is approximated by:

vit ≈ bM(s)− ηit; (15)

correspondingly, the local-constant kernel estimator of ln[βM(s)θ] is given by

b̂M(s) =

[
∑

i
∑

t
Kh1(si, s)

]−1

∑
i

∑
t
Kh1(si, s)vit, (16)

where Kh1(si, s) is a kernel function that assigns weights to each observation based on the
proximity of their geographic coordinates si to the value s.

Instead of using a “fixed” bandwidth parameter, which may result in over-smoothing
in dense data regions and under-smoothing in sparse tails, we opt for an “adaptive” band-
width approach. This adaptive bandwidth allows us to adjust the smoothing parameter on
the basis of the local distribution of the data. By adapting to the data’s characteristics, our
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approach offers a more flexible and accurate estimation of the underlying patterns. To be
precise, we utilize an h1-nearest-neighbor bandwidth denoted as Rh1(s) to assign weights
to the observations:

Rh1(s) = ‖S(h1)
− s‖, (17)

where S(h1)
is the h1st nearest neighbor (i.e., location) of s. Rh1(s) represents the Euclidean

distance between the fixed location s and its h1st nearest location among si. This dis-
tance measure is location-specific, which allows it to adapt to the distribution of the data.
Correspondingly, the kernel weight function is defined as:

Kh1(si, s) = K

(
‖si − s‖
Rh1(s)

)
, (18)

where K(·) represents a non-negative smooth kernel function that integrates to unity. In
this study, we employ a commonly used second-order Gaussian kernel. The range of
values over which this kernel function is defined is non-negative. The choice of the number
of nearest neighbors, denoted as h1, determines the level of smoothing or weight in the
first-step estimator given by (16). To determine the optimal value for h1, we employ a
data-driven cross-validation procedure.

From (11), the first-step estimator of βM(s) is:

β̂M(s) = nT exp
{

b̂M(s)
}/

∑
i

∑
t

exp
{

b̂M(s)− vit

}
. (19)

Using the local estimates of βM(si) from the first step, we construct ŷ∗it ≡ yit −
β̂M(si)mit and ν̂∗it−1 = ln[PM

t−1/PY
t−1] − ln[β̂M(si)θ] + [1 − β̂M(si)]mit−1. Following the

first-step estimation, we employ a local-constant approach to locally approximate each
unknown parameter function in (13) at points si in proximity to s. In addition, the second-
stage estimation requires the choice of an approximator for the unknown h|si

(·). We use
the popular first-order polynomial sieves (e.g., Chen 2007). Therefore, for locations si near
s, we have

ŷ∗it ≈βK(s)kit + βL(s)lit + βN(s)nit + λ0(s)+

λ1(s)
[
ν̂∗it−1 − βK(s)kit−1 − βL(s)lit−1 − βN(s)nit−1

]
+ λ2(s)Xit−1 + ζit + ηit.

(20)

Denoting all unknown parameters in (20) collectively as Θ(s) = [βK(s), βL(s), βN(s),
λ0(s), λ1(s), λ2(s)]′, we estimate the second-step equation using locally weighted non-linear
least squares. The corresponding kernel estimator is:

Θ̂(s) = arg min
Θ(s)

∑
i

∑
t
Kh2(si, s)

(
ŷ∗it − βK(s)kit − βL(s)lit − βN(s)nit − λ0(s)

− λ1(s)
[
ν̂∗it−1 − βK(s)kit−1 − βL(s)lit−1 − βN(s)nit−1

]
+ λ2(s)Xit−1

)2
,

(21)

where h2 is the number of nearest neighbors of a fixed location s in the second-step estimation.
Finally, having obtained the identified parameters, we calculate the firm productivity

using the estimated values. Specifically, we compute ω̂it = yit − β̂K(si)kit − β̂L(si)lit −
β̂N(si)nit − β̂M(si)mit − η̂it.

