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Abstract: In cointegration analysis, it is customary to test the hypothesis of unit roots separately
for each single time series. In this note, we point out that this procedure may imply large size
distortion of the unit root tests if the DGP is a VAR. It is well-known that univariate models implied
by a VAR data generating process necessarily have a finite order MA component. This feature may
explain why an MA component has often been found in univariate ARIMA models for economic
time series. Thereby, it has important implications for unit root tests in univariate settings given the
well-known size distortion of popular unit root test in the presence of a large negative coefficient in
the MA component. In a small simulation experiment, considering several popular unit root tests
and the ADF sieve bootstrap unit tests, we find that, besides the well known size distortion effect,
there can be substantial differences in size distortion according to which univariate time series is
tested for the presence of a unit root.
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1. Introduction

It is well known that unit root tests may have large size distortion when the autoregressive
parameter is close to unity and/or when there is a large MA component (see, for instance, [1]).
The simulation evidence on the size distortion of some standard univariate unit root tests, such as the
ADF test and Phillips-Perron Z, and Z;, is overwhelming (see, among others, [2]). Most simulation
studies consider univariate unit root processes, but the same findings on the size distortion of unit
root tests have been obtained by Reed [3,4] who considers a cointegrated VAR. He finds that the size
distortion can be very large and not necessarily of similar magnitude across tests and univariate time
series derived from the VAR. For instance, in the bivariate case, unit root tests applied to the one
component may have an effective size as large as 90% while the same unit root test applied to the
other component may have an effective size close to the nominal one. These finite sample results
hold for DGPs characterized by quite different parameter values and for a wide range of roots of the
AR component, and even in the case where the roots are 1 and 0.

In this note, we (a) provide a theoretical motivation for the finite sample size distortion observed
in the presence of a large negative MA root; (b) give additional simulation evidence on its extent
comparing standard and bootstrap unit root tests and (c) provide some suggestions for empirical
researchers working with univariate time series implied by a VAR data generating process.

Econometrics 2016, 4, 21; d0i:10.3390/econometrics4020021 www.mdpi.com/journal/econometrics


http://www.mdpi.com/journal/econometrics
http://www.mdpi.com
http://www.mdpi.com/journal/econometrics

Econometrics 2016, 4, 21 20f 11

2. The Model

We start the discussion from the VAR(1) model
e} _ (1 M2 (Y1 + Up )
Xt a1 a2 Xt—1 Up

zt = Azp_q +uy,

or, in compact notation,

where u; ~ 1i.d.(0,V). The representation for the univariate components, the so-called “final
equations” in [5], can be obtained following [6] . Considering the lag polynomial matrix A(L) =
I — AL, its determinant

|A(L)| = [(1 = an L) (1 — anlL) — a1pa5 L?]

A*(L) _ (1 — azzL LllzL ) )

{121L 1-— {111L

and the adjoint matrix

the “final equations” for the VAR(1) model are given by

1—apl  apl u
1—ayL)(1 - apl) — appanl? (V1) = 2 12 . 2
[(1—ay1L)(1 —axnl) — appanL?] (xt> ( . 1—ayLl) \up @

It follows that the univariate processes evolve as an ARMA(2,1) model with a common AR component
and two distinct MA components. !

The magnitude and sign of the roots of the characteristic equation |A — AI| = 0 determine
both the stationarity or nonstationarity of the univariate time series y; and x; and the existence of
a cointegrating relationship between them. A necessary condition for cointegration is that the roots
of the characteristic equation satisfy Ay = 1 and |A;| < 1. From this unit root constraint, we obtain

the restriction
- a124d71 3)

which can be used to obtain the VECM representation
Ay = a1 (Ye—1 — Pxe—1) + un,
Axp = ap(yr—1 — Pxr-1) +un,

where a1 = —apaz1/(1 —ax), a2 = a1 and B = (1 —axn)/ay.
The second restriction |A;| < 1, ie.,

a124az1
1-— an»

—1< A =aypy— <1 (4)

guarantees the stationarity of the error correction mechanism. In fact, it is easy to show that

(yt — Bxt) = A2(ye—1 — Bxi—1) + (up — Bur).

