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1. Introduction

Over the last two decades, improved access to high-frequency data has offered a magnifying glass to
study financial markets. Analysis of these data poses unprecedented challenges to econometric modeling
and statistical analysis. As for traditional financial time series (e.g., daily closing prices), the most critical
variable at higher frequencies is arguably the asset return: from the pricing of derivatives to portfolio
allocation and risk management, it is a cornerstone for academic research and practical applications.
Because its properties are of such importance, the literature has sought models consistent with the new
observed features of the data.

Among all characteristics of the asset return, empirical studies have found that its second moment
structure is preponderant, partly because of its influence on assessments of market risk. Therefore, its
time-varying nature has received a lot of attention in the literature (see, e.g., [1]). However, common
heteroskedastic models have not addressed an empirical regularity of intraday data: the seasonality. It is
now well-documented that patterns due to the cyclical nature of market activity are one of the main
sources of misspecification for typical volatility models (see, e.g., [2–4]).

Some periodicity in the volatility is inevitable due to market openings and closings around the world,
but it is unaccounted for in the vast majority of econometrics models [5,6]. To avoid misspecification
bias, one possibility is to explicitly incorporate the seasonality in traditional models, for instance with
the periodic-GARCH of [7]. Alternatively, a pre-filtering step combined with a non-periodic model can
be used as in [3,4,8–10]. Even though an explicit inclusion of seasonality is advocated as more efficient
(see [7]), the resulting models are less flexible and computationally more expensive. Although they may
potentially propagate errors, two-step procedures are more convenient and often consistent whenever
each step is consistent (see [11]).

As a result, seasonality pre-filtering has received a considerable amount of attention in the literature
dedicated to high-frequency financial time series. In this context, an attractive approach is to generalize
the removal of weekends and holidays from daily data and use the “business clock” (see [5]), a new time
scale where time passes more quickly when the market is inactive and conversely during “power hours”,
at the cost of synchronicity between assets. The other approach, which allows researchers to work in
physical time (removing only closed market periods), is to model the periodic patterns directly, either
non-parametrically with estimators of scale (e.g., in [8,10,12]) or using smoothing methods (e.g., splines
in [13]) or parametrically with the Fourier flexible form (see [14]), introduced by [3,4] in the context of
intraday volatility in financial markets.

Until now, the standard assumption in the literature have been to consider a constant seasonality over
the sample period. However, this assumption has seldom been verified empirically, and few studies
have acknowledged this issue. In [15], the authors use frequency leakage as evidence in favor of a
slowly varying seasonality. In [16], it is observed that smaller sample periods yield improved seasonality
estimators. In this paper, we argue that the constant assumption can only hold for arbitrary small sample
periods, because the entire shape of the market (and its periodic patterns) evolves over time. In contrast
to seasonal adjustments considered in the literature, we relax the assumption of constant seasonality.
In [17], the authors used a related approach to model the amplitude of the fundamental daily component
as stochastic and the remainder cyclical components as deterministic.
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In this paper, all the cyclical components are assumed to vary smoothly with time. From
a time-frequency decomposition of the data, we suggest a non-parametric framework to obtain
instantaneous estimates of trend and seasonality, respectively from the lowest and highest frequencies.
Our non-parametric framework is comparable to a dynamic combination of realized volatility or bipower
variation and Fourier flexible form. The instantaneous trend and seasonality can be estimated using
rolling moving averages (for the realized-volatility or bipower variation part) or rolling regressions (for
the Fourier flexible form part). Our model differs in several aspects. First, in a single step it disentangles
the trend from the seasonality. Second, it yields naturally smooth pointwise estimates. Third, it is
data-adaptive in the sense that there are fewer parameters to fine tune. Fourth, the trend estimate is
more robust to jumps in the log-price than traditional realized measures such as the realized volatility or
bipower variation.

There is a major reason why dynamic seasonality models are important when modeling intraday
returns, which should be of interest to practitioners and academics alike: non-dynamic models may
lead to severe underestimation or overestimation of intraday spot volatility. Hence, there are possible
implications whenever seasonality pre-filtering is used as an intermediate step. From a risk management
viewpoint, intraday measures such as Value-at-Risk and Expected-Shortfall under the assumption of
constant seasonality may suffer from inappropriate high-quantile estimation. In other words, the
assumption may lead to alternate periods of underestimated (respectively overestimated) risk when the
seasonality is higher (respectively lower) than suggested by a constant model. In the context of jump
detection, the assumption may induce an underestimation of the number and size of jumps when the
seasonality is higher, and overestimation when the seasonality is lower.

The rest of the paper is organized as follows. In Section 2, we describe our model for the intraday
return, from a continuous-time perspective to the discretized process. To relax the constant seasonality
assumption, we define a class of seasonality models which includes the Fourier flexible form as a special
case. In Section 2.4, we provide a detailed exposition of a method to study the class of models defined
in Section 2. We start by recalling the link between the Fourier flexible form and the Fourier transform.
We then sketch the theoretical basics of time-frequency analysis, which was introduced to overcome
this limitation (see [18,19]). Finally, we introduce the synchrosqueezing transform to study the class of
models defined in Section 2, and we provide associated estimators of instantaneous trend and seasonality.
In Section 3, we conduct simulations to study the properties of the estimators from Section 2.4. We show
that they are robust to various heteroskedasticity and jumps specifications. In Section 4, we estimate the
model using four years of high-frequency data on the CHF/USD, EUR/USD, GBP/USD, and JPY/USD
exchange rates. To obtain confidence intervals for the estimated trend and seasonality, we develop
tailor-made resampling procedures. We conclude in Section 5.

2. Intraday Seasonality Dynamics

On a generic filtered probability space, suppose that the log-price of the asset, denoted as p(t), is
determined by the continuous-time jump diffusion process

dp(t) = µ(t)dt+ σ(t)dW (t) + q(t)dI(t), (1)
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where µ(t) is a continuous and locally bounded variation process, σ(t) > 0 is the stochastic volatility
with càdlàg sample paths, W (t) is a standard Brownian motion, and I(t) is a finite activity-counting
process with jump size q(t) = p(t) − p(t−) independent from W (t). Although typical continuous-time
models may display realistic features of asset price behavior at a daily frequency, seasonality is invariably
missing. In contrast, the econometric literature on high-frequency data often decomposes the spot
volatility into three separate components: the first being slowly time varying, the second periodic, and
the third purely stochastic (see, e.g., [3,8,10]). As such, we may consider a continuous-time model where
the volatility satisfies

σ(t) = eT (t)+s(t)h(t), (2)

with T (t) slowly varying, s(t) quickly time-varying and periodic and h(t) the intraday stochastic
volatility (e.g., a square-root process [20,21]). In other words, we decompose the volatility into three
components: T (t) is the trend, s(t) the seasonality, and h(t) is the intraday stochastic component.