Inference. Due to the multistep nature of our estimator and the presence of nonpara-
metric components, calculating the asymptotic variance of the estimators is not straightfor-
ward.3 Therefore, we employ a bootstrap approach for statistical inference. Specifically, we
utilize Efron’s (1987) bias-corrected bootstrap percentile confidence intervals, which correct
for the finite-sample bias of the estimators. To approximate the sampling distributions of
the estimators, we employ a wild residual block bootstrap method that takes into account
the panel structure of the data. We perform the bootstrap resampling jointly for both stages,
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since the estimation in the second stage relies on the first-stage estimator. We performed
B = 999 bootstrap iterations to ensure reliable results.4

Let Ψ represent the estimand of interest specific to each observation, such as the
coefficient of elasticity of the material βM(si) for a firm. For two-tailed hypotheses, we
can estimate the two-sided bias-corrected (1− a)× 100% confidence interval for Ψ using
the empirical distribution of Ψ̂1, · · · , Ψ̂B. Specifically, the confidence interval lies between
the [a1 × 100]th and [a2 × 100]th percentiles of the bootstrap distribution. Here, a1 =
Φ
(
2ẑ0 + Φ−1(a/2)

)
and a2 = Φ

(
2ẑ0 + Φ−1(1− a/2)

)
, where a denotes the confidence

level, Φ(·) represents the standard normal cumulative distribution function (CDF), and
Φ−1(·) is the quantile function of the standard normal distribution. Additionally, the
parameter ẑ0 = Φ−1

(
∑B+1

1 1
{

Ψ̂B < Ψ̂
}

/(B + 1)
)

serves as a bias-correction factor that
accounts for the median bias.

For one-tailed hypotheses, we can estimate the one-sided lower or upper (1− a)×
100% confidence bound by utilizing the [o1 × 100]th or [o2 × 100]th bootstrap percentiles.
Here, o1 = Φ

(
2ẑ0 + Φ−1(a)

)
and o2 = Φ

(
2ẑ0 + Φ−1(1− a)

)
.

Testing of Location Invariance. The traditional fixed-parameter specification assumes
that both the production function and the productivity evolution are invariant across lo-
cations. This fixed-coefficient assumption represents a nested and special case within
our semiparametric spatially varying model. To formally assess whether our model is
compatible with the fixed-coefficient alternative, we employ Ullah’s (1985) nonparametric
goodness-of-fit test. This test involves comparing the restricted parametric model with
the unrestricted semiparametric model. The null hypothesis suggests that the restricted
parametric model, which assumes location-invariant coefficients, adequately fits the data.
On the other hand, the alternative hypothesis posits that the unrestricted semiparametric
model, which allows for location-varying coefficients, provides a good fit to the data. The

residual-based test statistic is Tn = (RSS0 − RSS1)/RSS1, where RSS0 = ∑i ∑t( ˜ζit + ηit)
2

and RSS1 = ∑i ∑t( ̂ζit + ηit)
2 are the sum of squared residuals under the null and (unre-

stricted semiparametric) alternative, respectively. The test statistic is expected to converge
to zero under the null and to be positive under the alternative. The null distribution of the
test statistic follows a chi-square distribution.

4. Data

Norway, the source of the data for this study, is an elongated country characterized by
varying climate and growth conditions in different regions. Furthermore, Norwegian farm-
ers operate within a challenging production environment characterized by harsh climates,
rugged terrain, and a short growing season (Knutsen 2020). These factors contribute to
significant variations in growing conditions in regions. In many parts of Norway, farmers
primarily focus on growing feed crops, such as grass, due to the difficulties associated with
grain farming.

The diverse climate and growing conditions, along with the challenging production
environment, result in substantial variations in farmers’ operational techniques and meth-
ods. Furthermore, the high production costs due to rough and fluctuating conditions
make it difficult for Norwegian farmers to compete in an open market. To address these
challenges, the Norwegian government has implemented substantial subsidies and reg-
ulations, including import and other measures, enabling many smaller farms to sustain
their operations.

These factors, together with the unique characteristics of the production environment,
can influence the scale, productivity, and efficiency aspects of production. Consequently,
assuming a homogeneous production function in all Norwegian grain producers may not
be realistic. In other words, it is plausible that different grain producers employ varying
technologies that are tailored to their specific circumstances.

The data used in this study are sourced from the Norwegian Farm Accountancy Survey,
a collection of panel data at the farm level compiled by the Norwegian Institute of Bioecon-
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omy Research (NIBIO). This dataset comprises annual information on farm production and
economic indicators from approximately 1000 farms. To ensure a representative sample,
farms are stratified according to geographic region, economic size, and type of farming.

