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Abstract: The literature has been notably less definitive in distinguishing between finite 

sample studies of seasonal stationarity than in seasonal unit root tests. Although the use of 

seasonal stationarity and unit root tests is advised to determine correctly the most 

appropriate form of the trend in a seasonal time series, such a use is rarely noted in the 

relevant studies on this topic. Recently, the seasonal KPSS test, with a null hypothesis of 

no seasonal unit roots, and based on quarterly data, has been introduced in the literature. 

The asymptotic theory of the seasonal KPSS test depends on whether data have been 

filtered by a preliminary regression. More specifically, one may proceed to extracting 

deterministic components, such as the mean and trend, from the data before testing. In this 

paper, we examine the effects of de-trending on the properties of the seasonal KPSS test in 

finite samples. A sketch of the test’s limit theory is subsequently provided. Moreover, a 

Monte Carlo study is conducted to analyze the behavior of the test for a monthly time 

series. The focus on this time-frequency is significant because, as we mentioned above, it 

was introduced for quarterly data. Overall, the results indicated that the seasonal KPSS test 

preserved its good size and power properties. Furthermore, our results corroborate those 

reported elsewhere in the literature for conventional stationarity tests. These subsequent 

results assumed that the nonparametric corrections of residual variances may lead to better 

in-sample properties of the seasonal KPSS test. Next, the seasonal KPSS test is applied to a 

monthly series of the United States (US) consumer price index. We were able to identify a 

number of seasonal unit roots in this time series. 1 
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1. Introduction 

Kwiatkowski et al. (KPSS) [1] have proposed an LM test with a null hypothesis such that a series is 

level or trend stationary and these authors assigned the limit theory under the null. By the same token, 

these researchers have also analyzed the test’s asymptotic power under the difference stationarity 

alternative. At present, the KPSS test is widely used in empirical studies to examine trend stationarity. 

This test is used as a complement to the standard unit root tests in analyzing time series properties. In 

addition, the asymptotic distribution of the KPSS test depends on whether the data are filtered by a 

preliminary regression. Specifically, if a mean or linear trend is extracted, then the asymptotic 

distribution of the test statistic changes, and its critical values should be adequately adjusted. This 

approach to testing unit roots by reversing the null and alternative hypotheses encouraged several 

statisticians and econometricians to establish other generalizations. 

There have been several studies in favor of seasonal adjustment encountered in the literature; see, 

inter alia, [2–4]. To support this adjustment line of thinking, there are also several arguments. First, 

seasonal adjustment may provide better results in terms of forecasting. Second, seasonality can hide 

slight changes in trends; therefore, comparing between two economic series is more complicated. 

Nevertheless, the use of seasonally unadjusted data is currently on the rise. This finding can be 

interpreted, in large part, by the fact that inference distortion and detrimental information loss in 

dynamic models could result from seasonal adjustment. Moreover, several authors have demonstrated 

that the seasonal and cyclical components are linked, unlike the traditional statistical view, which 

states that the business and seasonal cycles are phenomena to be studied separately; see, inter alia, [5–7]. 

In this way, the systematic elimination of the seasonal component may generate questionable deductions. 

However, having decided not to eliminate this component, the following question can be immediately 

raised: What model should be given to seasonality? 

As an answer to the above question, the literature has considered three widely used approaches for 

modeling seasonality: Deterministic seasonal processes and stationary and non-stationary processes. 

Dickey, Hasza and Fuller [8] are among the first authors to introduce a seasonal unit root test through 

the generalization of the Dickey-Fuller unit root test for seasonal data. However, the test by  

Hylleberg et al. [9] is now the preeminent seasonal unit root test, with its asymptotic orthogonality 

being a key property, allowing for generalizations at any observational frequency. The subsequent 

rejection of their null hypothesis implies a strong result that the series exhibits a stationary seasonal 

pattern. It would be useful to note that the test by Hylleberg et al. [9] was originally introduced for 

quarterly data. For that reason, several authors have generalized this test to other observational 

frequencies. In this regard, one can quote the extension of Beaulieu and Miron [10] to monthly data. 

