
Citation: Bao, Yong. 2024. Estimating

Linear Dynamic Panels with

Recentered Moments. Econometrics 12:

3. https://doi.org/

10.3390/econometrics12010003

Academic Editor: Julie Le Gallo

Received: 20 November 2023

Revised: 8 January 2024

Accepted: 15 January 2024

Published: 17 January 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

econometrics

Article

Estimating Linear Dynamic Panels with Recentered Moments
Yong Bao

Department of Economics, Purdue University, West Lafayette, IN 47907, USA; ybao@purdue.edu

Abstract: This paper proposes estimating linear dynamic panels by explicitly exploiting the
endogeneity of lagged dependent variables and expressing the cross moments between the endogenous
lagged dependent variables and disturbances in terms of model parameters. These moments, when
recentered, form the basis for model estimation. The resulting estimator’s asymptotic properties
are derived under different asymptotic regimes (large number of cross-sectional units or long time
spans), stable conditions (with or without a unit root), and error characteristics (homoskedasticity
or heteroskedasticity of different forms). Monte Carlo experiments show that it has very good
finite-sample performance.
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1. Introduction

It is well known that the standard fixed-effects or within-group (WG) estimator for
linear dynamic panel (DP) models suffers from the issue of bias (Nickell 1981) when the time
series dimension T is small. Alternative estimators include those based on instrumental
variables (IVs) (Anderson and Hsiao 1981), the generalized method of moments (GMM)
(e.g., Arellano and Bond 1991; Holtz-Eakin et al. 1988), the maximum likelihood (ML)
approach (e.g., Alvarez and Arellano 2003, 2022; Blundell and Smith 1991; Hsiao et al. 2002;
Lancaster 2002), those that correct the score function in the ML framework (e.g., Alvarez
and Arellano 2022; Breitung et al. 2022; Dhaene and Jochmans 2016), and those that directly
correct the bias of the WG estimator (e.g., Bao and Yu 2023; Bun and Carree 2005; Dhaene
and Jochmans 2015; Everaert and Pozzi 2007; Gouriéroux et al. 2010; Hahn and Kuersteiner
2002; Kiviet 1995).1

This paper proposes estimating linear dynamic panels by recentering the cross moments
between the lagged dependent variables, which are endogenous, and the error term in the
model by their non-zero expectations.2 The resulting estimator is named the recentered
method of moments (RMM) estimator accordingly. These recentered moments are functions
of model parameters and, together with moment conditions from other exogenous regressors,
if any, form the basis for model estimation. Essentially, it is based on the idea that the
best “instrument” for any of the endogenous lagged dependent variables is itself. As
such, one does not need to search for IVs and can avoid issues of weak instruments
and many instruments that exist in the GMM framework. It is closely related to the
bias-correction literature, but there is no correction procedure involved. In particular,
Appendix B illustrates that the estimator proposed in this paper is numerically equivalent to
the indirect inference (II) estimator, as introduced by Bao and Yu (2023). However, they are
motivated very differently. The strategy of Bao and Yu (2023) starts with a biased estimator,
but this paper does not have a biased estimator to begin with and designs recentered
moment conditions directly by expressing the cross moments between the endogenous
lagged dependent variables and disturbances in terms of model parameters.3 Furthermore,
there are three major contributions in this paper that are absent elsewhere.
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First, it allows for more general assumptions regarding the data-generating process
(DGP). Specifically, the most general form of error heteroskedasticity, arising from cross-
sectional units, time, or both, is considered. Breitung et al. (2022) focus primarily on
the situation of cross-sectional heteroskedasticity.4 Alvarez and Arellano (2022) consider
only time-series heteroskedasticity. Bao and Yu (2023) discuss a robust version of their
II estimator that is valid under both forms of heteroskedasticity, though falling short of
deriving its asymptotic distribution. They focus instead on the case when there is only
time-series heteroskedasticity. Bun and Carree (2006) derive the asymptotic bias of the WG
estimator when both forms of heteroskedasticity are present and propose bias correcting
the WG estimator when T is fixed for the first-order DP (DP(1)) model. Juodis (2013) points
out that the bias-correction procedure of Bun and Carree (2006) is, in fact, inconsistent
and designs a consistent one for a higher-order DP.5 Note that both Bun and Carree (2006)
and Juodis (2013) estimate the temporal heteroskedasticity parameters so that they can be
plugged into the bias expression of the WG estimator for the purpose of bias correction.
However, they do not provide insights on how to conduct asymptotic inference on the
resulting bias-corrected estimator. In contrast, Alvarez and Arellano (2022) jointly estimate
the temporal heteroskedasticity parameters and model parameters and also derive their
joint asymptotic distribution.

Second, this paper explicitly includes the case when there is a unit root. If the time span
is short, this may not matter, as the inference procedure is under the large-N asymptotic
regime, where N is the number of cross-sectional units. Bun and Carree (2006), Juodis
(2013), Alvarez and Arellano (2022), and Bao and Yu (2023) all consider short panels. But
for long panels, the issue of unit root cannot be simply ignored. Dhaene and Jochmans
(2015) do not consider the unit-root case, and their jackknife method is developed under
the rectangular-array asymptotic regime (namely, both N and T are large). Breitung et al.
(2022) also present some results under the rectangular-array regime, but do not explicitly
consider the unit-root case.

Third, asymptotic distribution results are derived that, in general, do not require
both N and T to be large. The asymptotic distribution of the proposed RMM estimator
under large T resembles the familiar ordinary least squares (OLS) result in traditional
regression analysis, and its asymptotic variance achieves the efficiency bound under
homoskedasticity. Similar to time series literature, the convergence rate of the estimator
of the autoregressive parameters is different when there is a unit root under large T, but
the standard t-test procedure carries through when one is conducting hypothesis testing.
Under homoskedasticity, Han and Phillips (2010) report a unified asymptotic distribution
result for their first difference least squares (FDLS) estimator for DP(1) when the unit-
root case is allowed. In their setup, the fixed effects disappear under the unit-root case.
Hayakawa (2009) derives the asymptotic properties of the IV estimator for higher-order
DP models, with neither heteroskedasticity nor exogenous regressors present, when the
panel is dynamically stable under large N and large T, though he remarks that it should
also hold under other asymptotic regimes.

The plan of this paper is as follows. The next section introduces the model and notation.
Section 3 presents the RMM estimator under the baseline set-up of homoskedasticity,
though it is further shown that the estimator is robust to cross-sectional heteroskedasticity
as well. An important message here is that when T is large, there is no asymptotic bias,
standing in contrast to the consistent WG estimator that may possess an asymptotic bias.
Section 4 introduces a robust estimator under cross-sectional and temporal heteroskedasticity.
Section 5 illustrates the good finite-sample performance of the proposed estimator by
Monte Carlo experiments. The last section concludes and discusses possible future research.
Technical details, including lemmas that are used for the proofs of the main results in this
paper, together with some extended discussions and additional simulation results, are
provided in the appendices. Throughout, matrix/vector dimension subscripts are typically
omitted unless confusion may arise. A subscript 0 is used to signify the true value of a
parameter that is to be estimated.
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2. Model, Notation, and Assumptions

The p-th order linear dynamic panel model, DP(p) for short, is

yit =
p

∑
ℓ=1

ϕℓyi,t−ℓ + x′itβ + αi + uit = w′
itθ+ αi + uit, (1)

i = 1, · · · , N, t = 1, · · · , T, where the dependent variable yit is related to its lagged values,
up to order p, fixed effects αi, the k × 1 vector of exogenous variables xit = (xit,1, · · · , xit,k)

′,
and an idiosyncratic disturbance term uit. The vector wit = (yi,t−1, · · · , yi,t−p, x′it)

′ collects
all the right-hand side variables and θ = (ϕ′, β′)′, where ϕ = (ϕ1, · · · , ϕp)′. For each
i, let yi = (yi1, · · · , yiT)

′, yi,(−ℓ) = (yi,1−ℓ, · · · , yi,T−ℓ)
′, Y i = (yi,(−1), · · · , yi,(−p)), X i =

(xi1, · · · , xiT)
′, W i = (Y i, X i) = (wi1, · · · , wiT)

′, and ui = (ui1, · · · , uiT)
′. Stacking over

i, one has α = (α1, · · · , αN)
′, y = (y′

1, · · · , y′
N)

′, y(−ℓ) = (y′
1,(−ℓ), · · · , y′

N,(−ℓ))
′, Y =

(Y ′
1, · · · , Y ′

N)
′ = (y(−1), · · · , y(−p)), X = (X ′

1, · · · , X ′
N)

′, W = (Y , X) = (W ′
1, · · · , W ′

N)
′,

and u = (u′
1, · · · , u′

N)
′. Let ⊗ denote the matrix Kronecker product operator and 1 = 1T be

a T × 1 column vector of ones. Then, in matrix notation, (1) can be written as

y = Wθ+ α ⊗ 1 + u. (2)

Suppose there exists a matrix A such that when pre-multiplying it to (2), the fixed
effects are wiped out, namely,

Ay = AWθ+ Au. (3)

The NT×NT matrix IN ⊗MT comes as a natural choice for A, where MT = IT − T−111′ ≡ M,
and IN (IT) denotes the identity matrix of size N (T). In this case, applying the OLS
procedure to (3) yields the WG estimator. For a given A, the regression model (3) contains
endogenous lagged dependent variables y(−1), · · · , y(−p) as regressors and E(W ′A′Au) ̸= 0.
The IV/GMM literature focuses on using various instruments for y(−ℓ) (or its various
differences). The best “instrument” for y(−ℓ) is of course itself, though it violates the
definition of instrument. Nevertheless, if one can explicitly analyze how y(−ℓ) is correlated
with u, subject to the transformation induced by A, then this piece of information can
be used to estimate model parameters. This is essentially the idea of this paper. In the
sequel, A = IN ⊗ M is used (and thus, A′A = A), and the following assumptions are made.
Different assumptions about the idiosyncratic error term are deferred into the next two
sections when different forms of heteroskedasticity are discussed.

Assumption 1. The series of fixed effects αi, i = 1, · · · , N, is i.i.d. across individuals with finite
moments up to the fourth order.

Assumption 2. The error terms uit and fixed effects αi are independent of each other for any
i = 1, · · · , N, t = 1, · · · , T.

Assumption 3. The regressors X, if present, are either fixed or random and (NT)−1X ′AX
converges (in probability) to a nonsingular matrix as NT → ∞. When they are fixed, xit = O(1).
When they are random: (i) they are strictly exogenous with respect to error terms; (ii) xit = Op(1)
with finite moments up to the fourth order; (ii) E(αr1

i xr2
it,s) = O(1) and Cov(αr1

i xr2
it,si

, αr1
j xr2

jt,sj
) = 0,

r1 + r2 ≤ 4, r1 ≥ 0, r2 ≥ 0, i ̸= j, i, j = 1, · · · , N, s, si, sj = 1, · · · , k.

Assumption 4. The initial values yi,−s, i = 1, · · · , N, s = 0, 1, · · · , p, are either fixed or random.
When they are fixed, yi,−s = O(1). When they are random: (i) yi,−s = Op(1) with finite moments
up to the fourth order; (ii) E(αr1

i yr2
i,−s) = O(1) and Cov(αr1

i yr2
i,−s, αr1

j yr2
j,−s) = 0, r1 + r2 ≤ 4,

r1 ≥ 0, r2 ≥ 0, i ̸= j, i, j = 1, · · · , N, s = 0, · · · , p; (iii) Cov(yi,−s, uit) = 0, s = 0, · · · , p,
t = 1, · · · , T, i = 1, · · · , N.
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Without loss of generality, in what follows, the analysis in this paper is conditioning on
X for ease of presentation. No distribution assumption is made, so long as some moment
conditions hold. Assumption 3 does not rule out the possible correlation between X and the
fixed effects, but rules out correlation among the products of them. For simplicity, the strictly
exogenous regressors contained in X are bounded (in probability). For the estimation
strategy to be introduced in the next section, the inclusion of explosive exogenous regressors
can affect the convergence rate of the associated parameter estimators, but does not affect
the convergence rate of those associated with the lagged dependent variables. Assumption 4
does not spell out how the initial values are generated, except that there are restrictions on
how they may be correlated with the fixed effects and idiosyncratic errors. The panel under
consideration is not restricted to be dynamically stable. The fixed effects in Assumption 1
are treated as randomly generated from some distribution. This assumption itself is
not needed for the purpose of estimation, since the recentered moment conditions to be
presented wipe out the fixed effects. However, it is used, together with Assumptions 2–4
and Assumption 5 or 6, to ensure that the (scaled) moments and the associated gradient
have properly defined probability limits (see, for example, Lemma A5 in the Appendix C),
which in turn are used to establish the asymptotic distribution of the RMM estimator.6 When
there is a unit root, the asymptotic behavior of the RMM estimator to be introduced depends
on the fixed effects, so for the sake of tractability, they are assumed to be deterministic by
following Hahn and Kuersteiner (2002).7

In the next two sections, the asymptotic properties are derived of the RMM estimator
under homoskedasticity and heteroskedasticity, without or with a unit root. Under large N
and finite T, the asymptotic distribution is of the same form, whereas under large T, subject
to the appropriate scaling factors, the asymptotic distribution resembles the OLS result in
traditional regression analysis.

Note that, as established in Bao and Yu (2023), the vectors of lagged observations from
model (1) (at the true parameter vector θ0) for each cross-sectional unit can be written as

yi,(−ℓ) = Φ−1
p [Lℓ(ui + αi1 + X iβ0) +

ℓ−1

∑
s=0

ΦsLℓ−1−se1yi,−s +
p−1

∑
s=ℓ

Φ(s−p)L
ℓ−1−se1yi,−s], (4)

ℓ = 1, · · · , p, where L is a T × T strict lower triangular matrix with 1’s on the first sub-
diagonals and 0’s elsewhere, e1 = (1, 0, · · · , 0)′ is a T × 1 vector, Φp = Φp(ϕ0), Φp(ϕ) =
I − ϕ1L − · · · − ϕpLp, and Φ(s−p) = Φs(ϕ0)− Φp(ϕ0).

8 Then, stacking over index i, one
has, for ℓ = 1, · · · , p,

y(−ℓ) = (IN ⊗ Φ−1
p Lℓ)u + (IN ⊗ Φ−1

p Lℓ)Xβ0 + (IN ⊗ Φ−1
p Lℓ1)α

+
ℓ−1

∑
s=0

(IN ⊗ Φ−1
p ΦsLℓ−1−se1)yyy(−s) +

p−1

∑
s=ℓ

(IN ⊗ Φ−1
p Φ(s−p)L

ℓ−1−se1)yyy(−s),
(5)

where yyy(−s) = (y1,−s, · · · , yN,−s)
′ is an N × 1 vector collecting initial cross-sectional

observations at time −s = 0, · · · , 1 − p. This representation of y(−ℓ) is in terms of u, X, α,
and initial conditions, so W ′Au essentially boils down to linear and quadratic forms in the
random vector u. This facilitates the derivation of the expectation of W ′Au, which forms
the basis of the moment conditions in this paper for estimating model parameters. When
ui,t is independent and identically distributed (i.i.d.) across i and t, moments of quadratic
forms in u can be found in Bao and Ullah (2010), and in the presence of heteroskedasticity,
results are provided in Appendix A.7 of Ullah (2004).

3. The Baseline Set-Up

This section presents the estimator under the framework when the idiosyncratic errors
are homoskedastic across i and t.
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Assumption 5. uit, i = 1, · · · , N, t = 1, · · · , T, is i.i.d. across i and t , E(uit) = 0, Var(uit) = σ2,
and has finite moments up to the fourth order.

3.1. Estimation

Given Assumptions 1–5 and using the representation (5), one has, at θ0,

E(W ′Au) =


Nσ2tr(MΦ−1

p L1)
...

Nσ2tr(MΦ−1
p Lp)

0k

 = −Nσ2

T


1′Φ−1

p L1
...

1′Φ−1
p Lp1
0k

, (6)

where tr(·) is the matrix trace operator. The first equality in (6) follows when one
substitutes (5) into W = (y(−1), · · · , y(−p), X) and takes expectation of quadratic forms in

u and the second equality follows from tr(MΦ−1
p Lℓ) = tr(Φ−1

p Lℓ)− T−11′Φ−1
p Lℓ1, where,

since LℓΦ−1
p is strictly lower triangular, tr(Φ−1

p Lℓ) = 0.
This set of moment conditions additionally involves the variance parameter σ2. Since

E(u′Au) = N(T − 1)σ2, one can define the following

gNT(θ) =
1

NT
W ′A(y − Wθ) +

1
NT

(y − Wθ)′A(y − Wθ)h(θ), (7)

where h(θ) = [T(T − 1)]−1(1′Φ−1
p (ϕ)L1, · · · , 1′Φ−1

p (ϕ)Lp1, 0′k)
′, such that E(gNT(θ0)) = 0.

Thus, an estimator can be defined as θ̂ = argθ{gNT(θ) = 0}. Appendix B discusses several
closely related estimators that are motivated very differently. The traditional method of
moments (MM) or GMM is based on moment conditions that have expectations (or the
probability limits) equal to zero exactly, where these moments are usually defined as cross
moments of exogenous regressors or instruments and disturbances in the model under
consideration. Here, the cross moments pertaining to the endogenous lagged dependent
variables have non-zero expectations and the moment conditions gNT(θ) = 0 for estimation
are designed by recentering the cross moments by their non-zero expectation parts. For
this reason, θ̂ is named the RMM estimator in this paper.

Note that one can equivalently write the set of moment conditions (7) as

gNT(θ) =
1

NT

N

∑
i=1

T

∑
t=1

[(wit − w̄i)ϵit(θ) + (ϵit(θ)− ϵ̄i(θ))ϵit(θ)h(θ)]

≡ 1
NT

N

∑
i=1

T

∑
t=1

[(zit(θ)− z̄i(θ))ϵit(θ)],

where ϵit(θ) = yit −w′
itθ, zit(θ) = wit + h(θ)ϵit(θ), w̄i = T−1 ∑T

t=1 wit, and ϵ̄i(θ) and z̄i(θ)

are defined similarly. It turns out that T−1 ∑T
t=1[(zit(θ)− z̄i(θ))ϵit(θ)] is the same as mTi(θ)

in Breitung et al. (2022).9 They show that mTi(θ) has the property of E(mTi(θ0)) = 0 under
cross-sectional heteroskedasticity, namely, E(u2

it) = σ2
i . Essentially, this is because, in this

case, σ̂2
Ti(θ0) = (T − 1)−1 ∑T

t=1(ϵit(θ0)− ϵ̄i(θ0))ϵit(θ0) is an unbiased estimator of σ2
i and

thus (T − 1)−1 ∑N
i=1 ∑T

t=1(ϵit(θ0)− ϵ̄i(θ0))ϵit(θ0) = (T − 1)−1u′Au is in fact an unbiased
estimator of ∑N

i=1 σ2
i . In other words, if Assumption 5 is modified such that E(u2

it) = σ2
i ,

then it is still the case that E(gNT(θ0)) = 0 and the estimation procedure does not change.
This is invalid, however, when there is time-series heteroskedasticity (E(u2

it) = σ2
t ) or both

forms of heteroskedasticity (E(u2
it) = σ2

it). Remark 2 of Breitung et al. (2022) suggests
that mTi(θ) may still be considered a valid set of moment conditions when both forms
of heteroskedasticity are present, in the sense that the limit of mTi(θ) (as T → ∞) goes
to zero, provided that: (i) there is no unit root and (ii) T is large. In the next section, a
robust estimator is introduced such that it is based on a set of moment conditions having
exact expectation zero under the most general form of heteroskedasticity without imposing
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the two conditions. To fix ideas, various results in this section are presented by assuming
homoskedasticity.

Obviously,

GNT(θ) =
∂gNT(θ)

∂θ′

=
1

NT
[(y − Wθ)′A(y − Wθ)H(θ)− W ′AW − 2h(θ)(y − Wθ)′AW ],

(8)

where

H(θ) =
∂h(θ)

∂θ′
=

1
T(T − 1)

(
Rp(ϕ) Op×k
Ok×p Ok

)
, (9)

and Rp(ϕ) is a p × p matrix with 1′Φ−1
p (ϕ)LsΦ−1

p (ϕ)Lℓ1 in its (ℓ, s)-th position, ℓ, s =

1, · · · , p. In light of (5), one notices that both gNT = gNT(θ0) = (NT)−1[W ′Au + u′Auh]
and GNT = GNT(θ0) = (NT)−1[u′AuH − W ′AW − 2hu′AW ] are in terms of linear and
quadratic forms in u, whereas h = h(ϕ0) and H = H(ϕ0) are purely functions of ϕ0. From
Lemma A1 in Appendix C, regardless of N and T, under homoskedasticity,

Var(
√

NTgNT) =
1

NT
Var(W ′Au)− σ4

[
2(T − 1)

T
+ γ2

(T − 1)2

T2

]
hh′ ≡ ΩNT , (10)

where γ2 is the excess kurtosis of uit.10

At the true parameter vector θ0, when there is no unit root, −(NT)−1W ′AW = Op(1),
Th = O(1), TH = O(1), N−1u′AW = O(1) + Op(N−1/2T1/2), and (NT)−1u′Au = Op(1),
so GNT = Op(1)+ [O(T−2)+Op(N−1/2T−3/2)]+Op(T−1). When T is large, G is obviously
dominated by the Op(1) term, namely, −(NT)−1W ′AW . (When there is a unit root, the
properly scaled GNT has the scaled −W ′AW as its leading term.) From Lemma A6 in
Appendix C (or Lemma A14 when there is a unit root), the estimator is locally identified in
large samples. When T is finite but N is large, it is still very likely that −(NT)−1W ′AW is
relatively large compared with the other two terms of finite order in GNT . In finite samples,
one can always check numerically whether GNT(θ) is singular against a grid of values of θ.
This is similar to the approach adopted by Gospodinov et al. (2017) and Bao and Yu (2023).
In this section and the one to follow, it is implicitly assumed that the estimator is (first-order)
locally identified. A general statement about sufficient conditions for identification would
be desirable but extremely difficult.11

3.2. Inference under Large N

If N → ∞ and T is finite, by writing gNT = (NT)−1 ∑N
i=1(W

′
i Mui + u′

i Muih) ≡
(NT)−1 ∑N

i=1 gi, where gi is independent (across i) with mean 0 and variance O(1) under
Assumptions 1–5, one can apply Lyapunov’s central limit theorem to N−1/2gNT . This
straightforwardly gives the following result.

Theorem 1. Under Assumptions 1–5, if T is finite and GT = plimN→∞GNT and ΩT =
limN→∞ ΩNT exist and are nonsingular, then as N → ∞,

√
N(θ̂− θ0)

d→ N
(

0, G−1
T ΩTG−1′

T

)
. (11)

For practical inference, while GT may be consistently estimated by ĜT = (NT)−1[(y−
W θ̂)′A(y − W θ̂)Ĥ − W ′AW − 2ĥ(y − W θ̂)′AW ] with ĥ = h(θ̂) and Ĥ = H(θ̂), it is
not advisable to use a plug-in approach to estimate ΩT . Recall ΩNT (see (10)) contains
Var(W ′Au), which, as shown in Bao and Yu (2023), has a very complicated expression
involving further the skewness and kurtosis of uit, fixed effects, and possible interactions
between the fixed effects and initial conditions. Given these complications and the fact that
W ′

i Mui + u′
i Muih is independent (across i), a White-type (White 1980) estimator is natural
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for estimating ΩT in this asymptotic regime of large N and finite T. In consequence, a
consistent variance estimator of the asymptotic variance of

√
N(θ̂− θ0) is

V̂(θ̂) = Ĝ−1
T

(
1
N

N

∑
i=1

ĝTi ĝ
′
Ti

)
Ĝ−1′

T , (12)

where ĝTi = T−1(W ′
i Mûi + û′

i Mûiĥ) with Mûi = M(yi − W iθ̂).
One can show that GT is equal to plimN→∞∇mNT(θ0) in Breitung et al. (2022), which,

in turn, is equal to limN→∞N−1 ∑N
i=1 E[∇mTi(θ0)], where ∇mNT(θ) (= ∂mNT(θ)/∂θ′) and

E[∇mTi(θ)] are given in Appendix A of Breitung et al. (2022). Further, ΩT is the same as
plimN→∞N−1 ∑N

i=1 mTi(θ0)mTi(θ0)
′. Thus, V̂(θ̂) is asymptotically the same as the fixed-T

consistent variance matrix estimator of Breitung et al. (2022) (see their equation (6)). Again,
despite the discussion in this section being under the set-up of homoskedastic errors, it also
applies to the case of cross-sectional heteroskedasticity.

