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Abstract: The SAR model is widely used in spatial econometrics to model
Gaussian processes on a discrete spatial lattice, but for large datasets, fitting it
becomes computationally prohibitive, and hence, its usefulness can be limited. A
computationally-efficient spatial model is the spatial random effects (SRE) model, and in
this article, we calibrate it to the SAR model of interest using a generalisation of the Moran
operator that allows for heteroskedasticity and an asymmetric SAR spatial dependence
matrix. In general, spatial data have a measurement-error component, which we model, and
we use restricted maximum likelihood to estimate the SRE model covariance parameters; its
required computational time is only the order of the size of the dataset. Our implementation
is demonstrated using mean usual weekly income data from the 2011 Australian Census.
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1. Introduction

The spatial autoregressive (SAR) model, originally proposed by Whittle [1] (see also, [2]), is widely
used in spatial econometrics to model Gaussian processes on a discrete spatial lattice (which may be
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irregular). It has an autoregressive structure that models the spatial dependence of the attributes through
a precision matrix that is typically a function of the proximity between elements of the lattice. This
spatial dependence matrix is generally sparse. An important application of the SAR model is when
the lattice is made up of n spatially-contiguous areas, such that for two areas that are “far apart”, the
corresponding entry in the spatial dependence matrix is zero.

Despite its popularity, the SAR model has some limitations for the analysis of large datasets, because
maximum likelihood estimation of its parameters is not scalable in the size of the spatial dataset. This
limits the size of the problems for which SAR models can be effectively used. Algorithmic approaches
to reduce the computational burden include sparse-matrix techniques [3,4] and approximate methods,
such as Taylor series and Chebyshev approximations [4,5].

Rather than modelling spatial dependence through a precision matrix that is a function of the spatial
proximity of areas, it could be modelled directly through a covariance matrix; a reduced-rank covariance
model could then be used to lower the order of computations (e.g., [6]) to O(n). Reduced-rank
approaches include latent-factor-analysis models [7], predictive-process models for Gaussian data [8,9]
and non-Gaussian data [10], spatial random effects (SRE) models [11,12] and spatial generalised
linear mixed models (SGLMMs) [13–15]. The advantage of the SRE approach is a substantial
improvement in computational efficiency for a broad class of flexible, spatial, non-stationary covariance
functions [12,16]. The spatial dependence is captured through the choice of basis functions and through
an r × r covariance matrix of the coefficients of the basis functions. By reducing the rank of the
spatial covariance function from n to r through the use of r spatial basis functions, the SRE model
has a computational cost of O(nr2), which is O(n) for r � n [12]. Our challenge in this paper is to
calibrate and fit a computationally-efficient SRE model so that its parameters are directly interpretable
in terms of the familiar SAR model.

An important aspect of model definition is specifying appropriate basis functions. Several classes
of basis functions have previously been used for SRE models, including empirical orthogonal functions
(EOFs) (summarised in, e.g., [6,17]), Fourier basis functions [18], smoothing splines [6], radial basis
functions (e.g., [19,20], pp. 186–187), and multi-resolutional basis functions (i.e., basis functions
obtained from functions defined at multiple resolutions), such as bisquare spatial basis functions [12,21]
and wavelets [16,22], that capture the spatial dependence at multiple scales. Selecting an appropriate
class of basis functions is generally problem dependent, although the use of the conditional Akaike
information criterion and the generalised-degrees-of-freedom criterion have been considered [23]. The
spatial basis functions selected for the model need not be orthogonal, but they are recommended to be
multi-resolutional and fast to evaluate [12]. More recently, a spectral decomposition of the matrix in
the numerator of Moran’s I statistic, called the Moran operator [14], has been used to identify a set of
orthogonal eigenvectors associated with dominant patterns of positive spatial dependence (e.g., [24–26]).
These eigenvectors have been used to obtain spatial basis functions for SGLMMs[27], and substantial
computational efficiency has been achieved for both SGLMMs [14] and SRE models [28] by including
only the first r � n basis functions in the model.

Moran’s I can be motivated from a simple SAR model with homoskedastic errors and a symmetric
spatial dependence matrix given by nearest-neighbour adjacencies. In this article, we consider a
heteroskedastic SAR model with an asymmetric spatial dependence matrix and define a generalised
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Moran operator (GMO) whose eigenvectors define our spatial basis functions. In particular, we propose
to model spatial data for small areas using an SRE model with these spatial basis functions calibrated
from the proposed SAR model. The SAR-calibrated SRE model, for which computational efficiencies
are readily available, is well suited to very large datasets, and its parameters are interpretable in terms of
the original SAR parameters.

The plan for the rest of the article is as follows. Section 2 outlines the main features of the SAR and
SRE models. A motivation is given in Section 3 for spatial basis functions obtained from a generalised
Moran operator. Dimension reduction using these basis functions is developed in Section 4. Parameter
estimation under the SAR-calibrated SRE model is presented in Section 5. An example of their use
for Australian Census data is presented in Section 6, and the paper concludes with a discussion and
conclusions in Section 7.

2. SAR Model and SRE Model Specifications

Consider a set of n geographic areas {Ai : i = 1, ..., n} in a spatial domain, and identify the location
of a well-defined feature in each area, denoted s1, ..., sn, respectively. Define an irregular, finite spatial
lattice Ds ≡ {s1, ..., sn} over the region of interest,

⋃n
i=1 Ai, and consider the attributes {Y(si) : i = 1, ..., n}

associated with the n areas.
We are interested in making inference on a spatial process Y(·), which we henceforth assume is

Gaussian. However, Y(·) is a latent process: rather than observing {Y(si) : i = 1, ..., n}, we observe
data {Z(si) : i = 1, ..., n}, which offer an imperfect view of the latent process due to limitations in the
measurement process (including averaging, the use of proxy measures rather than direct measurement
and observation error).

In this section, we specify hierarchical models that allow us to make inference on the latent process
Y ≡ (Y(s1), ..., Y(sn))′ using the observed data Z ≡ (Z(s1), ..., Z(sn))′. We first define a SAR model
for Y and then a measurement-error model for Z given Y. Subsequently, we consider an SRE model
for Y and discuss the implications of equating the SAR and SRE models’ respective means, variances
and covariances.