1 In general, considering a k-dimensional VAR(p) process the univariate models will be at most ARMA (kp, (k — 1)p), all

univariate processes share the same AR component, and an MA component is present in each univariate model. See [5]
for a general treatment of this issue.
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Imposing the constraints Ay = 1and |A;| < 1, the “final equations”, i.e., the univariate models become

A]/t 1-— llzzL alzL Uy
1— AL = . 5
( 2L) (Axt> < anL 11— ﬂnL) (Wz) ©

Thus, if the DGP is a bivariate VAR(1) with one unit root and one cointegrating relationship,
the marginal processes for the level processes follow an ARIMA(1,1,1) model and the marginal
processes for the first-difference stationary processes are ARMA(1,1) processes. 2 It follows that
the autocorrelation structure of the implied marginal processes, induced by the interaction of the AR
and MA roots, is deemed to affect the finite sample size and power properties of unit root test in any
simulation study where the DGP is a multivariate one.

Considering the right-hand side of (5), we see how the aggregate error term for each component
of z; is the sum of an MA(1) process and a lagged white noise process

(1 =A2L)Ay; = Cn = up — apily—11 + applis—1,
(1= A2L)Axt = Gpo

Upp — A1 U123 + A21Up—1,1-

It is easy to show that both aggregate error terms on the right-hand side have the autocorrelation
function of an MA(1) process so that we can write

¢n =on + 010111,

G2 = U + 02012,

(6)

where vy and vy are white noise processes. By setting the first-order autocorrelation coefficient of
each marginal process on the left-hand side of (6) equal to the first-order autocorrelation coefficient
of 6;(L)vy;, i.e.,

Cov(Gri,Gt—1i) _ b
Var(Gyi) (1+6%)
we can find the moving average coefficients of the polynomials 6;(L) by choosing the invertible

solution of the previous second degree equation. 3

For example, let us consider the DGP 4 in Table 1, i.e.,

A— 0.5 0.05 V— 0.045 0.017
~\1 09)’ ~ (0017 0.045) °
The roots of the characteristic equation of the reduced form VAR are given by 1 and —0.4 and the

marginal processes are given by

(1—-04L)Ay;: = uy — 0.9u;_11 + 0.05u;_1 5,
(1 - 0.4L)Axt =up —05up_10 +up_q7,

which, after some algebra, can be written as

(1—04L)Ay; = v; — 0.907v;_,
(1—04L)Ax; = vy — 0.3850;_1.

2 See Cubadda et al. [7] for a general result on the implied univariate models from cointegrated VAR and Cubadda and

Triacca [8] for the I(2) case.

3 A general solution to this problem for an MA process of order g has been provided in Maravall and Mathis [9].
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Thus, the MA component of the process Ay; has a large negative root, which explains the enormous
size distortion, as reported in many simulation studies since Schwert [1].

3. A Simulation Experiment

In a small simulation study, we assess the size distortion of a number of unit root tests when
the data comes from a cointegrated DGP. We consider the classical ADF test by Said and Dickey [10],
the Z, and Z; tests proposed by Phillips and Perron [11], the modified MZ, and MZ; by Stock [12]
and Perron and Ng [2], the modified Sargan-Bhargava MSB test proposed by Stock [12], the point
optimal test Pr of Elliott et al. [13] and its modification MPr proposed by Ng and Perron [14], and,
finally the DF-GLS test by Elliott et al. [13]. We always estimate the spectral density at frequency zero
of the error term using the autoregressive spectral density estimator as in Perron and Ng [2] and for
the Zy, Zt, MZy, MZ;, MSB tests we consider both OLS detrending and GLS detrending, as in Ng and
Perron [14].