3.3. Inference under Large T

If T → ∞, regardless of N, upon substituting (5), one can check that the term y′
(−ℓ)Au,

ℓ = 1, · · · , p, in W ′Au will be dominated by u′A(IN ⊗ Φ−1
p Lℓ)u + u′A(IN ⊗ Φ−1

p Lℓ)Xβ0.
When there is a unit root, u′A(IN ⊗ Φ−1

p Lℓ1)α is also a dominating term. In the following,
the stable and unit-root cases are discussed separately, since the leading terms in y′

(−ℓ)Au
are of different orders. The relevant matrices in the quadratic forms are uniformly (in
T) bounded in row and column sums under the stable case, but not under the unit-root
case. These differences create different distribution results for θ̂ that are mainly in terms
of the scaling factors. In what follows, let λr, r = 1, · · · , p, denote the inverse of roots of
1 − ϕ1z − · · · − ϕpzp = 0 when ϕ = ϕ0. The stable case refers to the situation if |λr| < 1,
r = 1, · · · , p, and without loss of generality, the unit-root case refers to the scenario when
λ1 = 1 and |λr| < 1, r = 2, · · · , p.

3.3.1. Stable Case

In this case, the matrix MΦ−1
p Lℓ in u′A(IN ⊗ Φ−1

p Lℓ)u + u′A(IN ⊗ Φ−1
p Lℓ)Xβ0 =

u′(IN ⊗ MΦ−1
p Lℓ)u + u′(IN ⊗ MΦ−1

p Lℓ)Xβ0 is uniformly (with respect to T) bounded in
row and column sums. This boundedness property also holds for IN ⊗ MΦ−1

p Lℓ and thus
the central limit theorem of Kelejian and Prucha (2010) on linear and quadratic forms can

be invoked.12 That is, as T → ∞, Ω−1/2
1,NT

√
NTgNT

d→ N(0, I) (see Lemma A7), in which

Ω1,NT =
1

NT

(
σ4NΓ1 + σ2Γ2 σ2F ′

1
σ2F1 σ2X ′AX

)
, (13)

where Γ1 and Γ2 are p× p matrices, consisting respectively of elements tr[(Φ−1
p Lℓ)′MΦ−1

p Ls]

and β′
0X ′[IN ⊗ (Φ−1

p Lℓ)′MΦ−1
p Ls]Xβ0, ℓ, s = 1, · · · , p, in their (ℓ, s)-positions, and F1 is

k × p with X ′(IN ⊗ MΦ−1
p Lℓ)Xβ0, ℓ = 1, · · · , p, as its ℓ-th column. Note that Ω1,NT is not

the exact variance of
√

NTgNT , which is ΩNT as defined by (10). It is better interpreted
as an approximation, namely, Ω1,NT = ΩNT + o(1). It follows that Ω−1/2

NT

√
NTgNT =

Ω−1/2
1,NT

√
NTgNT + op(1), regardless of N. In contrast to the exact variance matrix ΩNT , the

variance matrix Ω1,NT involves θ0, X, and σ2, but not the fixed effects, initial conditions, or
the skewness and kurtosis of the error distribution.

Theorem 2. Under Assumptions 1–5 and that DP(p) is dynamically stable, if plimT→∞GNT and
limT→∞ Ω1,NT exist and are nonsingular, then as T → ∞,

√
NT(θ̂− θ0)

d→ N

(
0,
(

plim
T→∞

GNT

)−1(
lim

T→∞
Ω1,NT

)(
plim
T→∞

GNT

)−1′
)

. (14)
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If N is finite, one could have replaced the convergence rate
√

NT by
√

T and denoted
plimT→∞GNT by GN and limT→∞ Ω1,NT by Ω1,N . But since there is no restriction in
N (except that the probability limit of GNT and the limit of Ω1,NT are well defined
when T → ∞), which may be finite or also diverge as T → ∞, no attempt is made
to implement such replacements here (and also in the next (sub)sections).13 Lemma A6
gives plimT→∞(NT)−1W ′AW = limT→∞ σ−2Ω1,NT . Combining all these results, one has
the following.

Corollary 1. Under the conditions in Theorem 2, as T → ∞,
√

NT(θ̂− θ0)

d→ N

(
0,
(

plim
T→∞

1
NT

W ′AW
)−1(

lim
T→∞

Ω1,NT

)(
plim
T→∞

1
NT

W ′AW
)−1

)
(15)

d→ N

(
0, σ4

(
lim

T→∞
Ω1,NT

)−1
)

(16)

d→ N

(
0, σ2

(
plim
T→∞

1
NT

W ′AW
)−1

)
. (17)

The asymptotic variances in (15)–(17) resemble the variance formula of a consistent
OLS estimator. Recall that the WG estimator, which is also named the least squares dummy
variable (LSDV) estimator, is essentially an OLS estimator and is consistent under large
T, though it may still possess an asymptotic bias, depending on the divergence rates of N
and T. The asymptotic distribution result (17) is the same as Theorem 1(ii) of Breitung et al.
(2022) that is derived under cross-sectional heteroskedasticity.14 In view of Theorem 3 in
Hahn and Kuersteiner (2002), the asymptotic variance (17) achieves the efficiency bound.

In practice, the asymptotic variance may be estimated by Ĝ−1
NTΩ̂1,NTĜ−1′

NT , where
Ω̂1,NT = Ω1,NT(θ̂) and ĜNT = GNT(θ̂), with θ̂ replacing θ0 in Ω1,NT and GNT , respectively,

or (W ′AW/NT)−1Ω̂1(W ′AW/NT)−1, or σ̂4Ω̂
−1
1,NT , or σ̂2(W ′AW/NT)−1, where σ̂2 =

(y − W θ̂)′A(y − W θ̂)/[N(T − 1)]. The last choice is perhaps the easiest one to use.
When k = 0 and p = 1, Ω1,NT/σ4 = tr[(Φ−1

1 L)′MΦ−1
1 L]/T = 1/(1 − ϕ2

0) + O(T−1),
so √

NT(ϕ̂ − ϕ0)
d→ N(0, 1 − ϕ2

0), (18)

as T → ∞. This is also the asymptotic distribution of the bias-corrected WG estimator in
Hahn and Kuersteiner (2002).

3.3.2. Unit-Root Case

When there is a unit root, the leading terms in W ′Au are linear forms in u. The matrices
in quadratic forms in u that appear in W ′Au are no longer uniformly (in T) bounded in
row and column sums, but they are of lower order compared with the leading linear forms.
Thus, define the scaling matrix

Υ =

(
NT3 Ip Op×k
Ok×p NTIk

)
.

Correspondingly, define g⋆NT = Υ−1[W ′Au − E(W ′Au)] and

Ω⋆
1,NT(α) = Υ−1/2σ2

(
Γ2 + Γ3(α) F ′

1 + F ′
2(α)

F1 + F2(α) X ′AX

)
Υ−1/2, (19)

where Γ2 and F1 are defined in (13), Γ3(α) has 1′(Φ−1
p Lℓ)′MΦ−1

p Ls1α′α in its (ℓ, s)-position,
ℓ, s = 1, · · · , p, and F2(α) has X ′(IN ⊗ MΦ−1

p Lℓ1)α as its ℓ-th column, t = 1, · · · , p. Note
that the matrix Ω⋆

1,NT(α) involves the fixed effects. If the fixed effects are deterministic
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and of finite magnitudes, then Ω⋆
1,NT(α) can be interpreted as the approximate variance

of Υ1/2g⋆NT , namely, Ω⋆
1,NT(α) = Var(Υ1/2g⋆NT) + o(1). Lemma A15 in Appendix C shows

that Ω⋆−1/2
1,NT (α)Υ1/2g⋆NT

d→ N(0, I) as T → ∞. Denote G⋆
NT = G⋆

NT(θ0) with G⋆
NT(θ) =

Υ−1/2{∂[W ′A(y − Wθ)− E(W ′A((y − Wθ))]/∂θ′}Υ−1/2.

Theorem 3. Under Assumptions 3–5 and that DP(p) has a unit root, assume that the fixed effects
are deterministic and of finite magnitudes. If plimT→∞G⋆

NT and limT→∞ Ω⋆
1,NT(α) exist and are

nonsingular, then as T → ∞,

Υ1/2(θ̂− θ0)
d→ N

(
0,
(

plim
T→∞

G⋆
NT

)−1(
lim

T→∞
Ω⋆

1,NT(α)

)(
plim
T→∞

G⋆
NT

)−1′
)

. (20)

This, together with Lemmas A13 and A14, implies the following.

Corollary 2. Under the conditions in Theorem 3, as T → ∞,

Υ1/2(θ̂− θ0)

d→ N

0,

(
plim
T→∞

Υ−1/2W ′AWΥ−1/2

)−1(
lim

T→∞
Ω⋆

1,NT(α)

)(
plim
T→∞

Υ−1/2W ′AWΥ−1/2

)−1
 (21)

d→ N

0, σ2

(
plim
T→∞

Υ−1/2W ′AWΥ−1/2

)−1
. (22)

When there are no fixed effects (α = 0), but there are still relevant exogenous regressors
contained in X, the asymptotic distribution result still holds as T → ∞. When there is no X
and p = 1, the leading term in W ′AW = ∑N

i=1 y′
i,(−1)Myi,(−1) is ∑N

i=1 α2
i 1′LΦ−1′

1 MΦ−1
1 L1.

As T → ∞, T−31′LΦ−1′
1 MΦ−1

1 L1 → 1/12 and T−3Var(W ′Au) → σ2 ∑N
i=1 α2

i /12.

Corollary 3. Under Assumptions 4 and 5, if further k = 0, p = 1, ϕ0 = 1, the fixed effects are
deterministic and of finite magnitudes, and α ̸= 0, then as T → ∞,

√
NT3(ϕ̂ − ϕ0)

d→ N
(

0,
12σ2

N−1α′α

)
. (23)

This echoes Theorem 5 of Hahn and Kuersteiner (2002). If N → ∞ also, then the
asymptotic variance in (23) is replaced accordingly with 12σ2/(limN→∞ N−1α′α) (assuming
that the limit exists).15

It should be pointed out that unit-root situation considered here is different from
those in Han and Phillips (2010) and Kruiniger (2018), both focusing on DP(1) and ruling
out trends due to the fixed effects and/or exogenous regressors. The specification in
Han and Phillips (2010) is yit = ϕyi,t−1 + (1 − ϕ)αi + uit. Their FDLS estimator has a
unified convergence rate of

√
N(T − 1) for ϕ0 ∈ (−1, 1] and the limiting distribution is

Gaussian for any N/T ratio as long as N(T − 1) → ∞. The model in Kruiniger (2018) is
yit = ϕyi,t−1 + x′it(β − ϕβ) + (1 − ϕ)αi + uit. He shows that the modified ML approach
(Lancaster 2002) is undesirable in the unit-root case since ϕ0 is first-order unidentified and is
only second-order identified under the large-N-finite-T asymptotic regime. His generalized
modified ML estimator, on the other hand, exists in the large-N-finite-T asymptotic regime
with probability approaching 1; it is uniquely identified with probability 1 if it exists, and
the asymptotic distribution of the estimated autoregressive parameter is non-Gaussian with
a convergence rate of N1/4 in the unit-root case. In this paper, it is assumed that either there
are always fixed effects or when the fixed effects do not exist, there are relevant exogenous
regressors. In this framework, the convergence rate of the RMM estimator is different only
under large T for the unit-root case and the asymptotic distribution is still normal.
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4. Heteroskedasticity

This section considers the situation of heteroskedastic idiosyncratic errors. Assumption 5
is modified accordingly such that both forms of heteroskedasticity are allowed.

Assumption 6. The series of error terms uit, i = 1, · · · , N, t = 1, · · · , T, is independent across i
and t, E(uit) = 0, Var(uit) = σ2

it, and has finite (4 + η)-th moments, η > 0.

Let Var(ui) = Σi = Dg(σ2
i1, · · · , σ2

iT), where Dg(·) denotes a diagonal matrix with its
arguments in order on the diagonal. (When Dg(·) has a matrix argument, it collects, in
order, the diagonal elements of the matrix and forms a diagonal matrix.) It is obvious that

E(W ′Au) =
N

∑
i=1


tr(MΦ−1

p L1Σi)
...

tr(MΦ−1
p LpΣi)

0k

. (24)

Following Bao and Yu (2023), define

Ψℓ(ϕ) =
T

T − 2
Dg(MΦ−1

p (ϕ)Lℓ)−
tr(MΦ−1

p (ϕ)Lℓ)

(T − 1)(T − 2)
I.

Then, using tr(MΦ−1
p LℓΣi) = E(u′

i MΨℓMui), where Ψℓ = Ψℓ(ϕ0), one may define the
moment vector as

gNT(θ) =
1

NT

N

∑
i=1


y′

i,(−1)M(yi − W iθ)− (yi − W iθ)
′MΨ1(ϕ)M(yi − W iθ)

...
y′

i,(−p)M(yi − W iθ)− (yi − W iθ)
′MΨp(ϕ)M(yi − W iθ)

X ′
i M(yi − W iθ)


≡ 1

NT

N

∑
i=1

gi(θ) (25)

such that E(gNT) = 0. Note that this set of moment conditions is still valid under
Assumption 5. In the previous section under homoskedasticity, σ2 is treated as a nuisance
parameter, and it is replaced with u′Au/[N(T − 1)] as if it were estimated. (It has also
been emphasized that u′Au/[N(T − 1)], in fact, is unbiased for estimating ∑N

i=1 σ2
i under

cross-sectional heteroskedasticity.) Under the most general form of heteroskedasticity, there
is no feasible way of estimating all the variance parameters unbiasedly. So this section does
not seek to estimate Σi. Instead, the set of moment conditions (25) is designed such that it
is robust to heteroskedasticity.

Denote ΩNT = Var(
√

NTgNT) as before, but its expression is different, see (A9) in
Appendix C. The gradient (evaluated at θ0) now becomes

GNT =
1

NT

N

∑
i=1


2u′

i MΨ1MW i − y′
i,(−1)MW i

...
2u′

i MΨp MW i − y′
i,(−p)MW i

−X ′
i MW i



− 1
NT

N

∑
i=1


u′

i MΨ11Mui · · · u′
i MΨ1p Mui 0′k

u′
i MΨp1Mui · · · u′

i MΨpp Mui 0′k
0k · · · 0k Ok

,

(26)
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where

Ψℓs =
∂Ψℓ(θ0)

∂ϕs
=

T
T − 2

Dg(MΦ−1
p LsΦ−1

p Lℓ)−
tr(MΦ−1

p LsΦ−1
p Lℓ)

(T − 1)(T − 2)
I. (27)

By substituting (4), one can see that y′
i,(−ℓ)Mui − u′

i MΨℓMui that populates gi(θ0)

is in terms of linear and quadratic forms in ui (see (A10) in the proof of Lemma A1 in
Appendix C). This structure is to be exploited for one to study the asymptotic distribution
of the resulting RMM estimator from the set of sample moment conditions (25).

4.1. Inference under Large N

Given any finite T, for each ℓ = 1, · · · , p, one can verify that the Lyapunov condition
holds by checking N−1 ∑N

i=1 Var(y′
i,(−ℓ)Mui − u′

i MΨℓMui) = O(1) (see Lemma A1 in
Appendix C for the expression of Var(y′

i,(−ℓ)Mui − u′
i MΨℓMui)) and E(|y′

i,(−ℓ)Mui −
u′

i MΨℓMui|2+δ) < ∞ for some δ > 0. The Lyapunov condition also holds for u′
i MX i,

since N−1 ∑N
i=1 Var(u′

i MX i) = N−1 ∑N
i=1 tr(MX iX ′

i MΣi) = O(1) and E(|u′
i MX i|2+δ) <

∞. Moreover, for any linear combination of y′
i,(−1)Mui − u′

i MΨ1Mui, · · · , y′
i,(−p)Mui −

u′
i MΨp Mui, and u′

i MX i, the Lyapunov condition holds as well. Thus, with ΩNT and GNT
updated, one has the same asymptotic distribution result as in Theorem 1, and to save
space, it is not listed explicitly as a separate theorem.

4.2. Inference under Large T

As in the previous section, cases without and with a unit root are discussed separately,
since the orders of various dominating terms in GNT and ΩNT are different.

4.2.1. Stable Case

Note that, for any ℓ = 1, · · · , p, y′
i,(−ℓ)Mui is dominated by u′

i MΦ−1
p Lℓ(ui + X iβ0).

Dg(MΦ−1
p Lℓ) has diagonal elements of order O(T−1) (see Lemma A2 in Appendix C).

Therefore, y′
i,(−ℓ)Mui − u′

i MΨℓMui is dominated by u′
i MΦ−1

p Lℓ(ui + X iβ0).

Theorem 4. Under Assumptions 1–4 and 6 and that DP(p) is dynamically stable, if plimT→∞GNT
and limT→∞ Ω1,NT exist and are nonsingular, then as T → ∞,

√
NT(θ̂− θ0)

d→ N

(
0,
(

plim
T→∞

GNT

)−1(
lim

T→∞
Ω1,NT

)(
plim
T→∞

GNT

)−1′
)

, (28)

where

Ω1,NT =
1

NT

(
Γ1 + Γ2 F ′

1
F1 ∑N

i=1 X ′
i MΣi MX i

)
(29)

in which Γ1 and Γ2 are p × p matrices with, respectively, ∑N
i=1 tr(ΣiLℓ′Φ−1′

p MΣi MΦ−1
p Ls) and

∑N
i=1 β′

0X ′
i L

ℓ′Φ−1′
p MΣi MΦ−1

p LsX iβ0 in their (ℓ, s)-th positions, ℓ, s = 1, · · · , p, and F1 is k× p
with X ′

i MΣi MΦ−1
p LℓX iβ0 as its ℓ-th column, ℓ = 1, · · · , p.

In view of Lemmas A9 and A10 in Appendix C, one also has the following corollary.

Corollary 4. Under the assumptions in Theorem 4, as T → ∞,
√

NT(θ̂− θ0)

d→ N

0,

(
plim
T→∞

1
NT

W ′AW

)−1(
lim

T→∞
Ω1,NT

)(
plim
T→∞

1
NT

W ′AW

)−1
 (30)
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d→ N

0,

(
plim
T→∞

1
NT

W ′AW

)−1(
plim
T→∞

1
NT

N

∑
i=1

W ′
i MΣi MW i

)(
plim
T→∞

1
NT

W ′AW

)−1
. (31)

The asymptotic variance (31) resembles the OLS variance result under heteroskedasticity
in cross-sectional regressions. In practice, for meaningful inference, one needs to estimate
the meat part of the sandwich form of the asymptotic variance. From the proof of
Lemma A8, gNT is dominated by (NT)−1 ∑N

i=1(y
′
i,(−1)Mui, · · · , y′

i,(−p)Mui, u′
i MX i)

′ =

(NT)−1 ∑N
i=1 W ′

i Mui. Therefore, as T → ∞,

plim
T→∞

1
NT

N

∑
i=1

W ′
i Muiu′

i MW i = lim
T→∞

1
NT

N

∑
i=1

E(W ′
i Muiu′

i MW i)

= lim
T→∞

Var(
√

NTgNT)

= lim
T→∞

Ω1,NT .

But still, ui is not observable. Given that Mui = M(yi − W iθ0) ≡ Mvi, one may be
tempted to use Mv̂i = M(yi − W iθ̂) = M[ui + W i(θ0 − θ̂)]. By substitution,

1
NT

N

∑
i=1

W ′
i Mv̂iv̂′

i MW i

=
1

NT

N

∑
i=1

W ′
i Muiu′

i MW i +
1

NT

N

∑
i=1

W ′
i MW i(θ̂− θ0)(θ̂− θ0)

′W ′
i MW i

− 1
NT

N

∑
i=1

W ′
i MW i(θ̂− θ0)u′

i MW i −
1

NT

N

∑
i=1

W ′
i Mui(θ̂− θ0)

′W ′
i MW i,

where θ̂− θ0 = Op(1/
√

NT), W ′
i MW i = Op(T), and W ′

i Mui = O(1) + Op(
√

T/N). If it
is also the case that N diverges, then (NT)−1 ∑N

i=1 W ′
i MW i(θ̂ − θ0)u′

i MW i = op(1) and
(NT)−1 ∑N

i=1 W ′
i MW i(θ0 − θ̂)(θ0 − θ̂)′W ′

i MW i = op(1).
Therefore, if N, T → ∞, a feasible consistent estimator of the asymptotic variance is

V̂(θ̂) = NT
(
W ′AW

)−1
(

N

∑
i=1

W ′
i Mv̂iv̂′

i MW i

)(
W ′AW

)−1. (32)

The asymptotic distribution result (31) with the the variance matrix estimated by (32)
resembles Theorem 3 of Hansen (2007). Appendix D discusses the asymptotic distribution
of (NT)−1 ∑N

i=1 W ′
i Mv̂iv̂′

i MW i if N is fixed and its implication on asymptotic inference
when one is using (32). In particular, the

√
N/(N − 1)tN−1 approximation proposed by

Hansen (2007), where tN−1 is the t distribution with N − 1 degrees of freedom, may be
used to approximate the asymptotic distribution of the t-statistic.

4.2.2. Unit-Root Case

In this case, the diagonal elements of MΦ−1
p LℓΣi = Φ−1

p LℓΣi − T−111′Φ−1
p LℓΣi are

O(1), since Φ−1
p LℓΣi is strictly lower triangular and T−111′Φ−1

p Lℓ has O(1) elements.
Further, Ψℓ is dominated by (T − 2)−1TDg(Φ−1

p LℓΣi). As before, the scaling matrix Υ

is used such that the set of moment conditions g⋆NT(θ) and gradient matrix G⋆
NT(θ) are

defined accordingly. Specifically, g⋆NT(θ) is Υ−1[NTgNT(θ)] with gNT(θ) given by (25) and
G⋆

NT(θ) is Υ−1/2[NTGNT(θ)Υ
−1/2] with GNT(θ) given by (26).
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Theorem 5. Under Assumptions 3, 4 and 6 and that DP(p) has a unit root, assume the fixed
effects are deterministic and of finite magnitudes. If plimT→∞G⋆

NT and limT→∞ Ω⋆
1,NT(α) exist

and are nonsingular, then as T → ∞,

Υ1/2(θ̂− θ0)
d→ N

(
0,
(

plim
T→∞

G⋆

)−1(
lim

T→∞
Ω⋆

1,NT(α)

)(
plim
T→∞

G⋆

)−1′
)

, (33)

where

Ω⋆
1,NT(α) = Υ−1/2

(
Γ2 + Γ3(α) F ′

1 + F ′
2(α)

F1 + F2(α) ∑N
i=1 X ′

i MΣi MX i

)
Υ−1/2, (34)

in which Γ2 and F1 are defined in (29), Γ3(α) is p × p with ∑N
i=1 1′ΣiLℓ′Φ−1′

p MΣi MΦ−1
p Ls1α2

i
in its (ℓ, s)-th position, ℓ, s = 1, · · · , p, and F2(α) is k × p with ∑N

i=1 X ′
i MΣi MΦ−1

p Lℓ1αi as its
ℓ-th column, ℓ = 1, · · · , p.