Although trading occurs in continuous time, the price process is only collected at discrete points in
time. Ignoring the drift term, Equations (1) and (2) suggest a natural discrete-time model for the return
process as

rn = eTn+snhnwn + qnIn, (3)

where n = t/τ with τ as the sampling interval, and

• Tn and sn representing the trend and seasonality in the volatility,
• hn the intraday volatility component,
• wn the white noise,
• and qnIn the discretized finite activity counting process.

Note that this discretized multiplicative construction for the volatility was introduced by [3] and
frequently used afterward (see, e.g., [10,15,17]). The jumps part was later added by [8].

In Sections 2.1 and 2.2, we describe flexible continuous-time versions of the seasonality s(t) and trend
T (t). Our aim is to make the model as flexible and adaptive as possible while keeping the mathematical
tractability required to analyze and estimate it. For the seasonality, we use a class of functions that
generalizes the “standard" model in the literature, namely the Fourier flexible form (see [3,14]). In this
spirit, a sum of periodic components displaying amplitude and frequency modulations is arguably the
most intuitive idea. For the trend, we suggest a class of functions that is slowly time-varying in order to
describe the behavior of the volatility at larger timescales. Since our specification includes polynomials
and harmonic functions of very low frequency, it is appropriate to describe long-term trends and cycles.
In Section 2.3, we put all the pieces back together in an adaptive volatility model, in which seasonality
and trend are discretely sampled from the continuous-time versions. In Section 2.4, we describe the tools
aimed at studying and estimating this new class of models.
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2.1. The Adaptive Seasonality Model

The seasonal behavior inside a time series can be described by repeating oscillations as time passes.
Due to complicated underlying dynamics, this oscillatory behavior might change from time to time.
Intuitively, to capture this effect, we consider the adaptive seasonality model

s(t) =
K∑
k=1

ak(t) cos {2πkφ(t) + ξk} , (4)

where K ∈ N, ak(t) > 0, φ′(t) > 0, φ(0) = 0 and ξk ∈ R. The function ak(t) is called the amplitude
modulation, φ(t) the phase function, ξk the phase shift, and φ′(t) the instantaneous frequency.

When the phase function is linear (ωt with ω > 0) and amplitude modulations are constant
(ak > 0 ∀k), then the model reduces to the Fourier flexible form (see [14]). When the phase function
is nonlinear, the instantaneous frequency generalizes the concept of frequency, capturing the number of
oscillations that one observes during an infinitesimal time period. The amplitude modulation represents
the instantaneous magnitude of the oscillation.

Although those time-varying quantities allow us to capture momentary behavior, there is in general
no unique representation for an arbitrary s satisfying (4), even if K = 1. Indeed, there are an infinity of
smooth pairs of functions α(t) and β(t) so that cos(t) = {1 + α(t)} cos {t+ β(t)}, 1 + α(t) > 0 and
1 + β′(t) > 0. This is known as the identifiability problem studied in [22]. To resolve this issue, it is
necessary to restrict the functional class. Accordingly, we borrow the following definition from [22]:

Definition 1 (Intrinsic mode function class Ac1,c2ε ). For fixed choices of 0 < ε � 1 and ε � c1 < c2 <

∞, the space Ac1,c2ε of intrinsic mode functions consists of functions f : R → R, f ∈ C1(R) ∩ L∞(R)

having the form

f(t) = a(t) cos {2πφ(t)} , (5)

where a : R→ R and φ : R→ R satisfy the following conditions for all t ∈ R:

a ∈ C1(R) ∩ L∞(R), inf
t∈R

a(t) > c1, sup
t∈R

a(t) < c2, (6)

φ ∈ C2(R), inf
t∈R

φ′(t) > c1, sup
t∈R

φ′(t) < c2, (7)

|a′(t)| ≤ ε |φ′(t)|, |φ′′(t)| ≤ ε |φ′(t)|. (8)

An intrinsic mode function mainly satisfying two requirements. First, the amplitude modulation
and instantaneous frequency are continuously differentiable and bounded from above and below.
Second, the rate of variation of both the amplitude modulation, and instantaneous frequency are
small compared to the instantaneous frequency itself. With the extra conditions on the intrinsic
mode function, the identifiability issue can be resolved in the following way ([22], Theorem 2.1).
Suppose f(t) = a1(t) cos {2πφ1(t)} ∈ Ac1,c2ε can be represented in a different form, for instance
f(t) = a2(t) cos {2πφ2(t)}, which also satisfies the conditions of Ac1,c2ε . Define α(t) = φ1(t) − φ2(t)

and β(t) = a1(t) − a2(t), then α ∈ C2(R), β ∈ C1(R) and |α′(t)| ≤ Cε, |α(t)| ≤ Cε and |β(t)| < Cε

for all t ∈ R for a constant C depending only on c1. If a member of Ac1,c2ε can be represented in
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two different forms, then the differences in phase function, amplitude modulation and instantaneous
frequency between the two forms are controllable by the small model constant ε. In this sense, we are
able to define the amplitude modulation and instantaneous frequency rigorously.

Because these conditions exclude jumps in amplitude modulation and instantaneous frequency, we
make the working assumption that the seasonality component of the market evolves slowly over time.
As such, we do not try to model abrupt changes. The usual tests for structural breaks are aimed at
detecting if and where a break occurs, and they are not the modeling target of the class Ac1,c2ε . To assess
the validity of this class when modeling financial data, we assume that the seasonality belongs to the
Ac1,c2ε class and resort to confidence interval estimation.

The model from Equation (4) comprises more than one oscillatory components so further conditions
are necessary to resolve the identifiability problem.