2.1. SAR Model

A SAR model for Y over the lattice Ds, which includes a spatially-varying mean, is defined as:

Y(si) = µ(si) +
n∑

j=1

bij(Y(sj) – µ(sj)) + ν(si), i = 1, ..., n, (1)

where µµµ ≡ (µ(s1), ..., µ(sn))′ is an n-dimensional vector representing the mean of Y and bij is a measure
of the spatial dependence between the locations si and sj with the convention that bii = 0; i = 1, ..., n. We
define the SAR’s n×n spatial dependence matrix as B ≡ {bij : i, j = 1, ..., n}. In general, bij 6= bji; that is,
B is an asymmetric square matrix. The elements of the error vector ννν ≡ (ν(s1), ..., ν(sn))′ are independent
Gaussian random variables with mean zero and variance σ2

νi, i = 1, ..., n. Their joint distribution can be
written as ννν ∼ Gau(0,ΣΣΣν), where ΣΣΣν ≡ diag(σ2

ν1, ..., σ2
νn). For many applications, ΣΣΣν is parametrised as

σ2
νi = σ2

ν
Vν(si), where σ2

ν
> 0, and Vν(·) > 0 is a known function of location. We write ΣΣΣν ≡ σ2

ν
Vν, where
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the diagonal matrix Vν ≡ diag(Vν(s1), ..., Vν(sn)) may be the identity or may model heteroskedasticity
(e.g., the inverse of the population size in each area; see Section 6).

Here, we model the mean as a linear function of p known covariates; that is µµµ ≡ Xβββ, where
X ≡ (X(s1), ..., X(sn))′, for X(si) ≡ (X1(si), ..., Xp(si))′, and βββ ≡ (β1, ..., βp)′ is the associated
p-dimensional vector of regression coefficients. In this case, (1) can be written equivalently as,

Y ≡ Xβββ + (I – B)–1
ννν. (2)

The spatial dependence matrix B has zeros down the diagonal; generally it is asymmetric, and it is often
defined in terms of the proximity of the lattice elements. For (2) to be well defined, we consider only
those B for which (I – B) is invertible. Generally, B (and hence, (I – B)) is sparse. In many applications,
B is parametrised as ρH, where H ≡ {hij : i, j = 1, ..., n} is a known, in general asymmetric, n × n
spatial-weights matrix with zeros down the diagonal, and ρ is a spatially-dependent parameter. The case
of ρ = 0 corresponds to “no spatial dependence,” since B = ρH = 0.

Henceforth, we parametrise our model as B ≡ ρH and ΣΣΣν ≡ σ2
ν
Vν, where H and Vν are known.

Consequently, there are two covariance parameters, ρ and σ2
ν
. From (2), the mean vector and the

covariance matrix of Y are, respectively, given by,

ESAR(Y) ≡ Xβββ

covSAR(Y) ≡ σ
2
ν
(I – ρH)–1Vν(I – ρH′)–1. (3)

A statistical model for the observations, Z, is defined in terms of the latent process, Y, by assuming a
conditional Gaussian distribution for the observed data. The resulting data model can be written in terms
of additive measurement error, as follows:

Z(si) = Y(si) + ε(si), i = 1, ..., n. (4)

The term ε(·) in (4) represents an uncorrelated Gaussian process with mean zero and individual variances
given by var(ε(si)) = σ2

ε
Vε(si), for i = 1, ..., n, where σ2

ε
> 0, and Vε(·) > 0 is a known function of location;

ε(·) is also independent of Y(·). Hence,

Z|Y ∼ ind.Gau(Y, σ
2
ε
Vε),

where “Gau” is the Gaussian (or normal) distribution, and Vε ≡ diag(Vε(s1), ..., Vε(sn)) may be the
identity matrix or it may represent heterogeneous conditions associated with the measurement process.
Together, (2) and (4) yield the following model for Z,

Z ≡ Xβββ + (I – ρH)–1
ννν + εεε, (5)

where εεε ≡ (ε(s1), ..., ε(sn))′ ∼ Gau(0, σ2
ε
Vε), independent of ννν ∼ Gau(0, σ2

ν
Vν). Traditional spatial

econometrics has fitted a SAR model directly to the spatial data, Z, as follows (e.g., [2]): Z ≡ Xβββ +
ρHZ + ννν. We believe that (5) presents the three components of variability, namely trend, SAR spatial
dependence and measurement error, in an unambiguous and interpretable manner.

Motivated by Besag et al. [29], we have assumed a SAR model for the spatial errors, Y – Xβββ, to avoid
confounding ρH with βββ. Furthermore, to recognise that the measurement is never perfect, we have added
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measurement error to the latent process Y. Details regarding these models and their estimation can be
found in, for example, Anselin [2], Cliff and Ord [30], Cressie [31], Le Sage [32], Anselin [33], as well
as LeSage and Pace [34].

2.2. SRE Model

The SRE model is a reduced-rank spatial statistical model that can be written as follows:

Y(si) = X(si)′βββ + S(si)′ηηη + ξ(si), i = 1, ..., n, (6)

where S(·) ≡ (S1(·), ..., Sr(·))′ is a known vector of r � n spatial basis functions and ηηη ≡ (η1, ..., ηr)′

is its corresponding r-dimensional vector of random effects. The random effects are assumed to have a
multivariate Gaussian distribution with mean 0 and r×r covariance matrix K, so that ηηη ∼ Gau(0, K). The
last term in (6), ξ(·), represents fine-scale variation, independent of Y, which is assumed here to follow,

ξ(si) ∼ ind. Gau(0, σ
2
ξ
Vξ(si)), i = 1, ..., n,

where σ2
ξ

> 0, and Vξ(·) > 0 is a known function of location. Hence, ξξξ ∼ Gau(0, σ2
ξ
Vξ), where

ξξξ ≡ (ξ(s1), ..., ξ(sn))′, and the diagonal matrix Vξ ≡ diag(Vξ(s1), ..., Vξ(sn)) may be the identity matrix or
may represent heterogeneity, for example through (population size)–1 in each area; see Section 6. Using
vector notation, (6) can also be written as,

Y ≡ Xβββ + Sηηη + ξξξ, (7)

where S ≡ (S(s1), ..., S(sn))′. The mean vector and the covariance matrix of Y for the SRE model are,
respectively, given by,

ESRE(Y) ≡ Xβββ

covSRE(Y) ≡ SKS′ + σ
2
ξ
Vξ . (8)

As was done for the SAR model, we define Z in terms of the latent process Y through the data model,
(4). Together, (7) and (4) yield the following model for Z:

Z ≡ Xβββ + Sηηη + ξξξ + εεε . (9)

We calibrate the specification of S, cov(ηηη) and cov(ξξξ) in the SRE model to the spatial dependence in
the SAR model, by initially matching their first two moments. Now, the mean of the SRE model (7) is
the same as the mean of the SAR model (2). Then, after setting the measurement-error terms in (5) and
(9) to be the same, we set covSRE(Y) ≡ covSAR(Y) (e.g., [35]). That is, we set:

SKS′ + σ
2
ξ
Vξ = σ

2
ν
(I – ρH)–1Vν(I – ρH′)–1. (10)

Notice that in the SRE model (left-hand side), the contribution to spatial dependence is from the
reduced-rank matrix SKS′, whilst in the SAR model (right-hand side), the contribution to spatial
dependence comes from the full-rank matrix, I – ρH. When SKS′ = 0 = ρH, we respectively obtain
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an SRE model and an SAR model with no spatial dependence. In this case, the SRE model and the SAR
model are equivalent if:

σ
2
ξ
Vξ = σ

2
ν
Vν . (11)

This says that heteroskedasticity in the SRE’s fine-scale variation component ξξξ should reflect the
heteroskedasticity in the SAR model’s ννν, when there is no spatial dependence.