Based on Lemmas A17 and A18, one also has the following result.

Corollary 5. Under the assumptions in Theorem 5, as T → ∞,

Υ1/2(θ̂− θ0)
d→N(0, V), (35)

where V = (plimT→∞Υ−1/2W ′AWΥ−1/2)−1plimT→∞Υ−1/2(∑N
i=1 W ′

i MΣi MW i)Υ
−1/2

(plimT→∞Υ−1/2W ′AWΥ−1/2)−1.

Similar to (32), for practical inference, one needs N, T → ∞ so that W ′
i MΣi MW i can

be replaced with W ′
i Mv̂iv̂′

i MW i in (35) and the probability limits are replaced with the
sample analogs to form an estimated asymptotic variance.

5. Monte Carlo Evidence

In this section, Monte Carlo simulations are conducted to assess the finite-sample
performance of the proposed estimator. Bao and Yu (2023) provide simulation results for
the first- and second-order models when the idiosyncratic errors are either homoskedastic
or temporally heteroskedastic. Recall that under the baseline framework, the proposed
estimator in this paper is also robust to cross-sectional heteroskedasticity. This section
considers a third-order model, and for one to get a comprehensive spectrum of possible
heteroskedasticity, four scenarios are included: homoskedasticity (across i and t), cross-
sectional heteroskedasticity (across i only), temporal heteroskedasticity (over t only), and
double (both cross-sectional and temporal) heteroskedasticity.

The following DP(3) is used:

yit = αi + ϕ1yi,t−1 + ϕ2yi,t−2 + ϕ3yi,t−3 + β1x1,it + β2x2,it + uit,

x1,it = ρxx1,i,t−1 + ξ1,it, ρx = 0.8,

x2,it = ρiαi + ξ2,it,

(36)

where αi is i.i.d. (across i) following a standard normal distribution, ρi is i.i.d. (across i)
uniformly on the interval [0, 1], ξ1,it is i.i.d. (across i and t) following a standard normal
distribution, and ξ2,it is similarly defined. The initial value of x1,it is set to be ξ0,i/

√
1 − ρ2

x,
where ξ0,i is i.i.d. (across i) following a standard normal distribution. The initial observations
on yit are simulated as αi/(1 − ϕ01 − ϕ02 − ϕ03) + x′itβ0 + uit

√
Var(δt) if there is no unit

root and αi + x′itβ0 + uit otherwise, where δt follows a stationary zero-mean third-order
autoregressive (AR(3)) process with coefficients ϕ01, ϕ02, and ϕ03, and its shock term is a
unit-variance white noise.
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Let eit be i.i.d. (across i and t) with mean 0 and variance 1. The error term uit is
simulated as follows in the four different scenarios (homoskedasticity, cross-sectional
heteroskedasticity, temporal heteroskedasticity, and double heteroskedasticity):

uit =


eit√

zieit zi ∼ U[0.5, i] or χ2
10 if U[0.5, i] ≥ 100√

zteit zt ∼ U[0.5, t2] or χ2
10 if U[0.5, t2] ≥ 100√

ziteit zit ∼ U[0.5, i] · U[0.5, t2] or χ2
10 if U[0.5, i] · U[0.5, t2] ≥ 100

(37)

where, for example, zi ∼ U[0.5, i] or χ2
10 if U[0.5, i] ≥ 100 means that zi is independently

(across i) drawn from a uniform distribution on the interval [0.5, i], and if the realization
is no smaller than 100, then it is redrawn from a chi-squared distribution with 10 degrees
of freedom. eit is simulated from a normal distribution, but results under non-normal
distributions are available upon request and the conclusions in this section are largely
consistent across all distributions.16

In reality, data themselves rarely reveal clearly the lack or presence of heteroskedasticity,
so estimation results from the estimator using the recentered moment conditions (7) and
the robust one using (25), referred to as RMM and RMMr, respectively, are presented.
When the empirical rejection rates of a 5% two-sided t-test of the relevant parameter equal
to its true value are reported, for WG and GMM, also included are their empirical sizes
from t-ratios using the White-type robust standard errors (clustered at the individual
level, referred to as WG(h) and GMM(h), respectively). There are different choices for the
GMM estimator, depending on what and how many instruments are used. Breitung et al.
(2022) show that the one-step estimator of Arellano and Bond (1991) is very comparable
to other popular choices (Ahn and Schmidt 1995; Blundell and Bond 1998), so the GMM
estimator used in this section is the one-step one.17 Different combinations of N and T are
experimented with: [100 10; 50 20; 50, 50; 25 40; 20 50; 10 100]. Regardless of N and T,
one can always use the estimator in this paper, but in reality, in a situation like N = 25,
T = 40, to conduct inference, there is typically no convincing evidence for one to favor one
asymptotic regime over the other. So in what follows, in addition to the bias and root mean
squared error (RMSE), all out of 10,000 simulations, also reported are the empirical sizes
using standard errors constructed under different asymptotics. In particular, RMM(N) and
RMMr(N) denote the empirical sizes from t-ratios using the large-N standard errors (see
Sections 3.2 and 4.1) for RMM and RMMr, respectively. Likewise, RMM(T) refers to the
empirical size from the t-ratio when the large-T standard errors from (17) (or (22)) are used
for RMM. Furthermore, RMMr(NT) means when the feasible variance (32) (or its version
under unit root) is used for RMMr, which is valid if both N and T are large. On the other
hand, RMMr(T) does not mean that a different t-ratio is used and instead, it signals that, for
the RMMr t-ratio when the feasible variance is used, the

√
N/(N − 1)tN−1 approximation

developed by Hansen (2007) under large T is used for conducting hypothesis testing.
Included for comparison are the bias-corrected estimators of Bun and Carree (2006) (BC

for short) and Juodis (2013) (BCJ for short).18 As Juodis (2013) points out, BC is consistent
under homoskedasticity and cross-sectional heteroskedasticity, but invalid under temporal
heteroskedasticity. BCJ, on the other hand, is robust to both forms of heteroskedasticity.
Neither Bun and Carree (2006) nor Juodis (2013) derives the asymptotic distributions of
their bias-corrected estimators, so only their bias and RMSE results are reported in this
section. Included also is the half-panel jackknife (HPJ) estimator of Chudik et al. (2018),
where errors can be heteroskedastic across both i and t.

In the experiments, β0 = (1, 1)′ and three sets of parameter configurations of ϕ0 are
used: (0.3, 0.3, 0.2)′, (0.3,−0.2,−0.1)′, and (0.3, 0.6, 0.1)′. The first configurations reflects a
situation when the degree of time-series correlation is relatively strong in the sense that the
cumulative partial effect of a past shock, measured by powers of ϕ01 +ϕ02 +ϕ03, can be high.
The second set corresponds to a case of zero past effect, and the last one is a unit-root case
where the past effect never dies out. To save space, only results related to ϕ01 + ϕ02 + ϕ03
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under the first set of parameter configuration (0.3, 0.3, 0.2)′ are reported, whereas results
under the other two parameter configurations are contained in Appendix F.19

Table 1 reports the bias and RMSE, both multiplied by 100, and empirical rejection rate
of the two-sided 5% t-test related to ϕ01 + ϕ02 + ϕ03 when uit is homoskedastic. One sees
clearly the superb performance of both RMM and RMMr, with the smallest bias and lowest
RMSE. GMM performs reasonably well, but its bias and RMSE peak at (N, T) = (50, 20).
The WG estimator performs the worst when T is small but improves as T gets relatively
larger, but is still more biased even when T = 100 compared with RMM or RMMr. BC and
BCJ report larger bias and higher RMSE than GMM on many occasions, though there are
also cases where they are much better than GMM. Note that BC and BCJ bias-correct the
WG estimator, which is in fact consistent under large T. Table A1 in Appendix F reveals
that when there is a unit root, BC and BCJ give a much larger bias than WG, even when T
is relatively large. So, in this case, the action of bias-correction gives more biased estimates.
HPJ is the most biased and possesses the highest RMSE among all the consistent estimators
at (N, T) = (100, 10), namely, when the panel is relatively short. Its performance improves
quickly as T increases, though still quite a bit below RMM/RMMr.

Table 1. Simulation results: ϕ0 = (0.3, 0.3, 0.2)′ under homoskedasticity.

(N, T) (100, 10) (50, 20) (50, 50) (25, 40) (20, 50) (10, 100)

Bias (×100) WG −5.75 −2.26 −0.66 −0.91 −0.70 −0.33
GMM −1.59 −2.20 −0.66 −0.91 −0.70 −0.75
BC 0.50 2.15 0.92 1.23 0.89 0.26
BCJ 0.44 2.15 0.92 1.23 0.89 0.26
HPJ 3.45 1.10 0.23 0.35 0.21 0.06
RMM −0.01 −0.02 −0.01 −0.03 −0.04 −0.04
RMMr −0.01 −0.02 −0.01 −0.03 −0.04 −0.04

RMSE (×100) WG 6.06 2.60 0.88 1.34 1.15 0.87
GMM 2.48 2.55 0.88 1.34 1.15 1.52
BC 2.33 2.71 1.11 1.66 1.33 0.86
BCJ 2.31 2.70 1.11 1.66 1.33 0.86
HPJ 4.65 2.23 0.75 1.32 1.17 0.91
RMM 1.93 1.31 0.57 0.98 0.92 0.81
RMMr 1.95 1.31 0.57 0.98 0.92 0.81

Size(5%) WG 88.54 44.09 20.95 15.80 12.31 6.98
WG(h) 86.78 44.01 22.13 18.65 15.52 12.47
GMM 13.32 42.10 20.93 15.72 12.21 8.64
GMM(h) 14.37 43.12 22.56 19.39 16.32 16.76
HPJ 21.36 8.96 4.51 4.68 4.22 3.87
RMM(N) 5.70 6.45 6.13 7.49 8.17 10.52
RMM(T) 6.45 6.25 5.50 5.70 5.56 5.34
RMMr(N) 5.74 6.50 6.14 7.47 8.13 10.52
RMMr(NT) 6.65 6.98 6.62 7.84 8.41 10.52
RMMr(T) 6.01 5.98 5.23 5.56 5.53 4.40

Note: WG is the within-group estimator; GMM is the one-step estimator of Arellano and Bond (1991); BC is the bias-
corrected estimator of Bun and Carree (2006); BCJ is the bias-corrected estimator of Juodis (2013); HPJ is the half-panel
jackknife estimator of Chudik et al. (2018); RMM and RMMr are, respectively, the recentered method of moments
estimator in this paper and its robust version. For the size performance, WG(h) and GMM(h) are based on clustered
standard errors at the individual level, RMM(N) and RMMr(N) are based on the large-N standard errors, RMM(T) is
based on the large-T standard error, RMMr(NT) is based on the standard error that is valid under large N and large T,
and RMMr(T) is based on the

√
N/(N − 1)tN−1 approximation. Reported are the bias and RMSE (both scaled up by 100)

out of 10,000 simulations of the estimated ϕ01 + ϕ02 + ϕ03 and the empirical size of the 5% two-sided t-test for testing the
sum of the autoregressive parameters equal to its true value. The DGP follows (36) and (37).

Now, consider the size performance of the associated two-sided 5% test from the
different estimators. From Table 1, one sees severe size distortions of the WG-based
inference when T is relatively small, but its empirical size is close to the nominal size
when T = 100. The GMM-based inference performs really poorly. The t-test based on HPJ
severely over-rejects when (N, T) = (100, 10), but its size distortion goes down quickly
when the panel has longer spans. The large-N-based inferences from RMM and RMMr,
namely, RMM(N) and RMMr(N), give empirical sizes close to 5% when N is relatively
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large. On the other hand, RMM(T) delivers a reasonably good size performance even when
T is relatively small. Results from RMMr(NT) and RMMr(N) are mixed: when they work,
they may perform slightly worse than RMM(N) and RMM(T), but their performances
get worse when N is small and T is large. Finally, the size result from RMMr(T), namely,
using the

√
N/(N − 1)tN−1 approximation for the asymptotic distribution of the t-ratio,

is good in almost all cases. Recall that the
√

N/(N − 1)tN−1 approximation is valid
under homoskedasticity. These results are not surprising, given that homoskedastic
errors are simulated and that, for the robust estimator, the feasible standard errors based
on (32) (or its version under unit root) require both N and T to be large. In fact, when
(N, T) = (50, 50), the size distortion from RMMr(NT) is the smallest compared with other
(N, T) combinations with relatively smaller N or T.

Table 2 reports results under cross-sectional heteroskedasticity. Relative performances
of these different estimators largely stay the same. Notably, BC and BCJ perform really
poorly when (N, T) = (100, 10), though they are designed to bias-correct the WG estimator
under large N and fixed T. In contrast to the homoskedastic case, HPJ gives a smaller bias
and lower RMSE than RMM/RMMr when (N, T) = (100, 10), but usually performs worse
in other cases. In terms of hypothesis testing, when N is relatively large, both RMM(N)
and RMMr(N) work well; when T is relatively large, both RMM(T) and RMMr(T) provide
empirical rejection rates close to the nominal size. Recall that the RMM estimator designed
under homoskedasticity is also valid under cross-sectional heteroskedasticity, and so is the
related inference procedure. There is pronounced size distortion from HPJ for the unit root
case (see Table A2 in Appendix F), but its size performance is reasonably good under the
other two parameter configurations when T is not relatively small.

When there is time-series heteroskedasticity, the robust estimator usually dominates
all the other estimators in terms of bias and RMSE, as demonstrated in Table 3 (and Table A3
in Appendix F). In terms of hypothesis testing, the large-N RMMr t-ratio delivers very good
size performance when N is relatively large, whereas the

√
N/(N − 1)tN−1 approximation

(RMMr(T)) provides good results when T is relatively large. The large-N-large-T RMMr-
based inference reports upward size distortions in almost all cases.

Finally, Table 4 provides results under double heteroskedasticity, namely, when both
cross-sectional heteroskedasticity and time-series heteroskedasticity are present. RMMr is
the least biased, except when (N, T) = (100, 10), where HPJ is slightly better. On the other
hand, RMM, which ignores temporal heteroskedasticity, reports very small bias on many
occasions, especially under the second and third parameter configurations (see Table A4
in Appendix F). In terms of RMSE, BCJ and RMMr are comparable. In terms of the size
performance of the associated t-test, the story is very similar to that reported when there is
temporal heteroskedasticity only, namely, under large N, RMMr(N) is most trustworthy
and RMMr(T) is the one under large T. GMM has the most size distortions in almost all
cases, and HPJ gives severe size distortions when there is a unit root.

Summarizing all the simulation results, one can learn the following. (i) When there
is no heteroskedasticity, the proposed estimator can be safely used, either the one based
on (7) or the robust one based on (25), regardless of N and T. When heteroskedasticity
in the time dimension is present, then the robust version is the best. (ii) The presence
of a unit root or not has no substantial impact on its performance. (iii) In terms of
inference, when N is relatively large or is of comparable size relative to T, the large N-based
inference from RMMr has very good size performance, regardless of heteroskedasticity.
When T is relatively large, the large T-based inference from RMM gives reliable inference
under homoskedasticity and cross-sectional heteroskedasticity. (iv) When T is large,
the

√
N/(N − 1)tN−1 approximation for the t-ratio from RMMr with the feasible robust

variance usually has good size performance, regardless of heteroskedasticity.
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Table 2. Simulation results: ϕ0 = (0.3, 0.3, 0.2)′ under cross-sectional heteroskedasticity.

(N, T) (100, 10) (50, 20) (50, 50) (25, 40) (20, 50) (10, 100)

Bias (×100) WG −39.47 −14.10 −4.51 −4.18 −2.78 −0.84
GMM −21.83 −14.08 −4.51 −4.18 −2.78 −1.89
BC −10.21 −3.01 −1.13 −0.69 −0.35 −0.03
BCJ −10.24 −3.01 −1.13 −0.69 −0.35 −0.03
HPJ 0.69 3.07 1.12 1.26 0.82 0.15
RMM 1.18 −0.10 −0.10 −0.13 −0.12 −0.09
RMMr 1.00 −0.08 −0.10 −0.13 −0.12 −0.09

RMSE (×100) WG 39.87 14.57 4.82 4.74 3.41 1.57
GMM 23.05 14.57 4.82 4.74 3.41 2.89
BC 12.56 5.09 2.03 2.35 2.00 1.33
BCJ 12.59 5.09 2.03 2.35 2.00 1.33
HPJ 9.66 6.70 2.59 3.40 2.77 1.54
RMM 11.14 4.57 1.77 2.32 2.01 1.34
RMMr 11.08 4.61 1.77 2.32 2.01 1.34

Size (5%) WG 100.00 99.25 84.05 52.52 33.41 9.73
WG(h) 100.00 97.68 78.30 50.04 34.99 15.40
GMM 89.51 99.14 84.02 52.28 33.22 14.19
GMM(h) 85.70 97.55 78.96 51.70 36.68 23.15
HPJ 8.00 13.17 10.04 8.42 7.02 4.20
RMM(N) 6.47 5.78 6.84 7.65 8.48 10.35
RMM(T) 42.66 16.90 10.09 8.36 7.60 6.09
RMMr(N) 6.37 5.64 6.83 7.67 8.42 10.38
RMMr(NT) 24.67 11.40 8.46 8.35 9.07 10.22
RMMr(T) 23.20 9.63 7.09 6.17 5.92 4.27

Note: See Table 1.

Table 3. Simulation results: ϕ0 = (0.3, 0.3, 0.2)′ under temporal heteroskedasticity.

(N, T) (100, 10) (50, 20) (50, 50) (25, 40) (20, 50) (10, 100)

Bias (×100) WG −34.39 −19.57 −5.78 −8.18 −6.01 −2.37
GMM −22.39 −20.05 −5.78 −8.18 −6.01 −6.23
BC −3.76 −5.74 −2.06 −3.18 −2.27 −0.64
BCJ −4.46 −5.71 −2.06 −3.17 −2.27 −0.64
HPJ 9.37 −3.21 0.74 0.17 0.63 0.43
RMM 17.84 −2.01 −0.62 −1.16 −0.82 −0.27
RMMr 0.22 0.22 −0.11 −0.24 −0.30 −0.20

RMSE (×100) WG 34.84 19.92 6.04 8.70 6.63 3.31
GMM 23.86 20.41 6.04 8.70 6.63 7.41
BC 7.45 7.56 2.73 4.49 3.63 2.38
BCJ 7.68 7.55 2.73 4.49 3.63 2.38
HPJ 13.59 6.98 2.59 4.37 3.98 2.86
RMM 18.62 5.27 1.94 3.41 3.03 2.36
RMMr 6.84 5.39 1.91 3.44 3.05 2.36

Size (5%) WG 100.00 100.00 94.76 85.08 64.10 18.74
WG(h) 100.00 99.97 92.51 81.63 62.22 23.52
GMM 84.78 100.00 94.76 84.94 63.95 45.46
GMM(h) 81.94 99.96 92.85 82.73 64.03 45.42
HPJ 24.21 13.71 9.41 8.92 8.36 6.40
RMM(N) 0.32 10.69 8.00 9.49 8.96 11.01
RMM(T) 92.02 17.16 9.67 10.68 8.74 7.00
RMMr(N) 5.57 4.94 6.36 6.92 7.71 10.93
RMMr(NT) 9.26 12.81 9.64 11.75 10.44 11.41
RMMr(T) 8.61 11.24 8.18 8.15 7.07 4.90

Note: See Table 1.
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Table 4. Simulation Results: ϕ0 = (0.3, 0.3, 0.2)′ under double heteroskedasticity.

(N, T) (100, 10) (50, 20) (50, 50) (25, 40) (20, 50) (10, 100)

Bias (×100) WG −37.33 −16.83 −4.58 −6.95 −5.18 −2.29
GMM −17.49 −16.50 −4.58 −6.95 −5.18 −5.89
BC −9.98 −4.70 −1.22 −2.31 −1.66 −0.63
BCJ −9.81 −4.66 −1.22 −2.30 −1.66 −0.63
HPJ −0.37 1.46 1.27 1.47 1.21 0.42
RMM −6.25 −2.71 −0.31 −0.88 −0.58 −0.30
RMMr 0.91 0.13 −0.08 −0.27 −0.24 −0.25

RMSE (×100) WG 37.70 17.24 4.85 7.52 5.83 3.18
GMM 18.59 16.92 4.85 7.52 5.83 7.04
BC 11.84 6.48 2.02 3.73 3.15 2.28
BCJ 11.72 6.47 2.01 3.73 3.15 2.28
HPJ 8.91 6.35 2.57 4.46 3.92 2.75
RMM 10.11 5.23 1.68 3.13 2.82 2.26
RMMr 10.01 5.60 1.68 3.16 2.84 2.26

Size (5%) WG 100.00 99.94 87.27 77.04 56.65 18.48
WG(h) 100.00 99.71 83.81 72.77 55.02 24.20
GMM 83.66 99.91 87.22 76.84 56.45 42.85
GMM(h) 81.15 99.61 84.34 73.94 56.53 44.42
HPJ 9.01 12.02 12.82 11.46 10.67 6.20
RMM(N) 19.97 11.99 6.61 8.48 8.68 10.59
RMM(T) 45.32 22.73 8.55 10.64 9.04 6.57
RMMr(N) 6.18 4.62 6.28 7.32 8.36 10.53
RMMr(NT) 23.10 15.80 8.83 10.76 10.67 10.88
RMMr(T) 21.93 14.08 7.32 7.95 7.13 4.70

Note: See Table 1.

6. Conclusions and Directions of Future Research

This paper proposes an estimation strategy that does not rely on instrumental variables.
One can view the estimation strategy as using the endogenous lagged dependent variables
as their own instruments and then constructing recentered moment conditions by explicitly
exploiting the correlation between the endogenous variables and error term in the model.
The asymptotic properties of the new estimator are thoroughly investigated under various
conditions that relate to the sizes of cross-sectional units and time periods, heterogeneity
in the error variance, and the issue of whether a unit root is present. In general, the
asymptotic distribution does not require both N and T to be large. Under large T, it
resembles the familiar OLS result in traditional regression analysis and its asymptotic
variance achieves the efficiency bound under homoskedasticity. Similar to time series
autoregressions, the convergence rate of the estimator of the autoregressive parameters is
different when there is a unit root under large T, but the standard t-test procedure carries
through in hypothesis testing. Monte Carlo simulations demonstrate that it possesses good
finite-sample properties in various situations. All the theoretical results and Monte Carlo
evidence in this paper suggest two directions for future research.

6.1. Cross-Sectional Correlation

Note that cross-sectional correlation is not explicitly discussed in this paper. If there is
a weak cross-sectional correlation (in the sense that the covariance matrix of (u1t, · · · , uNt)

′

has a bounded norm as N → ∞), then the estimation strategy proposed in this paper
still holds, see discussions in Appendix E. However, both N and T need to be large.
This form of cross-sectional correlation may cover situations where correlation arises
from spatial contiguity as in the spatial econometrics literature. Nevertheless, when
there are dominating units (Pesaran and Yang 2021) whose errors are always correlated
with those from other units, the assumption of weak correlation is violated. Another
situation of violation is when cross-sectional correlation is due to common factors. Under
homoskedasticity, for the case of DP(1), De Vos and Everaert (2021) augment the model
by the cross-sectional averages of the right-hand side regressors, which can be interpreted
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as proxies for the unknown factors. Then, they derive the asymptotic bias of the common
correlated effects pooled (CCEP) estimator of the main parameter vector under large N and
fixed T and design an estimator by matching the CCEP estimator with its asymptotic bias.20

One could have directly focused on the endogeneity of the defactored lagged dependent
variables, namely, (IT − P)wi, where P is the projection matrix on the proxies, consisting
of cross-sectional averages (including 1T). The exact expectation of ∑N

i=1 w′
i(IT − P)ui is

not easy to derive, but one can follow De Vos and Everaert (2021) to approximate it and
construct the resulting estimator. It is left for future research to extend the robust estimator
to cases when there is a strong cross-sectional correlation in addition to heteroskedasticity
in higher-order DP with the possibly of a unit root.