The classification of farms is based on their primary category of farming, determined
by the standard gross margins of the farm enterprises. Specifically, a farm is classified as
a grain farm if more than 50% of the total standard gross margin is derived from grain
production. This classification allows for the inclusion of farms that are specifically engaged
in grain farming and ensures a focused analysis of the relevant agricultural sector.

The dataset used in the analysis is an unbalanced panel with 1689 annual observations
from 195 grain farms during the period 2001 to 2020. To accommodate lagged variables in
our estimation model, we include farms in our sample only if they have at least two years
of available data. The farms included in our analysis have an average survey duration of
approximately 11 years. Although grain farms typically cultivate multiple types of crops,
the classification system we employ ensures that the farms in our sample focus primarily
on crop production and have limited (if any) activities beyond that. Figure 1 maps the
location of the grain farms in our sample.

Figure 1. Spatial distribution of farms in the sample. The map covers the southern part of Norway,
i.e., no grain farms in the sample in the northern part of Norway.

The total output (Y) is aggregated and measured in revenue terms adjusted to the
2020 prices in Norwegian Kroner (NOK), using the price index for crops. The four input
quantities are K—capital that includes maintenance costs, interest rate costs, and depre-
ciation; L—own and hired labor, measured in hours; N—land measured in hectares; and
M—materials that include cost of seeds, fertilizer, lime, pesticides, and other consumables.
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Both K and M are in nominal terms, deflated to real 2020 NOK using the consumer price
index and the price index of other variable costs, respectively.

We included three productivity-modifying variables in the productivity evaluation
process ωit: X1—subsidy/return ratio; X2—off-farm income share, defined as the ratio of
income from off-farm activity to the total income from agriculture; and X3—debt/asset
ratio.

The location variables “s” (defined by the coordinates of longitude (s1) and latitude
(s2)) are constructed based on the location of the courtyard of each farm, as this is time-
invariant. Table 1 reports the summary statistics for our data.

Table 1. Data summary statistics (N = 1689).

Variable Name Var. Mean First Quartile Median Third Quartile

Production function variables
Output Y 468,669.14 218,259.31 340,533.00 588,818.06
Capital K 1,957,916.73 901,384.75 1,545,676.80 2,586,060.80
Labor L 853.70 400.00 700.00 1100.00
Land N 35.23 19.20 29.00 41.00
Materials M 188,155.60 92,480.62 145,776.42 228,719.84

Productivity determinants
Subsidy/return ratio X1 0.30 0.22 0.28 0.36
Off-farm income share X2 0.80 0.74 0.86 0.92
Debt/asset ratio X3 0.46 0.30 0.50 0.64

Location variables
Longitude s1 10.77 10.22 10.89 11.33
Latitude s2 60.55 59.51 60.01 60.81

5. Results

To estimate the production function and the productivity of the farm/firm, which
vary by location as described in (6), we need to determine the optimal number of nearest-
neighboring locations at each stage of the estimation (h1 and h2). To accomplish this,
we employ a data-driven leave-one-location-out cross-validation method. This approach
allows us to select appropriate smoothing parameters that control the spatial weighting
of neighboring firms in the kernel fitting process. Using this data-driven approach, we
avoid relying on arbitrary specifications of spatial weights and radii, which define the
extent of neighborhood influences. This procedure also helps in the optimal selection
of the bandwidth parameter.5 When chosen optimally, a larger bandwidth parameter
effectively “smooths out” the location variable si, resulting in globally constant parameters
across all locations. As a result, this provides an indirect data-driven method to assess the
empirical relevance of the firm’s geographic location in estimating the production function
and productivity. Our analysis indicates that the optimal values for h1 and h2 are 96 and
171 farm-years, respectively, in the first and second steps of the estimation process. On
average in all s, the corresponding adaptive bandwidths are 0.3302 and 0.5648 decimal
degrees. These bandwidth values are small relative to the standard deviations of longitude
and latitude in the data,6 which prevents excessive smoothing of the location, providing
strong evidence that the location plays an important role in production.