When spatial dependence is present in the SAR model, the spatial dependence component of the SRE
model should, according to (10), be equal to:

σ
2
ν
(I – ρH)–1Vν(I – ρH′)–1 – σ

2
ξ
Vξ. (12)

Critically, (12) should also be positive-definite with rank r � n. Ensuring that these restrictions hold
leads to our new methodology, which is presented in Section 4.

3. Motivation for the Spatial Basis Functions

We use this section to motivate the construction of our SAR-calibrated spatial basis functions for use
in the SRE model. The motivation is clearest for the case where σ2

ε
= 0, and hence, in this section, we

temporarily assume Z = Y. The SAR model parameters are (βββ, ρ, σ2
ν
). Minus twice the log-likelihood

function for the SAR model is:

–2L(βββ, ρ, σ
2
ν
; Y)

= n log (2π) – log
(∣∣σ–2

ν
(I – ρH′)V–1

ν
(I – ρH)

∣∣) + σ
–2
ν

(Y – Xβββ)′(I – ρH′)V–1
ν

(I – ρH)(Y – Xβββ)

= n log (2π) – log
(∣∣σ–2

ν
(V–1/2

ν
– ρH′V–1/2

ν
)(V–1/2

ν
– V–1/2

ν
ρH)

∣∣)+

σ
–2
ν

(Y – Xβββ)′(V–1/2
ν

– ρH′V–1/2
ν

)(V–1/2
ν

– V–1/2
ν

ρH)(Y – Xβββ). (13)

Consider the transformation Ỹ = V–1/2
ν

Y. The spatial process Ỹ is distributed as Ỹ ∼ Gau(X̃βββ, σ2
ν
(I –

ρH̃)–1(I – ρH̃
′
)–1), where X̃ = V–1/2

ν
X, and H̃ = V–1/2

ν
HV1/2

ν
(e.g., see [36], for details). Hence (13) can be

written as,

–2L(βββ, ρ, σ
2
ν
; Y)

= n log (2π) – log
(∣∣∣σ–2

ν
(V–1/2

ν
– V–1/2

ν
ρH̃
′
)(V–1/2

ν
– ρH̃V–1/2

ν
)
∣∣∣)+

σ
–2
ν

(V1/2
ν

Ỹ – V1/2
ν

X̃βββ)′(V–1/2
ν

– V–1/2
ν

ρH̃
′
)(V–1/2

ν
– ρH̃V–1/2

ν
)(V1/2

ν
Ỹ – V1/2

ν
X̃βββ)

= n log (2π) – 2 log
∣∣V–1/2

ν

∣∣ – log
(∣∣∣σ–2

ν
(I – ρH̃

′
)(I – ρH̃)

∣∣∣) + σ
–2
ν

(Ỹ – X̃βββ)′(I – ρH̃
′
)(I – ρH̃)(Ỹ – X̃βββ)

= –2L(βββ, ρ, σ
2
ν
; Ỹ) + log

∣∣Vν

∣∣ . (14)

The SAR model maximum likelihood estimates, (β̂̂β̂β, ρ̂, σ̂2
ν
), are those values that minimise

–2L(βββ, ρ, σ2
ν
; Y) or, equivalently, they are those values that minimise –2L(βββ, ρ, σ2

ν
; Ỹ).

Maximum likelihood estimates for the covariance parameters ρ and σ2
ν

are well known to exhibit
negative bias (e.g., [37]). To reduce the bias, estimation commonly proceeds using restricted (or
residual) maximum likelihood (REML) (e.g., see [38], for a summary of its use for spatial data). REML
estimation is carried out by performing maximum likelihood estimation on MỸ, where M is chosen,
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such that E(MỸ) = 0, rank(M) = n – p, and p is the rank of the matrix of covariates, X̃. Suppose
we choose M = P̃

⊥ ≡ I – X̃(X̃
′
X̃)–1X̃

′
. Note that P̃

⊥
is symmetric (i.e., (P̃

⊥
)′ = P̃

⊥
) and idempotent

(i.e., (P̃
⊥

)2 = P̃
⊥

). Effectively, we are substituting an ordinary-least-squares estimator of βββ (based on
Ỹ and X̃) into (14), and then, we minimise this empirical version of the likelihood to obtain REML
estimates. The “data” are now P̃

⊥
Ỹ, with E(P̃

⊥
Ỹ) = 0 and cov(P̃

⊥
Ỹ) = P̃

⊥
cov(Ỹ)P̃

⊥
. Hence, we

minimise the restricted likelihood,

–2L(βββ, ρ, σ
2
ν
; P̃
⊥

Ỹ) = n log (2π) – log
(∣∣∣σ–2

ν
P̃
⊥

(I – ρH̃
′
)(I – ρH̃)P̃

⊥
∣∣∣)+

σ
–2
ν

(P̃
⊥

Ỹ – P̃
⊥

X̃βββ)′P̃
⊥

(I – ρH̃
′
)(I – ρH̃)P̃

⊥
(P̃
⊥

Ỹ – P̃
⊥

X̃βββ)

= n log (2π) – log
(∣∣∣σ–2

ν
P̃
⊥

(I – ρH̃
′
)(I – ρH̃)P̃

⊥
∣∣∣) + σ

–2
ν

Ỹ
′
P̃
⊥

(I – ρH̃
′
)(I – ρH̃)P̃

⊥
Ỹ,

(15)

resulting in the REML estimates. From (15), these estimates depend critically on the
non-negative-definite matrix,

σ
–2
ν

P̃
⊥

(I – ρH̃
′
)(I – ρH̃)P̃

⊥
. (16)

Expanding (16) gives the equivalent expression,

σ
–2
ν

(
P̃
⊥

P̃
⊥

– 2ρ
P̃
⊥

(H̃
′
+ H̃)P̃

⊥

2
+ ρ

2P̃
⊥

H̃
′
H̃P̃
⊥
)

. (17)

In (17), the dominant term in ρ is proportional to:

P̃
⊥
{

H̃
′
+ H̃
2

}
P̃
⊥

. (18)

Notice that Moran’s I statistic for data Ỹ and covariates X̃ is,

I(A) =
n

1′A1
Ỹ
′
P̃
⊥

AP̃
⊥

Ỹ

Ỹ
′
P̃
⊥

Ỹ
, (19)

where A is the adjacency matrix whose entries are one (when two entries are “adjacent”) and zero
(otherwise); see [24]. When an asymmetric matrix B is used in place of A, Tiefelsdorf ([39], p. 29) has
suggested that B be “symmetrised” by replacing A in (19) with the symmetric matrix (B′ + B)/2.