For the selection of the lag length, we do not follow a rule based just on the sample size but
consider the Modified Akaike Information Criterion (MAIC) developed by Ng and Perron [14], where
an upper bound to the lag length is set to the integer part of 12[(T + 1)/100]'/%. Given the better
performance of this information criterion compared to the BIC one, we do not consider the latter in
our simulations. Further, we consider the suggestion by Perron and Qu [15] and present results for
MZ£? obtained using OLS detrending instead of GLS detrending in the MAIC. They show that this
simple modification produces tests with effective size closer to the nominal size.

We also consider two bootstrap unit-root tests. Palm et al. [16] carried out extensive simulation
experiments on the size and power of bootstrap unit root considering ADF sieve and block bootstrap
tests, based on first difference series or on residuals. Their findings suggest that, both in terms of size
and power, the ADF sieve test as in Chang and Park [17] or its residual-based version perform best.
In the following, we shall consider these two versions of the ADF sieve unit root test and implement
the tests following the procedure set forth in Palm et al. [16].

Finally, to be able to make a comparison with a widely used test for the presence of unit roots and
cointegration in multivariate time series, we also consider Johansen's trace-statistics, say Ji,, where,
under the null, we should be able to reject no cointegration and not to reject the presence of one
cointegrating vector.

In the simulation experiment, we consider two different ways of formulating the DGP. Firstly,
as in Reed [3], we consider the VAR model in (1) subject to the constraints (3)-(4) which guarantee
cointegration between y; and x;. Secondly, we also consider a DGP widely used in cointegration
analysis (see, among others, [18]):

Yyt — Bxr = z4, Zt = 0z¢—1 +ep,

ClYt — C2Xt = Wy, Wt = Wy_1 + €,

et) = (3) (e )

From this parameterization, we can obtain the implied VAR(1) as
yr\ _ 1 [Pa—cp —cp(l-p)) (v n 1 [—c B\ (en
Xt .Blcl — (2 C1(1 — p) Cl‘Bp — (2 Xf_q ,3101 —cp \—c; 1 en
_ (ml ﬂ12) (yt_1> 4 (uﬂ) )
az1 a2 Xt—1 Up

@)
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where the unit root constraint a;7 = 1 — 410451 /(1 — ap;) is satisfied and under the condition

124021
=l -7 <L

we have cointegration. The VECM representation is, then, given by

Ay 1—p c un\ [« u
(Axi) = 7[3101 ¢ (;) (Yi—1—Bxi—1) + <u2> = (é) (Yi-1—Bxi—1) + (ui) .

From the above VAR and VECM representations, we can obtain the DGPs considered
in Reed [3] in terms of the parameters of (7) and vice versa.

In the simulation study, we consider DGPs parameterized, as in (7), following
Gonzalo [18], and as in (1), following Reed [3]. The two set of parameters are defined as follows:

MC(a): the values taken by A and V in Reed [3], reported in Table 1 together with the implied
values of p, B, the roots of the MA component in the univariate representations and the
unconditional contemporaneous autocorrelation;

MC(b): as in Gonzalo [18], we set c; = —1, B = 1 and ¢; = 1 and consider the following values for
the remaining parameters: p = (0.9,0.5), ¢ = (0.25,1,2) and y = (—0.5,0,0.5), for a total
of 18 experiments. The root of the common autoregressive component (one root is always
equal to 1) and the coefficients of the distinct MA components of the univariate models
implied by the multivariate DGP are reported in Table 2.

All results are based on a sample size T = 100, on 1000 simulations of the DGP and, for the bootstrap
tests, on 500 bootstrap replications as in Psaradakis [19].

We notice that, for many values of the parameters, the univariate models are characterized by
a large negative MA coefficient, which is exactly the circumstance in which unit root tests have low
power and great size distortion even in moderately large sample sizes. For the set of parameters
in MC(b), this always occurs when p = 0.9 and when p = 0.5 and # = —0.5, while for the set of
parameters in MC(a), this occurs only in half of the cases.

Table 1. Parameter values in MC(a).