To formally assess whether our location-varying specification is supported by the data
compared to the location-invariant alternative, we employ Ullah’s (1985) nonparametric
goodness-of-fit test. The results of the test reject the null hypothesis of location homo-
geneity at a 5% level of significance, providing evidence in favor of our specification of
location variability.
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5.1. Production Function

Table 2 reports the location-varying input elasticities. The input elasticity of materials
is the largest, with a mean (median) value of 0.380 (0.380). The second-largest input
elasticity is for land with a mean (median) input elasticity of 0.263 (0.243), while for capital
the elasticity is 0.183 (0.201). Labor has an input elasticity at the mean (median) of 0.079
(0.090). We observe significantly different elasticity estimates between quartiles. Within
the interquartile interval of their point estimates, the elasticities of capital, labor, land, and
materials increase by 0.118, 0.068, 0.050, and 0.031, which correspond to changes of 99%,
110%, 23%, and 8%, respectively.

Table 2. Input elasticity estimates.

Locationally Varying Location-Invariant
Mean 1st Qu. Median 3rd Qu. Point Estimate

Capital 0.183 0.119 0.201 0.237 0.139
(0.109, 0.291) (0.020, 0.246) (0.125, 0.320) (0.140, 0.390) (0.095, 0.185)

Labor 0.079 0.062 0.090 0.130 0.110
(0.041, 0.140) (0.020, 0.140) (0.026, 0.166) (0.070, 0.231) (0.051, 0.173)

Land 0.263 0.214 0.243 0.264 0.447
(0.036, 0.373) (0.021, 0.396) (0.009, 0.359) (0.031, 0.316) (0.364, 0.521)

Materials 0.38 0.367 0.38 0.398 0.378
(0.371, 0.395) (0.35, 0.386) (0.367, 0.399) (0.392, 0.416) (0.360, 0.398)

The left panel summarizes point estimates of βκ(si) ∀ κ ∈ {K, L, N, M}with the corresponding two-sided 95% bias-
corrected confidence intervals in parentheses. The right panel reports their counterparts from a fixed-coefficient
location-invariant model.

The right panel of Table 2 reports the results of the fixed-coefficient location-invariant
model (that is, not locationally varying), with the corresponding two-sided 95% bias-
corrected confidence intervals in parentheses. The fixed-coefficient location-invariant
model, which assumes a constant production relationship across all locations, is estimated
by allowing the bandwidths in both the first step (h1) and the second step (h2) to diverge
towards infinity. This effectively assigns equal weights to all data points, irrespective of
their location. When comparing the mean values of the locationally varying model to
the fixed-coefficient model, some notable differences emerge. The coefficient for capital is
relatively smaller in the fixed-coefficient model, while the coefficients for land are larger.
On the other hand, the coefficients for materials and labor remain relatively similar between
the two models.

From Figure 2, we can visualize the variation in the input elasticities of grain farmers
in different locations in Norway. Location-invariant estimates (from the fixed-coefficient
location-invariant model) are depicted by vertical lines. Consistent with the figures in
Table 2, all distributions exhibit a wide spread, and the locationally homogeneous model
(i.e., the location-invariant fixed coefficient model) appears to be unable to provide a
reasonable representation of the production technology across different regions.

Table 3 presents summary statistics of the estimated returns to scale (RTS) derived
from our location-varying production function model. Additionally, Figure 3 provides a
corresponding plot that visually displays these estimates. The mean (median) RTS is 0.926
(0.911), with an interquartile range of 0.178, which corresponds to a change of 21%. Figure 3
also illustrates that single-point RTS estimates with the fixed-coefficient location-invariant
model (the vertical line) will be less representative estimates of the sample analyzed.
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Figure 2. Input elasticity estimates.

Table 3. Locationally varying returns to scale estimates.

Mean 1st Qu. Median 3rd Qu. <1 =1 >1

RTS 0.926 0.833 0.911 1.011 26.29 74.86 4.57
(0.762, 1.110) (0.655, 0.995) (0.700, 1.079) (0.830, 1.206)

The left panel summarizes point estimates of ∑κ βκ(si), with κ ∈ {K, L, N, M} with the corresponding two-sided
95% bias-corrected confidence intervals in parentheses. The counterpart estimate of the returns to scale from a
fixed-coefficient location-invariant model is 1.074 (1.009, 1.151). The right panel reports the shares of locations
in which location-specific point estimates are (i) statistically less than 1 (decreasing returns to scale), (ii) not
significantly different from 1 (constant returns to scale), and (iii) statistically greater than 1 (increasing returns to
scale). The former classification is based on a two-sided test, the latter on a one-sided test.