6.2. Inference under Heteroskedasticity for Long Panels

It has been observed from Section 5 that all the other estimators in the experiments
perform much worse in terms of bias under cross-sectional and temporal heteroskedasticity
than the robust estimator when T is not very small. On the other hand, non-negligible
size distortions using the feasible variance (32) are also documented and one may need to
resort to the approximation of Hansen (2007) for inference purposes, though one has yet to
show rigorously that the approximation is still valid in the presence of heteroskedasticity.
The re-sampling approach (Kapetanios 2008) may not be applicable under small N and
large T. In addition, if one re-samples the data across i (when N is large and T is small) or
over t (when T is large and N is small), there is the issue of heteroskedasticity or temporal
correlation that one needs to take into account. Designing a practical and reliable inference
procedure for the robust estimator in long panels is a second avenue for future research.
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Appendix A. Some Preliminary Results

Note that Φp(ϕ) is a lower triangular Toeplitz matrix with non-zero diagonals, so it is
always invertible and its inverse is also lower triangular Toeplitz. From Linz (1985, p. 172),
one has

Φ−1
p (ϕ) =


1
b1 1
b2 b1 1
· · · · ·

bT−1 · · · · b1 1

,

where bt can be obtained from the recursion, bt = ∑t−1
s=0 ϕt−sbs, t = 1, · · · , T − 1, b0 = 1 and

ϕt−s = 0 for t − s > p. This defines a p-th order difference equation for the series {bt}T−1
t=0 .

The solution of the p-th order homogeneous equation bt − ϕ1bt−1 − · · · − ϕpbt−p = 0 is

bt =
p

∑
r=1

arλt
r, (A1)

where λi’s are the inverse of the roots of 1 − ϕ1z − · · · − ϕpzp = 0, and ar’s are constants
determined by the first p initial conditions, where, without loss of generality, it is assumed
that all the λi’s are distinct.21
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For any ℓ ≥ 0, let the (i, j)-th element of the T × T matrix Φ−1
p Lℓ be denoted by

bi−j−ℓ = O(1) with the understanding that bi−j−ℓ = 0 whenever i − j − ℓ < 0. The (i, j)-th
element of the T × T matrix Φ−1

p LℓΣk is then bi−j−ℓσ
2
kj.

When the DP(p) is dynamically stable, the i-th element of 1′Φ−1
p Lℓ is the sum of the

i-th column of Φ−1
p Lℓ, given by

T

∑
j=i+ℓ

bj−i−ℓ =
p

∑
r=1

ar

T

∑
j=i+ℓ

λ
j−i−ℓ
r =

p

∑
r=1

ar
1 − λT+1−i−ℓ

r
1 − λr

, i ≤ T + 1 − ℓ. (A2)

The i-th element of 1′Φ−1
p LℓΣk is

T

∑
j=i+ℓ

bj−i−ℓσ
2
ki = σ2

ki

p

∑
r=1

ar
1 − λT+1−i−ℓ

r
1 − λr

i ≤ T + 1 − ℓ.

The i-th element of Φ−1
p Lℓ1 is the sum of the i-th row of Φ−1

p Lℓ, given by

i−ℓ

∑
j=1

bi−j−ℓ =
p

∑
r=1

ar

i−ℓ

∑
j=1

λ
i−j−ℓ
r =

p

∑
r=1

ar
1 − λi−ℓ

r
1 − λr

, ℓ ≤ i. (A3)

The i-th element of Φ−1
p LℓΣk1 is

i−ℓ

∑
j=1

bi−j−ℓσ
2
kj =

p

∑
r=1

ar

i−ℓ

∑
j=1

σ2
kjλ

i−j−ℓ
r .

The (i, j)-th element of (Φ−1
p Ls)′Φ−1

p Lℓ is

p

∑
r1=1

p

∑
r2=1

ar1 ar2

T

∑
j1=1

λ
j1−i−s
r1 λ

j1−j−ℓ
r2 =

p

∑
r1=1

p

∑
r2=1

ar1 ar2 wi,j,s,ℓ,r1,r2 , (A4)

where

wi,j,s,ℓ,r1,r2 =


λ

i+s−j−ℓ
r2 −λT+1−i−s

r1
λ

T+1−j−ℓ
r2

1−λr1 λr2
j + ℓ ≤ i + s ≤ T + 1

λ
j+ℓ−i−s
r1 −λT+1−i−s

r1
λ

T+1−j−ℓ
r2

1−λr1 λr2
i + s < j + ℓ ≤ T + 1

.

The (i, j)-th element of (Φ−1
p LsΣk)

′Φ−1
p LℓΣk is

σ2
kiσ

2
kj

p

∑
r1=1

p

∑
r2=1

ar1 ar2

T

∑
j1=1

λ
j1−i−s
r1 λ

j1−j−ℓ
r2 = σ2

kiσ
2
kj

p

∑
r1=1

p

∑
r2=1

ar1 ar2 wi,j,s,ℓ,r1,r2 .

When there is a unit root, let λ1 = 1 and |λr| < 1 be all distinct, r = 2, · · · , p. Now,
the (i, j)-th element of Φ−1

p Lℓ is bi−j−ℓ with bi−j−ℓ = a1 + ∑
p
r=2 arλ

i−j−ℓ
r . Note that the i-th

element of 1′Φ−1
p Lℓ is

T

∑
j=i+ℓ

bj−i−ℓ =
p

∑
r=1

ar

T

∑
j=i+ℓ

λ
j−i−ℓ
r

= a1(T + 1 − i − ℓ) +
p

∑
r=2

ar
1 − λT+1−i−ℓ

r
1 − λr

, i ≤ T + 1 − ℓ.

(A5)

The i-th element of Φ−1
p Lℓ1 is
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i−ℓ

∑
j=1

bi−j−ℓ =
p

∑
r=1

ar

i−ℓ

∑
j=1

λ
i−j−ℓ
r = a1(i − ℓ) +

p

∑
r=2

ar
1 − λi−ℓ

r
1 − λr

, ℓ ≤ i. (A6)

The (i, j)-th element of (Φ−1
p Ls)′Φ−1

p Lℓ is, when i + s ≥ j + ℓ,

p

∑
r1=1

p

∑
r2=1

ar1 ar2

T

∑
j1=i+s

λ
j1−i−s
r1 λ

j1−j−ℓ
r2

= a2
1(T + 1 − i − s) + a1

p

∑
r2=2

ar2

T

∑
j1=i+s

λ
j1−j−ℓ
r2

+ a1

p

∑
r1=2

ar1

T

∑
j1=i+s

λ
j1−i−s
r1 +

p

∑
r1=2

p

∑
r2=2

ar1 ar2

T

∑
j1=i+s

λ
j1−i−s
r1 λ

j1−j−ℓ
r2

= a2
1(T + 1 − i − s) + a1

p

∑
r=2

ar
(1 + λ

i+s−j−ℓ
r )(1 − λT+1−i−s

r )

1 − λr

+
p

∑
r1=2

p

∑
r2=2

ar1 ar2 wi,j,s,ℓ,r1,r2 ,

(A7)

where wi,j,s,ℓ,r1,r2 is given by (A4), and when i + s < j + ℓ,

p

∑
r1=1

p

∑
r2=1

ar1 ar2

T

∑
j1=j+t

λ
j1−i−s
r1 λ

j1−j−ℓ
r2

= a2
1(T + 1 − j − ℓ) + a1

p

∑
r2=2

ar2

T

∑
j1=j+t

λ
j1−j−ℓ
r2

+ a1

p

∑
r1=2

ar1

T

∑
j1=j+t

λ
j1−i−s
r1 +

p

∑
r1=2

p

∑
r2=2

ar1 ar2

T

∑
j1=j+t

λ
j1−i−s
r1 λ

j1−j−ℓ
r2

= a2
1(T + 1 − j − ℓ) + a1

p

∑
r=2

ar
(1 + λ

j+t−i−s
r )(1 − λ

T+1−j−ℓ
r )

1 − λr

+
p

∑
r1=2

p

∑
r2=2

ar1 ar2 wi,j,s,ℓ,r1,r2 .

(A8)

Appendix B. Discussion of Several Related Estimators

It is worth discussing several closely related estimators. Bao and Yu (2023) motivate
their estimator by matching the inconsistent WG estimator θ̂WG = (W ′AW)−1W ′Ay =
θ0 + (W ′AW)−1W ′Au, when T is finite, with its approximate analytical expectation. More
specifically, their indirect inference estimator is based on solving a random sample binding
function, namely, θ̂I I = argθ{θ̂WG = θ+ (W ′AW)−1E[W ′Au(θ)]}, where Au(θ) = A(y −
Wθ) and E[W ′Au(θ)] is an analytical function of θ (and σ2). Since, by definition, θ̂WG −
θ0 = (W ′AW)−1W ′Au, their estimation strategy numerically amounts to matching W ′Au
with E(W ′Au), as considered in this paper, provided that (W ′AW)−1 is nonsingular. Under
time-series heteroskedasticity, they introduce a robust estimator that matches Ê(W ′Au)
with E(W ′Au), where Ê(W ′Au) is a function of θ0 and W but not involving the variance
parameters. Their estimator is robust in the sense that the moment conditions are valid
under time-series heteroskedasticity, and the variance parameters σ2

t = Var(uit) are not
estimated explicitly.

Under temporal heteroskedasticity, Alvarez and Arellano (2022) consider explicitly
estimating σ2

t , such that the whole set of moment conditions includes both first-order
conditions (of the log-likelihood function) with respect to θ and those with respect to
the variance parameters. When there is no temporal heteroskedasticity, the estimator of
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Alvarez and Arellano (2022) is essentially based on moment conditions matching W ′Au
with E(W ′Au) (without the variance parameter concentrated out) plus an additional
one for the variance. Under cross-sectional heteroskedasticity, namely, Var(uit) = σ2

i ,
Breitung et al. (2022) construct their estimator by matching the “numerator” of the profile
score function (associated with the the parameter vector ϕ) with its expectation. This,
together with the exogeneity condition on X, constitutes the moment condition for their
estimator. As discussed in the main text, it turns out that the estimator arising from
matching W ′Au with E(W ′Au) under homoskedasticity is, in fact, robust to pure cross-
sectional heteroskedasticity, and the estimator of Bao and Yu (2023) is equivalent to that of
Breitung et al. (2022). However, neither estimator explicitly allows for heteroskedasticity
in both cross-sectional and time-series dimensions. Breitung et al. (2022) mention this
extension under stringent restrictions, but do not proceed to formally investigate the
properties of the resulting estimator.

Bun and Carree (2006) and Juodis (2013) consider both forms of heteroskedasticity. In
their bias-correction procedure, the variance parameters are estimated and then plugged
into the bias expression to bias-correct the WG estimator. Notwithstanding, they focus on
short panels and do not derive the asymptotic distribution of their bias-corrected estimator.

Appendix C. Lemmas and Proofs

For the ease of presentation, let Cℓ = MΦ−1
p Lℓ, Cℓs = C′

ℓCs, Dℓ = Dg(Cℓ),Bℓ =

Cℓ − MΨℓM, Cs,ℓ−s = MΦ−1
p ΦsLℓ−s−1, and C(s−p),ℓ−s = MΦ−1

p Φ(s−p)L
ℓ−s−1. Recall

that Φp = Φp(ϕ0) = I − ϕ01L − · · · − ϕ0pLp, Φ(s−p) = Φs(ϕ0) − Φp(ϕ0), Ψℓ = (T −
2)−1TDℓ − (T − 2)−1(T − 1)−1tr(Dℓ)I. Denote Σ

(3)
i = Dg(E(u3

i1), · · · , E(u3
iT)) and Σ

(4)
i =

Dg(E(u4
i1) − 3σ4

i1, · · · , E(u4
iT) − 3σ4

iT) when there is heteroskedasticity. dg(·) creates a
column vector consisting of the diagonal elements in order of its argument, and ⊙ is
the matrix Hadamard (element-by-element) product operator.

Lemma A1. (i) Under Assumption 5 or 6, u′Au = OP(NT). (ii) Under Assumptions 1–5,
Var(

√
NTgNT) = (NT)−1Var(W ′Au)− σ4[2(T − 1)/T + γ2(T − 1)2/T2]hh′. (iii) Under

Assumptions 1–4 and 6,

Var(
√

NTgNT) =
1

NT

N

∑
i=1


ci,1,1 · · · ci,1,p d′

i,1
...

. . .
...

...
ci,p,1 · · · ci,p,p d′

i,p
di,1 · · · di,p X ′

i MΣi MX i

, (A9)

where ci,ℓ,s = Cov(y′
i,(−ℓ)Mui − u′

i MΨℓMui, y′
i,(−s)Mui − u′

i MΨs Mui) is given by the sum of
the 15 terms in (A11) and di,ℓ = Cov(X ′

i Mui, y′
i,(−ℓ)Mui − u′

i MΨℓMui) is given by (A12).

Proof. (i): Using moments of quadratic forms (e.g., Bao and Ullah 2010), one has E(u′Au) =
σ2Ntr(M) = σ2N(T − 1) under Assumption 5 and E(u′Au) = ∑N

i=1 tr(MΣi) under
Assumption 6. Note that M is uniformly (in T) bounded in row and column sums
and Σi has O(1) elements. Thus, using Lemma A2 of Bao et al. (2020), tr(MΣi) =
O(T), leading to ∑N

i=1 tr(MΣi) = O(NT). Further, Var(u′Au) = σ4N[2tr(M) + γ2tr(M ⊙
M)] = σ4N

[
2(T − 1) + γ2(T − 1)2/T

]
= O(NT) under Assumption 5 and Var(u′Au) =

∑N
i=1[tr(Σ

(4)
i ⊙ M ⊙ M) + 2tr(Σi MΣi M)] under Assumption 6, where it is obvious that

tr(Σ(4)
i ⊙ M ⊙ M) = O(T). Using Lemmas A2 of Bao et al. (2020), again, one can claim

tr(Σi MΣi M) = O(T). So in either case, one has Var(u′Au) = O(NT) and one can claim
that u′Au = OP(NT). (ii): See Supplementary Appendix D of Bao and Yu (2023). (iii): With
gNT = (NT)−1 ∑N

i=1(y
′
i,(−1)Mui − u′

i MΨ1Mui, · · · , y′
i,(−p)Mui − u′

i MΨp Mui, u′
i MX i)

′,

one can derive Var(
√

NTgNT) such that its top-left p × p block contains in its (ℓ, s)-
th position (NT)−1 ∑N

i=1 Cov(y′
i,(−ℓ)Mui − u′

i MΨℓMui, y′
i,(−s)Mui − u′

i MΨs Mui), ℓ, s =



Econometrics 2024, 12, 3 23 of 48

1, · · · , p, its lower-left k × p block consists of k × 1 columns like (NT)−1 ∑N
i=1 Cov(X ′

i Mui,
y′

i,(−ℓ)Mui − u′
i MΨℓMui), ℓ = 1, · · · , p, and its lower-right k× k block is (NT)−1 ∑N

i=1 X ′
i M

Σi MX i. Substituting (4) into (25), one has, for ℓ = 1, · · · , p,

y′
i,(−ℓ)Mui − u′

i MΨℓMui = u′
iBℓui + αiu′

iCℓ1 + u′
iCℓX iβ0

+
ℓ−1

∑
j=0

u′
iC j,ℓ−je1yi,−j +

p−1

∑
j=ℓ

u′
iC(j−p),ℓ−je1yi,−j.

(A10)

Thus, Cov(y′
i,(−ℓ)Mui − u′

i MΨℓMui, y′
i,(−s)Mui − u′

i MΨs Mui) has the following 15 terms,

tr(Σ(4)
i ⊙ Bℓ ⊙ Bs) + tr[ΣiBℓΣi(Bs + B′

s)],

Var(αi)1′C′
ℓΣiCs1,

β′
0X ′

iC
′
ℓΣiCsX iβ0,

ℓ−1

∑
j1=1

s−1

∑
j2=1

E(yi,−j1 yi,−j2)e
′
1C′

j1,ℓ−j1 ΣiC j2,s−j2 e1,

p−1

∑
j1=ℓ

p−1

∑
j2=s

E(yi,−j1 yi,−j2)e
′
1C′

(j1−p),ℓ−j1
ΣiC(j2−p),s−j2 e1,

E(αi)[dg(Σ(3)
i ⊙ Bℓ)Cs1 + dg(Σ(3)

i ⊙ Bs)Cℓ1],

dg(Σ(3)
i ⊙ Bℓ)CsX iβ0 + dg(Σ(3)

i ⊙ Bs)CℓX iβ0,
s−1

∑
j=0

E(yi,−j)dg(Σ(3)
i ⊙ Bℓ)u

′
iC j,s−je1 +

ℓ−1

∑
j=0

E(yi,−j)dg(Σ(3)
i ⊙ Bs)u′

iC j,ℓ−je1, (A11)

p−1

∑
j=s

E(yi,−j)dg(Σ(3)
i ⊙ Bℓ)u

′
iC(j−p),s−je1 +

p−1

∑
j=ℓ

E(yi,−j)dg(Σ(3)
i ⊙ Bs)u′

iC(j−p),ℓ−je1,

E(αi)(1′C′
ℓΣiCsX iβ0 + 1′C′

sΣiCℓX iβ0),
s−1

∑
j=0

E(yi,−jαi)1′C′
ℓΣiC j,s−je1 +

ℓ−1

∑
j=0

E(yi,−jαi)1′C′
sΣiC j,ℓ−je1,

p−1

∑
j=s

E(yi,−jαi)1′C′
ℓΣiC(j−p),s−je1 +

p−1

∑
j=ℓ

E(yi,−jαi)1′C′
sΣiC(j−p),ℓ−je1,

s−1

∑
j=0

E(yi,−j)β′
0X ′

iC
′
ℓΣiC j,s−je1 +

ℓ−1

∑
j=0

E(yi,−j)β′
0X ′

iC
′
sΣiC j,ℓ−je1,

p−1

∑
j=s

E(yi,−j)β′
0X ′

iC
′
ℓΣiC(j−p),s−je1 +

p−1

∑
j=ℓ

E(yi,−j)β′
0X ′

iC
′
sΣiC(j−p),ℓ−je1,

ℓ−1

∑
j1=0

p−1

∑
j2=s

E(yi,−j1 yi,−j2)e
′
1C′

j1,ℓ−j1 ΣiC(j2−p),s−j2 e1

+
s−1

∑
j1=0

p−1

∑
j2=ℓ

E(yi,−j1 yi,−j2)e
′
1C′

j1,s−j1 ΣiC(j2−p),ℓ−j2 e1,

and
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Cov(X ′
i Mui, y′

i,(−ℓ)Mui − u′
i MΨℓMui)

= X ′
i Mdg(Σ(3)

i ⊙ Bℓ) + E(αi)X ′
i MΣiCℓ1 + X ′

i MΣiCℓX iβ0

+
ℓ−1

∑
j=0

E(yi,−j)X ′
i MΣiC j,ℓ−je1 +

p−1

∑
j=ℓ

E(yi,−j)X ′
i MΣiC(j−p),ℓ−je1

(A12)

in view of results on moments of quadratic forms (Bao and Ullah 2010; Ullah 2004).

Lemma A2. For the stable case, namely, |λr| < 1 for all r = 1, · · · , p, the following hold for
ℓ, s = 1, · · · , T: (i) 1′Φ−1

p Lℓ1 = O(T); (ii) 1′Φ−1
p LℓΦ−1

p Ls1 = O(T); (iii) 1′Cℓs1 = O(1) and
d′Cℓ1 = O(1), where d = (d1, · · · , dT)

′ ̸= 0 consists of O(1) elements; (iv) tr(CℓCs) = O(1);
(v) tr(Cℓ ⊙ Cs) = O(T−1); (vi) tr(Cℓs) = O(T); (vii) all the non-zero elements of dg(IN ⊗ Cℓ)
are O(T−1); (viii) 1′CℓsCsℓ1 = O(1); (ix) tr(Cℓs ⊙ Cℓs) = O(T); (x) tr(CℓsCsℓ) = O(T); (xi)
tr(CℓsCℓs) = O(T).

Proof. These results follow by substituting (A2) , (A3), and (A4) into the various terms
involved.
(i): Using (A2), one has

1′Φ−1
p Lℓ1 =

T+1−ℓ

∑
i=1

p

∑
r=1

ar
1 − λT+1−i−ℓ

r
1 − λr

=
p

∑
r=1

ar

(T − ℓ)(1 − λr)− λr

(
1 − λT−ℓ

r

)
(1 − λr)

2

= T
p

∑
r=1

ar

1 − λr
+ O(1).

(ii): Using (A2) and (A3), one has

1′Φ−1
p LℓΦ−1

p Ls1 =
T+1−ℓ

∑
i=s

(
p

∑
r=1

ar
1 − λT+1−i−ℓ

r
1 − λr

)(
p

∑
r=1

ar
1 − λi−s

r
1 − λr

)

=
p

∑
r1=1

p

∑
r2=1

ar1 ar2

T+1−ℓ

∑
i=s

1 − λT+1−i−ℓ
r1

1 − λr1

1 − λi−s
r2

1 − λr2

= T
p

∑
r1=1

p

∑
r2=1

ar1 ar2

(1 − λr1)(1 − λr2)
+ O(1).

(iii): Without loss of generality, assume ℓ ≥ s. First consider d = 1. Using (A3), one has

1′(Φ−1
p Lℓ)′Φ−1

p Ls1 =
T

∑
i=ℓ

(
p

∑
r=1

ar
1 − λi−ℓ

r
1 − λr

)(
p

∑
r=1

ar
1 − λi−s

r
1 − λr

)

=
p

∑
r1=1

p

∑
r2=1

ar1 ar2

T

∑
i=ℓ

1 − λi−ℓ
r1

1 − λr1

1 − λi−s
r2

1 − λr2

= T
p

∑
r1=1

p

∑
r2=1

ar1 ar2

(1 − λr1)(1 − λr2)
+ O(1).

Further,

1
T

1′Φ−1
p Ls1 · 1′Φ−1

p Lℓ1 =
1
T

(
T

p

∑
r=1

ar

1 − λr
+ O(1)

)(
T

p

∑
r=1

ar

1 − λr
+ O(1)

)

= T
p

∑
r1=1

p

∑
r2=1

ar1 ar2

(1 − λr1)(1 − λr2)
+ O(1).
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It follows that

1′Cℓs1 = 1′(Φ−1
p Lℓ)′Φ−1

p Ls1 − 1
T

1′Φ−1
p Ls1 · 1′Φ−1

p Lℓ1 = O(1).

For ℓ = s, 1′Cℓℓ1 = 1′(Φ−1
p Lℓ)′MΦ−1

p Lℓ1 is the sum of square of elements of Cℓ1.
This implies that, at most, some finite number of elements of Cℓ1 can be O(1),
and all other elements are O(T−1). Thus, for any non-zero T × 1 vector d of O(1)
elements, d′Cℓ1 = O(1).

(iv): In light of the facts that T−11′Φ−1
p LsΦ−1

p Lℓ1 = O(1) and T−11′Φ−1
p LℓΦ−1

p Ls1 =

O(1) from (ii), T−21′Φ−1
p Ls1 · 1′Φ−1

p Lℓ1 = O(T−1) from (iii), and tr(Φ−1
p LℓΦ−1

p Ls)

= 0 since both Φ−1
p Lℓ and Φ−1

p Ls are strictly lower triangular,

tr(CℓCs) = tr(Φ−1
p LℓMΦ−1

p Ls)− 1
T

1′Φ−1
p LℓMΦ−1

p Ls1

= tr(Φ−1
p LℓΦ−1

p Ls)− 1
T

1′Φ−1
p LsΦ−1

p Lℓ1

− 1
T

1′Φ−1
p LℓΦ−1

p Ls1 +
1

T2 1′Φ−1
p Ls1 · 1′Φ−1

p Lℓ1

= O(1).