Definition 2 (Adaptive seasonality model Cc1,c2ε ). The space Cc1,c2ε of superpositions of intrinsic mode
functions consists of functions f having the form

f(t) =
K∑
k=1

fk(t) and fk(t) = ak(t) cos {2πkφ(t) + ξk} (9)

for some finite K > 0 such that for each k = 1, . . . , K,

ξk ∈ R, ak(t) cos {2πkφ(t) + ξk} ∈ Ac1,c2ε and φ(0) = 0. (10)

Functions in the class Cc1,c2ε are composed of more than one intrinsic mode function satisfying the
condition (10). An identifiability theorem similar to the one for Ac1,c2ε can be proved similarly as
that in ([22], Theorem 2.2): if a member of Cc1,c2ε can be represented in two different forms, then
the two forms have the same number of intrinsic mode functions, and the differences in their phase
function, amplitude modulation, and frequency modulations for each intrinsic mode function are small.
To summarize, with the Cc1,c2ε model and its identifiability theorem, the amplitude modulation and
instantaneous frequency are well-defined up to an uncertainty of order ε.

A popular member of Cc1,c2ε is the Fourier flexible form (see [14]), introduced by [3,4] in the context
of intraday seasonality. Using a Fourier series to decompose any periodic function into simple oscillating
building blocks, a simplified 1 version of the Fourier flexible form reads

s(t) =
K∑
k=1

[ak cos (2πkt) + bk sin (2πkt)] , (11)

where the sum of sines and cosines with integer frequencies captures the intraday patterns in the
volatility. Thus, we can view s(t) in (11) as a member of Cc1,c2ε with φ(t) = t, ξk = arctan(ak/bk)

and ak(t) =
√
a2
k + b2

k for k = 1, . . . , K, that is with a fixed daily oscillation.

1 [3,4] consider the addition of dummy variables to capture weekday effects or particular events such as holidays in
particular markets, in addition to unemployment reports, retail sales figures, etc. While the periodic model captures
most of the seasonal patterns, their dummy variables allow the quantification of the relative importance of calendar effects
and announcement events.
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2.2. The Adaptive Trend Model

For the remainder of this paper, we use Fy(ω) =
∫∞
−∞ y(t)e−i2πωtdt and Py(ω) = |Fy(ω)|2 for the

Fourier transform and power spectrum of a weakly stationary process y.
We fix a Schwartz function ψ so that suppFψ ⊂ [1−∆, 1 + ∆], where 0 < ∆ < 1 and Fψ denotes its

Fourier transform.

Definition 3 (Adaptive trend model T c1ε ). For fixed choices of 0 < ε � 1 and ε � c1 < ∞, the space
T c1ε consists of functions T : R→ R, T ∈ C1(R) so that FT exists in the distribution sense, and∣∣∣∣∫ T (t)

1√
a
ψ

(
t− b
a

)
dt
∣∣∣∣ ≤ CT ε and

∣∣∣∣∫ T ′(t)
1√
a
ψ

(
t− b
a

)
dt
∣∣∣∣ ≤ CT ε (12)

for all b ∈ R and a ∈
(

0, 1+∆
c1

]
, for some CT ≥ 0.

Because we ideally want a trend to be slowly time-varying, the intuition behind (12) act as a bound
on how fast a function oscillates locally. A special case satisfying (12) is a continuous function T for
which its Fourier transform FT exists and is compactly supported in

(
− 1−∆

1+∆
c1,

1−∆
1+∆

c1

)
.

There are two well-known examples of such trend functions: the first is the polynomial function
T (t) =

∑L
l=1 αlt

l, where αl ∈ R, which is commonly applied to model trends. By a direct calculation,
its Fourier transform is supported at zero. The second is a harmonic function T (t) = cos(2πωt) with
very low-frequency (i.e., with |ω| < 1−∆

1+∆
c1), as its Fourier transform is supported at ±ω.

More generally, using the Plancheral theorem, one can verify that suppFT ⊂
(
− 1−∆

1+∆
c1,

1−∆
1+∆

c1

)
implies

∫
T (t) 1√

a
ψ( t−b

a
)(t)dt = 0 for all a ∈ (0, 1+∆

c1
] and all b ∈ R. In our case, however, the trend is

non-parametric by assumption, and its Fourier transform might in all generality be supported everywhere
in the Fourier domain. If this is so, then (12) describes a trend that essentially captures the slowly varying
features of those models (i.e., its local behavior is similar to that of a polynomial or a very low frequency
periodic function) but is more general.

2.3. The Adaptive Volatility Model

Let the return process be as in (3). We define the log-volatility process as

yn = log |rn| .

We assume that the log-volatility process follows an adaptive volatility model, that is

yn = Tn + sn + zn, (13)

where

• sn, discretely sampled from s(t) ∈ Cc1,c2ε , is the volatility seasonality,
• Tn, discretely sampled from T (t) ∈ T c1ε , is the volatility trend,
• and zn = log

∣∣hnwn + qnIne
−(Tn+sn)

∣∣ is an additive noise process that satisfies E(zn) < ∞
and var(zn) <∞.
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It should be noted that the boundedness of the mean and variance for the noise is a mild condition for
reasonable econometric models (see the two remarks below).

Remark 1. First assume that there are neither jumps (In = 0) nor intraday heteroskedasticity (hn = 1),
and that wn follows a standardized generalized error distribution, wn ∼ GED(ν), with density given by

fν(w) =
ν

21+1/νΓ(1/ν)λν
e−
|w/λν |ν

2 ,

where λν =
{

2−2/νΓ(1/ν)/Γ(3/ν)
}1/2

and Γ is the gamma function. As noted in [23], the generalized
error distribution nests the normal distribution when ν = 2, has fatter (thinner) tails when ν < 2 (ν > 2)
and is log-concave for ν > 1. Because E (logw2

n) = {2ψ(1/ν)/ν + log Γ(1/ν)− log Γ(3ν)} and
var (logw2

n) = (2/ν)2Ψ(1/ν) (see [23]) with ψ and Ψ as the digamma and trigamma functions (i.e., the
first and second derivatives of log Γ), then E(zn) < E (logw2

n) < ∞ and var(zn) < var (logw2
n) < ∞

when ν > 0.