However, the test by Hylleberg et al. [9] is found to suffer from the problem of low power in moderate 

sample sizes. In agreement with what was found in the conventional case, Hylleberg [11] suggested the 

joint use of the seasonal unit root and stationarity tests. The treatment of the seasonal variable should 

be performed with caution. On the one hand, and as shown by Franses et al. [12], considering 
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seasonality as deterministic while the data actually exhibits seasonal unit roots may ultimately result in 

a spurious regression. Indeed, the corresponding coefficient of determination 2R  of a regression of a 

first-order differenced time series on seasonal dummy variables is not, in this case, a reliable measure 

of the amount of seasonal fluctuations that can be explained by a deterministic variation in the series. 

On the other hand, and as was mentioned by Demetrescu and Hassler [13], the result obtained by 

Franses et al. [12] may not lead to neglecting deterministic seasonality because it may capture primarily 

reality on occasion. 

The literature is relatively sparse in regards to seasonal stationarity tests. Canova and Hansen [14] 

and Caner [15] are among the first authors to develop tests in this category. The difference between the 

two tests lies in the correction of the error term when the standard assumptions do not apply. In other 

words, the first test used a non-parametric correction, as in the KPSS test, and the second used a 

parametric correction. Likewise, Lyhagen [16] proposed another version of the KPSS test in the 

seasonal context which resulted in a frequency-based test. In particular, Lyhagen [16] tested the null 

hypothesis of level stationarity against a single seasonal unit root. Thus, this test can be termed the 

seasonal KPSS test. 

Khédhiri and El Montasser [17] used a Monte Carlo method to demonstrate that the seasonal KPSS 

test is robust to the magnitude and number of additive outliers. Furthermore, the obtained statistical 

results cast an overall good performance of the finite-sample properties of the test. Khédhiri and  

El Montasser [18] have provided a representation of the seasonal KPSS test in the time domain and 

established its asymptotic theory. This representation enables the generalization of the test’s asymptotic 

theory when the basic equation incorporates other additional dynamics. However, Khédhiri and El 

Montasser [18], similar to Lyhagen [16], have taken into account only quarterly data. In their studies, 

the deterministic component is reduced to only seasonal dummy variables. The purpose of this paper is 

to overcome this limitation. To this end, other observational frequencies are considered in this study by 

examining monthly data. Similarly, the effect of the presence of a linear trend on the seasonal KPSS 

test in finite samples for quarterly and monthly data is considered. In addition, a sketch of the test’s 

asymptotic theory is provided in the presence of a linear trend. 

The paper is structured as follows. In Section 2, several preliminaries of the seasonal KPSS are 

introduced. In Section 3, a Monte Carlo simulation study is conducted to assess the finite sample 

properties of the test in terms of its size and power performance when including a linear trend in its 

basic equations. Moreover, the effect of the observational frequency on the test properties is considered 

in this study. To this end, monthly and quarterly data are studied together. Section 4 provides an 

application of the seasonal KPSS test. Section 5 presents the conclusions. 

2. Preliminaries on the Seasonal KPSS Test 

Let ty  be a time series observed quarterly. Because the goal is to test for the presence of a negative 

unit root, it would be suitable to use the appropriate filter to isolate the effects of other unit roots  
in the series. Therefore, the test will be applied to the transformed series: ,)1( 32)1(

tt yLLLy −+−=  

where L  is the lag operator. This transformation is obtained from the seasonal difference filter 
).1)(1()1)(1)(1(1 2224 LLLLLL +−=++−=−  

Next, one tests the unit root of −1 in the series 
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,,...,1,')1( Tturxy tttt =++= β  (1)

where NT 4=  and 
=

=
4

1

'

i
itit Daxβ  with the shorthand notation ])4/)1[(4,( −−= ttiDit δ  and also (.) 

denotes the largest integer function and ),( jiδ  is the Kronecker δ  function. 