DGP1 B P 0, 0 Tayax,
01  -01 0.061 0.086
Af(fo.g 0.9 ) V7(0.0.86 0.32) 011 0 -071 012 0258
DGP2
05 0.1 147 141
A*(0.5 0.9), V*(1.41 2.32) -02 04 —092 -069 0821
DGP3
0.7 —09 0.045 0.017
A—(_0.3 0.1), V‘(o.017 0.045) 3  -02 014 —052 —0.195
DGP4
05 0.05 0.045 0.017
A—(l 0.9), V‘<0.017 0.045) -01 04 —090 -038 0.592

Note: A and V are defined in (1).

Some additional remarks are in order. First of all, MC(a) is able to generate, at least for
the parameter values considered here, greater heterogeneity in the MA roots of the univariate
first-difference processes than that generated by MC(b). In fact, in MC(a), we observe a large negative
MA root for Ay; associated to a small or a medium size negative MA root for Ax; or a positive MA
root for Ay; associated to a negative one for Ax;. On the contrary, in MC(b), looking, for instance,
at the upper panel of Table 2 (the case in which p = 0.9), we may see how the coefficients of the
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MA components are almost identical for the two processes Ay; and Ax; and that, to a lower extent,
the same applies to the lower panel (0 = 0.5). When this occurs, the univariate representations of
unit root processes resemble each other, and this may explain the similar behavior of unit root tests
applied to y; and x;, separately.

Table 2. Parameter values in MC(b).

AR root p = 0.9

o =0.25 c=1 c=2
n ey 0y YAy, Ax; By 0y YAy, Ax; By 0y Ay, Axy
—-05 —-0972 —-0.978 0.911 —0.902 —0.942 0.029 —0.885 —0924 —-0.635
0 —0975 —-0.975 0.887 —0.930 —-0.930 0.025 —0910 —-0910 —-0.583

05 -0978 -0972 0911 0942 0902 0.029 0924 —-0.885 —0.635
AR root p = 0.5

o =0.25 c=1 oc=2
n ey 0x Ay, Ax; ey 0x Ay, Ax; ey O YAy, Ax;
—-05 —-0.872 —0.893 0.925 —0.884 —0.884 0.910 —0.893 —0.872 0.925
0 —0.565 —0.717 0.158 —0.666 —0.666 0.142 —0.717 —0.565 0.158

0.5 —0451 —-0.626 —0.539 —-0.565 —0.565 —0.500 —0.626 —0.451 —0.539

Furthermore, when p = 0.9, the coefficients of the MA component in Ay; and Ax; are not only
very similar among themselves but also quite close to the root of the autoregressive component.
This implies the presence of a near common factor in the univariate models for the first differenced
series so that the AR and MA roots would almost cancel out. To our knowledge, this feature of
the parameterization MC(b) used by (and many others Gonzalo [18]) has not been noticed so far
in simulation studies on unit roots or cointegration tests. As a consequence of this near common
root, the lagged unconditional correlation of Ay; and Ax; will tend to be small. For instance, for
p =09 0 = 2and y = —0.5, the first-order unconditional autocorrelations of Ay; and Ax; are
equal to 0.015 and —0.021, respectively, and the first-order unconditional cross-correlation is equal to
—0.032. Similar results are obtained when p = 0.9 and for different values for ¢ and #. The first-order
unconditional autocorrelations increase very slowly as p decreases, for instance, when p = 0.5, we
have 0.05, —0.11 and —0.16 for the first-order unconditional autocorrelation of Ay;, of Ax; and the
first-order unconditional cross-correlation, respectively.

The empirical size, at a 5% nominal level, for the unit root tests, is reported in Tables 3-6 for the
estimated regression without a trend. 4 For each DGP, we test for a unit root both in yt and in x;.
For each set of parameters in MC(b), in each table, we report the effective size for a fixed value of
the “signal-to-noise” ratio and different values of the remaining parameters; for the experiments in
MC(a), we report the effective size for the four different parameterizations.