Remark 2. To introduce intraday heteroskedasticity (still without jumps), it is convenient to use the
EGARCH(1,1) of [24]. Defining vn = log |hn|, the model is obtained by writing

vn = γ + βvn−1 + θwn−1 + α (|wn−1| − E |wn−1|) ,

where γ, β, θ, α ∈ R and |β| < 1. For this model, it is straightforward that

var
(
log h2

nw
2
n

)
=
θ2 + α2var (|wn|)

1− β2
+ var

(
logw2

n

)
.

Because var |wn| <∞ for the generalized error distribution (see [23]), var(zn) <∞ follows. For other
heteroskedasticity models, note that

E
{

(log |hnwn|)2} ≤ [√E
{

(log |wn|)2}+
√
E
{

(log |hn|)2}]2

by Cauchy-Schwartz inequality. Hence, if both E
{

(log |wn|)2} and E
{

(log |hn|)2} are bounded, then
var(zn) < ∞ follows. When jumps are added to the model, it is in general not possible to obtain a
closed formula for E(zn) and var(zn). However, the boundedness of the mean and variance is strongly
supported by our simulations for cases of practical interest.

Within this framework, every specific choice of trend T , seasonality s, and noise z yields a
different model. Due to their non-parametric nature, estimating T , s, or the amplitude modulation and
instantaneous frequency inside s is non-trivial. In practice, the problem would be much easier in the
Fourier flexible form case, that is, in the case of a constant seasonal pattern. However, this assumption
is challenged by empirical evidence. Laakkonnen [16] observes that a Fourier flexible form that is
estimated yearly, then quarterly, and finally weekly performs better and better at capturing periodicities
in the data. Although this sub-sampling is interpretable as a varying seasonality, it is still piecewise
constant. As a piecewise constant function implies that the system under study undergoes structural
changes (i.e., shocks) at every break point, it is an unlikely candidate for the market’s seasonality. We
take the perspective of [15], who use frequency leakage in the power spectrum of the absolute return to
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argue that the seasonality is not (piecewise) constant but slowly varying. Although they allow non-integer
frequencies, their generalized Fourier flexible form parameters are still constant for the whole sample. In
other words, they correct for frequency leakage, but do not allow for potential slowly varying frequencies
and amplitude modulations (i.e., time-varying Fourier flexible form parameters). Dynamic alternatives
include either arbitrary small intervals or a rolling version of their “generalized Fourier flexible form”.
In the first case, an arbitrarily increase in the estimator’s variance (as in the issue of testing for a general
smooth member ofAc1,c2ε ) is expected. In the second case, which we compare to our method in Section 4,
it is not clear how one would choose the optimal window size.

2.4. Inference

In this section, we study the time-frequency properties of the log-volatility process using the
synchrosqueezing transform, which allows us to obtain accurate pointwise estimates of T ∈ T c1ε and
s ∈ Ac1,c2ε ([22,25]).

For the volatility time series, the goal is to estimate the first-order moment and the second moment
from a realization of yn. The main difficulty in doing so relates to non-stationarity in the sense of
non-zero expectation and to the structured pattern inside the expectation. The time-varying frequency
and amplitude in the expectation render traditional periodogram and Fourier transform techniques
unsuitable; the Heisenberg uncertainty principle, in contrast, limits the amount of information we
can extract from linear time-frequency analysis techniques like the short-time Fourier transform or
continuous wavelet transform. synchrosqueezing transform is a nonlinear time-frequency analysis
technique originally introduced in the context of audio signal analysis in [26]. It corrects the Heisenberg
uncertainty principle by reallocating the coefficients determined by a linear time-frequency analysis
technique, according to a predetermined rule. As a result, an increased resolution in the time-frequency
plane allows us to accurately extract the trend, the instantaneous frequencies, and the amplitude
modulations. The synchrosqueezing flexible form theoretical properties are reported in [22], where it
is shown that the synchrosqueezing transform allows us to determine T (t), ak(t), and φ′(t) uniquely and
up to a certain pre-assigned accuracy.

To obtain the synchrosqueezing transform of a given time series, we need two preparatory steps. We
denote the discretely sampled time series by y = {yn}n∈Z, where yn = y(nτ) and τ > 0 is the sampling
interval. First, consider the discretized continuous wavelet transform of yn defined by

Wy(nτ, a) = τ
∑
m∈Z

ym
a1/2

ψ
(mτ − nτ

a

)
.

where a > 0and n ∈ Z. We call a the wavelet’s scale and ψ the mother wavelet, which is smooth
enough and such that

∫
ψ(t)dt = 0 and suppFψ ⊂ [1−∆, 1 + ∆], where ∆ � 1. Second, to extract

information about the instantaneous frequency φ′(t), [22] suggests the estimator

ωy(nτ, a) =


−i∂tWy(nτ, a)

2πWy(nτ, a)
when |Wy(nτ, a)| 6= 0;

−∞ when |Wy(nτ, a)| = 0,
(14)
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where ∂tWy(nτ, a) is defined as

∂tWy(nτ, a) = τ
∑
m∈Z

ym
a3/2

ψ
′(mτ − nτ

a

)
,

where ψ′ is the derivative of ψ. With the above two steps, we obtain the synchrosqueezing transform by

Sy(nτ, ω) =

∫
a: |Wy(nτ,a)|≥Γ

δ {|ωy(nτ, a)− ω|}Wy(nτ, a)a−3/2da. (15)

where Γ > 0 is the threshold chosen by the user, ω > 0 is the frequency, and ωy is defined in (14). We
call Sy(nτ, ω) the time-frequency representation of the time series y. Keeping in mind that the frequency
is reciprocally related to the scale, then (15) can be understood as follows: based on the IF information
ωy, at each time nτ , we collect the continuous wavelet transform coefficients at scale a where a seasonal
component with a frequency close to ω is detected.