We have seen that (18) plays an important role in the restricted likelihood (15), and it takes the
form of the numerator of Tiefelsdorf’s modification to the Moran statistic for an asymmetric spatial
dependence matrix. Hence, we use it to define a generalised Moran operator. Recall that Vν captures
heterogeneity and H captures asymmetric spatial dependence in the SAR model. We can write P̃

⊥ ≡
I – V–1/2

ν
X(X′V–1

ν
X)–1X′V–1/2

ν
and, since H̃ = V–1/2

ν
HV1/2

ν
,

P̃
⊥

(H̃
′
+ H̃)P̃

⊥
= P̃

⊥
V1/2

ν
(H′V–1

ν
+ V–1

ν
H)V1/2

ν
P̃
⊥

= Q(Vν)(H′V–1
ν

+ V–1
ν

H)Q(Vν)′,

where:
Q(Vν) ≡ V1/2

ν
– V–1/2

ν
X(X′V–1

ν
X)–1X′. (20)

Hence, we define the generalized Moran operator (GMO),
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G(X, H, Vν) ≡ Q(Vν)
{

H′V–1
ν

+ V–1
ν

H
2

}
Q(Vν)′, (21)

where Q(Vν) is defined by (20).
Notice that for Vν = I and H = A (the symmetric adjacency matrix), we obtain Q(I) = P⊥ ≡

I – X(X′X)–1X′, and hence, (21) is equal to P⊥AP⊥. This is the Moran operator given by Griffith [24]
and Hughes and Haran [14]. Spectral decomposition of the Moran operator has been shown to yield
natural spatial basis functions for spatial modelling (e.g., see [24,27,40,41] and, more recently, [14,28]),
and we propose the same for the GMO given by (21). For spatial generalised linear models where
heteroskedasticity appears through a mean-variance relationship, Reich et al. [27] suggest modifying the
Moran operator using weights obtained from iteratively reweighted least squares. This bears a formal
resemblance to P̃

⊥
and lends support to our proposed generalisation. Notice that the GMO allows for

both heteroskedasticity (through Vν) and asymmetry (through H) simultaneously.

4. Specification of the SAR-Calibrated SRE Model

In this section, we define an SAR-calibrated SRE model for the latent process Y, using the SRE model
that is defined in Section 2.2. Our approach is to use r � n eigenvectors from the spectral decomposition
of G(X, H, Vν) given by (21), to define the r basis functions for the SRE model, (8). Now, the spectral
decomposition of (21) yields,

G(X, H, Vν) = P̃
⊥
{

H̃
′
+ H̃
2

}
P̃
⊥ ≡ UΩΩΩU′, (22)

where the eigenvectors U of G(X, H, Vν) satisfy U′U = UU′ = I; and ΩΩΩ ≡ diag(ω1, ..., ωn) is an n × n
diagonal matrix with elements in the diagonal matrix ordered so that |ω1| ≥ |ω2| ≥ ... ≥ |ωn| ≥ 0, for
ω1, ..., ωn, the eigenvalues of G(X, H, Vν). Define the n×r matrix U1 ≡ (u1, ..., ur), which corresponds to
the r largest absolute eigenvalues of G, namely the diagonal elements in ΩΩΩ1 ≡ diag(ω1, ..., ωr). Similarly,
U2 and ΩΩΩ2 correspond to the n – r smallest absolute eigenvectors. Then,

UΩΩΩU′ = (U1, U2)

(
ΩΩΩ1 0
0 ΩΩΩ2

)(
U′1
U′2

)
= U1ΩΩΩ1U′1 + U2ΩΩΩ2U′2. (23)

Notice that eigenvectors corresponding to large positive and negative eigenvalues may be chosen; Hughes
and Haran [14] only choose eigenvectors that correspond to large positive eigenvalues, which limits their
approach to capturing only positive spatial dependence. In the application given in Section 6, several
large absolute eigenvectors that corresponded to negative dependence were chosen.

From (3), using a second-order Taylor-series expansion for ρ around zero, the SAR model covariance
matrix for Ỹ is:

σ
2
ν
(I – ρH̃)–1(I – ρH̃

′
)–1 ' σ

2
ν

{[
I + ρ(H̃

′
+ H̃) + ρ

2
(

(H̃
′
)2 + H̃

′
H̃ + H̃

2
)]}

. (24)

Hence, a candidate for the r × r matrix K in the SRE model (8) is obtained by pre- and
post-multiplying (24) by Ũ1, where Ũ1 ≡ V–1/2

ν
U1:

σ
2
ν

{
Ũ
′
1

[
I + ρ(H̃

′
+ H̃) + ρ

2
(

(H̃
′
)2 + H̃

′
H̃ + H̃

2
)]

Ũ1

}
. (25)
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The candidate K given by (25) is fast to evaluate for given values of ρ and σ2
ν
. However, while the r × r

matrix in (25) is symmetric, it is not necessarily positive-definite. Higham [42] shows how to obtain the
nearest symmetric positive approximant to any real square matrix B. Call this positive-definite matrix
A+(B), and hence, define,

R+(ρ) ≡ A+
(

Ũ
′
1

[
I + ρ(H̃

′
+ H̃) + ρ

2
(

(H̃
′
)2 + H̃

′
H̃ + H̃

2
)]

Ũ1

)
. (26)

Then, since σ2
ν

> 0, the r × r matrix (r � n),

K+(ρ, σ
2
ν
) ≡ σ

2
ν
R+(ρ), (27)

is positive-definite. In conclusion, we shall use the r × r positive-definite matrix K+ given by (27) to
define our SAR-calibrated SRE model. What remains in the calibration is specification of σ2

ξ
Vξ in (8).

Since Vξ is assumed known, we only need to specify σ2
ξ
, which will generally be a function of ρ and σ2

ν
.

We use the closeness of the inverses of the SAR and SRE covariance matrices to achieve this, which is
concomitant with the eigenvectors in U1 coming from large absolute eigenvalues.