The term tu  is a zero mean weakly dependent process with autocovariogram )( htth uuE +=γ  and a 

strictly positive long run variance 2
uω . 

The component tr  is drawn from the following process: 

ttt vrr +−= −1  (2)

where tv  is a zero mean weakly process with variance 2
vσ  and a long run variance 02 >vω . 

The transformation needed to run the seasonal KPSS test for complex unit roots i±  is given by the 
following variable, tt yLy )1( 2)2( −= . 

The test of such complex unit roots is based on the regression, 

tttt ecxy ++= λ')2(  (3)

where te  is a zero mean weakly dependent process with a long run variance 02 >eω  and 
=

=
4

1

'

i
itit Dbxλ . 

The component tc  is given by 

ttt cc ε+−= −2  (4)

where tε  is another zero mean weakly dependent process with variance 2
εσ  and a strictly positive long 

run variance 2
εω . 

Adding the deterministic terms in Equations (1) and (3) is highly important because it allows the 

seasonal KPSS test to include deterministic seasonality. The testing procedure is performed in two 

steps: First, the unit root of −1 is tested, and the complex roots subsequently are tested (their null 

hypothesis will be specified thereafter). 

The seasonal KPSS test is a Lagrange Multiplier-based test. Hence, the null hypothesis of a root that 

is equal to −1 is 0: 2
0 =vH σ . Under this null hypothesis, )1(

ty  is written as: 

,')1(
ttt uxy += β  (5)

where the series is trend stationary after seasonal mean correction. Under the alternative hypothesis 
,0: 2

1 >vH σ  )1(
ty  has a unit root corresponding to the Nyquist frequency. 

Let tu~  be the residual series obtained from a least squares regression applied to Equation (5), 

Tt ..., ,2 ,1= . Following Breitung and Franses [19] (Equation (18), p. 209), Busetti and Harvey [20] 

(Equation (8), p. 422) and Taylor [21] (Equation (38), p. 605), we replace the long-run variance 2
uω  

with an estimate of ( π2  times) the spectrum at the observed frequency to address unconditional 

heteroskedasticity and serial correlation. This nonparametric estimation of the long-run variance is a 

useful solution to the nuisance parameter problem [21]. Thus, for the Nyquist frequency, this 

nonparametric estimation is written as follows: 
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where the weight function 
1

1),(
+

−=
l

k
lkw  and l  is a lag truncation parameter such that ∞→l  as 

∞→T  and ).( 2/1nol =  A Bartlett kernel, following Newey and West [22], is chosen in line with 

Andrews [23], who has shown that such a truncation lag can produce good results in practice, as also 

shown in [1]. Similarly, the null hypothesis of the test regarding complex unit roots is given by 
0: 2

0 =εσH . Under this null hypothesis, )2(
ty  is written as follows: 

ttt exy += λ')2(  (7)

Using the residuals te~  obtained from the least squares regression of Equation (7), the Bartlett kernel 

estimator of 2
eω  can be computed as follows: 
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It follows that the test statistic for the unit root of −1 is given by: 
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This statistic may be written for the complex unit roots, as 
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where tS
~

 and tP
~

 are the conjugate numbers of tS
~

 and tP
~

, respectively. 

Khédhiri and El Montasser [18] have shown that under 0: 2
0 =vH σ , drrVd →

1

0

2)( )(π
πη  where 

)(rVπ  is a standard Brownian bridge, “ d→ ” denotes weak convergence in probability and ]1,0[∈r . 

However, for 0: 2
0 =εσH , the authors have shown that τττη ππ

π

dVV IR
d ])()([

2

1 2

2

1

0
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2

)
2

(
+→   where )(

2

τπ
RV

and )(
2

τπ
IV  are two independent standard Brownian bridges and ]1,0[∈τ . 