(v): Note that both Φ−1
p Lℓ and Φ−1

p Ls are strictly lower triangular. It then follows
that tr(Cℓ ⊙ Cs) = T−2tr(11′Φ−1

p Lℓ ⊙ 11′Φ−1
p Ls), where the (i, i)-th element of

11′Φ−1
p Lℓ is the i-th element of 1′Φ−1

p Lℓ. Therefore, using (A2) and assuming ℓ ≥ s,

tr(Cℓ ⊙ Cs) =
1

T2 1′Φ−1
p Lℓ(Φ−1

p Ls)′1

=
1

T2

p

∑
r1=1

p

∑
r2=1

ar1 ar2

T+1−ℓ

∑
i=1

1 − λT+1−i−ℓ
r1

1 − λr1

1 − λT+1−i−s
r2

1 − λr2

=
1

T2

[
T

p

∑
r1=1

p

∑
r2=1

ar1 ar2

(1 − λr1)(1 − λr2)
+ O(1)

]
= O(T−1).

(vi): Note that tr(Cℓs) = tr((Φ−1
p Lℓ)′Φ−1

p Ls)− T−11′Φ−1
p Ls(Φ−1

p Lℓ)′1, where, from (v),
T−11′Φ−1

p Ls(Φ−1
p Lℓ)′1 = O(1). Thus, using (A4) and assuming ℓ ≥ s,

tr(Cℓs) =
p

∑
r1=1

p

∑
r2=1

ar1 ar2

T

∑
i=1

wi,i,ℓ,s,r1,r2 + O(1)

=
p

∑
r1=1

p

∑
r2=1

ar1 ar2

T

∑
i=1

λℓ−s
r2

− λT+1−i−ℓ
r1

λT+1−i−s
r2

1 − λr1 λr2

+ O(1)

= T
p

∑
r1=1

p

∑
r2=1

ar1 ar2 λℓ−s
r2

(1 − λr1 λr2)
+ O(1).

(vii): Since Φ−1
p Lℓ is strictly lower triangular, dg(IN ⊗ Cℓ) = −T−1dg(IN ⊗ 11′Φ−1

p Lℓ).
From (A2), the diagonal elements of 11′Φ−1

p Lℓ are all O(1). Thus, one can claim
that all the non-zero elements of dg(IN ⊗ Cℓ) are O(T−1).

(viii): From (iii), at most, some finite number of elements of Cℓ1 can be O(1) and all other
elements are O(T−1). Also, all the elements of Φ−1

p Ls(Φ−1
p Ls)′ are O(1). Thus,

1′CℓsCsℓ1 = 1′(Φ−1
p Lℓ)′MΦ−1

p Ls(Φ−1
p Ls)′MΦ−1

p Lℓ1 = O(1).
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(ix): The (i, j)-th element of Cℓs = (Φ−1
p Lℓ)′Φ−1

p Ls − T−1(Φ−1
p Lℓ)′11′Φ−1

p Ls, in light of
(A2) and (A4), is

p

∑
r1=1

p

∑
r2=1

ar1 ar2

[
wi,j,ℓ,s,r1,r2 −

1
T

(
1 − λT−i−ℓ+1

r1

1 − λr1

)(
1 − λ

T−j−s+1
r2

1 − λr2

)]
= O(1).

Therefore, tr(Cℓs ⊙ Cℓs) = O(T).
(x): From the previous part, the (i, j)-th element of Cℓs is ∑

p
r1=1 ∑

p
r2=1 ar1 ar2 wi,j,ℓ,s,r1,r2 +

O(T−1). Thus, the i-th diagonal element of CℓsCsℓ is

T

∑
j=1

(
p

∑
r1=1

p

∑
r2=1

ar1 ar2 wi,j,ℓ,s,r1,r2

)(
p

∑
r1=1

p

∑
r2=1

ar1 ar2 wi,j,s,ℓ,r1,r2

)
+ O(T−1)

=
p

∑
r1=1

p

∑
r2=1

p

∑
r3=1

p

∑
r4=1

ar1 ar2 ar3 ar4

(
T

∑
j=1

wi,j,ℓ,s,r1,r2 wi,j,s,ℓ,r3,r4

)
+ O(T−1)

= O(1).

Therefore, tr(CℓsCsℓ) = O(T).
(xi): By similar reasoning as in (x), one can show that the i-th diagonal element of CℓsCℓs

is O(1), and then tr(CℓsCℓs) = O(T).

Lemma A3. For the unit-root case, namely, λ1 = 1 and |λr| < 1, r = 2, · · · , p, the following hold
for ℓ, s = 1, · · · , T: (i) 1′Φ−1

p Lℓ1 = O(T2) and d′Cℓ1 = O(T2), where d = (d1, · · · , dT)
′ ̸= 0

consists of O(1) elements; (ii) 1′Φ−1
p LℓΦ−1

p Ls1 = O(T3); (iii) 1′Cℓs1 = O(T3); (iv) tr(CℓCs) =

O(T2); (v) tr(Cℓ⊙Cs) = O(T); (vi) tr(Cℓs) = O(T2); (vii) all the non-zero elements of dg(IN ⊗
Cℓ) are O(1). (viii) 1′CℓsCsℓ1 = O(T5); (ix) tr(Cℓs ⊙ Cℓs) = O(T3); (x) tr(CℓsCsℓ) = O(T4);
(xi) tr(CℓsCℓs) = O(T4).

Proof. These results follow by substituting (A5), (A6), (A7), and (A8) into the various terms
involved.
(i): Using (A5), one has

1′Φ−1
p Lℓ1 = a1

T+1−ℓ

∑
i=1

(T + 1 − i − ℓ) +
p

∑
r=2

ar

T+1−ℓ

∑
i=1

1 − λT+1−i−ℓ
r

1 − λr

=
a1

2
(T − ℓ)(T − ℓ+ 1) +

p

∑
r=2

ar
(T − ℓ)(1 − λr)− λr(1 − λT−ℓ

r )

(1 − λr)2

=
a1

2
T2 +

a1

2
(1 − 2ℓ)T + T

p

∑
r=2

ar

1 − λr
+ O(1).

Similarly, using (A6)

d′Φ−1
p Lℓ = a1

T

∑
i=ℓ

di(i − ℓ) +
p

∑
r=2

ar

T

∑
i=ℓ

di
1 − λi−ℓ

r
1 − λr

= a1

T

∑
i=1

idi − ℓa1

T

∑
i=1

di + O(T)

= a1

T

∑
i=1

idi + O(T) = O(T2)

and thus, by denoting d̄ = T−1 ∑T
i=1 di,
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d′MΦ−1
p Lℓ1 = d′Φ−1

p Lℓ1 − d̄1′Φ−1
p Lℓ1 + O(T) = a1

T

∑
i=1

i(di − d̄) = O(T2),

which may retain a term of order O(T2), unless all the elements of d are the same.
So, in general, d′MΦ−1

p Lℓ1 = O(T2).
(ii): Using (A5) and (A6),

1′Φ−1
p LℓΦ−1

p Ls1

=
T+1−ℓ

∑
i=s

(
a1(T + 1 − i − ℓ) +

p

∑
r=2

ar
1 − λT+1−i−ℓ

r
1 − λr

)(
a1(i − s) +

p

∑
r=2

ar
1 − λi−s

r
1 − λr

)

= a2
1

T+1−ℓ

∑
i=s

(T + 1 − i − ℓ)(i − s) + a1

p

∑
r=2

ar

T+1−ℓ

∑
i=s

(i − s)
1 − λT+1−i−ℓ

r
1 − λr

+ a1

p

∑
r=2

ar

T+1−ℓ

∑
i=s

(T + 1 − i − ℓ)
1 − λi−s

r
1 − λr

+ T
p

∑
r1=2

p

∑
r2=2

ar1 ar2

(1 − λr1)(1 − λr2)
+ O(1)

=
a2

1
6
(T − ℓ− s)(T − ℓ− s + 1)(T − ℓ− s + 2)

+ a1

p

∑
r=2

ar

(
T2

1 − λr
+

T[1 − 3λr − 2(1 − λr)(ℓ+ s)]
(1 − λr)2

)
+ T

p

∑
r1=2

p

∑
r2=2

ar1 ar2

(1 − λr1)(1 − λr2)
+ O(1)

=
a2

1
6

T3 +
a2

1(1 − ℓ− s)
2

T2 + a1T2
p

∑
r=2

ar

1 − λr
+ O(T).

(iii): Without loss of generality, assume ℓ ≥ s. First, note that

1′(Φ−1
p Lℓ)′Φ−1

p Ls1

=
T

∑
i=ℓ

(
a1(i − ℓ) +

p

∑
r=2

ar
1 − λi−ℓ

r
1 − λr

)(
a1(i − s) +

p

∑
r=2

ar
1 − λi−s

r
1 − λr

)

= a2
1

T

∑
i=ℓ

(i − ℓ)(i − s) + a1

p

∑
r=2

ar

T

∑
i=ℓ

[
(i − ℓ)

1 − λi−s
r

1 − λr
+ (i − s)

1 − λi−ℓ
r

1 − λr

]
+ O(T)

=
a2

1
3

T3 +
a2

1(1 − ℓ− s)
2

T2 + a1T2
p

∑
r=2

ar

1 − λr
+ O(T).

Further, from (i),

1
T

1′Φ−1
p Ls1 · 1′Φ−1

p Lℓ1

=
1
T

[
a1
2

T2 +
a1
2
(1 − 2s)T + T

p

∑
r=2

ar

1 − λr

][
a1
2

T2 +
a1
2
(1 − 2ℓ)T + T

p

∑
r=2

ar

1 − λr

]
+ O(T)

=
a2

1
4

T3 +
a2

1(1 − ℓ− s)
2

T2 + a1T2
p

∑
r=2

ar

1 − λr
+ O(T).

It follows that

1′Cℓs1 = 1′(Φ−1
p Lℓ)′Φ−1

p Ls1 − 1
T

1′Φ−1
p Ls1 · 1′Φ−1

p Lℓ1 =
a2

1
12

T3 + O(T).

(iv): Using results from (ii) and (iii),
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tr(CℓCs)

=
1

T2 1′Φ−1
p Ls1 · 1′Φ−1

p Lℓ1 − 1
T

1′Φ−1
p LsΦ−1

p Lℓ1 − 1
T

1′Φ−1
p LℓΦ−1

p Ls1

=
a2

1
4

T2 +
a2

1
2

T(1 − ℓ− s) + a1T
p

∑
r=2

ar

1 − λr

−
[

a2
1

3
T2 + a2

1T(1 − ℓ− s) + 2a1T
p

∑
r=2

ar

1 − λr

]
+ O(1)

= −
a2

1
12

T2 −
a2

1(1 − ℓ− s)
2

T − a1T
p

∑
r=2

ar

1 − λr
+ O(1).

(v): Assuming ℓ ≥ s,

tr(Cℓ ⊙ Cs)

=
1

T2 1′Φ−1
p Lℓ(Φ−1

p Ls)′1

=
1

T2

T+1−s

∑
i=1

[a1(T + 1 − i − ℓ) + O(1)][a1(T + 1 − i − s) + O(1)]

=
a2

1
3

T + O(1).

(vi): Assuming ℓ ≥ s,

tr(Cℓs) = tr((Φ−1
p Lℓ)′Φ−1

p Ls)− 1
T

1′Φ−1
p Ls(Φ−1

p Lℓ)′1

=
T+1−ℓ

∑
i=1

[
a2

1(T + 1 − i − ℓ) + a1

p

∑
r=2

ar(1 + λℓ−s
r )(1 − λT+1−i−ℓ

r )

1 − λr
+

p

∑
r1=2

p

∑
r2=2

ar1 ar2 wi,j,ℓ,s,r1,r2

]

− 1
T

T+1−ℓ

∑
i=1

[
a1(T + 1 − i − s) +

p

∑
r=2

ar(1 − λT+1−i−s
r )

1 − λr

][
a1(T + 1 − i − ℓ)

+
p

∑
r=2

ar(1 − λT+1−i−ℓ
r )

1 − λr

]

=
a2

1
2

T2 −
a2

1
3

T2 + O(T)

=
a2

1
6

T2 + O(T).

(vii): From (A5), the diagonal elements of 11′Φ−1
p Lℓ are all O(T). Thus, one can claim that

all the non-zero elements of dg(IN ⊗ Cℓ) = −T−1dg(IN ⊗ 11′Φ−1
p Lℓ) are O(1).

(viii): By substitution,

1′CℓsCsℓ1

= 1′(Φ−1
p Lℓ)′MΦ−1

p Ls(Φ−1
p Ls)′MΦ−1

p Lℓ1

= 1′(Φ−1
p Lℓ)′Φ−1

p Ls(Φ−1
p Ls)′Φ−1

p Lℓ1 − 1
T

1′(Φ−1
p Lℓ)′1 · 1′Φ−1

p Ls(Φ−1
p Ls)′Φ−1

p Lℓ1

− 1
T

1′(Φ−1
p Lℓ)′Φ−1

p Ls(Φ−1
p Ls)′1 · 1′Φ−1

p Lℓ1

+
1

T2 1′(Φ−1
p Lℓ)′1 · 1′Φ−1

p Ls(Φ−1
p Ls)′1 · 1′Φ−1

p Lℓ1

= 1′(Φ−1
p Lℓ)′Φ−1

p Ls(Φ−1
p Ls)′Φ−1

p Lℓ1 − 2
T

1′Φ−1
p Lℓ1 · 1′(Φ−1

p Lℓ)′Φ−1
p Ls(Φ−1

p Ls)′1

+
1

T2 1′Φ−1
p Ls(Φ−1

p Ls)′1 · (1′Φ−1
p Lℓ1)2.
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Assume ℓ ≥ s. Using (A7) and (A8),

1′(Φ−1
p Lℓ)′Φ−1

p Ls(Φ−1
p Ls)′Φ−1

p Lℓ1

=
T

∑
i=1

[
i+ℓ−s

∑
j=1

a2
1(T + 1 − i − ℓ) +

T+1−j

∑
j=i+ℓ−s+1

a2
1(T + 1 − j − s) + O(1)

]2

=
2a4

1
15

T5 + O(T4).

Using (i), (A5), (A7), and (A8),

2
T

1′Φ−1
p Lℓ1 · 1′(Φ−1

p Lℓ)′Φ−1
p Ls(Φ−1

p Ls)′1

=
2
T

( a1

2
T2 + O(T)

)
×

T+1−ℓ

∑
i=1

[
i+ℓ−s

∑
j=1

a2
1(T + 1 − i − ℓ) +

T+1−j

∑
j=i+ℓ−s+1

a2
1(T + 1 − j − s) + O(1)

]
× [a1(T + 1 − i − s) + O(1)]

=
5a4

1
24

T5 + O(T4).

Using (i) and (v),

1
T2 1′Φ−1

p Ls(Φ−1
p Ls)′1 · (1′Φ−1

p Lℓ1)2 =

(
a2

1
3

T + O(1)

)( a1

2
T2 + O(T)

)2

=
a4

1
12

T5 + O(T4).

Therefore,

1′CℓsCsℓ1 =
2a4

1
15

T5 −
5a4

1
24

T5 +
a4

1
12

T5 + O(T4) =
a4

1
120

T5 + O(T4).

(ix): By substituting Cℓs = (Φ−1
p Lℓ)′Φ−1

p Ls − T−1(Φ−1
p Lℓ)′11′Φ−1

p Ls,

tr(Cℓs ⊙ Cℓs) = tr((Φ−1
p Lℓ)′Φ−1

p Ls ⊙ (Φ−1
p Lℓ)′Φ−1

p Ls)

− 2
T

tr((Φ−1
p Lℓ)′Φ−1

p Ls ⊙ (Φ−1
p Lℓ)′11′Φ−1

p Ls)

+
1

T2 tr((Φ−1
p Lℓ)′11′Φ−1

p Ls ⊙ (Φ−1
p Lℓ)′11′Φ−1

p Ls).

Assume ℓ ≥ s. Using (A7),

tr((Φ−1
p Lℓ)′Φ−1

p Ls ⊙ (Φ−1
p Lℓ)′Φ−1

p Ls) =
T+1−ℓ

∑
i=1

[
a2

1(T + 1 − i − ℓ) + O(1)
]2

=
a4

1
3

T3 + O(T2).

Using (A5), the i-th diagonal element of (Φ−1
p Lℓ)′11′Φ−1

p Ls is, i ≤ T + 1 − ℓ,[
a1(T + 1 − i − ℓ) +

p

∑
r=2

ar
1 − λT+1−i−ℓ

r
1 − λr

][
a1(T + 1 − i − s) +

p

∑
r=2

ar
1 − λT+1−i−s

r
1 − λr

]
.

Thus,

2
T

tr((Φ−1
p Lℓ)′Φ−1

p Ls ⊙ (Φ−1
p Lℓ)′11′Φ−1

p Ls)
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=
2
T

T+1−ℓ

∑
i=1

[
a2

1(T + 1 − i − ℓ) + O(1)
]

× [a1(T + 1 − i − ℓ) + O(1)][a1(T + 1 − i − s) + O(1)]

=
a4

1
2

T3 + O(T2),

and

1
T2 tr((Φ−1

p Lℓ)′11′Φ−1
p Ls ⊙ (Φ−1

p Lℓ)′11′Φ−1
p Ls)

=
1

T2

T+1−ℓ

∑
i=1

{[a1(T + 1 − i − ℓ) + O(1)][a1(T + 1 − i − s) + O(1)]}2

=
a4

1
5

T3 + O(T2).

Therefore,

tr(Cℓs ⊙ Cℓs) =
a4

1
3

T3 −
a4

1
2

T3 +
a4

1
5

T3 + O(T2) =
a4

1
30

T3 + O(T2).

(x): By substitution,

tr(CℓsCsℓ) = tr((Φ−1
p Lℓ)′Φ−1

p Ls(Φ−1
p Ls)′Φ−1

p Lℓ)

− 1
T

tr((Φ−1
p Lℓ)′Φ−1

p Ls(Φ−1
p Ls)′11′Φ−1

p Lℓ)

− 1
T

tr((Φ−1
p Lℓ)′11′Φ−1

p Ls(Φ−1
p Ls)′Φ−1

p Lℓ)

+
1

T2 tr((Φ−1
p Lℓ)′11′Φ−1

p Ls(Φ−1
p Ls)′11′Φ−1

p Lℓ)

= tr((Φ−1
p Lℓ)′Φ−1

p Ls(Φ−1
p Ls)′Φ−1

p Lℓ)

− 2
T

1′Φ−1
p Lℓ(Φ−1

p Lℓ)′Φ−1
p Ls(Φ−1

p Ls)′1

+
1

T2 1′Φ−1
p Ls(Φ−1

p Ls)′1 · 1′Φ−1
p Lℓ(Φ−1

p Lℓ)′1.

Assume ℓ ≥ s. Using (A7),

tr((Φ−1
p Lℓ)′Φ−1

p Ls(Φ−1
p Ls)′Φ−1

p Lℓ)

=
T

∑
i=1

{
i+ℓ−s

∑
j=1

[
a2

1(T + 1 − i − ℓ) + O(1)
]2

+
T

∑
j=i+ℓ−s+1

[
a2

1(T + 1 − j − s) + O(1)
]2
}

=
a4

1
6

T4 + O(T3).

Using (v),

1
T
(1′Φ−1

p Ls(Φ−1
p Ls)′1) · 1

T
1′Φ−1

p Lℓ(Φ−1
p Lℓ)′1

=

[
a2

1
3

T2 + O(T)

][
a2

1
3

T2 + O(T)

]

=
a4

1
9

T4 + O(T3).

Using (A5), (A7), and (A8),
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2
T

1′Φ−1
p Lℓ(Φ−1

p Lℓ)′Φ−1
p Ls(Φ−1

p Ls)′1

=
2
T

T+1−ℓ

∑
i=1

i+ℓ−s

∑
j=1

(a1(T + 1 − i − ℓ))
(

a2
1(T + 1 − i − ℓ)

)
(a1(T + 1 − j − s))

+
2
T

T+1−ℓ

∑
i=1

T+1−s

∑
j=i+ℓ−s+1

[a1(T + 1 − i − ℓ)][a2
1(T + 1 − j − s)][a1(T + 1 − j − s)]

+ O(T3)

=
4a4

1
15

T4 + O(T3).

Therefore,

tr(CℓsCsℓ) =
a4

1
6

T4 +
a4

1
9

T4 −
4a4

1
15

T4 + O(T3) =
a4

1
90

T4 + O(T3).

(xi): Similarly,

tr(CℓsCℓs) = tr((Φ−1
p Lℓ)′Φ−1

p Ls(Φ−1
p Lℓ)′Φ−1

p Ls)

− 2
T

1′Φ−1
p Ls(Φ−1

p Lℓ)′Φ−1
p Ls(Φ−1

p Lℓ)′1

+
1

T2 (1
′Φ−1

p Lℓ(Φ−1
p Ls)′1)2.

Assume ℓ ≥ s. If ℓ = s, from (x), tr((Φ−1
p Lℓ)′Φ−1

p Ls(Φ−1
p Lℓ)′Φ−1

p Ls) = a4
1T4/6 +

O(T3), in view of (A7) and (A8). Assume ℓ = s + 1. Note that the (i, j)-th element of
(Φ−1

p Lℓ)′Φ−1
p Ls has leading term a2

1(T + 1 − i − ℓ) if i ≥ j − 1 and T + 1 − j − s =
T + 2 − j − ℓ if i < j − 1. The (j, i)-th element of (Φ−1

p Lℓ)′Φ−1
p Ls has leading term

a2
1(T + 1 − j − ℓ) if j ≥ i − 1 and T + 1 − i − s = T + 2 − i − ℓ if j < i − 1. Then,

tr((Φ−1
p Lℓ)′Φ−1

p Ls(Φ−1
p Lℓ)′Φ−1

p Ls)

=
T+1−ℓ

∑
i=1

i−2

∑
j=1

a2
1(T + 1 − i − ℓ)a2

1(T + 2 − i − ℓ)

+
T+1−ℓ

∑
j=i+2

j−2

∑
i=1

a2
1(T + 2 − j − ℓ)a2

1(T + 1 − j − ℓ) + O(T3)

=
a4

1
6

T4 + O(T3).

Similarly, for any ℓ ≥ s, tr((Φ−1
p Lℓ)′Φ−1

p Ls(Φ−1
p Lℓ)′Φ−1

p Ls) = a4
1T4/6 + O(T3).

Using (v), one has

1
T2 (1

′Φ−1
p Lℓ(Φ−1

p Ls)′1)2 =

[
a2

1
3

T2 + O(T)

]2

=
a4

1
9

T4 + O(T3).

Using (A5), (A7), (A8), and following similarly the proof in the previous part,

2
T

1′Φ−1
p Ls(Φ−1

p Lℓ)′Φ−1
p Ls(Φ−1

p Lℓ)′1 =
4a4

1
15

T4 + O(T3).

Therefore,

tr(CℓsCℓs) =
a4

1
6

T4 +
a4

1
9

T4 −
4a4

1
15

T4 + O(T3) =
a4

1
90

T4 + O(T3).
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Lemma A4. Under the conditions of Theorem 2,

Var((NT)−1/2W ′Au) =
1

NT

(
σ4NΓ1 + σ2Γ2 σ2F ′

1
σ2F1 σ2X ′AX

)
+ O(T−1),

where Γ1 and Γ2 have tr(Cℓs) and β′
0X ′(IN ⊗ Cℓs)Xβ0, respectively, in their (ℓ, s)-positions,

ℓ, s = 1, · · · , p, and F1 has X ′(IN ⊗ Cℓ)Xβ0 as its ℓ-th column, ℓ = 1, · · · , p.