Using any curve extraction technique, we can then extract this instantaneous frequency information
from Sy(t, ω), and we denote this quantity as φ̂′. It can be shown that the restriction of Sy to a narrow
band around kφ̂′(nτ) suffices to obtain an estimator of the k-th (complex) component of s(t) as

f̂C
k (nτ) =

1

Rψ

∫
|kφ̂′(nτ)−ω|≤∆

Sy(nτ, ω)dω, (16)

whereRψ =
∫ Fψ(ω)

ω
dω. Then the corresponding estimator of the k-th (real) component fk and amplitude

modulations at time nτ are defined as

f̂k(nτ) = <
{
f̂C
k (nτ)

}
and âk(nτ) =

∣∣∣f̂C
k (nτ)

∣∣∣ , (17)

where <(z) denotes the real part of z ∈ C. Finally, the restriction of Sy under a low-frequency threshold
ωl suffices to obtain an estimator of the trend of y as

T̂ (nτ) = <
{

1

Rψ

∫ ωl

0

Sy(nτ, ω)dω
}

= yn −<
{

1

Rψ

∫ ∞
ωl

Sy(nτ, ω)dω
}
. (18)

Using the assumptions of the adaptive volatility model, the accuracy of the above estimators was
demonstrated to handle the discretization under the additional technical conditions on the second
derivatives of the amplitude modulations and trends 2 ([22], Theorem 3.2). To be more precise, if the
sampling interval τ satisfies 0 < τ ≤ 1−∆

(1+∆)c2
, then with high probability, depending on the noise level,

f̂k, φ̂′ and âk (respectively T̂ ) are accurate up to constants of order O(ε) and decreasing with τ . We refer
the reader to [22] for the precise statement of the theorem and more discussions.

2 ak(t) ∈ C2(R) and supt∈R |a′′k(t)| ≤ εc2 for all k = 1, . . . ,K, and T ∈ C2(R) so that
∣∣∣∫ T ′′(t) 1√

a
ψ
(
t−b
a

)
dt
∣∣∣ ≤ CT ε

for all b ∈ R and a ∈ (0, 1+∆
c1

]
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3. Simulation Study

In this section, we present simulations that use a realistic setting. To study the properties of the
estimators from Section 2.4, we directly sample 150 days of data 1000 times (i.e., 288 · 150 = 43, 200

observations) from the adaptive volatility model from Equation (13), that is

yn = Tn + sn + zn,

where Tn and sn are deterministic functions and

zn = log
∣∣hnwn + qnIne

−(Tn+sn)
∣∣

with hn, wn, and qnIn as described in Section 2. Using the EUR/USD sample (see Section 4, for
more details), we collect the first 150 days of extracted trend and seasonality, the latter either with
constant amplitude (estimated with the Fourier flexible form) or with amplitude modulations (estimated
with the synchrosqueezing form). We use the exponential of the estimated residuals (see Section 4) to
obtain realistic parameters to simulate hnwn from either a generalized error distribution GED(ν) (with
hn = 1), an EGARCH(1,1) or a GARCH(1,1). Finally, for the sake of simplicity, we assume that the
two components of the jump process are

• qn = eTn+snjn, where jn ∼ N(0, σj) with σj ∈ {4σw, 10σw}, and with σw the standard deviation
of the estimated i.i.d. GED(ν),
• and In ∼ B(1, λ) data) with λ ∈ {1/288, 1/1440}, that is, one jump per day or week on average.

The assumption of proportionality to eTn+sn does not affect the following results.
Figure 1 shows the results of a preliminary simulation study for both the trend and seasonality with

amplitude modulations when the noise is GED or GARCH with or without jumps, and where the scenario
with jumps is the most extreme (i.e., σj = 10σw and λ = 1/288). A striking feature of the two panels is
that there is basically no visible difference between the four kinds of noise considered 3.

To compare the results quantitatively, we use two criteria, namely the average integrated squared error
and absolute error (AISE and AIAE), defined as

AISE = Ê
[∫ 150

0

{x̂(t)− x(t)}2 dt

]
and AIAE = Ê

{∫ 150

0

| x̂(t)− x(t) | dt
}
,

where the expectation is applied to all simulations for each component x ∈ {T, s}. The results presented
in Table 1 can be summarized as follows:

• As observed in Figure 1, the jumps do not affect the results, but the choice of process for hnwn
does. The effect of this choice is comparatively more pronounced on the AISE, which is a measure
of the total estimator’s variance.

3 Although not reported here, the pointwise biases and variances for the trend and seasonality were also studied. While the
biases are again indistinguishable (and basically negligible for the trend) between the GED or GARCH with or without
jumps, the variances are higher for the GARCH, and show no visible from the jumps.
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• There is no relationship between the seasonality dynamics and the trend’s estimate; whether
the seasonality is with constant amplitude or with amplitude modulations, the AISE and AIAE
for the trend are similar. However, for the seasonality, the AISE and AIAE are higher with
amplitude modulations.
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Figure 1. Trend and seasonality preliminary simulation results. In each panel: mean
estimate (black line), true quantity (red line) and estimated 95% confidence intervals (shaded
area). (a) Trend for the entire (simulated) data; (b) Seasonality for the first week of the
(simulated) data.
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Table 1. Trend and seasonality complete simulation results. In each cell: trend (left) and
seasonality (right).

Fourier Flexible Form GED EGARCH(1,1) GARCH(1,1)

No jumps
AISE 1.50/0.30 1.97/0.49 1.83/0.44

AIAE 11.36/5.38 13.25/6.80 12.71/6.47

λ = 1/288, σj = 4σw
AISE 1.48/0.30 1.95/0.49 1.81/0.44

AIAE 11.27/5.39 13.16/6.80 12.64/6.47

λ = 1/1440, σj = 4σw
AISE 1.49/0.30 1.97/0.49 1.82/0.44

AIAE 11.34/5.38 13.23/6.80 12.69/6.47

λ = 1/288, σj = 10σw
AISE 1.47/0.31 1.94/0.49 1.81/0.44

AIAE 11.24/5.41 13.14/6.82 12.63/6.49

λ = 1/1440, σj = 10σw
AISE 1.49/0.30 1.96/0.49 1.82/0.44

AIAE 11.33/5.38 13.22/6.80 12.69/6.47

Synchrosqueezed Transform GED EGARCH(1,1) GARCH(1,1)

No jumps
AISE 1.45/0.48 1.93/0.68 1.79/0.63

AIAE 11.20/6.66 13.14/7.95 12.60/7.64

λ = 1/288, σj = 4σw
AISE 1.43/0.48 1.91/0.68 1.77/0.63

AIAE 11.11/6.67 13.06/7.96 12.53/7.65

λ = 1/1440, σj = 4σw
AISE 1.45/0.48 1.93/0.68 1.78/0.63

AIAE 11.18/6.66 13.12/7.95 12.58/7.65

λ = 1/288, σj = 10σw
AISE 1.42/0.49 1.90/0.68 1.77/0.63

AIAE 11.09/6.68 13.04/7.97 12.52/7.66

λ = 1/1440, σj = 10σw
AISE 1.44/0.48 1.92/0.68 1.78/0.63

AIAE 11.17/6.66 13.12/7.96 12.58/7.65

4. Application to Foreign Exchange Data

As an empirical application, we study the EUR/USD, EUR/GBP, JPY/USD, and USD/CHF exchange
rates from the beginning of 2010 to the end of 2013. We avoid the data preprocessing by using pre-filtered
five minute bid-ask pairs obtained from Dukascopy Bank SA. 4 The log-price pn is computed as the
average between the log-bid and log-ask prices, and the return rn is defined as the change between
two consecutive log-prices.