Figure 3. Returns to scale estimates.

In the right panel of Table 3, the fraction of Norwegian grain farms that exhibit
decreasing, constant, or increasing RTS is reported. The classification is based on the RTS
point estimates being statistically lower than, equal to, or larger than one, respectively, at
the significance level 5%. In most of the locations in Norway with grain farming, we find
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that the farms exhibit constant RTS. These findings are consistent with other studies by
Norwegian grain farmers over the period 1991 to 2005 (e.g., Lien et al. 2010). However,
note that, in our study, more than 26% of farms provide evidence of decreasing returns to
scale, and almost 5% of farms exhibit increasing returns to scale.

Figure 4 shows the locational heterogeneity in production technology for Norwegian
grain farming according to the plot of the RTS estimates (only in locations with grain farm-
ing). The map shows quite large differences, but there does not appear to be any systematic
pattern in the level of RTS across the country. Considering that adjacent lands typically
share similarities in unobserved factors like soil type and climate, we initially anticipated
a gradual change in production technology in different locations. However, our findings
do not align with this behavior. Despite identifying location-heterogeneous production
functions, we did not observe any discernible patterns of productivity differences between
locations. Therefore, while we did find support for the existence of diverse production
functions in different areas, their distribution did not reveal any consistent trends or spatial
correlations throughout the country.

Figure 4. Geographic variation in returns to scale estimates.

5.2. Productivity Process

The left panel of Table 4 presents the estimate of the marginal effects, varying location-
ally, of the productivity determinants in the evolution process of ωit. The corresponding
two-sided 95% bias-corrected confidence intervals are shown in parentheses. Additionally,
the final columns of the left panel indicate the share of locations where location-specific
point estimates are statistically positive or negative at the 5% significance level, determined
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through a one-sided test. The right panel of Table 4 displays the marginal effects of the
productivity determinants in the fixed-coefficient location-invariant model.

Table 4. Productivity process coefficient estimates.

Locationally Varying Location-Invariant
Variables Mean 1st Qu. Median 3rd Qu. >0 <0 Point Estimate

Lagged 0.789 0.734 0.835 0.877 100 0 0.088
productivity (0.522, 0.976) (0.609, 0.983) (0.592, 1.057) (0.471, 1.078) (–0.037, 0.200)
Subsidy/return –0.640 –0.803 –0.688 –0.475 0 73.71 –0.789
ratio (–0.714, –0.301) (–0.886, –0.502) (–0.775, –0.411) (–0.593, –0.043) (–1.086, –0.517)
Off-farm –0.098 –0.217 –0.085 0.057 1.14 32 0.070
income share (–0.307, 0.012) (–0.431, –0.022) (–0.296, 0.000) (–0.198, 0.150) (–0.089, 0.303)
Debt/asset –0.222 -0.292 –0.216 –0.104 0 63.43 –0.143
ratio (–0.334, –0.072) (–0.403, –0.109) (–0.342, –0.079) (–0.264, 0.019) (–0.264, –0.013)

The left panel summarizes point estimates of λj(si) ∀ j = 1, . . . , dim(X), with the corresponding two-sided
95% bias-corrected confidence intervals in parentheses. The reports also report a share of locations in which
location-specific point estimates are statistically positive or negative via a one-sided test. The right panel reports
the counterparts of a fixed-coefficient location-invariant model.

The spatial autoregressive coefficient of lagged productivity, as the measure of per-
sistent productivity, is at the mean (median) 0.789 (0.835). This means that a farm’s future
productivity will on average increase by 0.789% if the farm’s past productivity increases
by 1%, ceteris paribus. However, we observe differences in productivity between loca-
tions/regions. Within the interquartile interval of their point estimates, lagged productivity
increases by 0.145, which in turn corresponds to a 20% change. The upper left panel of
Figure 5 also illustrates the variation between locations in the estimated lagged productivity,
which roughly varies between 0.50 and 0.90, while most locations/regions have a large
spatial autoregressive coefficient of around 0.80. The lagged productivity estimate of the
location-invariant model with fixed coefficient is depicted by a vertical line (in Figure 5)
and is far from the estimates of the location-varying model.

Figure 5. Productivity process coefficient estimates.