Remark 1: Asymptotically )(πη  has, in Harvey’s [24] terminology, the first level Cramer-von 

Mises distribution ( 1CvM ) under the null hypothesis while the limit theory of )2/(πη  was shown to be 

a function of a generalized Cramer-von Mises with two degrees of freedom. Specifically, the 

asymptotic theory of this statistic is as follows: ).2(
2

1
1

)
2

(
CvMd→

π

η  
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The reader can refer to Anderson and Darling [25] for a discussion of this type of distribution.  

The critical values of the seasonal KPSS test with seasonal dummies can be computed from Nyblom [26] 

or from Canova and Hansen [14]. These critical values are also shown in Table 1 of Khédhiri and  

El Montasser [18]. 

Table 1. Critical values of the seasonal KPSS test in the case of a first order polynomial trend. 

Unit roots 1% 5% 10% 

−1 2.787 1.656 1.196 
i±  1.9645 1.3120 1.031 

Note: The table is adapted with permission from Khédhiri and El Montasser [18], JMASM, Inc. © 2012. 

Remark 2: It can be shown that the seasonal frequency has no effect on the asymptotic distribution 
of test statistics. In other words, )(πη  may retain the same limit distribution as above and the statistic 

associated with the complex unit roots in question has the same limit distribution as 
)

2
(
π

η . Only the set 

of seasonal unit roots change, and it may not include the unit root that corresponds to the Nyquist 

frequency, i.e., when the periodicity is odd. 

Remark 3: Recall that if there is a time trend in the regression of the standard KPSS test, the partial 

sum of residuals from a first order polynomial regression weakly converges to a second level 
Brownian bridge, denoted as 2B , where, as in MacNeill [27], 





 −−+−= 

1

02 )()1(
2

1
)1(6)1()()( dssWWrrrWrWrB  (11)

with (.)W  being a standard Wiener process or a Brownian motion. 

Then, the test statistic follows the so-called second level Cramer von Mises distribution; see [24]. 

However, this result cannot be generalized to the seasonal KPSS test. More specifically, the statistic 
)(πη  follows the so called zero level Cramer von Mises, denoted as 0CvM ; see [24]. Specifically, 

.)(
1

0

2)( drrWd →πη  (12)

Meanwhile, when the deterministic component is represented by only a trend in Equation (3), it can 

be shown that 

).2(
2

1
0

)
2

(
CvMd→

π

η  (13)

The critical values of the seasonal KPSS test in this case can be obtained from Nyblom [26] (Table 1) 

and they are shown in Table 1. Even though only a constant is included in Equations (1) and (3), these 

critical values are still appropriate. Indeed, these findings show that the generalization of the 

asymptotic results of the standard KPSS test should not be performed in an automatic way, but rather, 

it is advisable to conduct careful analysis to establish equivalent results for the seasonal KPSS test. 
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3. The Monte Carlo Analysis 

To evaluate the size performance of the seasonal KPSS statistic in the presence of a first order linear 

trend, Monte Carlo simulation experiments are conducted with seasonal roots corresponding to 

quarterly processes. The data generating process (DGP) for the negative unit root is 

,,...,1,' Ttrxy ttt =+= β  (14a)

where ),1(' txt =  and the autoregressive process tr  is given by: 

.1 ttt vrr += −α  (14b)

The error terms tv  are normally distributed with zero mean and unit variance. 

The DGP for complex unit roots is given by 

,'
ttt cxy += λ ,,...,1 Tt =  (15a)

where λ'tx  only includes a first order linear trend and the process tc  is given by: 

.2 ttt cc εα += −  (15b)

tε  are normally distributed with zero mean and unit variance. 

The alternative values of the autoregressive coefficients are chosen so that  
∈ α { }8.0 ,2.0 ,0 ,2.0 ,8.0 ,1 −−−  and only the 5% nominal size is considered. The bandwidth  

values chosen in our experiments are given by: 00 =l , =4 l integer [ ]4/1)100/(4 T  and  

=12 l integer [ ]4/1)100/(12 T . 

This study totaled 20,000 replications and all the simulation experiments were carried out with 

Matlab programs. The corresponding results are summarized in Table 2. 