Because trading activity unquestionably drops during weekends and certain holidays (see, e.g., [4,5]),
we always exclude a number of days from the sample, from 21:05 GMT the night before until 21:00 GMT
that evening. For instance, weekends start on Friday at 21:05 GMT and last until Sunday at 21:00 GMT.

4 http://www.dukascopy.com/
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Using this definition of the trading day, we remove the fixed holidays of Christmas (24 December to
26 December) and New Year’s (31 December to 2 January), and the holidays of Martin Luther King’s
Day, President’s Day, Good Friday, Memorial Day, Independence Day, Labor Day and Thanksgiving.
After these exclusions, we obtain a sample of 998 days of data, containing 288 · 998 = 287, 424

intraday returns.
In Panel 2a of Figure 2, we show the return rn for the four considered exchange rates for the first

week of trading, that is, from 3 January 2010 (Sunday) at 21:05 GMT to 8 January 2010 (Friday) at
21:00 GMT (1440 observations). Although heteroskedasticity is obviously present, it is arguably easier
to discern its periodicity by looking at the log-volatility yn = log |rn − µ̂| in Panel 2b. Note that the
smallest observations correspond to the case in which the price does not move during the five-minutes
interval (i.e., rn = 0 and yn = log |µ̂|).

In Figure 3, the autocorrelation (Panel 3a) and the power spectrum (Panel 3b) of the log-volatility
indicate strong (daily) periodicities in the log-volatility. Although the shapes are different for the
various exchange rates, they all essentially display the same information; on average, the seasonality
is composed of periodic components of integer frequency. Note that “on average” emphasizes that both
representations are only part of the picture. As illustrated in Section 2.4, this representation misses the
dynamics of the signal: for example, some of the underlying periodic components may strengthen,
weaken, or completely disappear at some point. Another observation is that the JPY/USD curves
are fairly different from the others. First, according to the autocorrelation, the overall magnitude of
oscillations (i.e., the importance of the daily periodicity) is smaller. Second, according to the height of
the power spectrum’s second peak, the amplitude of the second component is much larger.

In Figures 4–6, we show the reconstruction results and compare them to more traditional estimators.
For the trend, T̂ is estimated using (18) with a frequency threshold of ωl = 0.95 daily oscillations and
an upper integration bound corresponding to the highest frequency that can be resolved according to the
Nyquist theorem (i.e., half of the sampling frequency 1/2 · 1/τ = 144). It is compared to the realized
volatility (RV) and bipower variation (BV, see [27]), which are computed as rolling moving averages of
r2
n and | rn || rn−1 |, with 288 and 287 observations included (except near the borders) and maximal

overlap. For the seasonality, we use the synchrosqueezing transform (SST) to estimate ŝ by (16) and (17),
and ŝ(nτ) =

∑K
k=1 f̂k(nτ). The Fourier flexible form or rolling Fourier flexible form (FFF or rFFF) are

estimated using the ordinary least-square estimator on the entire sample or a four-weeks rolling window.
To obtain confidence intervals, we apply the following procedure:

1. Use T̂ (nτ) and f̂k(nτ) to recover ẑn = yn − T̂ (nτ)−
∑K

k=1 f̂k(nτ) for n ∈ {1, · · · , N}.
2. Bootstrap B samples zbn for b ∈ {1, · · · , B} and n ∈ {1, · · · , N}.
3. Add back T̂ (nτ) and f̂k(nτ) to zbn in order to obtain ybn = zbn + T̂ (nτ) +

∑K
k=1 f̂k(nτ) for

b ∈ {1, · · · , B} and n ∈ {1, · · · , N}.
4. Estimate T̂ b(nτ) and f̂ bk(nτ) for b ∈ {1, · · · , B} and n ∈ {1, · · · , N} to compute pointwise

confidence intervals.

As ẑn are found to be autocorrelated, a naive bootstrapping scheme is not appropriate. To deal
with this dependence issue, we use the automatic block-length selection procedure from [28], along
with circular block-bootstrap. The pointwise bootstrapped distribution of the estimates is found to be
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approximately normal. However, a bias correction proves to be necessary, which is achieved for the
trend by substracting the bootstrapped bias

∑B
b=1 T̂

b(nτ)/B − T̂ (nτ) from the estimate T̂ (nτ).
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Figure 2. First week of returns and log-volatilities in January 2010. Top: CHF/USD
(left) and EUR/USD (right); Bottom: GBP/USD (left) and JPY/USD (right). (a) Return
rn; (b) Log-volatility yn = 2 log |rn − µ̂|.
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Figure 3. Autocorrelation γy(l) and power spectrum Py(ω) of the log-volatility. γy(l) =

Ê
[{
yn − Ê(yn)

}{
yn−l − Ê(yn)

}]
and Py(ω) =

∣∣∣F̂y(ω)
∣∣∣2. Top: CHF/USD (left) and

EUR/USD (right); Bottom: GBP/USD (left) and JPY/USD (right). (a) Autocorrelation γy(l).
The lag l is from 1 to 1440 and the x axis ticks are divided by 288; (b) Power spectrum Py(ω).
The frequency ω is from 0 to 5.
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Figure 4. Trend reconstruction results. In each panel: reconstructed trend (black line),
realized volatility (red line) and bipower variation (blue line). In Panel 4b: 95% confidence
intervals for the reconstructed trend (shaded area). Top: CHF/USD (left) and EUR/USD
(right); Bottom: GBP/USD (left) and JPY/USD (right). (a) Trend reconstruction for
2010–2013; (b) Zoom during the summer of 2011.
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The results are separately presented for the trend in Figure 4 and for the seasonality in Figures 5
and 6. In Panel 4a, our reconstructed trend is compared to the realized volatility and bipower variation
for the 2010–2013 period. The estimates are only represented between 0 and 10−3 for the sake of
visual clarity, and a few jumps in the CHF/USD and JPY/USD exchange rates generate peaks well
above the upper limit. In Panel 4b, the three trend estimates are compared over a shorter time period
in the summer of 2011, in the middle of United States debt-ceiling crisis and European sovereign debt
crisis of 2011. Our reconstructed trend visibly constitutes a smoothed version of the usual volatility
measures, which generally fall inside of the 95% confidence interval except for upward spikes due to
jumps. Notice the steep volatility increase in all exchange rates as stock markets around the world started
to fall, following the downgrading of United States’ credit rating on 6 August 2011 by Standard & Poor’s.
This is especially true for the Swiss franc, which encountered increasing pressure from currency markets
because it is considered a safe investment in times of economic uncertainty.