Recall that the SAR model’s inverse covariance matrix is easy to evaluate as is the SRE model’s
inverse covariance matrix using the Sherman–Morrison–Woodbury identity (e.g., [43]): for generic
matrices A, B, U and V of appropriate order,

(A + UBV)–1 = A–1 – A–1U(B–1 + VA–1U)–1VA–1,

where the inverses on the right-hand side are fast to evaluate. Consequently, for an SRE model for Ỹ
with the form of (8) and with S̃ = Ũ1, diagonal Ṽξ = V–1/2

ν
VξV–1/2

ν
and positive-definite K ≡ K+(ρ, σ2

ν
) =

σ2
ν
R+(ρ), the inverse covariance matrix is,

(S̃KS̃
′
+ σ

2
ξ
Ṽξ)–1 = (Ũ1σ

2
ν
R+(ρ)Ũ

′
1 + σ

2
ξ
Ṽξ)–1

= σ
–2
ν

{ζṼ
–1
ξ

– ζ
2Ṽ

–1
ξ

Ũ1

(
R+(ρ)–1 + ζŨ

′
1Ṽ

–1
ξ

Ũ1

)–1
Ũ
′
1Ṽ

–1
ξ

}

≡ σ
–2
ν

J(ρ, ζ), (28)

where ζ ≡ σ2
ν
/σ2

ξ
. Consider the Frobenius norm between the inverse of the SAR covariance matrix of Ỹ

and (28); this is proportional to:

‖(I – ρH̃
′
)(I – ρH̃) – J(ρ, ζ)‖2

F , (29)

as a function of ζ. The final step in the calibration is to minimise (29) with respect to ζ > 0, for all ρ in
its parameter space; call the minimised value ζ(ρ).

Hence, the SAR-calibrated SRE covariance matrix of Y is,

ΣΣΣ(ρ, σ
2
ν
) ≡ V1/2

ν
cov(Ỹ)V1/2

ν

= σ
2
ν
{U1R+(ρ)U′1 + ζ(ρ)–1Vξ}, (30)

where σ2
ν
R+(ρ) is a positive-definite r× r matrix, ζ(ρ) > 0, by construction, and recall that Vξ is known.

Notice that all parameters in the SRE model’s covariance matrix (30) are expressed as functions of the
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SAR model’s parameters σ2
ν

and ρ. Furthermore, notice that, while we have made ΣΣΣ(ρ, σ2
ν
)–1 close (in

the Frobenius-norm sense) to (I – ρH′)V–1
ν

(I – ρH), they are not equal; this difference is the only source
of approximation in this article. The dominant (positive and negative) spatial dependencies in the SAR
model are included in the calibrated model in a reduced-rank form, and residual variability is captured
by setting σ2

ξ
= σ2

ν
/ζ (which is a function of ρ). In the next section, we fit the model,

Z ∼ Gau(Xβββ,ΣΣΣ(ρ, σ
2
ν
) + σ

2
ε
Vε), (31)

using likelihood-based methods, where ΣΣΣ(ρ, σ2
ν
) is given by (30).

5. Parameter Estimation

We use likelihood-based estimators of the parameters of the SAR-calibrated SRE model (31), because
they have asymptotic optimality properties, and they are preserved under transformation. The SAR
model’s parameters are βββ, ρ and σ2

ν
, which appear in the SRE likelihood defined by (30) and (31); we

assume that the measurement-error component, σ2
ε
Vε, is known, which is often the case (Section 6.3).

We estimate the SAR covariance parameters ρ and σ2
ν

using the log-restricted-likelihood function
given by:

LR(ρ, σ
2
ν
) = constant –

1
2

(log |ΦΦΦ| + log |X′ΦΦΦ–1X| + Z′ΠΠΠZ), (32)

where ΦΦΦ ≡ σ2
ν

{
U1R+(ρ)U′1 + ζ(ρ)–1Vξ

}
+ σ2

ε
Vε and ΠΠΠ ≡ ΦΦΦ–1 – ΦΦΦ–1X(X′ΦΦΦ–1X)–1X′ΦΦΦ–1. We solve

for (ρ, σ2
ν
) by minimising –2LR(ρ, σ2

ν
) in terms of ρ and σ2

ν
≥ 0 in two stages. First, for each value

of ρ, we minimise –2LR(ρ, σ2
ν
) with respect to σ2

ν
, to obtain σ̂2

ν
(ρ). Then, we minimise the profile,

–2LR(ρ, σ̂2
ν
(ρ)), with respect to ρ. The resulting ρ̂ and σ̂2

ν
≡ σ̂2

ν
(ρ̂) are the REML estimates. When

making likelihood calculations, we use the Sherman–Morrison–Woodbury formulas [43] for both the
inverse and the determinant of the SRE model’s covariance function.

This estimation technique requires a starting value for σ2
ν

for each value of ρ; we use
method-of-moments estimation to obtain the starting values. Specifically, define W ≡ P⊥Z, and hence:

W ∼ Gau(0, σ
2
ν
L(ρ) + M), (33)

where L(ρ) ≡ P⊥{U1R+(ρ)U′1 + ζ(ρ)Vξ}P⊥ and M ≡ σ2
ε
P⊥VεP⊥. Consequently,

E(W′NW) = trace(N{σ
2
ν
L(ρ) + M}),

where N is any symmetric, n × n matrix. For example, in Section 6, we choose N = diag(n1, ..., nm),
where ni, i = 1, ..., m is the number of people in area i. The resulting method-of-moments estimator is,

σ
2
ν,0(ρ) =

Z′P⊥NP⊥Z – trace(σ2
ε
NP⊥VεP⊥)

trace(N{P⊥U1R+(ρ)U′1P⊥ + ζ(ρ)–1P⊥VξP⊥})
, (34)

which we use as a starting value for solving:

σ̂ν(ρ)2 = arg min
σν(ρ)2

{
–2LR(ρ, σ

2
ν
)
}

, (35)



Econometrics 2015, 3 327

for each ρ in its parameter space. The profile restricted log-likelihood for ρ is given by,

L*
R(ρ) ≡ LR(ρ, σ̂

2
ν
(ρ)),

for ρ in its parameter space. The minimum of –2L*
R(ρ) is found using a univariate grid-search algorithm.

A likelihood-based confidence interval (CI) for a model parameter, with a significance level of α, can
be obtained by inverting the (restricted) likelihood-ratio test. Hence, an approximate 100(1 – α)% CI for
ρ is given by:

{ρ : L*
R(ρ) > LR(ρ̂, σ̂

2
ν
(ρ̂)) – χ

2
1(1 – α)/2}, (36)

where χ2
1(1 – α) is the (1 – α)100 percentile of the chi-squared distribution on one degree of freedom.

Finally, the empirical generalised-least-squares estimate for βββ is,

β̂̂β̂β ≡ (X′ΦΦΦ(ρ̂, σ̂
2
ν
(ρ̂))–1X)–1X′ΦΦΦ(ρ̂, σ̂

2
ν
(ρ̂))–1Z, (37)

and an estimate of its covariance matrix is (X′ΦΦΦ(ρ̂, σ̂2
ν
(ρ̂))–1X)–1.