Table 2 reports similar findings obtained elsewhere in the literature. Indeed, the test’s size increases 

with decreasing values of α . Similarly, the sample size does not noticeably affect the test’s size, 
which means that the non-parametric corrections ) 4( l  and ) 12( l  have not been markedly taken up. 

To see the effect of observational frequency on the seasonal KPSS test in finite samples, monthly 

periodicity is considered. In this case, the deterministic component is represented by 12 seasonal 

dummy variables. Remember that seasonal unit roots are exhibited by the filter 

)...1()( 112 LLLLS ++++=  corresponding to the seasonal frequencies ,
12

2 i
i

π
λ =  .6,.....2,1=i  For 

size experiments, a particular value of the null hypothesis is considered so that an i.i.d. process is 
specified as a data generating process. For power experiments, the process tr , for seasonal frequencies 

other than the Nyquist one, is outlined by 

.5,...2,1,cos2 21 =+−= −− irrr tttit ελ
 (16)

However, when the process shows a unit root corresponding to the Nyquist frequency, tr  will be 

generated by 

ttt vrr +−= −1  (17)
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The considered sample sizes are T = 240 and T = 600, which display, respectively, numbers of 20 

and 50 years. Both values are met in Monte Carlo studies regarding seasonal unit root tests; see,  

inter alia, [8]. As mentioned above, the critical values of the test are obtained from Table 1 of Khédhiri 

and El Montasser [18] where the first line corresponds to the unit root −1 and the second to complex 

unit roots. 

Table 2. Rejection frequencies for the seasonal KPSS test with a first order polynomial 

trend for seasonal quarterly unit roots, significance level: 5% (size and power). 
)1(−η  )( i±η  

α  T 0l  4l  12l  0l  4l  12l  

−1 
80 0.9492 0.7218 0.2127 0.9774 0.9092 0.3863 

200 0.9936 0.8498 0.5981 0.9987 0.9734 0.8138 
500 0.9999 0.9563 0.7893 1 0.9984 0.9489 

−0.9 
80 0.7894 0.4153 0.1103 0.9123 0.7575 0.2929 

200 0.8398 0.5981 0.1481 0.9627 0.7694 0.3841 
500 0.8559 0.3595 0.1442 0.9770 0.7592 0.3701 

−0.2 
80 0.1146 0.0534 0.0210 0.1368 0.0786 0.0243 

200 0.1158 0.0577 0.0398 0.1461 0.0761 0.0403 
500 0.1156 0.0570 0.0454 0.1452 0.0752 0.0505 

0 
80 0.0514 0.0398 0.0176 0.0510 0.0398 0.0173 

200 0.0522 0.0473 0.0369 0.0479 0.0435 0.0331 
500 0.0503 0.0469 0.0423 0.0507 0.0488 0.0435 

0.2 
80 0.0181 0.0296 0.0145 0.0126 0.0204 0.0116 

200 0.0164 0.0382 0.0336 0.0100 0.0255 0.0264 
500 0.0157 0.0401 0.0401 0.0104 0.0313 0.0369 

0.9 
80 0.0000 0.0053 0.0026 0.0000 0.0019 0.0007 

200 0.0000 0.0006 0.0074 0.0000 0.0000 0.0007 
500 0.0000 0.0075 0.0127 0.0000 0.0000 0.0006 

In Table 3, all empirical rejection frequencies approach the theoretical significance level of 5%. 

Indeed, this result shows an excellent empirical size not subject to any distortion. Moreover, an 

increase in sample size mostly results in a slight decrease in size. Table 4 shows again that the seasonal 

KPSS test for monthly data preserves its good power properties. A reduction of power corresponding 

to the root of −1 and the function l12 is exceptionally notable but not surprising. Indeed, the value 

0.7744 that appears in the last box of the first column of Table 4 is very close to the values provided  

by [1] (Table 4) for the conventional unit root. This similarity is due to the mirror effect that occurs 

between the unit roots at frequencies of zero and π . 
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Table 3. The size of the seasonal KPSS test for monthly data, significance level: 5%. 