In Figure 5, we show the amplitude modulations of the first periodic component. When a unique
Fourier flexible form is estimated for the whole sample, the corresponding amplitude is very close to
the mean amplitude obtained with the synchrosqueezing transform. We observe that the rolling Fourier
flexible form closely tracks the synchrosqueezing transform, but is far wigglier. This was expected
because the synchrosqueezing transform estimator is essentially an instantaneous (and smooth by
construction) version of the Fourier flexible form. As expected from Figure 3, the amplitude modulations
of the first component in the JPY/USD are much smaller than the three other exchange rates.
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Figure 5. Amplitude modulations reconstruction results. In each panel: reconstructed
amplitude modulations of the first component (black line) with 95% confidence intervals
(shaded area), Fourier flexible form (dashed line) and rolling Fourier flexible form (red
line). (Top) CHF/USD (left) and EUR/USD (right); (Bottom) GBP/USD (left) and
JPY/USD (right).



Econometrics 2015, 3 882

11−07−11 11−07−12 11−07−13 11−07−14 11−07−15

−1.5

−1

−0.5

0

0.5

1

1.5

S
e

a
s
o

n
a

lit
y

CHFUSD

 

 

SST
rFFF
FFF

11−07−11 11−07−12 11−07−13 11−07−14 11−07−15

−1.5

−1

−0.5

0

0.5

1

1.5

S
e

a
s
o

n
a

lit
y

EURUSD

 

 

SST
rFFF
FFF

11−07−11 11−07−12 11−07−13 11−07−14 11−07−15

−1.5

−1

−0.5

0

0.5

1

1.5

S
e

a
s
o

n
a

lit
y

GBPUSD

 

 

SST
rFFF
FFF

11−07−11 11−07−12 11−07−13 11−07−14 11−07−15

−1.5

−1

−0.5

0

0.5

1

1.5

S
e

a
s
o

n
a

lit
y

JPYUSD

 

 

SST
rFFF
FFF

(a)

11−08−08 11−08−09 11−08−10 11−08−11 11−08−12

−1.5

−1

−0.5

0

0.5

1

1.5

S
e

a
s
o

n
a

lit
y

CHFUSD

 

 

SST
rFFF
FFF

11−08−08 11−08−09 11−08−10 11−08−11 11−08−12

−1.5

−1

−0.5

0

0.5

1

1.5

S
e

a
s
o

n
a

lit
y

EURUSD

 

 

SST
rFFF
FFF

11−08−08 11−08−09 11−08−10 11−08−11 11−08−12

−1.5

−1

−0.5

0

0.5

1

1.5

S
e

a
s
o

n
a

lit
y

GBPUSD

 

 

SST
rFFF
FFF

11−08−08 11−08−09 11−08−10 11−08−11 11−08−12

−1.5

−1

−0.5

0

0.5

1

1.5

S
e

a
s
o

n
a

lit
y

JPYUSD

 

 

SST
rFFF
FFF

(b)

Figure 6. Seasonality reconstruction results. In each panel: reconstructed seasonality (black
line) with 95% confidence intervals (shaded area) and rolling Fourier flexible form (red line).
Top: CHF/USD (left) and EUR/USD (right); Bottom: GBP/USD (left) and JPY/USD (right).
(a) Second week of July 2011; (b) Second week of August 2011.

In Panels 6a and 6b of Figure 6, we show the seasonality estimated as a sum of the four periodic
components: the Fourier flexible form represents the average daily oscillation, the rolling Fourier flexible
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form is a wiggly estimate of the dynamics, and the synchrosqueezing transform extracts a smooth
instantaneous seasonality. As in Figure 5, we observe that the overall magnitude of oscillation is much
smaller in the JPY/USD exchange rate.

In summary, a striking feature of our estimated trend is its robustness to jumps, which affect both the
realized volatility and, albeit to a lesser extent, the bipower variation. Figures 5 and 6 strongly suggest
that the seasonality evolves dynamically over time. Although similar estimates of trend and seasonality
can be obtained with moving averages and rolling regressions respectively, the synchrosqueezing
transform provides smooth estimates and does not require an arbitrary choice of the length of the window
or the rolling overlap. One could argue that the choice of a mother wavelet is also arbitrary, the influence
of this choice on the synchrosqueezing transform estimators is negligible (see [22,25]). In any case, the
main message is that dynamic methods are necessary to properly understand the seasonality, as static
models can lead to severe underestimation or overestimation of the intraday spot volatility.

5. Discussion

Our disentangling of instantaneous trend and seasonality of the intraday spot volatility is an extension
of classical econometric models that provides adaptivity to ever-changing markets. The proposed method
suggests a realistic framework for the high-frequency time series behavior. First, the method allows the
daily component of the volatility to be modeled as an instantaneous trend evolving in real time within
the day. Second, the model allows the seasonality to be non-constant over the sample. In a simulation
study using a realistic setting, numerical results confirm that the proposed estimators for the trend and
seasonality components behave appropriately. We show that this result holds even in the presence of
heteroskedastic and heavy-tailed noise, and it is robust to jumps.