Proof. Following Bao and Yu (2023), write Var(W ′Au) = Var(W ′Au)+ Var(W̃
′
Au) +

Cov(W ′Au, W̃
′
Au) + Cov(W̃

′
Au, W ′Au), where W = E(W) and W̃ = W − W (and this

kind of notation to denote the fixed and random components of a random term is used
henceforth). Var(W̃

′
Au) has a non-zero top-left p × p block with Cov(ỹ′

(−ℓ)Au, ỹ′
(−s)Au)

populating its (ℓ, s)-th position, ℓ, s = 1, · · · , p. In particular, Cov(ỹ′
(−ℓ)Au, ỹ′

(−s)Au) is
equal to

σ4N[tr(CℓCs) + tr(Cℓs) + γ2tr(Cℓ ⊙ Cs)] + σ21′Cℓs1E(α̃′α̃)

+ σ2
s−1

∑
j1=0

ℓ−1

∑
j2=0

e′1Φ
(s−1−j1,ℓ−1−j2)
(j1,j2)

e1E(ỹyy′
−j1ỹyy−j2)

+ σ2
p−1

∑
j1=s

p−1

∑
j2=ℓ

e′1Φ
(s−1−j1,ℓ−1−j2)
((j1−p),(j2−p)) e1E(ỹyy′

−j1ỹyy−j2)

+ σ2
ℓ−1

∑
j2=0

1′Φ(s,ℓ−1−j2)
(0,j2)

e1E(α̃′ỹyy−j2) + σ2
p−1

∑
j2=ℓ

1′Φ(s,ℓ−1−j2)
(0,(j2−p)) e1E(α̃′ỹyy−j2)

+ σ2
s−1

∑
j1=0

1′Φ(ℓ,s−1−j1)
(0,j1)

e1E(α̃′ỹyy−j2) + σ2
s−1

∑
j1=0

p−1

∑
j2=ℓ

e′1Φ
(s−1−j1,ℓ−1−j2)
(j1,(j2−p)) e1E(ỹyy′

−j1ỹyy−j2)

+ σ2
p−1

∑
j1=s

1′Φ(ℓ,s−1−j1)
(0,(j1−p)) e1E(α̃′ỹyy−j1) + σ2

p−1

∑
j1=s

ℓ−1

∑
j2=0

e′1Φ
(s−1−j1,ℓ−1−j2)
((j1−p),(j2−p)) e1E(ỹyy′

−j1ỹyy−j2),

where Φ
(ℓ,s)
(r,j) = Φ′

rLℓ′Φ−1′
p MΦ−1

p LsΦj. (Recall that Φ(ℓ−p) = Φℓ − Φp. Thus, for example,

Φ
(ℓ,s)
(r,(j−p)) = Φ′

rLℓ′Φ−1′
p MΦ−1

p LsΦ(j−p).) From Lemma A2, in the first term, tr(CℓCs) =

O(1), tr(Cℓs) = O(T), and tr(Cℓ ⊙ Cs) = O(1). The second term σ21′Cℓs1E(α̃′α̃) is O(N).
Terms like e′1Φ

(s−1−j1,ℓ−1−j2)
(j1,j2)

e1, e′1Φ
(s−1−j1,ℓ−1−j2)
(j1,(j2−p)) e1, and e′1Φ

(s−1−j1,ℓ−1−j2)
((j1−p),(j2−p)) e1 pick up just

one element of the relevant matrices in the quadratic forms in e1 and thus are O(1), whereas
terms likes 1′Φ(s,ℓ−1−j2)

(0,j2)
e1, 1′Φ(s,ℓ−1−j2)

(0,(j2−p)) e1, 1′Φ(ℓ,s−1−j1)
(0,j1)

e1, and 1′Φ(ℓ,s−1−j1)
(0,(j1−p)) e1 pick up the

sum of the first column of the relevant matrices in the quadratic forms in e1, which are again
O(1). Thus, Var(W̃

′
Au) is dominated by elements like σ4Ntr(Cℓs) = O(NT). Further,

Cov(W ′Au, W̃
′
Au) = E


y′
(−1)Auu′Aỹ(−1) · · · y′

(−1)Auu′Aỹ(−p) 0′k
...

. . .
...

...
y′
(−p)Auu′Aỹ(−1) · · · y′

(−p)Auu′Aỹ(−p) 0′k
X ′Auu′Aỹ(−1) · · · X ′Auu′Aỹ(−p) Ok

,

where

E(y′
(−ℓ)Auu′Aỹ(−s)) = γ1σ3y′

(−ℓ)Adg(IN ⊗ Cs) = O(N),

E(X ′Auu′Aỹ(−ℓ)) = γ1σ3X ′Adg(IN ⊗ Cℓ) = O(N).

with γ1 denoting the skewness coefficient of the distribution of uit. Thus,
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Var((NT)−1/2W ′Au)

=
1

NT
[Var(W ′Au)+ Var(W̃

′
Au) + Cov(W ′Au, W̃

′
Au) + Cov(W̃

′
Au, W ′Au)]

= σ2 1
NT

W ′AW + σ4 1
T


tr(C11) · · · tr(C1p) 0′k

...
. . .

...
...

tr(Cp1) · · · tr(Cpp) 0′k
0k · · · 0k Ok

+ O(T−1),

where tr(Cℓs) = O(T) from Lemma A2, and

1
NT

W ′AW =
1

NT


y′
(−1)Ay(−1) · · · y′

(−1)Ay(−p) y′
(−1)AX

...
. . .

...
...

y′
(−p)Ay(−1) · · · y′

(−p)Ay(−p) y′
(−p)AX

X ′Ay(−1) · · · X ′Ay(−p) X ′AX

.

Bt substituting (5) and using Lemma A2 again, one has

1
NT

y′
(−ℓ)Ay(−s) =

1
NT

β′
0X ′(IN ⊗ Cℓs)Xβ0 + O(T−1),

1
NT

X ′Ay(−ℓ) =
1

NT
X ′(IN ⊗ Cℓ)Xβ0 + O(T−1).

Substituting these terms into Var((NT)−1/2W ′Au) yields the result.

Lemma A5. Under the conditions of Theorem 2, (NT)−1/2[W ′Au − E(W ′Au)] = Op(1) with
E(W ′Au) = O(N) and (NT)−1W ′AW = Op(1). Further, plimT→∞(NT)−1W ′AW exists.

Proof. Using Lemmas A2 and A4, one has E(W ′Au) = O(N) and Var((NT)−1/2W ′Au) =
O(1) + O(T−1). Write W ′AW = W ′AW + W ′AW̃ + W̃

′
AW + W̃

′
AW̃ . From Lemma A4,

W ′AW = O(NT). By substitution, W̃
′
AW̃ has ỹ′

(−ℓ)Aỹ(−s), ℓ, s = 1, · · · , p, populating its
top-left p × p block and zero elsewhere, where, by some tedious algebra, E(ỹ′

(−ℓ)Aỹ(−s))

has its leading term Nσ2tr(Cℓs) = O(NT) and Var(ỹ′
(−ℓ)Aỹ(−s)) has its leading term

σ4[Ntr(CℓsCℓs + CℓsC′
ℓs) + Nγ2tr(Cℓs ⊙ Cℓs)] = O(NT) by using Lemma A2. So, one can

claim that (NT)−1W ′AW = Op(1). The lower-right block of (NT)−1W ′AW is
(NT)−1X ′AX, which, by Assumption 3, has a probability limit. The top-left block of
(NT)−1W ′AW has elements (NT)−1y′

(−ℓ)Ay(−s), ℓ, s = 1, · · · , p, which are dominated by

(NT)−1[(IN ⊗ Φ−1
p Lℓ)u + (IN ⊗ Φ−1

p Lℓ)Xβ0]
′A[(IN ⊗ Φ−1

p Ls)u + (IN ⊗ Φ−1
p Ls)Xβ0] as

T → ∞. Note that they, in turn, consist of terms like (NT)−1u′(IN ⊗ Cℓs)u, (NT)−1β′
0X ′

(IN ⊗ Cℓs)u, and (NT)−1β′
0X ′(IN ⊗ Cℓs)Xβ0. From Lemma A2, Cℓ is uniformly (in T)

bounded in row and column sums, and so are Cℓs = C′
ℓCs and IN ⊗ Cℓs. Immediately, as

T → ∞, (NT)−1β′
0X ′(IN ⊗Cℓs)Xβ0 exists, so long as (NT)−1X ′AX exists. Theorem A.1 of

Kelejian and Prucha (2010) implies that (NT)−1u′(IN ⊗Cℓs)u and (NT)−1β′
0X ′(IN ⊗Cℓs)u

are asymptotically normal as T → ∞ (and converge in probability to their respective means).
Thus, one can claim that plimT→∞(NT)−1W ′AW exists.

Lemma A6. Under the conditions of Theorem 2, plimT→∞(NT)−1W ′AW = limT→∞ σ−2

Ω1,NT , where Ω1,NT is given by (13).

Proof. plimT→∞(NT)−1W ′AW = limT→∞(NT)−1W ′AW + plimT→∞(NT)−1W̃
′
AW̃ , in

which (NT)−1W ′AW is given in the proof of Lemma A4 and plimT→∞(NT)−1W̃
′
AW̃

has non-zero elements limT→∞ σ2T−1tr(Cℓs), ℓ, s = 1, · · · , p, populating its top-left p × p
block.
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Lemma A7. Under the conditions of Theorem 2, as T → ∞, Ω−1/2
1,NT

√
NTgNT

d→ N(0, I), where
gNT = gNT(θ0) and Ω1,NT are given by (7) and (13), respectively.

Proof. Recall that E(W ′Au) = −E(u′Au)h, where h = O(T−1). Also, Var(u′Au) =
σ4N(T − 1)(2 + γ2(T − 1)/T), so E(W ′Au) + u′Auh = Op(

√
N/T). From Lemma A5,

W ′Au − E(W ′Au) = OP(
√

NT). Thus, one can write (
√

NTgNT = (NT)−1/2[W ′Au −
E(W ′Au) + E(W ′Au) + u′Auh] = (NT)−1/2[W ′Au − E(W ′Au)] + op(1) as T → ∞. By
substituting (5) into W ′Au, one has the top p × 1 block of W ′Au consisting of, ℓ = 1, · · · , p,

u′(IN ⊗ Cℓ)u + u′(IN ⊗ Cℓ)Xβ0 + u′(IN ⊗ Cℓ1)α

+
ℓ−1

∑
s=0

u′(IN ⊗ Cs,ℓ−se1)yyy−s +
p−1

∑
s=ℓ

u′(IN ⊗ C(s−p),ℓ−se1)yyy(−s),

where Cs,ℓ−s = MΦ−1
p ΦsLℓ−s−1 and C(s−p),ℓ−s = MΦ−1

p Φ(s−p)L
ℓ−s−1. From Lemma A2,

u′(IN ⊗ Cℓ1)α, ∑t−1
s=0 u′(IN ⊗ Cs,ℓ−se1)yyy(−s), and ∑

p−1
s=t u′(IN ⊗ C(s−p),ℓ−se1)yyy(−s) are all of

order Op(
√

N), u′(IN ⊗ Cℓ)Xβ0 = Op(
√

NT), and u′(IN ⊗ Cℓ)u − E(u′(IN ⊗ Cp)u) =

Op(
√

NT). Therefore, as T → ∞,

√
NTgNT =

1√
NT


u′(IN ⊗ C1)u − E(u′(IN ⊗ C1)u) + u′(IN ⊗ C1)Xβ0

...
u′(IN ⊗ Cp)u − E(u′(IN ⊗ Cp)u) + u′(IN ⊗ Cp)Xβ0

X ′Au

+ op(1).

From Lemma A2, Ct is uniformly (in T) bounded in row and column sums. It follows
that (IN ⊗ Cℓ) are uniformly (in NT) bounded in row and column sums. Obviously,
A = IN ⊗ M also has this property. Thus, if T → ∞, regardless of N, one can invoke
Theorem A.1 of Kelejian and Prucha (2010) to have the asymptotic distribution result.

Lemma A8. Under the conditions of Theorem 4, as T → ∞, Ω−1/2
1,NT

√
NTgNT

d→ N(0, I), where
gNT = gNT(θ0) and Ω1,NT are given by (25) and (29), respectively.

Proof. Recall that Ψℓ is diagonal with O(T−1) elements. Since MΣi M is uniformly (in T)
bounded in row and column sums, one has E(u′

i MΨℓMui) = tr(MΣi MΨℓ) = O(1) from
Lemma A2 of Bao et al. (2020). Likewise, tr(Σi MΨℓMΣi MΨℓM) = tr(MΣi MΨℓMΣi MΨℓ)
is O(T−1) and each element of MΨℓM is O(T−1) from a similar proof as in Lemma
A3 of Bao et al. (2020). Then it follows that Var(u′

i MΨℓMui) = tr(Σ(4)
i ⊙ MΨℓM ⊙

MΨℓM) + 2tr(ΣMΨℓMΣMΨℓM) = O(T−1) and u′
i MΨℓMui = O(1) + OP(T−1/2). Next,

y′
i,(−ℓ)Mui = u′

iCℓui + αiu′
iCℓ1+u′

iCℓX iβ0 +∑ℓ−1
j=0 u′

iC j,ℓ−je1yi,−j +∑
p−1
j=ℓ u′

iC(j−p),ℓ−je1yi,−j.
Term by term, E(u′

iCℓui) = tr(ΣiCℓ) = tr(ΣiDℓ) = O(1) since the diagonal elements of
Dℓ are O(T−1). Following similar steps as in the proof of Lemma A2, since pre- or post-
multiplying Φ−1

p Lℓ by Σi does not change the uniform boundedness of Φ−1
p Lℓ, one can

claim 1′Φ−1
p LℓΣi1, 1′Φ−1

p LsΣiΦ
−1
p LℓΣi1, 1′Φ−1

p LℓΣi(Φ
−1
p Ls)′Σi1, 1′ΣiΦ

−1
p LℓΣi(Φ

−1
p Ls)′1,

and tr((Φ−1
p Ls)′ΣiΦ

−1
p LℓΣi) are O(T). Then, by substituting Cs = MΦ−1

p Ls, Cℓ =

MΦ−1
p Lℓ, and M = I − T−111′, one has tr(CsΣiCℓΣi) = O(1) and tr(C′

sΣiCℓΣi) =

tr((Φ−1
p Ls)′ΣiΦ

−1
p LℓΣi) + O(1) = O(T). This leads to Var(u′

iCℓui) = tr(Σ(4)
i ⊙ Cℓ ⊙

Cℓ) + tr[(ΣiCℓΣi(Cℓ + C′
ℓ)] = O(1) + O(T). So, one can claim that u′

iCℓui = O(1) +
OP(T1/2). From the proof of (iii) in Lemma A2, MΦ−1

p Lℓ1 has, at most, a finite number of

O(1) elements, and all remaining elements are O(T−1). It is obvious that Σ1/2
i MΦ−1

p Lℓ1
shares the same properties. Then, αiu′

iCℓ1 = OP(1) and 1′C′
sΣiCℓ1 = O(1). Note that

Cov(u′
iCℓX iβ0, u′

iCsX iβ0) = β′
0X ′

iC
′
ℓΣiCsX iβ0 = β′

0X ′
i(Φ

−1
p Lℓ)′MΣ1/2

i Σ1/2
i MΦ−1

p LsX iβ0
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and it has the same magnitude as β′
0X ′

i(Φ
−1
p Lℓ)′MΦ−1

p LsX iβ0 in view of Lemma A2 of
Bao et al. (2020). So, u′

iCℓX iβ0 = OP(T1/2). With all these results, one can claim that
the variance of y′

i,(−ℓ)Mui − u′
i MΨℓMui is dominated by that of u′

iCℓui + u′
iCℓX iβ0. The

asymptotic distribution result then follows from Theorem A.1 of Kelejian and Prucha
(2010).

Lemma A9. Under the conditions of Theorem 4, plimT→∞(NT)−1GNT = −plimT→∞(NT)−1

W ′AW , where GNT is given by (26)

Proof. Both Ψℓ and Ψℓs are diagonal with O(T−1) elements, so the terms in (NT)−1GNT
are dominated by −(NT)−1yi,(−ℓ)MW i, ℓ = 1, · · · , p, and −(NT)−1X ′

i MW i.

Lemma A10. Under the conditions of Theorem 4, plimT→∞(NT)−1 ∑N
i=1 W ′

i MΣi MW i =
limT→∞ Ω1,NT , where Ω1,NT is given by (29).

Proof. This follows similarly from the proof of Lemma A6.

Lemma A11. Under Assumptions 1–5 and that DP(p) has a unit root,

Var(Υ−1/2W ′Au) = Υ−1/2σ2
(

Γ2 + Γ3 F ′
1 + F ′

2
F1 + F2 X ′AX

)
Υ−1/2 + o(1),

where Γ2 and Γ3 have β′
0X ′(IN ⊗Cℓs)Xβ0 and 1′Cℓs1E(α′α), respectively, in their (ℓ, s)-positions,

ℓ, s = 1, · · · , p, and F1 and F2 have X ′(IN ⊗ Cℓ)Xβ0 and X ′(IN ⊗ Cℓ1)E(α), respectively, as
their ℓ-th columns, ℓ = 1, · · · , p.

Proof. Following the proof of Lemma A4 and using Lemma A3, one sees that now the
leading term appearing in Var(W̃

′
Au) is σ21′Cℓs1E(α̃′α̃) = O(NT3) and the leading

terms in W ′AW are β′
0X ′(IN ⊗ Cℓs)Xβ0 = O(NT3) and 1′Cℓs1α′α = O(NT3). The

remaining terms (e.g., X ′(IN ⊗Cℓ)Xβ0 and X ′(IN ⊗Cℓ1)α) are, at most, O(NT2). Thus, the
leading terms in Var(W ′Au) are β′

0X ′(IN ⊗ Cℓs)Xβ0 + 1′Cℓs1[α′α + E(α̃′α̃)] = β′
0X ′(IN ⊗

Cℓs)Xβ0 + 1′Cℓs1E(α′α) = O(NT3) that appear in its top-left block.

Lemma A12. Under Assumptions 1–5 and that DP(p) has a unit root, Υ−1/2[W ′Au−E(W ′Au)]
= Op(1) and Υ−1/2W ′AWΥ−1/2 = Op(1).

Proof. The orders of magnitudes of terms in Υ−1/2[W ′Au − E(W ′Au)] are obvious, given
the expressions of E(W ′Au) in (6) and Var(Υ−1/2W ′Au) from Lemma A11. Use again
W ′AW = W ′AW + W ′AW̃ + W̃

′
AW + W̃

′
AW̃ . The top-left, lower-left, and lower-right

blocks of W ′AW are O(NT3), O(NT2), and O(NT), respectively. The top-left block of
W ′AW̃ consists of y′

(−ℓ)Aỹ(−s) with mean 0 and variance y′
(−ℓ)AVar(ỹ−s)Ay(−ℓ), whose

leading term is[
(IN ⊗ Φ−1

p Lℓ)Xβ0 + (IN ⊗ Φ−1
p Lℓ1)α

]′
A

×
[
(IN ⊗ Φ−1

p Ls)E(uu′)(IN ⊗ Ls′Φ−1′
p ) + (IN ⊗ Φ−1

p Ls1)E(α̃α̃′)(IN ⊗ 1′Ls′Φ−1′
p )

]
× A

[
(IN ⊗ Φ−1

p Ls)Xβ0 + (IN ⊗ Φ−1
p Ls1)α

]
.

Using Lemma A3, one can verify the leading term (involving (IN ⊗Φ−1
p Ls1)E(α̃α̃′)(IN ⊗

1′Ls′Φ−1′
p )) in the expansion of the above product is O(NT6). So the top-left block of

W ′AW̃ is Op(
√

NT6). The lower-left block of W ′AW̃ consists of X ′Aỹ(−ℓ) with mean
0k and variance X ′AVar(ỹ(−ℓ))AX, whose leading term is X ′(IN ⊗ CℓC′

ℓ)X + X ′(IN ⊗
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Cℓ1)E(α̃α̃′)(IN ⊗ 1′C′
ℓ)X, where, in view of Lemma A3, X ′(IN ⊗ CℓC′

ℓ)X = O(NT3)

and X ′(IN ⊗ Cℓ1)E(α̃α̃′)(IN ⊗ 1′C′
ℓ)X = O(N2T4). So the lower-left block of W ′AW̃

is Op(NT2). The top-left block of W̃
′
AW̃ consists of elements like ỹ′

(−ℓ)Mỹ(−s), where
E(ỹ′

(−ℓ)Mỹ(−s)) has its leading term 1′Cℓs1E(α̃′α̃) = O(NT3) and Var(ỹ′
(−ℓ)Mỹ(−s)) has

its leading terms σ21′CℓsCsℓ1E(α̃′α̃) = O(NT5) and σ21′CsℓCℓs1E(α̃′α̃) = O(NT5). So the
top-left block of W̃

′
AW̃ is O(NT3) + Op(

√
NT5).

Lemma A13. Under the conditions of Theorem 3, plimT→∞G⋆
NT = −plimT→∞Υ−1/2W ′AW

Υ−1/2, where G⋆
NT = G⋆

NT(θ0), G⋆
NT(θ) = Υ−1/2{∂[W ′A(y − Wθ)− E(W ′A((y − Wθ))]

/∂θ′}Υ−1/2.

Proof. Lemma A12, together with Lemma A3, gives

plim
T→∞

G⋆
NT = −plim

T→∞
Υ−1/2W ′AWΥ−1/2

− 2plim
T→∞

Υ−1/2
(

O(1)
0k

)(
O(NT) + Op(

√
NT3)

Op(
√

NT)

)′

Υ−1/2

+ plim
T→∞

Υ−1/2Op(NT)
(

O(T) Op×k
Ok×p Ok

)
Υ−1/2

= −plim
T→∞

Υ−1/2W ′AWΥ−1/2.

Lemma A14. Under the conditions of Theorem 3, plimT→∞σ2Υ−1/2W ′AWΥ−1/2 = limT→∞
Ω⋆

1,NT(α), where Ω⋆
1,NT(α) is given by (19).

Proof. From the proofs of Lemma A12, Υ−1/2W ′AWΥ−1/2 is dominated by Υ−1/2(W ′AW
+ W̃

′
AW̃)Υ−1/2 when the fixed effects are deterministic. Its top-left block consists of

leading terms (NT3)−1σ2[β′
0X ′(IN ⊗ Cℓs)Xβ0 + 1′Cℓs1α′α], the lower-left (or top-right)

block consists of leading terms (NT2)−1σ2[X ′(IN ⊗ Cℓ)Xβ0 + X ′(IN ⊗ Cℓ1)α] (or its
transpose), and the lower-right block is (NT)−1σ2(X ′AX). Under the conditions of
Theorem 3, in view of Lemma A3, for a given N, all these terms have well defined
limits as T → ∞. If N also diverges as T → ∞, by writing Υ−1/2W ′AWΥ−1/2 =
N−1 ∑N

i=1 W⋆′
i MW⋆

i , where W⋆
i is the properly scaled version of W i. (In particular, the first

p columns of W i are multiplied by T−3/2 and the last k columns are multiplied by T−1/2.)
One can check that (the dominating part of) each element of the (p + k)× (p + k) summand
is uniformly (in T) bounded for each i and Theorem 1 of Phillips and Moon (1999) applies,
namely, the sequential convergence and joint convergence are the same, provided that the
limit is defined when N → ∞. With the matrix Ω⋆

1,NT(α) defined accordingly, the result
follows.

Lemma A15. Under the conditions of Theorem 3, Ω⋆−1/2
1,NT (α)Υ1/2g⋆NT

d→ N(0, I) as T → ∞,
where g⋆NT = Υ−1[W ′Au − E(W ′Au)] and Ω⋆

1,NT(α) is given by (19).