Statistics T = 240 T = 600 
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η  0.0457 0.0471 
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η  0.0590 0.0527 
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η  0.0546 0.0499 
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η  0.0473 0.0469 

)0(
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2
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π

η  0.0592 0.0522 

)4(
)

3

2
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π

η  0.0568 0.0505 

)12(
)

3

2
(

l
π

η  0.0471 0.0482 

)0(
)

6

5
(

l
π

η  0.0568 0.0515 

)4(
)

6

5
(

l
π

η  0.0529 0.0503 

)12(
)

6

5
(

l
π

η  0.0454 0.0474 

)0()( lπη  0.0583 0.0530 

)4()( lπη  0.0538 0.0500 

)12()( lπη  0.0444 0.0459 

Table 4. The power of the seasonal KPSS test for monthly data, significance level: 5%. 

Statistics T = 240 T = 600 
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π
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Table 4. Cont. 

Statistics T = 240 T = 600
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η  0.9515 0.9942 

)0(
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η  1 1 

)4(
)
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π

η  0.9982 1 

)12(
)

6
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(
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π

η  0.9450 0.9942 

)0()( lπη  1 1 

)4()( lπη  0.9648 0.9929 

)12()( lπη  0.7744 0.9194 

4. Application 

The seasonal KPSS test is applied to the monthly US consumer price index (CPI). This series 

covers the period from January 1913 to December 2014 and was taken from the Federal Reserve Bank of 

St. Louis website [28]. The CPI shows a rising trend (see Figure 1). This CPI series is chosen because its 

seasonality is recognized in the literature. In particular, Riley [29] discussed some aspects of seasonality in 

the CPI. There is a variety of influences causing seasonality of consumer prices. Climatic factors are 

the most noteworthy, but by no means are they the only causes of periodic variations in prices. Indeed, 

conventions explain such variations. There are as of yet two attitudes towards seasonal variable 

treatment in consumer prices and, more generally, in time series. The first one considers seasonality as 

a serious problem for the compilation of a CPI, occurring when some of the products in the basket 

regularly disappear and reappear, thereby breaking the continuity of the price series from which the 

CPI is constructed. However, the second one admits that seasonality is not to be eliminated to better 

understand the series variations; see, inter alia, [30] who has studied the stochastic seasonality of the 

CPI of Turkey. 
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Figure 1. The CPI of the United States. 

To test the seasonal stationarity against the presence of a seasonal unit root, it would be  

convenient to filter the series with a suitable filter that insulates the effects of other unit roots. For 

example, when testing the unit root at the Nyquist frequency, the series is filtered with 
1110987654321)( LLLLLLLLLLLLF −+−+−+−+−+−= . However, when the aim is to test  

for the unit root at the harmonic frequency 6/π , the used filter is 
)1)6/5cos(2)(1)3/2cos(2)(1)(1)3/cos(2)(1()( 22222 +−+−++−−= LLLLLLLLLG πππ . All filters 

used to transform the data before testing contain the first difference filter so that all the obtained series 

are detrended and the trend movements in the CPI’s original series do not manifest themselves, as 

shown in Figures 2–7. It is for this reason that the seasonal KPSS test is applied to these transformed 

series by considering only seasonal dummy variables, i.e., trend deterministic components are not 

considered in the testing phase. For presentation purposes, the sample period is from January 1914 to 

December 2014 for all transformed series. 

 

Figure 2. The filtered series used in testing for the unit root at the 6/π  frequency. 
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Figure 3. The filtered series used in testing for the unit root at the 3/π  frequency. 

 

Figure 4. The filtered series used in testing for the unit root at the 2/π  frequency. 

 

Figure 5. The filtered series used in testing for the unit root at the 3/2π  frequency. 
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Figure 6. The filtered series used in testing for the unit root at the 6/5π  frequency. 

 

Figure 7. The filtered series used in testing for the unit root at the Nyquist frequency. 