The first general and striking result, common to both parameterization MC(b) and MC(a),
concerns the presence of important differences in the effective size according to whether y; or x;
are tested for the presence of a unit root. Considering MC(b), the empirical size increases with #
when testing for a unit root in y; and, on the other hand, it decreases when testing is carried out on
x¢. This finding is remarkable and unexpected since the univariate ARMA representations of y; and
x¢ share the same AR component and have very similar MA components for most parameterizations.
The differences in size can be fully appreciated when ¢ = 1 or ¢ = 2. For instance, in the case
c=1, =09,y = —0.5, for most tests based on GLS detrending (but for the MZtP Q), the effective
size is close to the nominal one when the unit root test is applied to y;, but it doubles or almost triples

4 For brevity, our discussion will refer to the model without trend, similar remarks apply when a trend component is

included in the regression, simulation results in this case are available upon request from the authors.
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when unit root tests are applied to x;. In addition, the same applies to bootstrap unit root tests. The
distortion in the effective size on y; and x; is reversed when o = 1,p = 0.9 but # = 0.5 and to a lesser
extent for smaller values of the AR root such as p = 0.5. Notice also that only in the case in which
7 = 0, do these differences tend to to be negligible.

For the parameterization in MC(a), in Table 6, we continue to observe substantial differences
in the effective size according to whether y; or x; are being tested for a unit root. These
differences are even more pronounced than those in Tables 3-5, perhaps because of the greater
range and heterogeneity of the MA component obtained from the parameter values under MC(a).
Furthermore, there are noticeable differences among tests and across DGPs: for instance, looking at
DGP1, both the DF-GLS and bootstrap tests have reasonable effective sizes for x; while the effective
size more than doubles for the bootstrap tests applied to y;, but it does not change substantially for
the DF-GLS test. Again, for DGP4, the size of the DF-GLS more than doubles when y; is tested while
the size of the bootstrap tests is more than four times larger for y; than for x;.

Considering the parameterization in MC(b), from Tables 3-5, we notice that when o = 0.25,
the empirical size is, in general, close to the nominal one for most tests and it is so, in particular, for
the ADF sieve bootstrap unit root tests. In particular, the empirical size in both versions of the ADF
boostrap test seem to be more stable and closer to the nominal size than the empirical size of the
Pr, MPr, and DF-GLS tests. However, for o = 1, and to a larger extent when ¢ = 2, the empirical
size of these tests tend to differ more and more from the nominal 5% level. In fact, the effective size
increases with ¢ ranging in the interval (0.03,0.09) when ¢ = 0.25 to the interval (0.11,0.25) when
o = 2. Thus, as the variance of the random walk component in y; and x; increases, the size of the unit
root tests increases, leading to greater size distortion, and the size distortion itself is quite sizeable for
o = 2, irrespective of p and 7. In general, GLS detrending tends to increases the empirical size and
this exerts a beneficial effect when ¢ is small, but, on the contrary, it is detrimental for the size when
o is large.

Table 3. Empirical size of unit root tests (no trend)—MC(b), o = 0.25.

p=09 p=05
7= —05 n=0 =05 n=—05 n=0 =05
Test Yt Xt Yt Xt Yt Xt Yt Xt Yt Xt Yt Xt
OLS Detrending

Zu 0.029 0.058 0.037 0.030 0.044 0.027 0.018 0.054 0.049 0.048 0.065 0.023
MZ, 0.013 0.025 0.014 0.014 0.018 0.018 0.009 0.029 0.021 0.027 0.032 0.009

Zy 0.043 0.070 0.047 0.044 0.055 0.046 0.028 0.066 0.061 0.068 0.099 0.051
MZ; 0.004 0.014 0.005 0.008 0.004 0.003 0.004 0.006 0.014 0.014 0.012 0.002

MSB 0.020 0.037 0.027 0.024 0.035 0.023 0.013 0.039 0.035 0.041 0.041 0.013
ADF 0.038 0.067 0.043 0.040 0.047 0.042 0.029 0.060 0.050 0.057 0.063 0.044