Using the CHF/USD, EUR/USD, GBP/USD, and USD/JPY exchange rates sampled every fite
minutes between 2010 and 2013, we confirm empirically that the oscillation frequency is constant, as
originally suggested in the Fourier flexible form from [3,4]. In the four exchange rates, we show that
the amplitude modulations of the periodic components, and hence the overall magnitude of oscillation,
evolve dynamically over time. As such, neglecting those modulations in the periodic part of the volatility
would imply either an overestimation (when the periodic components are lower than their mean value),
or an underestimation (when the periodic components are higher than their mean value). We show
that the synchrosqueezing transform estimator produces results comparable to a smooth version of a
rolling Fourier flexible form. However, the adaptivity of synchrosqueezing transform should still be
emphasized, because it does not require ad-hoc choices for the rolling overlapping ratio or of the length
of each window, as for a parametric regression.

Although we illustrate our model by simultaneously disentangling the low- and high-frequency
components of the intraday spot volatility in the foreign exchange market, it is possible to embed the
new methodology into a forecasting exercise. This exercise may be useful in the context of an investor’s
optimal portfolio choice or for risk-management purposes, which is beyond the scope of this paper’s
aim of presenting the modeling framework. Further research directions include the extension of the
framework to the multivariate data and the non-homogeneously sampled (“tick-by-tick”) data. We will
return to these questions and related issues in future works.



Econometrics 2015, 3 884

Acknowledgments

Most of this research was conducted while the corresponding author was visiting the Berkeley
Statistics Department. He is grateful for its support and helpful discussions with the members both
in Bin Yu’s research group and the Coleman Fung Risk Management Research Center. This research
is also supported in part by the Center for Science of Information (CSoI), a US NSF Science and
Technology Center, under grant agreement CCF-0939370, and by NSF grants DMS-1160319 and
CDS&E-MSS 1228246.

Author Contributions

Thibault Vatter and Hau-Tieng Wu conceived and developed the methodology. Hau-Tieng Wu
contributed the theoretical aspects and the legacy code to perform a Synchrosqueezing Transform.
Thibault Vatter adapted the code to the financial context and analyzed the data. Valérie Chavez-Demoulin
and Bin Yu supervised the project and contributed to the writing.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix. Implementation Details

In this section, we provide the numerical synchrosqueezing form implementation details. The
MATLAB code is available from the authors upon request, and we refer the readers to [29] for more
implementation details.

We fix a discretely sampled time series y = {yn}Nn=1, where xn = x(nτ), with τ as the sampling
interval and N = 2L for L ∈ N+. Note that we use the bold notation to indicate the numerical
implementation (or the discrete sampling) of an otherwise continuous quantity.

Step 1: numerically implement Wy(t, a).
We discretize the scale axis a by aj = 2j/nvτ , j = 1, . . . , Lnv, where nv is the voice number chosen

by the user. In practice, we choose nv = 32. We denote the numerical continous wavelet transform as a
N × na matrix Wy. This is a well-studied step, and our continous wavelet transform implementation is
modified from that of wavelab5.

Step 2: numerically implement ωy(a, t).
The next step is to calculate the instantaneous frequency information function ωy(a, t) (14). The

∂tWy(a, t) term is implemented directly by finite difference at t axis, and we denote the result as
an N × na matrix ∂tWy. The ωy(a, t) is implemented as an N × na matrix wy by the following
entry-wise calculation:

wx(i, j) =

{
−i∂tWy(i,j)

2πWy(i,j)
whenWy(i, j) 6= 0

NaN whenWy(i, j) = 0.
,

5 http://statweb.stanford.edu/~wavelab/
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where NaN is the IEEE arithmetic representation for Not-a-Number.
Step 3: numerically implement Sy(t, ω).
We now compute the synchrosqueezing transform Sy (15). We discretize the frequency domain

[ 1
Nτ
, 1

2τ
] by equally spaced intervals of length ∆ω = 1

Nτ
. Here 1

Nτ
and 1

2τ
are the minimal and maximal

frequencies detectable by the Fourier transform theorem. Denote nω = b
1
2τ
− 1
Nτ

∆ω
c, which is the number

of the discretization of the frequency axis. Fix γ > 0, Sy is discretized as an N × nω matrix Sy by the
following evaluation

Sy(i, j) =
∑

k:|wy(i,k)−j∆ω |≤∆ω/2, |Wy(i,j)|≥γ

log(2)
√
aj

∆ωnv
Wy(i, k),

where i = 1, . . . , N and j = 1, . . . , nω. Notice that the number γ is a hard thresholding parameter,
which is chosen to reduce the influence of noise and numerical error. In practice, we simply choose γ
as the 0.1 quantile of | Wy |. If the error is Gaussian white noise, the choice of γ is suggested in [29].
In general, determining how to adaptively choose γ is an open problem.

Step 4: estimate the instantaneous frequency, amplitude modulation and trend from Sy.
We fit a discretized curve c∗ ∈ ZN

nω , where Znω = {1, . . . , nω} is the index set of the discretized
frequency axis, to the dominant area of Sy, by maximizing the following functional over c ∈ ZN

nω :

[ N∑
m=1

log

(
|Sy(m, cm)|∑nω

i=1

∑N
j=1 |Sy(j, i)|

)
− λ

N∑
m=2

|cm − cm−1|2
]
,

where λ > 0. The first term is used to capture the maximal value of Sy at each time, and the second
term is used to impose regularity on the extracted curve. In other words, the user-defined parameter
λ determines the smoothness of the resulting curve estimate. In practice, we simply choose λ = 10.
Denote the maximizer of the functional as c∗ ∈ RN . In that case, the estimator of the IF of the k-th
component at time t = nτ is defined as

φ′
k(n) := c∗(n)∆ω,

where φ′
k ∈ RN . With c∗, the k-th component ak(t) cos(2πφk(t)) and its amplitude modulation, ak(t) at

time t = nτ are estimated by:

fk(n) := < 2

Rψ
∆ω

c∗(n)+b∆/∆ωc∑
i=c∗(n)−b∆/∆ωc

Sy(n, i),

ak(n) :=

∣∣∣∣∣∣ 2

Rψ
∆ω

c∗(n)+b∆/∆ωc∑
i=c∗(n)−b∆/∆ωc

Sy(n, i)

∣∣∣∣∣∣ ,
where < is the real part, fk ∈ RN , and ak ∈ RN . Lastly, we estimate the trend T (t) at time t = nτ by

T (n) := yn −<
2

Rψ
∆ω

nω∑
i=bωl/∆ωc

Sy(n, i),

where T ∈ RN and ωl > 0 is determined by the model.
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