Before testing for seasonal stationarity, it would be informative to test for a conventional  

unit root. In this case, the series is filtered with the following filter: 
1110987654321)( LLLLLLLLLLLLS +++++++++++=  to isolate the effects of seasonal unit 

roots. Thus, the conventional KPSS test is used, concluding that a unit root is present in the CPI.  

The results are not reported here and can be obtained from the author upon request. 

Table 5 summarizes the seasonal KPSS test results for testing unit roots corresponding to the 

seasonal frequencies associated with monthly data. 

The main conclusion to be drawn from Table 5 is that only the unit roots at frequencies 3/2π  and 

6/5π  are not present, while there is good evidence that the other unit roots were accepted. In 

particular, the seasonal KPSS test concludes with the presence of the unit roots at the seasonal 

frequencies 6/π , 3/π  and 2/π , revealing that, respectively, one, two and three cycles were 

accomplished each year. The unit root at the Nyquist frequency is also present, indicating that six 

cycles were accomplished per year. Our results are quite similar to those of Coşar [30], who found 

evidence of seasonal unit roots in the monthly series of the Turkish CPI. 
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Table 5. The seasonal KPSS statistics corresponding to different units roots at seasonal 

frequencies in the monthly US CPI series. 

Statistics 0l  4l  12l  

)
6

(
π

η  2.6809 *** 1.3040 *** 1.5158 *** 

)
3

(
π

η  2.6796 *** 2.9727 *** 2.2646 *** 

)
2

(
π

η  1.2177 *** 2.5996 *** 1.6669 *** 

)
3

2
(

π

η  0.1259 0.2448 0.2013 

)
6

5
(

π

η  0.0004 0.0047 0.0109 

)(πη  0.7023 ** 1.6765 *** 1.0650 *** 

The 1%, 5% and 10% critical values associated with testing for the unit root at the Nyquist frequency  

are respectively: 0.743, 0.461 and 0.347; however, when testing for complex unit roots these critical values 

are: 0.537, 0.374 and 0.3035; **: Indicates the null hypothesis rejection at the 5% and 10% levels while  

***: indicates the null hypothesis rejection at the 1%, 5% and 10% levels. 

5. Conclusions 

As noted by Hylleberg [11], the most important reserve against the use of seasonal unit root tests 

was that the null hypothesis of a unit root at seasonal frequencies is problematic. This finding is 

observed because a seasonal unit root allows more variation in the seasonal pattern that is actually 

observed. Therefore, if the data generating process (DGP) is a seasonal unit-root- process, then “winter 

may become summer”. Another limitation in line with the first one is manifested by the fact that the 

test by Hylleberg et al. [9], similar to the Dickey-Fuller test, has low power against reasonable 

alternatives. More specifically, the power of these tests is quite poor when the parameter of interest is in 

the neighborhood of unity; see [31]. Similarly, the existence of moving average terms with roots close to 

the unit circle implies that the power is almost equal to the size; see [11]. Although there are a number 

of recommendations to handle such situations, interest has focused on the construction of tests with 

better properties than the existing tests, either against similar or different alternatives or for different 

established assumptions. Accordingly, one may refer to the tests of Canova and Hansen [14] and  

Lyhagen [16], who adopted a notably similar framework. In this paper, we studied the finite sample 

properties of the second one in the presence of a linear trend and considered a monthly periodicity. The 

effect of changing observational frequencies should be studied because this test was established for 

quarterly data. This Monte Carlo study indicates that the seasonal KPSS test preserves good size and 

power properties, both for including a linear trend and considering monthly time series. Moreover, this 

test’s empirical rejection frequencies often approximate nominal sizes when using the nonparametric 

corrections of the residual variances. Furthermore, the seasonal KPSS test was applied to the US CPI 

series. According to the test results, there is evidence of nonstationary stochastic seasonality in the 

studied series. 
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The extension of the seasonal KPSS to a vector of time series is a future research avenue. In that 

framework, we can examine whether a set of data exhibits a common deterministic seasonality. This 

extension would be similar to what Nyblom and Harvey [32] made to the KPSS test. 
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