Proof. By substituting (5) and using Lemma A3,

Υ−1/2[W ′Au − E(W ′Au)] =


(NT3)−1/2[u′(IN ⊗ C1)Xβ0 + u′(IN ⊗ C11)α] + Op(T−1/2)

...
(NT3)−1/2[u′(IN ⊗ Cp)Xβ0 + u′(IN ⊗ Cp1)α] + Op(T−1/2)

(NT)−1/2X ′Au

,

where the Op(T−1/2) terms come from (NT3)−1/2[u′(IN ⊗ Cℓs)u′ − E(u′(IN ⊗ Cℓ)u′)],
since Var(u′(IN ⊗Cℓ)u′) = O(NT2), ℓ = 1, · · · , p. Consider a term like (NT3)−1/2u′(IN ⊗
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Cℓ)Xβ0 = (NT3)−1/2 ∑N
i=1 u′

iCℓX iβ0, ℓ = 1, · · · , p. Let ζℓ,i = CℓX iβ0 ̸= 0. Then,
T−3/2u′

iCℓX iβ0 is the sum of T random variables, namely, T−3/2 ∑T
t=1 uitζℓ,it. Note that

uitζℓ,it’s are independent across t and Var(T−3/2 ∑T
t=1 uitζℓ,it) = T−3σ2β′

0X ′
iCℓℓX iβ0 =

O(1) > 0.22 With Assumption 5, Lyapunov’s central limit theorem can be used, and it can be
claimed that for each i, T−3/2u′

iCℓX iβ0 is asymptotically normal as T → ∞. When summing
over i, by the same logic, for any N, one can claim that (NT3)−1/2[u′(IN ⊗ Cℓ)Xβ0
is asymptotically normal with Var((NT3)−1/2[u′(IN ⊗ Cℓ)Xβ0) = (NT−3)β′

0X ′(IN ⊗
Cℓℓ)Xβ0 = O(1) > 0. If N also diverges, the sequential asymptotic distribution follows
straightforwardly, provided that (NT−3)β′

0X ′(IN ⊗ Cℓℓ)Xβ0 is well defined in the limit.
For the joint asymptotic distribution (when T and N diverge at the same time, denoted

by (T, N → ∞)), define ξi,N,T =
(

T−3/2u′
iCℓX iβ0

)
/
√

∑N
i=1 Var(T−3/2u′

iCℓX iβ0) , where

∑N
i=1 Var(T−3/2u′

iCℓX iβ0) is obviously T−3σ2β′
0X ′(IN ⊗Cℓℓ)Xβ0. Let ⊮(·) be the indicator

function. Then, for any ε > 0,

N

∑
i=1

E
[
ξ2

i,N,T⊮(|ξi,N,T | > ε)
]

≤
N

∑
i=1

E
[
ξ2

i,N,T⊮
(

β′
0X ′

iC
′
ℓuiu′

iCℓX iβ0 > ε2σ2β′
0X ′(IN ⊗ Cℓℓ)Xβ0

)]
≤ NT3

σ2β′
0X ′(IN ⊗ Cℓℓ)Xβ0

× max
i

E

[
β′

0X ′
iC

′
ℓuiu′

iCℓX iβ0
T3 ⊮

(
β′

0X ′
iC

′
ℓuiu′

iCℓX iβ0
T3 > ε2σ2 β′

0X ′(IN ⊗ Cℓℓ)Xβ0
T3

)]
,

where NT3/[σ2β′
0X ′(IN ⊗ Cℓℓ)Xβ0] = O(1), β′

0X ′
iC

′
ℓuiu′

iCℓX iβ0/T3 is uniformly (in T)
integrable, and β′

0X ′(IN ⊗ Cℓℓ)Xβ0/T3 → ∞ when (T, N → ∞). In view of Theorem
2 of Phillips and Moon (1999), the joint asymptotic distribution is the same. So for any
N, one can claim that (NT3)−1/2[u′(IN ⊗ Cℓ)Xβ0 is asymptotically normal as T → ∞,
provided that the asymptotic variance matrix is always defined. By the same reasoning,
(NT3)−1/2u′(IN ⊗ Cℓ1)α and (NT)−1/2X ′Au, as well as their linear combinations, have
similar properties. So in the end one can claim Υ−1/2[W ′Au − E(W ′Au)] is asymptotically
normal. The variance of Υ−1/2W ′Au is Υ−1/2Var(W ′Au)Υ−1/2 = Υ−1/2Ω⋆

1,NT(α)Υ
−1/2 +

o(1) in view of Lemma A11. Thus, one has

[Υ−1/2Ω⋆
1,NT(α)Υ

−1/2]−1/2Υ−1/2[W ′Au − E(W ′Au)
] d→ N(0, I).

Recall that E(W ′Au) = −E(u′Au)h, where h has O(1) elements in its top p positions
and 0’s in its lower k positions, and Var(u′Au) = σ4N(T − 1)(2 + γ2(T − 1)/T). So,
E(W ′Au) + u′Auh has its top p × 1 block consisting of Op(

√
NT) terms and bottom

k × 1 block of zeros. From Lemma A12, W ′Au − E(W ′Au) has Op(
√

NT3) elements
in its top p positions and Op(

√
NT) in its bottom k positions. Thus, one can write

Υ1/2g⋆NT = Υ−1/2[W ′Au−E(W ′Au) +E(W ′Au) + u′Auh] = Υ−1/2[W ′Au−E(W ′Au)] +
op(1). Combining all the results, one has the asymptotic distribution of Υ1/2g⋆NT .

Lemma A16. Under the conditions of Theorem 5,

Ω⋆−1/2
1,NT (α)Υ1/2g⋆NT

d→ N(0, I),

where g⋆NT = g⋆NT(θ0), g⋆NT(θ) is Υ−1[NTgNT(θ)] with gNT(θ) given by (25), and Ω⋆
1,NT(α)

is given by (34).
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Proof. Note that Ψℓ is diagonal with O(1) elements. Since MΣi M is uniformly (in T)
bounded in row and column sums, one has E(u′

i MΨℓMui) = tr(MΣi MΨℓ) = O(T) in view
of Lemma A2 of Bao et al. (2020). Similarly, tr(Σi MΨℓMΣi MΨℓM) = tr(MΣi MΨℓMΣi MΨℓ)
is O(T) and each elements of MΨℓM is O(1) from a similar proof as in Lemma A3 of
Bao et al. (2020). Then, it follows that Var(u′

i MΨℓMui) = tr(Σ(4)
i ⊙ MΨℓM ⊙ MΨℓM) +

2tr(ΣMΨℓMΣMΨℓM) = O(T) and u′
i MΨℓMui = O(T) + OP(T1/2). On the other hand,

y′
i,(−ℓ)Mui = u′

iCℓui + αiu′
iCℓ1+u′

iCℓX iβ0 +∑t−1
j=0 u′

iC j,ℓ−je1yi,−j +∑
p−1
j=ℓ u′

iC(j−p),ℓ−je1yi,−j.
Term by term, E(u′

iCℓui) = tr(ΣiCℓ) = tr(ΣiDℓ) = O(T) since the diagonal elements
of Dℓ are O(1). One can claim that 1′Φ−1

p LℓΣi1 and tr((Φ−1
p Ls)′ΣiΦ

−1
p LℓΣi) are O(T2)

by following similar steps as in the proof of Lemma A3. Also, 1′Φ−1
p LsΣiΦ

−1
p LℓΣi1,

1′Φ−1
p LℓΣi(Φ

−1
p Ls)′Σi1, and 1′ΣiΦ

−1
p LℓΣi(Φ

−1
p Ls)′1 are O(T3). This leads to Var(u′

iCℓui)

= tr(Σ(4)
i ⊙ Cℓ ⊙ Cℓ) + tr[(ΣiCℓΣi(Cℓ + C′

ℓ)] = O(T) + O(T2). So one can claim that
u′

iCℓui = O(T) + OP(T). From the proof of (iii) in Lemma A3, MΦ−1
p Lℓ1 has, at most, a

finite number of O(T3) elements, and all remaining elements are O(T2). Then, it is obvious
that Σ1/2

i MΦ−1
p Lℓ1 shares the same properties. Therefore, 1′C′

sΣiCℓ1 = 1′(Φ−1
p Ls)′MΣ1/2

i Σ1/2
i

MΦ−1
p Lℓ1 = O(T3) and one can claim that αiu′

iCℓ1 = OP(T3/2). Note that Cov(u′
iCℓX iβ0,

u′
iCsX iβ0) = β′

0X ′
iC

′
ℓΣiCsX iβ0 = β′

0X ′
i(Φ

−1
p Lℓ)′MΣ1/2

i Σ1/2
i MΦ−1

p LsX iβ0, and, in view of
Lemma A2 of Bao et al. (2020), it has the same magnitude as β′

0X ′
i(Φ

−1
p Lℓ)′MΦ−1

p LsX iβ0.
So, u′

iCℓX iβ0 = OP(T3/2). With all these results, one can claim that y′
i,(−ℓ)Mui −u′

i MΨℓMui

is dominated by αiu′
iCℓ1 + u′

iCℓX iβ0. Thus,

Υ1/2g⋆NT =


(NT3)−1/2[u′(IN ⊗ C1)Xβ0 + u′(IN ⊗ C11)α] + Op(T−1/2)

...
(NT3)−1/2[u′(IN ⊗ Cp)Xβ0 + u′(IN ⊗ Cp1)α] + Op(T−1/2)

(NT)−1/2X ′Au

.

Following similar steps in the proof of Lemma A15, one can arrive at the desired
asymptotic distribution.

Lemma A17. Under the conditions of Theorem 5,

plim
T→∞

G⋆
NT = plim

T→∞
Υ−1/2W ′AWΥ−1/2,

where G⋆
NT = G⋆

NT(θ0) and G⋆
NT(θ) is Υ−1/2[NTGNT(θ)Υ

−1/2] with GNT(θ) given by (26).

Proof. Given that Ψℓ is diagonal with O(1) elements, it follows that MΨℓM is uniformly (in
T) bounded in row and column sums. Recall W i = (yi,(−1), · · · , yi,(−p), X i). Substituting

(4), one has the first three leading terms in u′
i MΨℓMyi,(−s), namely, u′

i MΨℓMΦ−1
p Lℓui,

αiu′
i MΨℓMΦ−1

p 1, and u′
i MΨℓMΦ−1

p X iβ0. One can show that u′
i MΨℓMΦ−1

p Lℓui = OP(T),
αiu′

i MΨℓMΦ−1
p 1 = OP(T3/2), and u′

i MΨℓMΦ−1
p X iβ0 = OP(T3/2) by following the steps

in the proof of Lemma A16. Also, u′
i MΨℓMX i = OP(T1/2). So, u′

i MΨℓMW i = OP(T3/2).
Now consider y′

i,(−ℓ)MW i = (y′
i,(−ℓ)Myi,(−1), · · · , y′

i,(−ℓ)Myi,(−p), y′
i,(−ℓ)MX i). Following

the steps in the proof of Lemma A12, one can claim that the leading terms in y′
i,(−ℓ)MW i

are OP(T3), which dominate u′
i MΨℓMW i. Next, consider terms like u′

i MΨℓs Mui that also
appear in (26). The diagonal elements of MΦ−1

p LℓΦ−1
p Ls are −T−1Φ−1

p LℓΦ−1
p Ls1. In view

of Lemma A3. (ii), all the elements of the second part in (27) are O(1). The i-th element of
Φ−1

p LℓΦ−1
p Ls1 is
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i+ℓ

∑
j=s

(a1 +
p

∑
r=2

arλ
i−j−ℓ
r )

[
a1(j − s) +

p

∑
r=2

ar
1 − λ

j−s
r

1 − λr

]
.

So all the elements of the first part in (27) are, at most, O(T). Then, u′
i MΨℓs Mui

is dominated by u′
i MDg(−T−1Φ−1

p LℓΦ−1
p Ls1)Mui, which has O(T2) mean and O(T3)

variance. Given all these results, one can claim that the top p × (p + k) block of G⋆
NT is

dominated by terms like (NT3)−1 ∑N
i=1(−y′

i,(−ℓ)MW i) = Op(1). The bottom k × (p + k)

block of G⋆
NT is (NT)−1 ∑N

i=1(−X i MW i). Again, by substituting (4), one can verify that
X i MW i = Op(T). In summary,

G⋆
NT = Υ−1/2


N

∑
i=1


−y′

i,(−1)MW i
...

−y′
i,(−p)MW i

−X ′
i MW i


Υ−1/2 + op(1)

and the result follows immediately.

Lemma A18. Under the conditions of Theorem 5,

plim
T→∞

Υ−1/2

(
N

∑
i=1

W ′
i MΣi MW i

)
Υ−1/2 = lim

T→∞
Ω⋆

1,NT(α),

where Ω⋆
1,NT(α) is given by (34).

Proof. This follows similarly from the proof of Lemma A14.

Proof of Theorem 2. This follows from Lemmas A4 and A7.

Proof of Theorem 3. This follows from Lemmas A11 and A15.

Proof of Theorem 4. This follows from Lemma A8.

Proof of Theorem 5. This follows from Lemma A16.

Appendix D. Asymptotic Distribution of (NT)−1 ∑N
i=1 W ′

i Mv̂iv̂′
i MW i When N Is Fixed

If N is fixed, all four terms in the expansion of (NT)−1 ∑N
i=1 W ′

i Mv̂iv̂′
i MW i are

Op(1). From the proof of Lemma A8 in Appendix C, the top p × 1 block of W ′
i Mui is

dominated by u′
iCℓui + u′

iCℓX iβ0, ℓ = 1, · · · , p. For Ω1,NT defined by (29), suppose one

writes Ω1,NT = N−1 ∑N
i=1 Ω1,Ti, then as T → ∞, T−1/2W ′

i Mui
d→ N(0, limT→∞ Ω1,Ti). So,

(NT)−1 ∑N
i=1 W ′

i Muiu′
i MW i

p→ N−1 ∑N
i=1 Ω1/2

1,Tibib
′
iΩ

1/2
1,Ti, where bi ∼ N(0, I) is a (p + k)-

dimensional normal random vector and E(bib
′
j) = O for i ̸= j. The lower-right block

of W ′
i MW i is X ′

i MX i and its top-left p × p block is dominated by u′
i L

ℓ′Φ−1′
p MΦ−1

p Lsui +

2u′
i L

ℓ′Φ−1′
p MΦ−1

p LsX iβ0 + β′
0X ′

i L
ℓ′Φ−1′

p MΦ−1
p LsX iβ0, ℓ, s = 1, · · · , p from the proofs of

Lemmas A5 and A9.
Assuming that T−1u′

i L
ℓ′Φ−1′

p MΦ−1
p Lsui and T−1β′

0X ′
i L

ℓ′Φ−1′
p MΦ−1

p LsX iβ0 both have

properly defined probability limits as T → ∞, then one may write T−1W ′
i MW i

p→ Qi.

Further, (NT)−1 ∑N
i=1 W ′

i MW i(θ̂ − θ0)u′
i MW i

p→ N−1 ∑N
i=1 QiQ

−1bb′
iΩ

1/2
1,Ti), where Q =

∑N
j=1 Qj and b = ∑N

j=1 Ω1/2
1,Tjbj, in light of the proof of Theorem 4 in Hansen (2007). Similarly,

one also has (NT)−1 ∑N
i=1 W ′

i MW i(θ̂−θ0)(θ̂−θ0)
′W ′

i MW i
p→ N−1 ∑N

i=1 QiQ
−1bb′Q−1Qi.

Thus, (NT)−1 ∑N
i=1 W ′

i Mv̂iv̂′
i MW i is not consistent for estimating Ω1,NT , though it has a

limiting distribution as T → ∞ with N fixed.
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In the special case when Qi and Ω1,Ti stay the same across i, then the limiting
distribution of (NT)−1 ∑N

i=1 W ′
i Mv̂iv̂′

i MW i is proportional to Ω1,NT , and Corollary 4.1
of Hansen (2007) suggests that the t-statistic converges to

√
N/(N − 1)tN−1, where tN−1

is the t distribution with N − 1 degrees of freedom.23 In the presence of (unconditional)
cross-sectional heteroskedasticity, it is unlikely that Qi and Ω1i do not change with i.
But under homoskedasticity (with possible conditional temporal heteroskedasticity) or
temporal heteroskedasticity, the moment condition (25) and the asymptotic distribution
(31) are still valid, and thus, one can use the

√
N/(N − 1)tN−1 approximation to conduct

the t-test. As Hansen (2007) points out, if N → ∞, then
√

N/(N − 1)tN−1 converges to the
standard normal distribution, so the

√
N/(N − 1)tN−1 approximation can also be used

under large N.

Appendix E. Cross-Sectional Correlation

Now consider the more general case when Cov(ui, uj) = Σij = Dg(σ2
ij,1, · · · , σ2

ij,T).
(When i = j, Σii = Σi.) That is, cross-sectional correlation (and heteroskedasticity) may
exist, but temporal correlation is ruled out. For this situation, one needs both N and T to
be large.

When there is no unit root, from Lemma A8, one sees that, for θ in a neighborhood
of θ0, gi(θ) is dominated by W ′

i Mui. (The top p × 1 block of gi(θ) in this neighborhood is
dominated by u′

iCℓui + u′
iCℓX iβ.) So,

1√
NT

N

∑
i=1

T

∑
t=1

git(θ) =
1√
NT

N

∑
i=1

T

∑
t=1

wit(uit − ūi) + op(1)

=
1√
T

T

∑
t=1

1√
N

N

∑
i=1

wituit −
1√
N

N

∑
i=1

ūi
1√
T

T

∑
t=1

wit + op(1)

=
1√
T

T

∑
t=1

1√
N

N

∑
i=1

wituit + op(1)

=
1√
T

T

∑
t=1

N−1/2W′
tut + op(1),

where Wt = (w1t, · · · , wNt)
′ and ut = (u1t, · · · , uNt)

′. This second last line follows
because T−1/2 ∑T

t=1 wit = Op(1), and ūi = Op(T−1/2). Note that {N−1/2W′
tut}T

t=1 forms a
martingale difference sequence, so does {N−1W′

tutu′
tWt − N−1W′

tΣtWt}T
t=1, where Σt =

E(utu′
t) = Var(ut). Therefore,

lim
T→∞

1
T

T

∑
t=1

E(N−1W′
tutu′

tWt) = plim
N,T→∞

1
NT

T

∑
t=1

W′
tΣtWt

provided that plimN,T→∞(NT)−1 ∑T
t=1 W′

tΣtWt exists and is positive definite. A sufficient
condition is that the positive definite N × N matrix Σt is bounded in the norm as N → ∞.
Then,

1√
NT

N

∑
i=1

T

∑
t=1

git
d→ N

(
0, plim

N,T→∞

1
NT

T

∑
t=1

W′
tΣtWt

)
and accordingly, in view of the proof of Lemma A9, one has
√

NT(θ̂− θ0)

d→ N

0,

(
plim

N,T→∞

1
NT

W ′AW

)−1(
plim

N,T→∞

1
NT

T

∑
t=1

W′
tΣtWt

)(
plim

N,T→∞

1
NT

W ′AW

)−1
.
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In practice, plimN,T→∞(NT)−1 ∑T
t=1 W′

tΣtWt can be estimated by

1
NT

T

∑
t=1

W′
t(ϵ̂t − ¯̂ϵ)(ϵ̂t − ¯̂ϵ)′Wt

where ¯̂ϵ = T−1 ∑T
t=1 ϵ̂t and ϵ̂t = yt − Wtθ̂.

When there is a unit root, from Lemma A16, gi(θ) is dominated by W ′
i Mui, where its

top p × 1 block is dominated by elements like αiuiCℓ1 + u′
iCℓX iβ, ℓ = 1, · · · p, which are

OP(T3/2), and its lower k × 1 block is X i Mui, which is OP(T1/2). Proceeding similarly, one
can write

Υ−1/2
N

∑
i=1

T

∑
t=1

git(θ) = Υ−1/2
T

∑
t=1

W′
tut + op(1)

and

lim
T→∞

Υ−1/2
T

∑
t=1

E(W′
tutu′

tWt)Υ
−1/2 = plim

N,T→∞
Υ−1/2

(
T

∑
t=1

W′
tΣtWt

)
Υ−1/2.

Finally, in view of the proof of Lemma A17, one has

Υ1/2(θ̂− θ0)
d→ N(0, V),

where V = (plimN,T→∞Υ−1/2W ′AWΥ−1/2)−1(plimN,T→∞Υ−1/2(∑T
t=1 W′

tΣtWt)Υ
−1/2)

×(plimN,T→∞Υ−1/2W ′AWΥ−1/2)−1.

Appendix F. Additional Simulation Results

This section provides simulation results when ϕ0 = (0.3,−0.2,−0.1)′, (0.3, 0.6, 0.1)′

for the DP(3) model, as specified by (36) with the error term (37). The experimental design
is exactly the same as that in Section 5 in the main text. Recall all the results are related to
the sum of the autoregressive parameters, namely, ϕ01 + ϕ02 + ϕ03.

Table A1. Additional simulation results under homoskedasticity.

ϕ0 (N, T) (100, 10) (50, 20) (50, 50) (25, 40) (20, 50) (10, 100)

(0.3,−0.2,−0.1)′ Bias (×100) WG −5.54 −2.56 −0.98 −1.28 −1.05 −0.52
GMM −1.72 −2.57 −0.98 −1.28 −1.05 −1.08
BC −0.79 −0.28 −0.07 −0.15 −0.14 −0.06
BCJ −0.77 −0.28 −0.07 −0.15 −0.14 −0.06
HPJ 2.94 0.46 0.06 0.08 0.03 0.03
RMM 0.03 −0.01 0.00 −0.05 −0.07 −0.04
RMMr 0.03 −0.01 0.00 −0.05 −0.07 −0.04

RMSE (×100) WG 6.13 3.47 1.72 2.61 2.47 2.28
GMM 3.30 3.49 1.72 2.61 2.47 3.37
BC 2.78 2.40 1.42 2.29 2.25 2.22
BCJ 2.78 2.40 1.42 2.29 2.25 2.22
HPJ 4.58 2.69 1.47 2.41 2.34 2.27
RMM 2.67 2.37 1.42 2.29 2.25 2.22
RMMr 2.68 2.37 1.42 2.29 2.25 2.22

Size (5%) WG 57.32 19.30 10.39 8.80 7.44 5.68
WG(h) 57.70 20.91 11.33 11.19 9.92 10.31
GMM 9.25 19.14 10.37 8.73 7.39 6.16
GMM(h) 10.05 21.64 11.73 12.00 10.81 12.63
HPJ 14.31 4.83 4.51 4.85 4.77 4.77
RMM(N) 6.04 6.03 5.63 6.98 7.08 9.83
RMM(T) 6.07 5.36 4.96 5.20 5.03 4.96
RMMr(N) 6.07 6.00 5.63 7.00 7.10 9.83
RMMr(NT) 6.68 6.37 5.76 7.08 7.11 9.88
RMMr(T) 6.10 5.17 4.78 5.03 4.44 4.20
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Table A1. Cont.

ϕ0 (N, T) (100, 10) (50, 20) (50, 50) (25, 40) (20, 50) (10, 100)

(0.3, 0.6, 0.1)′ Bias (×100) WG −1.88 −0.61 −0.13 −0.20 −0.14 −0.05
GMM −0.46 −0.58 −0.13 −0.20 −0.14 −0.15
BC 10.76 9.60 4.44 5.47 4.44 2.23
BCJ 10.77 9.60 4.44 5.47 4.44 2.23
HPJ 1.99 0.72 0.16 0.25 0.18 0.06
RMM 0.03 0.01 0.00 0.00 0.00 0.00
RMMr 0.03 0.01 0.00 0.00 0.00 0.00

RMSE (×100) WG 2.13 0.81 0.20 0.36 0.28 0.14
GMM 1.11 0.79 0.20 0.36 0.28 0.39
BC 11.07 9.72 4.45 5.51 4.46 2.24
BCJ 11.09 9.72 4.45 5.51 4.46 2.24
HPJ 2.77 1.22 0.32 0.59 0.48 0.26
RMM 1.00 0.53 0.14 0.29 0.24 0.13
RMMr 1.00 0.53 0.14 0.29 0.24 0.13

Size(5%) WG 48.44 22.53 15.58 11.65 9.62 6.56
WG(h) 47.04 23.68 17.82 16.22 15.05 17.45
GMM 7.46 20.72 15.54 11.53 9.54 6.76
GMM(h) 8.42 22.74 18.40 17.11 15.97 18.56
HPJ 23.33 14.43 11.96 9.48 9.07 7.54
RMM(N) 6.40 7.23 7.01 9.58 10.84 15.17
RMM(T) 5.57 5.41 5.13 5.67 5.55 5.03
RMMr(N) 6.31 7.11 6.90 9.54 10.87 15.10
RMMr(NT) 6.32 7.05 6.92 9.51 10.71 14.94
RMMr(T) 5.78 5.88 5.95 7.07 7.18 7.95

Note: See Table 1 in the main text.