As reported in Table 4, for farms in most locations (73.71%), the subsidy/income ratio
has a significantly negative effect on productivity, while for 26.29% (100–73.71%) of the
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locations, the subsidy/income ratio has no effect on farm productivity. For the whole
sample, a 1% point increase in the subsidy/income ratio is associated with a reduction in
the next period’s farm productivity by about 0.65% points on average. In this sense, our
result supports Kumbhakar and Lien (2010). In a study of Norwegian grain farms during
1991–2006, they found that an increase in subsidy payment reduced production. Zhengfei
and Lansink (2006) also found that subsidies had a negative impact on productivity growth
in Dutch arable farming during the period 1990–1999. However, our result partly contrasts
with the findings of Rizov et al. (2013). In their study on mixed farms in 15 EU countries
from 1990 to 2008, Rizov et al. (2013) observed that subsidies had a negative impact on
productivity prior to the implementation of the decoupling reform in 2003. However,
after the decoupling reform, the effect of subsidies on productivity became positive in
several countries. As discussed in Rizov et al. (2013), subsidies can both increase and
reduce productivity, and the net effect is not obvious. As the upper right panel of Figure 5
illustrates, our locationally varying estimation model also exhibits quite a large locational
variation in the effect of the subsidy/income ratio on productivity.

Point estimates of off-farm income share effects on productivity are negative in 32% of
the locations, but statistically insignificant in approximately 67% of the locations (Table 4).
These results are not unexpected. The impact of off-farm work on farm productivity
is multifaceted. On the one hand, participating in non-farm work can provide farmers
with valuable experiences and skills that enhance farm management practices and overall
productivity. In addition, extra income from off-farm work may facilitate investments in
technologies that increase farm output. On the other hand, reduced on-farm participation
due to off-farm work may lead to less efficient use of resources, potentially resulting in
lower output.

The influence of off-farm work on productivity can also vary between regions due
to differences in agricultural and climatic conditions, as well as variations in off-farm
job markets. Our empirical findings support this notion, as depicted in the lower left
panel of Figure 5. In a study that focused on Norwegian grain farms from 1991 to 2005,
Lien et al. (2010) discovered that the effect of off-farm work on productivity exhibits an
inverted U shape. Initially, some off-farm work had a positive impact on productivity,
while excessive off-farm work had a negative effect. In general, the relationship between
off-farm work and farm productivity is complex, and its implications can vary depending
on factors such as the nature of off-farm employment, regional characteristics, and the
level of farmer participation in both on-farm and off-farm activities. Given off-farm work
is almost the norm among today’s Norwegian grain farmers (cf., Table 1), our results
are more or less consistent with the findings of Lien et al. (2010). We also mention, as
examples, that Goodwin and Mishra (2004) with U.S. family farms and Pfeiffer et al. (2009)
with Mexican farms found that greater participation in off-farm labor markets decreased
on-farm efficiency and productivity.

The effects of the debt/asset ratio are also negative on productivity for about two-thirds
of the locations/regions, but statistically insignificant for about one-third. On average, a 1%
point increase in the debt/asset ratio is associated with a reduction in the next period’s
productivity by about 0.22% points. In terms of a related study of Norwegian grain farms,
Kumbhakar and Lien (2010) concluded that a higher debt/asset ratio suggested a decrease
in technical efficiency. As a decrease in technical efficiency implies reduced productivity,
their results are consistent with ours.

Figures 6 and 7 illustrate the geographical variation in productivity estimates. How-
ever, unlike the expected gradual change or systematic pattern across different locations
as shown in Figure 4 for the RTS estimates, the productivity estimate maps do not show
any clear trends. This discrepancy suggests that our current approach of employing unob-
served locationally heterogeneous production functions might not be the most appropriate
method to address possible patterns in productivity, if any, across different locations. Fur-
ther exploration and alternative methodologies may be necessary to better capture and
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understand the underlying factors contributing to the observed variations in productivity
at different locations.

However, it is important to emphasize that this finding does not diminish the sig-
nificance of our approach, as our primary objective is to investigate and understand
heterogeneity. While our method might not directly reveal patterns in productivity across
locations, it does shed valuable light on the presence of heterogeneity in the data. This
insight is crucial in itself, as it highlights the diverse nature of productivity in different areas,
which can be a critical aspect in various fields, such as regional economic development,
policy formulation, and resource allocation. In this context, our approach remains valuable
for providing a deeper understanding of the complexities and variations within the studied
system, even if it does not directly address specific spatial patterns in productivity.