GLS detrending

Zy 0.047 0.084 0.063 0.048 0.088 0.046 0.040 0.077 0.070 0.070 0.098 0.043
MZ, 0.041 0071 0.052 0.041 0.077 0.039 0.034 007 0.059 0.062 0.083 0.036

MzEe 0.005 0.009 0.008 0.004 0.007 0.008 0.006 0.012 0.010 0.013 0.008 0.004

Zt 0.051 0.083 0.062 0.051 0.090 0.052 0.038 0.084 0.073 0.071 0.102 0.044
MZzZ; 0.039 0.069 0.045 0.036 0.071 0.039 0.029 0.062 0.050 0.058 0.082 0.034
MSB 0.035 0.061 0.052 0.043 0.066 0.038 0.035 0.068 0.053 0.058 0.069 0.028

Pr 0.030 0.059 0.037 0.033 0.058 0.035 0.027 0.053 0.040 0.052 0.070 0.024

MPr 0.037 0.067 0.042 0.035 0.071 0.037 0.029 0.061 0.049 0.059 0.082 0.032
DF -GLS 0.048 0.078 0.058 0.047 0.081 0.046 0.038 0.069 0.065 0.069 0.090 0.040

Bootstrap Tests

ADF, 0.045 0.058 0.060 0.043 0.064 0.036 0.040 0.051 0.048 0.053 0.062 0.043
ADFj 0.044 0062 0.062 0.056 0.070 0.040 0.042 0.061 0.059 0.057 0.064 0.044

Johansen's Trace Test

Jir 0.722 0.834 0.717 0.059 0.076 0.069
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Table 4. Empirical size of unit root tests (no trend)—MC(b), o = 1.