6. Fitting a Spatial Model to Mean Usual Weekly Income

We illustrate the methodology developed in Sections 2 to 5 using Australian Census data [44] from the
2011 Census conducted by the Australian Bureau of Statistics (ABS). Our interest lies in modelling the
spatial distribution of mean usual weekly income (MWI) for small geographic areas in the state of New
South Wales (NSW), Australia, and then fitting the spatial model by estimating its parameters. In the
following sections, we describe the data, the fitting of an SAR-calibrated SRE model, our assumptions
regarding measurement error and the statistical inferences that follow.

6.1. Imputed MWI

In NSW, 2011 Census summaries are available for four nested sets of geographic areas, called
Statistical Areas (SA), where the most disaggregated level consists of SA1 areas. We fit a spatial model to
MWI for the 16, 850 SA1 areas (Figure 1) with a population >100 persons, which is 97% of the total SA1
areas; populations ≤100 are too granular for the statistical analysis that we shall undertake. SA1 areas
in NSW exhibit a wide range in both population and area, since the state’s population is concentrated
along the coastline (in the east of the state). For the SA1 areas we consider, their populations range from
100 to 13,000 (with a median of 395).

In the Census, each person ≥15 years specifies their usual mean weekly income by selecting from
11 possible income ranges {≤$0, $1 to $199, $200 to $299, $300 to $399, $400 to $599, $600 to $799,
$800 to $999, $1,000 to $1,249, $1,250 to $1,499, $1,500 to $1,999, ≥$2,000}. For the i = 1, ..., 16, 850
SA1 areas, the Census data are the number of persons, nij, in the j-th income range. Thus, the 2011
Census does not directly measure MWI for SA1s; denote the true MWI process as Y(·). However, in the
2011 to 2012 Australian Survey of Income and Housing (SIH) [45], the mean usual weekly income of a
large sample of individuals was measured, but with limited spatial information. Hence, we use the SIH
microdata to impute an MWI value, Z̄(si), for the 2011 Census SA1 area i = 1, ..., 16, 850, where the
“bar” on Z̄(·) is added to emphasise that MWI refers to mean income. In this analysis, we use only the
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SIH data and Census counts from the J = 9 Census income ranges corresponding to $0 < MWI < $2,000,
which includes most (approximately 94%) of the incomes in the Census. Negative, zero and very large
incomes are set aside. These incomes, along with SA1 areas with populations less than 100, need special
attention that is beyond the goal of this section.
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Figure 1. (a) Chloropleth map of imputed mean usual weekly income (MWI) ($0 < MWI <
$2,000) for Statistical Area 1 (SA1) areas in NSW, Australia; the resolution around Sydney
is enhanced. (b) An excerpt of SA1 areas from (a) showing how asymmetry can occur in
the spatial dependence matrix. The lines join the centroids of neighbouring areas, which are
obtained using a K-nearest-neighbour algorithm, where here K = 8.

To impute the MWI values, we first stratify the Australia-wide SIH data using the Census income
ranges, resulting in ñj SIH records {Z̃jl : l = 1, ..., ñj} for the j = 1, ..., 9 income ranges. The SIH data
include weights that are used to account for unequal selection probabilities when calculating population
estimates. We use them to impute nij MWI values, {Zijk : k = 1, ..., nij}, by sampling nij SIH records,
with replacement, from {Z̃jl : l = 1, ..., ñj}, for each of i = 1, ..., 16, 850, j = 1, ..., 9. As mentioned above,
the MWI values in the samples are selected using the same probability distribution that was used to
select individuals in the SIH survey. We average the imputed values for each area, to obtain an imputed
MWI value:

Z̄(si) ≡
∑9

j=1

∑nij
k=1 Zijk

ni
, for i = 1, ..., 16, 850, (38)

where ni ≡
∑9

j=1 nij. Hence, the spatial data that we shall analyse in this section are,

Z ≡ (Z̄(s1), ..., Z̄(s16850))′. (39)
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6.2. A Simple Heteroskedastic Model for MWI

A basic heteroskedastic model for MWI was explored and found to fit reasonably well: assume that
for each area i and stratum j, income values are a random sample from a distribution with mean µj and
variance σ2

j . From (38) and for given {nij},

E(Z̄(si)) =

∑9
j=1 nijµj

ni
, and var(Z̄(si)) =

∑9
j=1(nij/ni)σ2

j

ni
. (40)

Contrast this with an overly simple model that assumes a constant mean and variance for the elements
of Z.

In Figure 2, the left panel gives a histogram and Q-Q plot of unstandardised {Z̄(si)} motivated by the
overly simple model that assumes constant mean and variance over the SA1 areas. The right panel gives
a histogram and Q-Q plot of the standardised values from the basic heteroskedastic model:

Z̄(si) – E(Z̄(si))
var(Z̄(si))1/2 , for i = 1, ..., 16, 850, (41)

where {µj} and {σ2
j } in (40) are estimated straightforwardly from the SIH data. The fit of the histogram

in the right panel to a Gau(0, 1) distribution is striking and indicates that any spatial model we fit should
aim to capture the same types of heteroskedastic behaviour given by (40). Of course, {nij} is an important
part of the randomness in Z defined by (38) and (39), and in a formal (spatial) model, we cannot have
them describing the first two moments (as we do informally in (40)).

To capture the heteroskedasticity in (40) and illustrated in Figure 2, recall from (5) that ΣΣΣν = σ2
ν
Vν.

We estimate Vν(si) using the m = 1, ..., 100 centiles of the Socio-Economic Indicator For Areas Index
of Economic Resources (IER), a well-established socio-economic indicator produced for SA1 areas in
Australia by the ABS [46]. There are 35 SA1 areas out of 16,850 that do not have an IER. For each of
these, we obtained a value for the IER based on a regression of the 16,815 IER values that we do have,
regressed on the covariates included in our model (see Section 6.5). Finally, then, we have 16,850 IER
values whose centiles define 100 groups of SA1 areas, as follows:

Im ≡ {i : i-th SA1 area ∈ m-th decile}, for m = 1, ..., 100.

Define qm ≡ |Im|, n̄mj ≡
∑

i∈Im
nij/qm, n̄m ≡

∑
i∈Im

ni/qm, and hence, we set:

Vν(si) ≡
9∑

j=1

(n̄mj/n̄m)σ2
j

ni
, for i ∈ Im, m = 1, ..., 100. (42)

That is, in (42), we replace the random weights {(nij/ni) : j = 1, ..., 9} given in (40) with centile-smoothed
weights. This leaves a single variance, σ2

ν
, to be estimated.
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Mean income for n_i > 0
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Figure 2. Histogram and Q-Q plot of Z for 16,850 SA1 areas (left panels). Histogram and
Q-Q plot of standardised values (41) for the same SA1 areas (right panels).