Figure 6. Geographic variation in productivity process coefficient estimates.
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Figure 7. Geographic variation in productivity estimates.

6. Concluding Remarks

By comparing farms, it is easy to observe that agriculture is a heterogeneous industry
in terms of the natural land characteristics that determine natural advantage (such as soil
type, fertility, the slope of the land, the climate, etc.) and that, as a consequence, there
can be huge differences from region to region within a country (or other geographical
unit). Furthermore, the interaction between site-specific environmental variables and
farmer decision-making regarding technology can promote the development of locally
specific varieties and technologies. As a result, a diverse technological landscape may
emerge characterized by the existence of various spatial regimes in technologies. Together,
these call for spatial analysis or, more specifically, for analyses that account for spatial
dependency and/or spatial heterogeneity. In the agricultural economics literature, these
are often ignored,7 as a global model is often fitted to all the farms included in a given
sample. When important and relevant relationships vary over space, global parameter
estimates may be misleading and can lead to less reliable economic conclusions.

This paper seeks to bridge the existing gap in the literature by investigating firm/farm-
and location-specific heterogeneity. We introduce a semiparametric methodology that
facilitates the identification of production functions, considering the diverse effects of the
firm’s/farm’s production technology and productivity evolution. Inspired by the recent
work of Malikov et al. (2022), our novel model explicitly incorporates spatial variation
in the estimation of production function parameters, encompassing input elasticities and
productivity parameters.

We investigate the efficacy of using longitude/latitude locations to capture variations
between firms and locations within the Norwegian grain farming sector. Our methodology
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offers a practical tool for investigating how variations across locations contribute to regional
or local productivity disparities and the underlying factors driving these differences. We
find evidence of locationally heterogeneous production functions but no apparent pattern
of productivity estimates across different locations. The lack of observable patterns in
productivity estimates suggests that there could be other factors or variables that influence
productivity variations, which our current approach may not fully capture. Therefore, it
would be prudent to explore alternative methodologies that could better account for these
underlying factors and provide more comprehensive insights into the spatial distribution
of productivity in the studied locations.

In future research, there is ample potential to enhance our firm- and location-specific
semiparametric production function approach. An important extension would involve
incorporating observed spatial determinants in addition to the GPS coordinates currently
used. By addressing our observation in this study that relying solely on longitude/latitude
locations to account for spatial industry variations may not always be suitable, this ex-
panded approach could offer a valuable solution. By integrating additional spatial in-
formation, such as soil types, climate data, or terrain characteristics, we can refine the
analysis and capture a more comprehensive picture of the spatial heterogeneity present in
the industry. This enhanced methodology would likely yield more accurate and nuanced
insights into the complexities of location-specific productivity in various industries.
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Notes
1 As noted by Just and Pope (2001), while the agricultural marketing literature frequently considers temporal and spatial distinctions,

these aspects are often disregarded in the agricultural production economics literature.
2 The firm’s location si is suppressed in the list of state variables because of its time-invariance.
3 The asymptotic property of the estimator is well-documented in the literature. For example, Li et al. (2002) proposed a local least

squares method with a kernel weight function to estimate the smooth coefficient function (similar to what we do in the paper)
and established the consistency of the estimator and its asymptotic normality.

4 Malikov et al. (2022) investigated the performance of the proposed bootstrap procedure in Monte Carlo simulations. Their
simulations show satisfactory performance of the bootstrap confidence intervals in finite samples.

5 In this paper, we used a data-driven leave-one-location-out cross-validation method to choose the optimal bandwidth. These
selected optimal bandwidths are capable of adapting to the local distribution of the data and yield the smallest sum of squared
residuals. We also tried using fixed bandwidths, but the results remained robust. These additional results are available upon
request.

6 The standard deviations of longitude and latitude in our sample are 0.6941 and 1.5162 decimal degrees, respectively.
7 As examples of exceptions that include spatial heterogeneity in their analysis of agricultural production, we mention Billé

et al. (2018), Canello and Vidoli (2020), and Bai et al. (2021). Recently, several efficiency studies dealing with spatial aspects of
agricultural production have also emerged, e.g., Fusco and Vidoli (2013) and Vidoli et al. (2016).
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