Table A2. Additional simulation results under cross-sectional heteroskedasticity.

ϕ0 (N, T) (100, 10) (50, 20) (50, 50) (25, 40) (20, 50) (10, 100)

(0.3,−0.2,−0.1)′ Bias (×100) WG −21.40 −9.10 −3.51 −3.74 −2.73 −1.03
GMM −8.69 −9.16 −3.51 −3.74 −2.73 −2.17
BC −2.55 −0.62 −0.11 −0.18 −0.10 −0.04
BCJ −2.57 −0.62 −0.11 −0.18 −0.10 −0.04
HPJ 5.93 0.96 0.14 0.21 0.18 0.06
RMM −0.20 −0.12 −0.03 −0.10 −0.05 −0.03
RMMr −0.23 −0.12 −0.03 −0.10 −0.05 −0.03

RMSE (×100) WG 22.14 10.36 4.61 5.64 4.88 3.49
GMM 10.99 10.43 4.61 5.64 4.88 5.29
BC 6.73 5.17 3.04 4.29 4.10 3.35
BCJ 6.74 5.17 3.04 4.29 4.10 3.35
HPJ 10.38 6.02 3.20 4.57 4.32 3.44
RMM 6.47 5.20 3.04 4.30 4.10 3.35
RMMr 6.49 5.20 3.04 4.30 4.10 3.35

Size (5%) WG 98.46 53.54 27.99 18.00 13.32 7.25
WG(h) 96.99 48.94 23.76 18.29 14.45 11.71
GMM 31.94 53.17 27.93 17.87 13.16 8.14
GMM(h) 27.36 49.58 24.47 18.94 15.54 14.90
HPJ 15.22 6.96 5.58 5.27 5.75 5.15
RMM(N) 6.34 7.02 6.49 7.66 8.19 10.44
RMM(T) 13.04 9.60 8.49 7.54 7.64 6.21
RMMr(N) 6.35 7.03 6.44 7.63 8.19 10.46
RMMr(NT) 9.26 7.83 6.83 7.90 8.39 10.57
RMMr(T) 8.54 6.70 5.69 5.69 5.81 4.28

(0.3, 0.6, 0.1)′ Bias (×100) WG −26.46 −6.50 −1.52 −1.28 −0.74 −0.14
GMM −12.14 −6.35 −1.52 −1.28 −0.74 −0.46
BC −8.34 −0.64 −0.08 0.51 0.72 1.13
BCJ −8.36 −0.64 −0.08 0.51 0.72 1.13
HPJ 8.07 5.02 1.58 1.39 0.87 0.19
RMM 0.83 0.10 0.01 0.01 0.00 0.00
RMMr 0.92 0.10 0.01 0.01 0.00 0.00
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Table A2. Cont.

ϕ0 (N, T) (100, 10) (50, 20) (50, 50) (25, 40) (20, 50) (10, 100)

RMSE (×100) WG 26.82 6.80 1.62 1.50 0.94 0.27
GMM 13.06 6.66 1.62 1.50 0.94 0.80
BC 10.11 2.21 0.61 1.00 0.98 1.19
BCJ 10.13 2.21 0.61 1.00 0.99 1.19
HPJ 10.44 5.91 1.83 1.93 1.33 0.47
RMM 7.33 2.14 0.55 0.77 0.57 0.23
RMMr 7.54 2.17 0.55 0.77 0.57 0.23

Size (5%) WG 100.00 96.90 87.55 44.27 28.21 9.49
WG(h) 100.00 93.41 81.93 43.97 31.50 18.86
GMM 78.51 95.93 87.51 44.06 28.05 11.75
GMM(h) 74.54 92.19 82.46 45.32 33.42 23.42
HPJ 21.06 38.18 45.46 21.51 16.91 9.83
RMM(N) 5.09 6.69 6.91 9.00 9.73 14.41
RMM(T) 31.87 12.73 8.57 7.25 6.68 5.60
RMMr(N) 5.23 6.63 6.87 8.84 9.65 14.43
RMMr(NT) 18.50 8.12 6.84 8.32 9.05 13.66
RMMr(T) 17.54 6.89 5.73 5.81 6.04 6.79

Note: See Table 1 in the main text.

Table A3. Additional simulation results under temporal heteroskedasticity.

ϕ0 (N, T) (100, 10) (50, 20) (50, 50) (25, 40) (20, 50) (10, 100)

(0.3,−0.2,−0.1)′ Bias (×100) WG −27.50 −10.98 −3.88 −5.11 −4.06 −1.90
GMM −12.93 −11.09 −3.88 −5.11 −4.06 −4.14
BC −3.32 −0.94 −0.17 −0.39 −0.35 −0.14
BCJ −3.38 −0.92 −0.16 −0.38 −0.35 −0.14
HPJ 7.66 1.11 −0.01 −0.07 −0.10 0.01
RMM 1.16 −0.41 −0.11 −0.29 −0.29 −0.12
RMMr −0.13 −0.07 −0.06 −0.20 −0.24 −0.11

RMSE (×100) WG 28.15 12.05 4.90 6.99 6.24 4.95
GMM 15.14 12.17 4.90 6.99 6.24 7.87
BC 7.50 5.24 3.04 4.88 4.83 4.60
BCJ 7.51 5.24 3.04 4.88 4.83 4.60
HPJ 12.82 6.03 3.47 5.54 5.46 5.07
RMM 7.51 5.25 3.04 4.89 4.83 4.61
RMMr 6.87 5.26 3.04 4.89 4.83 4.61

Size (5%) WG 99.73 62.19 29.44 21.88 16.53 8.85
WG(h) 99.63 62.05 27.23 22.19 17.38 12.23
GMM 41.75 62.62 29.34 21.71 16.39 15.73
GMM(h) 38.22 63.06 27.86 23.54 18.14 17.61
HPJ 20.65 6.23 7.50 7.20 7.21 7.14
RMM(N) 5.92 6.69 5.92 7.57 7.53 9.54
RMM(T) 12.64 7.52 7.27 7.22 7.27 7.12
RMMr(N) 6.32 6.64 5.92 7.51 7.49 9.56
RMMr(NT) 8.25 8.04 6.29 8.02 7.89 9.62
RMMr(T) 7.66 6.69 5.29 5.53 5.21 4.26

(0.3, 0.6, 0.1)′ Bias (×100) WG −21.28 −10.40 −2.46 −3.77 −2.55 −0.73
GMM −10.85 −10.54 −2.46 −3.77 −2.55 −2.75
BC −2.65 −3.11 −0.54 −1.45 −1.03 −0.38
BCJ −3.07 −3.09 −0.53 −1.45 −1.03 −0.38
HPJ 13.02 3.82 1.29 1.55 1.36 0.68
RMM 16.75 −0.38 −0.49 −0.69 −0.47 −0.12
RMMr 0.13 0.28 0.04 0.18 0.15 0.03

RMSE (×100) WG 21.70 10.64 2.55 4.00 2.78 0.94
GMM 11.97 10.80 2.55 4.00 2.78 3.22
BC 5.29 4.24 1.00 2.21 1.68 0.78
BCJ 5.36 4.23 1.01 2.21 1.68 0.78
HPJ 14.69 5.40 1.70 2.70 2.28 1.18
RMM 17.83 2.76 0.83 1.53 1.22 0.61
RMMr 4.43 2.82 0.77 1.69 1.37 0.66
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Table A3. Cont.

ϕ0 (N, T) (100, 10) (50, 20) (50, 50) (25, 40) (20, 50) (10, 100)

Size (5%) WG 99.99 99.99 99.27 92.78 79.90 33.50
WG(h) 99.93 99.87 97.76 88.17 73.30 35.91
GMM 63.43 99.98 99.26 92.75 79.81 60.53
GMM(h) 62.19 99.86 97.90 89.19 75.31 57.29
HPJ 51.16 21.70 27.82 15.92 16.39 14.10
RMM(N) 1.91 7.99 15.13 14.12 13.71 15.72
RMM(T) 91.57 13.60 19.76 15.29 14.46 11.30
RMMr(N) 5.78 5.65 6.46 7.07 8.21 14.10
RMMr(NT) 6.73 8.68 9.03 10.52 11.09 13.70
RMMr(T) 6.22 7.22 7.59 7.74 7.47 6.15

Note: See Table 1 in the main text.

Table A4. Additional simulation results under double heteroskedasticity.

ϕ0 (N, T) (100, 10) (50, 20) (50, 50) (25, 40) (20, 50) (10, 100)

(0.3,−0.2,−0.1)′ Bias (×100) WG −18.86 −9.24 −3.45 −4.69 −3.66 −1.94
GMM −6.89 −9.11 −3.45 −4.69 −3.66 −4.05
BC −1.98 −0.68 −0.12 −0.36 −0.19 −0.22
BCJ −1.93 −0.67 −0.12 −0.36 −0.19 −0.22
HPJ 6.07 0.84 0.13 0.05 0.14 −0.05
RMM −0.94 −0.36 −0.06 −0.27 −0.13 −0.21
RMMr −0.12 −0.12 −0.04 −0.21 −0.10 −0.20

RMSE (×100) WG 19.45 10.31 4.43 6.53 5.81 4.84
GMM 8.80 10.20 4.43 6.53 5.81 7.59
BC 5.48 4.77 2.83 4.64 4.59 4.47
BCJ 5.47 4.77 2.83 4.64 4.59 4.47
HPJ 9.41 5.68 3.07 5.19 5.09 4.81
RMM 5.29 4.77 2.83 4.65 4.59 4.47
RMMr 5.29 4.78 2.83 4.65 4.59 4.47

Size (5%) WG 98.41 55.29 26.25 20.08 14.82 8.54
WG(h) 98.01 54.78 25.58 21.80 16.32 13.04
GMM 24.19 53.47 26.17 19.93 14.72 14.17
GMM(h) 24.61 53.78 26.07 22.97 17.41 17.73
HPJ 18.04 7.34 6.19 7.18 6.85 6.44
RMM(N) 6.52 6.64 6.35 7.50 7.45 10.04
RMM(T) 8.87 7.36 6.71 7.06 6.88 6.61
RMMr(N) 6.11 6.69 6.36 7.53 7.42 10.08
RMMr(NT) 7.80 7.75 6.68 7.97 7.76 10.22
RMMr(T) 7.23 6.64 5.56 5.57 5.04 4.53

(0.3, 0.6, 0.1)′ Bias (×100) WG −23.86 −9.12 −1.80 −3.13 −2.14 −0.66
GMM −9.27 −8.78 −1.80 −3.13 −2.14 −2.54
BC −6.98 −2.36 −0.19 −0.93 −0.66 −0.30
BCJ −6.90 −2.34 −0.18 −0.93 −0.66 −0.30
HPJ 6.55 4.26 1.56 2.05 1.62 0.69
RMM −3.84 −1.65 −0.27 −0.58 −0.37 −0.10
RMMr 0.93 0.37 0.01 0.10 0.09 0.02

RMSE (×100) WG 24.19 9.40 1.90 3.38 2.38 0.87
GMM 10.09 9.07 1.90 3.38 2.38 3.02
BC 8.54 3.61 0.72 1.75 1.37 0.70
BCJ 8.52 3.62 0.72 1.75 1.37 0.70
HPJ 8.88 5.57 1.82 2.88 2.34 1.15
RMM 6.29 2.97 0.65 1.41 1.13 0.57
RMMr 6.69 3.21 0.63 1.52 1.23 0.61

Size (5%) WG 100.00 99.82 94.38 86.12 70.85 30.99
WG(h) 100.00 99.24 89.24 77.05 61.59 33.59
GMM 68.36 99.60 94.38 86.02 70.68 56.04
GMM(h) 65.89 98.79 89.51 78.65 63.37 51.80
HPJ 18.99 26.15 41.93 21.92 21.22 14.66
RMM(N) 18.24 14.35 10.19 12.04 12.00 15.49
RMM(T) 37.89 25.46 14.43 16.25 14.44 10.97
RMMr(N) 4.64 4.49 6.85 7.35 8.27 14.36
RMMr(NT) 17.18 12.61 8.11 10.66 10.85 13.78
RMMr(T) 16.05 10.80 6.87 7.72 7.03 6.30

Note: See Table 1 in the main text.
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Notes
1 No attempt is made here to provide an exhaustive list of published papers in this literature. Readers can refer to Okui (2021) for a

comprehensive literature review.
2 As one referee points out, many papers in the literature distinguish between exogeneity and endogeneity depending on whether

a regressor is correlated with the idiosyncratic error by assuming it is correlated with the individual fixed effects. As such, the
(random) regressors X in Assumption 3 to be introduced are exogenous. The word “endogeneity” or “endogenous” in this paper
exclusively refers to the lagged dependent variables.

3 One referee suggests that, in view of the numerical equivalence, the estimator in this paper should be named the implicit indirect
inference estimator. Nonetheless, given the different motivations, the suggested name is not adopted in this paper.

4 They mention the possibility of both cross-sectional and temporal heteroskedasticity under more stringent conditions, but they
do not rigorously derive the properties of the resulting estimator.

5 The higher-order DP in Juodis (2013) is presented as a panel first-order vector autoregression (VAR(1)).
6 Of course, if one assumes that αi are fixed constants of bounded magnitudes, then Assumption 1 should be dropped. When

they are random, the i.i.d. assumption could be relaxed, so long as the relevant probability limits pertaining to the recentered
moments and gradient are well defined.

7 In this case, Assumptions 1 and 2 do not apply. One could also follow Han and Phillips (2010) to assume that the fixed effects
disappear when there is a unit root, but an extension along this line is not pursued in this paper. In practice, the fixed effects are
not estimated anyway, so treating them as random or not does not affect the estimation strategy to be presented in this paper.

8 The derivation of (4) is analogous to rewriting lagged time-series vectors from an autoregressive process of order p: yt =
ϕ1yt−1 + · · · + ϕpyt−p + ut, t = 1, · · · , T, where y0, y−1, · · · , yt−p+1 are given. With obvious notation, y = ϕ1y(−1) + · · · +
ϕpy(−p) + u. Note that y(−ℓ) = Ly(−ℓ+1) + e1y−(ℓ−1), ℓ = 1, · · · , p, where y(0) = y. Substituting y(−1) = Ly + e1y0, y(−2) =

Ly(−1) + e1y−1 = L2y + Le1y0 + e1y−1, and so on to the right-hand side of y = ϕ1y(−1) + · · ·+ ϕpy(−p) + u, one can solve

for y and hence y(−1), given by y(−1) = Φ−1
p (Lu + e1y0 + ∑

p−1
s=1 Φ(s−p)L−se1y−s) at the true parameter vector. With y(−1), the

expression of y(−2) follows from y(−2) = Ly(−1)+ e1y−1. By successive substitutions, y(−ℓ) = Φ−1
p (Lℓu+∑ℓ−1

s=0 ΦsLℓ−1−se1y−s +

∑
p−1
s=ℓ Φ(s−p)Lℓ−1−se1y−s).

9 At the time of writing, the author was not aware of the work of Breitung et al. (2022). In addition to differences in the allowable
heteroskedasticity, unit root, and asymptotic regimes, their approach is motivated by correcting the profile score from a normal
likelihood function, but the estimator in this paper explicitly uses the endogeneity of the with-group transformed lagged
dependent variables to construct the recentered moment conditions E(gNT(θ0)) = 0 in this and the next sections.

10 Var(
√

NTgNT) = [Var(W ′Au) + hh′Var(u′Au) +Cov(W ′Au, u′Au)h′ + hCov(u′Au, W ′Au)]/NT. Further, the (i, j)-th element
of hh′Var(u′Au) is equal to the negative of the (i, j)-th element of Cov(W ′Au, u′Au)h′ and Var(u′Au)/NT = σ4[2(T − 1)/T +
γ2(T − 1)2/T2]. These results lead to the variance expression (10). See Bao and Yu (2023) for the detailed derivation.

11 Dovonon et al. (2020) point out that there may exist situations where global identification holds but first-order local identification
fails. They provide such an example based on the special case of a unit-root DP(1) with no exogenous covariates, namely, p = 1,
k = 0, and ϕ0 = 1, where a GMM estimator is used. When T = 4 and E[(αi − (1 − ϕ0)yi1)

2] = 0, they show that the Jacobian is a
null vector, and thus, the GMM is not able to first-order identify the parameter, though global identification and second-order
local identification still hold. For the estimator proposed in this paper, it can be shown that when ϕ0 = 1, the (unscaled) moment
condition at ϕ0 = 1 becomes y′

(−1)Au + u′Au/2 and its derivative at ϕ0 = 1 becomes −y′
(−1)Ay(−1) − y′

(−1)Au + (T − 2)u′Au/6,

where E(y′
(−1)Ay(−1)) = N(T2 − 1)σ2/6 + (T3 − T)E(α′α)/12, E(y′

(−1)Au) = Nσ2(1 − T)/2, and E(u′Au) = N(T − 1)σ2. If
further α = 0, then the Jacobian is equal to 0, and thus, the first-order local identification condition fails in this special case. This
is also recognized by Dhaene and Jochmans (2016) (see their Corollary 4.1) when they design their adjusted profile likelihood
estimator. For a general DP(p), under some rare circumstances, it may happen that there are multiple zeros when one solves the
adjusted profile score function and for local identification, Dhaene and Jochmans (2016) recommend numerical search starting
from the WG estimator. Results from numerical gird search in Dhaene and Jochmans (2016) and Bao and Yu (2023) suggest that
the issue of multiple zeros may not be of practical concern.

12 In Kelejian and Prucha (2010), the linear form in u involves a vector of non-stochastic elements. Here, X may be random.
Checking their proof, which relies on results from their earlier work (Kelejian and Prucha 2001, Theorem 1), one can see that as
long as X is strictly exogenous, then the sigma-field that defines the martingale difference array in the proof of Theorem 1 in
Kelejian and Prucha (2001) can be extended and the result continues to hold. In the case of random X, one can replace X ′AX
with E(X ′AX) in various variance expressions. Further note that, in view of footnote 13 in Kelejian and Prucha (2001), one can
think of their kn as NT and their n as T.

13 If it is also the case that N → ∞, the sequential ((T, N → ∞)seq) and joint ((T, N → ∞)) asymptotic distributions may be different
(Phillips and Moon 1999). Under the assumptions in this paper, for the stable case, Theorem 1 of Kelejian and Prucha (2001)
essentially states no difference under the two asymptotic regimes. For the unit-root case, Appendix C (Lemma A15) shows that
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the two asymptotic regimes deliver the same asymptotic distribution. Recall that GNT = Op(1) + [O(T−2) + Op(N−1/2T−3/2)] +
Op(T−1), where the Op(1) term is −(NT)−1W ′AW . Further,

14 σ2 is defined as limN→∞ N−1 ∑N
i=1 σ2

i in Breitung et al. (2022).
15 Recall from Note 11, that if further α = 0, the method in this paper cannot identify ϕ0. This is also in line with Theorem 4 of

Hahn and Kuersteiner (2002) that shows that their bias correction is not expected to work under this special case. Checking their
proof (see their Lemma 12), one can interpret their recentered WG estimator in this special case as arising from some (unscaled)
moment condition, which is y′

−Au + 3u′(IN ⊗ L′Φ−1′MΦ−1L)u/(T + 1) at the true parameter value and has exact expectation
0 when ϕ0 = 1. From Note 11, for the RMM estimator in this special case, the (unscaled) moment condition at ϕ0 = 1 becomes
y′
(−1)Au + u′Au/2. So, if one designs a (unscaled) moment condition y′

(−1)A(y − ϕy(−1)) + (y − ϕy(−1))
′A(y − ϕy(−1))/2,

which is valid at ϕ0 = 1 but not valid at ϕ0 ̸= 1, then its derivative, evaluated at ϕ0 = 1, is dominated by −y′
(−1)Ay(−1).

Using results from Appendix C, one can show plimN,T→∞y′
(−1)Ay(−1)/(NT2) = σ2/6, which is the same as Lemma 11

of Hahn and Kuersteiner (2002). Further, following similarly the proof of Lemma 12 of Hahn and Kuersteiner (2002), one

has (NT2)−1/2(y′
(−1)Au + u′Au/2) d→ N(0, σ4/12) as N, T → ∞. Correspondingly,

√
NT2(ϕ̂ − 1) d→ N(0, 3) as N, T →

∞. Recall that ϕ̂ here is solved from y′
(−1)A(y − ϕy(−1)) + (y − ϕy(−1))

′A(y − ϕy(−1))/2 = 0. Theorem 4 of Hahn and

Kuersteiner (2002) indicates that if one were using the true parameter value in this case, one would have recentered θ̂ − θ0 by
−3/(T + 1) instead of the general bias formula −(1 + θ̂)/T (in their notation, where θ̂ is the WG estimator). Similarly here,
one would have used the moment condition y′

(−1)A(y − ϕy(−1)) + (y − ϕy(−1))
′A(y − ϕy(−1))/2 instead of the general one

y′
(−1)Au(ϕ) + u′(ϕ)Au(ϕ)1′Φ−1(ϕ)L1/[T(T − 1)].

16 In particular, additional simulation results are available under four non-normal distributions that are also considered in Bao and
Yu (2023): uniform on [0, 1], student-t distribution with five degrees of freedom, log-normal distribution lnN(0, 1), and mixture of
N(−3, 1) and N(3, 1) with half probability each.

17 The number of instruments for the GMM estimator of Arellano and Bond (1991) is of order O(T2). To prevent instrument
proliferation, the total number of instruments from lagged y is capped at T0(T0 − 1)/2, where T0 = min(50, T), such that when
T > 50, only the first q = T0(T0 − 1)/2 columns in the matrix of instruments are retained.

18 Bun and Carree (2006) consider DP(1) only. The BC estimator is based on the panel VAR(1) representation of DP(p) in Juodis
(2013).

19 The complete results for each single element of θ0 (including β0) under each parameter configuration are available upon request
and they lead to similar conclusions as reported in this section.

20 Even though the estimator itself is consistent under large N and fixed T, De Vos and Everaert (2021) assume both to be large to
derive its asymptotic distribution. For practical inference, they suggest re-sampling the cross-sectional units and then using the
empirical distribution of their estimates from the bootstrapped samples to approximate the asymptotic distribution.

21 If there are repeated roots, the exact expressions of the various terms in the lemmas to follow are different, but their orders of
magnitude stay the same. This is because, for instance, for |λ| < 1, ∑T

t=1 λt, and ∑T
t=1 tjλt, where j is a positive finite integer, are

of the same magnitude as T → ∞.
22 T−3σ2β′

0X ′
iCℓℓX iβ0 is essentially a quadratic form in the idempotent matrix M, which is positive unless Φ−1

p LℓX iβ0 is a constant
vector.

23 The matrix ∑N
i=1 W ′

i Mv̂iv̂′
i MW i, in this case, may be adjusted by N/(N − 1). Further, the F statistic for testing q linear

restrictions based on (31) with the the variance matrix estimated by (32) (and ∑N
i=1 W ′

i Mv̂iv̂′
i MW i possibly adjusted) converges

to [Nq/(N − q)]Fq,N−q, where Fq,N−q denotes an F distribution with q numerator and N − q denominator degrees of freedom.
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