p=09 p=05
7= —05 n=0 7 =05 n=—05 n=0 7 =05
Test Yt Xt Yt Xt Yt Xt Yt Xt Yt Xt Yt Xt
OLS detrending
Zy 0.033 0.098 0.082 0.080 0.107 0.037 0.049 0.146 0.108 0.119 0.164 0.081
MZ, 0.014 0.057 0.045 0.040 0.062 0.020 0.026 0.090 0.060 0.071 0.087 0.038
Zt 0.037 0.102 0.082 0.092 0.115 0.049 0.064 0.196 0149 0.150 0.205 0.087
MZ; 0.003 0.030 0.017 0.023 0.029 0.009 0.010 0.048 0.029 0.038 0.056 0.016
MSB 0.021 0.077 0.062 0.069 0.089 0.029 0.038 0.109 0.073 0.085 0.112 0.056
ADF 0.034 0.083 0.072 0.082 0.094 0.049 0056 0.101 0.085 0.088 0.117 0.068
GLS detrending
Zn 0.064 0.156 0.137 0.122 0.184 0.069 0.065 0.155 0.126 0.156 0.184 0.100
MZ, 0.053 0.134 0.118 0.102 0.154 0.056 0.055 0.115 0.100 0.122 0.145 0.078
MZ,fQ 0.004 0.030 0.019 0.018 0.028 0.007 0.013 0.038 0.031 0.033 0.043 0.016
Zt 0.061 0.166 0.146 0.127 0.184 0.078 0.075 0.175 0.144 0.168 0.226 0.106
MZ; 0.046 0.123 0.110 0.096 0.142 0.050 0.055 0.108 0.094 0.116 0.133 0.080
MSB 0.053 0.115 0.103 0.100 0.141 0.048 0.059 0.107 0.089 0.118 0.131 0.070
Pr 0.042 0.107 0.100 0.085 0.121 0.042 0.047 0.094 0.082 0.104 0.109 0.069
MPr 0.047 0.118 0.111 0.095 0.143 0.049 0.055 0.107 0.093 0.115 0.132 0.076
DF —-GLS 0.049 0149 0.126 0.115 0.167 0.066 0.066 0.119 0.113 0.129 0.148 0.091
Bootstrap Tests
ADF, 0.049 0.130 0.105 0.091 0.125 0.052 0.067 0.096 0.077 0.079 0.099 0.061
ADF] 0.052 0.141 0.110 0.107 0.136 0.055 0.071 0.099 0.083 0.090 0.109 0.072
Johansen's Trace Test
Jir 0.710 0.829 0.742 0.056 0.062 0.084
Table 5. Empirical size of unit root tests (no trend)—MC(b), o = 2.
p=109 p=05
7= —0.5 7=20 7 =20.5 7= —0.5 =20 7 =0.5
Test Yt Xt Yt Xt Yt Xt Yt Xt Yt Xt Yt Xt
OLS Detrending
Zy 0.097 0.177 0136 0.134 0.164 0.110 0.195 0.266 0257 0.245 0.303 0.172
MZ, 0.061 0.108 0.086 0.086 0.098 0.072 0.095 0.140 0.129 0.134 0.153 0.088
Zy 0.083 0.159 0.121 0.116 0.153 0.103 0254 0423 0364 0347 0432 0247
MZ; 0.028 0.053 0.040 0.034 0.052 0.037 0.052 0.101 0.096 0.090 0.106 0.050
MSB 0.079 0.139 0.116 0.115 0.134 0.100 0.120 0.162 0.152 0.160 0.176 0.110
ADF 0.072 0.141 0.108 0.100 0.124 0.089 0.125 0.158 0.148 0.149 0.161 0.112
GLS detrending
Zn 0.197 0.292 0233 0235 0.241 0195 0.191 0.262 0219 0207 0.279 0.189
MZ, 0.174 0.252 0.211 0209 0.210 0.164 0.138 0.145 0.149 0.117 0.163 0.116
MZ‘fQ 0.035 0.047 0.037 0.030 0.035 0.037 0.044 0.076 0.069 0.060 0.086 0.04
Zy 0209 0.297 0246 0235 0.256 0214 0240 0.381 0307 0.279 0.369 0.238
MZ; 0.157 0.234 0.192 0.197 0.194 0.164 0.134 0.130 0.138 0.116 0.155 0.106
MSB 0.157 0.237 0.187 0200 0.205 0.150 0.118 0.130 0.138 0.109 0.150  0.109
Pr 0.137 0.200 0.171 0.172 0.170 0.138 0.119 0.112 0.122 0.099 0.132 0.089
MPr 0.154 0.229 0.188 0.197 0.192 0.158 0.133 0.132 0.138 0.112 0.154 0.103
DF-GLS 0188 0271 0223 0221 0235 0199 0149 0168 0.156 0.126 0.176 0.122
Bootstrap Tests
ADF, 0.194 0.223 0.218 0.193 0.238 0.169 0.118 0.136 0.139 0.124 0.148 0.113
ADF] 0200 0.239 0226 0206 0251 0.188 0.129 0.149 0.135 0.130 0.153 0.121
Johansen'’s Trace Test
Jer 0.730 0.849 0.711 0.070 0.052 0.059
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Table 6. Empirical size of unit root tests (no trend)—MC(a).

DGP1 DGP2 DGP3 DGP4
Test vt Xt Yt Xt Yt Xt Yt Xt
OLS Detrending
Za 0927 0.086 0.283 0.016 0.140 0.739 0.672 0.041
MZ, 0.084 0.024 0.112 0.009 0.017 0.020 0.188 0.011
Zy 0994 0.161 0481 0.032 0272 0933 0.899 0.109
MZ; 0.070 0.010 0.075 0.003 0.010 0.012 0.154 0.003