6.3. Measurement Error in MWI

Known sources of measurement error in the Census are due to non-response, invalid responses and
random error purposely applied to the SA1 areas that have small populations (for confidentiality reasons;
see [44] for further details). In the 2011 Census, item non-response for mean usual weekly income at the
person level was approximately 7.9% [47].

Here, we model the non-response as “missing completely at random.” Then, for the i-th area, the
observed nij is the sum of Bernoulli random variables, nij =

∑Nij
k=1 Jijk; j = 1, ..., 9, where Jijk is an indicator

variable with Pr(Jijk = 1) = p = 0.921, obtained from the item non-response, and Nij is the true number
of people. From the randomness associated with {Jijk : k = 1, ..., Nij}, we calculate var(Z̄(si)|{Zijk}) using
the delta method. That is,

σ
2
ε
Vε(si) = En(var(Z̄(si)|{Zijk})) + varn(E(Z̄(si)|{Zijk}))

'
(

Nip + p – 1
Ni(1 – p + Nip)2 +

4p(1 – p)
(1 – p + Nip)3 –

1
N2

i
+

2(1 – p)
N3

i p

) 9∑
j=1

Nijσ
2
j ; i = 1, ..., 16, 850. (43)
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Recall that Nij is the fully enumerated population total for area i and stratum j, and we define
Ni ≡

∑9
j=1 Nij. To estimate (43), we use nijp–1 for Nij and nip–1 for Ni. Because the measurement-error

calculations come from a separate study of item non-response, the values given by (43) are considered
as known, and hence, σ2

ε
Vε ≡ diag(σ2

ε
Vε(si) : i = 1, ..., 16, 850) is known.

A summary statistic giving the measurement-error component of variability as a fraction of the total
variability is:

σ2
ε

∑16850
i=1 Vε(si)∑16850

i=1 (Z̄(si) – ¯̄Z)2
,

where ¯̄Z ≡
∑16850

i=1 Z̄(si)/16, 850. In our case, this is equal to 0.01%, which is very small.

6.4. Specifying the Spatial Dependence Matrix

The simple exploratory model we proposed in Section 6.2 does not account for spatial dependence
between the SA1 areas. Now that we have captured the heteroskedasticity (Section 6.2) and measurement
error (Section 6.3), we can build a SAR model (see Section 2.1) for the MWI values, {Y(si)}, defined for
a fully enumerated population. That is, assume that Y ≡ (Y(s1), ..., Y(s16850))′ has a covariance matrix
given by (3), which is parametrised in terms of ρ and σ2

ν
.

Because there are n = 16, 850 small areas, fitting the SAR model is numerically challenging, so
we turn to estimating the SAR parameters ρ and σ2

ν
by fitting the SAR-calibrated SRE model given

in Section 4. Recall that we choose U1 = (u1, ..., ur), to be the matrix containing the n-dimensional
eigenvectors corresponding to the r largest absolute eigenvalues in (23), which are obtained from a
spectral decomposition of the GMO (21) for a heteroskedastic SAR model.

The basis functions U1 and the SRE model parameters K and σ2
ξ

all depend on the spatial dependence
matrix H in (3). In NSW, there is substantial variation in the physical areas of the SA1s and in the spatial
proximity of neighbouring areas. Along the eastern coastline and in the major urban centres, SA1s are
reasonably uniformly distributed, whereas in other parts of the state, there is much greater asymmetry in
the number and proximity of neighbouring areas.

A common choice for H is the symmetric adjacency matrix:

H = A ≡ (aii′), (44)

where aii′ = 1 if the i-th area shares a common boundary with the i′-th area; and aii′ = 0, otherwise.
However, an asymmetric H is more reasonable in this instance where distance or the shortest travel time
between areas is more important than sharing a boundary. On a regular spatial lattice, the eight nearest
neighbours are also the adjacent neighbours, but on an irregular lattice, they can be very different (see
Figure 1b). Here, we model H based on the eight nearest neighbours of the irregular SA1 spatial lattice;
that is,

H = E ≡ (eii′), (45)

where eii′ = I(i′ ∈ E(i)), for:

E(i) ≡ {i′ : dii′ ≤ eighth-largest distance from i}

and dii′ is the distance between the respective centroids of the i-th and i′-th areas,
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Clearly, from Figure 1b, if i′ ∈ E(i), it may not be true that i ∈ E(i′), and hence, E will generally
be asymmetric. In our analysis, we fitted the SAR-calibrated SRE model using H equal to both
(row-standardised) A and (row-standardised) E, and we compared them.

6.5. Statistical Inference

In this section, we obtain parameter estimates for ρ, σ2
ν
, and βββ from the SAR-calibrated SRE model,

using the methodology outlined in Section 5. Initially, we estimate the parameters for a small subset of
the SA1 data obtained from the 1,230 SA1 areas that are located within the 2011 Census SA4 region of
southwestern (SW) Sydney (Figure 3). We use these results to help select the number of basis functions,
r, to use when modelling the full NSW dataset. With n = 1230, the SAR model estimate ρ̂SAR for ρ can
be computed, and hence, r is chosen so that ρ̂ (which depends on r) is close to the target value ρ̂SAR.

We subsequently analyse the full NSW dataset using this selected value of r in a SAR-calibrated
SRE model. Clearly, direct likelihood-based parameter estimates based on the SAR model are no longer
possible for all of NSW, due to the size of the dataset (n = 16, 850).

 0

 455

 910

 1364

 1819

0 2 4 km

Figure 3. SA1 level imputed MWI for SW Sydney.

While the basic heteroskedastic model for MWI in Section 6.2 fitted well, we cannot use it for
inference, because its mean depends on the random counts {nij} used to impute the data. Socio-economic
and demographic covariates are generally used in an attempt to explain the variability in MWI. Using
various selection criteria, we settled on the following explanatory variables: the proportion of males, out
of the total population, in the age groups 15 to 24, 25 to 64 and ≥65 (three covariates), the proportion
of females, out of the total population, in the same age groups (three covariates), the median mortgage
repayment, the median rent, the average household size and the average number of persons per bedroom
(four covariates) and the overall mean effect (one covariate). That is, we fitted a regression, Xβββ, for the
mean of the spatial model, where the number of regression parameters was p = 11. The estimate of βββ is
important and interpretable, and it may even be used by governments to make policy.

We specify the matrices that we use to represent heteroskedasticity, measurement error and spatial
dependence in the model using (42), (43) and (44) or (45) from Sections 6.2, 6.3 and 6.4, respectively.
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To complete our specification of the model, we use the term σ2
ξ
Vξ to capture the additional variance

not captured by the spatial basis functions included in the model. We expect the variance to depend
on the number of observations in each area, and hence, we set Vξ(si) = c/ni; i = 1, ..., 16, 850, where
c = trace(Vν)/(

∑16850
i=1 1/ni) is a scaling constant that makes σ2

ξ
comparable to σ2

ν
.

We use the restricted-maximum-likelihood-estimation method described in Section 5 to obtain REML
estimates, ρ̂ and σ̂2

ν
, for the SW Sydney and the NSW datasets, for the spatial dependence matrices A and

E defined by (44) and (45), respectively. In each case, we used a grid-search algorithm to obtain ρ̂. For
each value of ρ, we obtained a starting value, σ2

ν,0(ρ) using (34) with N = diag(ni : i = 1, ..., 16, 850), and
then, we iteratively estimated σ̂2

ν
(ρ). We calculated the profile restricted log-likelihood for each value of

(ρ,σ̂2
ν
(ρ)), from which we obtained ρ̂ ≡ arg min(L*

R(ρ)), and hence, σ̂2
ν
≡ σ̂2

ν
(ρ̂). Finally, we used (37) to

obtain generalised least-squares parameter estimates, β̂ββ.
For the SW Sydney dataset, we compared ρ̂ and σ̂2

ν
with the target SAR model estimates. Hence,

we use restricted maximum likelihood estimation and account for the measurement error to obtain SAR
model parameter estimates, ρ̂SAR and σ̂2

ν,SAR.
Based on Figure 4 for SW Sydney, we see that for r ≥ 25 spatial basis functions, the SAR-calibrated

SRE model yields a 95% confidence interval for ρ that contains ρ̂SAR = 0.8 for E and ρ̂SAR = 0.74 for A.
From this and plots of SAR-calibrated estimates of ρ and σ2

ν
versus r for all of NSW, we chose r = 25

basis functions for our dimension-reduced analysis of MWI in the 16,850 SA1 areas of NSW shown
in Figure 1. To choose which spatial dependence matrix to use for the NSW dataset, we compared
the magnitude of the restricted log-likelihood functions for SW Sydney obtained using A and using E,
since the number of parameters is the same in both models. The asymmetric spatial dependence matrix
E resulted in a smaller value for the negative restricted log-likelihood, so we used E to fit the model
for NSW.
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Figure 4. SAR-calibrated spatial random effects (SRE) model restricted (or residual)
maximum likelihood (REML) estimates for ρ̂ and σ̂2

ν
for SW Sydney as a function of r

for E (left-hand panel) and for A (right-hand panel); the SAR model estimate ρ̂SAR and 95%
profile log-likelihood confidence intervals (CI) for ρ are included for comparison (36).
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We fit the resulting SAR-calibrated SRE model given by (31) and (30) to the full NSW dataset, to
obtain SAR-calibrated SRE model REML estimates, ρ̂ = 0.74 and σ̂2

ν
(ρ̂) = (87)2. We also obtain

ζ̂ ≡ ζ(ρ̂) = 0.87, and hence, σ̂2
ξ

= (100.3)2. From these results, we conclude that MWI exhibits
substantial spatial dependence in NSW, after allowing for the covariates included in the regression model.

Table 1 compares the SAR-calibrated SRE model estimates of βββ given by (37) with the ordinary
least-squares (OLS) regression parameter estimates, β̂̂β̂βOLS ≡ X(X′X)–1X′Z; the latter estimates ignore
heteroskedasticity and spatial dependence. For all of the covariates except the intercept and “Female,
15 to 24 years”, the OLS estimates do not fall within the 95% CI for their respective β’s obtained
using the SAR-calibrated SRE model. The OLS estimate β̂̂β̂βOLS is based on the overly simple model,
Z ∼ Gau(Xβββ, σ2I), and for this dataset, it is inadequate. This demonstrates the importance of capturing
small-scale heteroskedastic spatial variation in our analysis of MWI.

Table 1. MWI for NSW. Ordinary least-squares regression-parameter estimates, generalised
least-squares regression-parameter estimates obtained from fitting an SAR-calibrated SRE
model and 95% confidence intervals (CIs). The SRE model is based on 25 basis functions
and H = E given by (45).

β0 βMale
15–24 βMale

25–64 βMale
≥65 βFem.

15–24 βFem.
25–64

β̂̂β̂βSRE 463 47.5 773 –782 –201 675
CISRE (432,494) (–6.7,102) (732,814) (–836,–729) (–256,–146) (622,728)
β̃̃β̃βOLS 481 –95.6 719 –695 –177 789

βFem.
≥65 βMort. βRent βSize βBeds

β̂̂β̂βSRE 346 0.0443 0.298 –234 –15.1
CISRE (302,390) (0.042,0.0466) (0.287,0.309) (–244,–224) (–18.7,–11.3)
β̃̃β̃βOLS 219 0.0472 0.197 –245 –7.84

7. Discussion and Conclusions

This paper has considered the specification and estimation of a hierarchical model that includes a
computationally-efficient spatial random effects (SRE) model for a latent spatial process and an additive
measurement error model for the observed data. Using the generalised Moran operator, we calibrate this
model to an SAR model, a model that is widely used in spatial econometrics, but that is computationally
prohibitive for large datasets. We use restricted maximum likelihood on a computationally-efficient SRE
model to estimate the SAR model’s covariance parameters.

Implementation of our model is demonstrated using Australian Census data for mean income. It is
clear from the SAR-calibrated SRE model fitted to NSW’s 16,850 SA1 areas that a regression model
with the 11 covariates and independent residuals does not properly capture the small-scale variability.
This (heteroskedastic) spatial variability is important, which is reflected in the estimate for ρ, namely
ρ̂ = 0.74 for 25 basis functions. It is also reflected in the change of regression coefficient estimates when
the spatial variability is used to improve both the estimates and their estimation variance.
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Notice the role of model calibration here, which is different from model fitting. The SRE
model is calibrated to be close to the SAR model of interest, and then, the computationally-efficient
SAR-calibrated SRE model is fitted. Importantly, the parameters that are fitted are those of the original,
interpretable SAR model. This enables SAR model parameters to be estimated for much larger datasets
than is currently possible.

It is easy to see that our SAR-calibrated SRE model can be adapted to obtain a CAR-calibrated
SRE model. In some sense, this represents the converse of the calibration undertaken by Rue
and Tjelmeland [48], who find the Gaussian–Markov random field (GMRF) that comes closest to a
geostatistical model; note that the CAR model is a GMRF and that the SRE model is a geostatistical
model.

Besides the advantages of the SAR-calibrated SRE model in producing parameter estimates, the r
spatial basis functions in S could be used to identify hidden, possibly overlapping, regions or classes of
areas. The associated random effects can be easily predicted, and hence, regions or classes having higher
or lower values of MWI could also be predicted. Moreover, as the covariance matrix K of the random
effects is not constrained to be diagonal, the SRE model captures additional dependence associated with
these classes.
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