MSB 0.086 0.033 0123 0.013 0.022 0.022 0208 0.023
ADF 0136 0.056 0.134 0.03 0.048 0.072 0.228 0.037

GLS detrending

Za 0338 0.078 0270 0.036 0.062 0273 0216 0.033
MZ, 0.012 0.050 0.106 0.034 0.029 0.006 0.058 0.031
MZ};Q 0.033 0.006 0.053 0.004 0.003 0.006 0.065 0.003
Z 0.559 0.094 0.393 0.034 0.096 0490 0343 0.029
MZ; 0.012 0.047 0.101 0.032 0.028 0.006 0.057 0.028
MSB 0.010 0.046 0.093 0.031 0.032 0.005 0.052 0.031
Pr 0.012 0.035 0.085 0.029 0.027 0.006 0.054 0.024
MPr 0.013 0.046 0.100 0.032 0.029 0.006 0.057 0.028

DF -GLS 0.062 0.059 0133 0.028 0.051 0.052 0.093 0.039

Bootstrap Tests

ADF, 0.136 0.052 0.104 0.039 0.061 0.085 0.189 0.044
ADF; 0122 0.051 0113 0.034 0.056 0.078 0.188 0.041

Johansen’s Trace Test

Jir 0.044 0.064 0.041 0.037

Considering the four parameterizations under MC(a), the behavior of unit root tests is more
heterogeneous, as is the pattern of AR and MA roots. Under OLS detrending, the Z, and
Z; tests have large size distortion for all parameterizations. The modifications suggested by
Perron and Ng [2] are somehow effective in reducing the distortion, but the behavior of the M tests
is not stable across DGPs, and the same remark applies to the ADF test. Under GLS detrending, the
DF-GLS test by Elliott et al. [13] has the best performance, showing an effective size very close to
the nominal one in all cases but for y; in DGP2 and DGP4 where, in fact, the MA component has a
coefficient close to —1. The bootstrap unit root tests have greater size distortion than the DF-GLS but,
for y; in DGP2 and DGP4, exactly in those cases where the DF-GLS test does not perform well.

Finally, we consider consider Johansen'’s trace test under the null of one cointegrating vector. For
parameters in MC(b), the test statistics are severely biased when p = 0.9, irrespective of the values
taken by o and #, while it has a size close to the nominal one for p = 0.05 and its performance, in the
latter case, is superior to those of the standard and bootstrap unit root tests. For the parameterizations
in MC(a), Johansen’s trace test also displays a very good behavior since about 5% of the time, we
reject no cointegration in favor of stationarity of the VAR in (1) in all cases. However, we should bear
in mind that the AR root is rather small now and that, from the previous results based on MC(b),
Johansen’s test is adversely affected by large values of p.

We do not consider the power properties of the unit root tests considered here.
Ng and Perron [14] provide simulation evidence that the DF-GLS has better power then the M tests,
even though the latter have better size properties. For the bootstrap unit root tests, we take the
results of the extensive simulation study by Palm et al. [16] who found that the ADF sieve bootstrap
test performs better under a variety of DGPs with and without an MA component. An extensive
simulation study on the power properties of the tests considered here for univariate time series
generated by a cointegrated VAR is left for a further investigation.
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4. Conclusions

A standard practice in cointegration analysis is to run unit root tests separately for each single
time series in the multivariate system. However, univariate time series are most often observed as
a part of a more general multivariate model. It turns out that the univariate models implied by a
VAR data generating process always have a finite order MA component (e.g., see [6]). This feature
may explain why an MA component has often been found in univariate ARMA models for economic
time series and, given the well-known size distortion of popular unit root tests in the presence of
a large negative coefficient in the MA component, it has important implications for unit root tests in
univariate settings. In a small simulation experiment under cointegration, we find that (a) there can be
substantial differences in the size distortion according to whether the unit root test is applied on y; or
x¢ and that this occurs for the ADF sieve bootstrap unit root test too; (b) most tests perform well when
the “signal-to-noise” ratio is small but the size distortion can be large when the “signal-to-noise”
ratio increases; (c) the ADF sieve bootstrap unit root tests are not immune from size distortion; and
(d) Johansen’s trace test based on the VAR model exhibits great size distortion when the root of the
AR component is large.
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