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Abstract: This paper considers a nonparametric regression model for cross-sectional data in the
presence of common shocks. Common shocks are allowed to be very general in nature; they do not
need to be finite dimensional with a known (small) number of factors. I investigate the properties
of the Nadaraya-Watson kernel estimator and determine how general the common shocks can be
while still obtaining meaningful kernel estimates. Restrictions on the common shocks are necessary
because kernel estimators typically manipulate conditional densities, and conditional densities do
not necessarily exist in the present case. By appealing to disintegration theory, I provide sufficient
conditions for the existence of such conditional densities and show that the estimator converges
in probability to the Kolmogorov conditional expectation given the sigma-field generated by the
common shocks. I also establish the rate of convergence and the asymptotic distribution of the
kernel estimator.
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1. Introduction

Cross-sectional dependence has attracted considerable attention among economists recently.1 It
is well-known that ignoring cross-sectional dependence may lead to inconsistent estimators and
misleading inference. A popular and successful way to capture cross-sectional dependence is
through common factors.2 Common factor models assume a finite number of unobserved factors
that may be the result of economy-wide shocks with impacts on population units that may depend
on the characteristics of the unit. Possible common factors include macroeconomic, technological,
legal/institutional, political, environmental, health and sociological shocks, among others. The applied
literature has considered, for example, technological shocks (such as new procedures, drugs and
surgical techniques) affecting the relationship between countries’ healthcare attainments and their per
capita health expenditures and educational levels (e.g., [20]); cross-country cross-industry analysis of
returns to R&D, which are affected both by global shocks, such as the recent financial crisis, and by
local shocks, such as spillovers between a limited group of industries or countries (e.g., [21]); and the
analysis of transnational terrorism, where common factors may arise from common terrorist training
camps, common grievances and demonstration effects (cf. [22]).

1 See, for example, Arbia [1], the proceedings of the 2008 Cowles Summer Conference [2], the special issue of
the Journal of Econometrics (“Analysis of Spatially Dependent Data,” 2007, 140(1), edited by Baltagi, Kelejian
and Prucha), and the special issue of Econometrics (“Spatial Econometrics,” 2015, edited by Arbia and Lee).
For recent surveys, see [3–5].

2 See, e.g., [6–19].
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Typically, common factor models allow for a small and known number of unobserved factors.
Although such an approach is convincing in empirical macro models, in microeconometric models,
it is often more reasonable to think of a potentially large, possibly unknown (and maybe infinite)
number of factors that can influence individuals’ behaviour. For instance, in studies of individual
earnings, there are many individual-level observables and unobservables that affect income; as well
as several common factors, such as region, family, male/female ratio, race composition, education,
age composition, and so on (cf. [7]). The number of common factors may increase as we collect more
cross-sectional observations or there may be an infinite number of unobserved factors (see, e.g., [23]).

The purpose of this paper is to study a nonparametric regression model for cross-sectional data in
the presence of common shocks that are very general in nature. The common shocks can be of infinite
dimension with flexible impact on different population units. For example, common shocks could
take the form of a nonlinear random function of observable or unobservable individual characteristics
with the effect on the i-th observation varying continuously across i depending on the value of the
characteristic. We focus on nonparametric models because there may be little guidance (or justification)
in practice for selecting a particular functional form for the regression function.

There has been important recent work on nonparametric models with many finite common factors
(e.g., [5,15,16]). They consider common shocks that enter the regression function additively and with
disturbances that are modelled as linear functions of mutually-independent unobserved common
factors and individual-specific factor loadings. We, in contrast, allow the regression function to be
non-separable for common shocks, and we do not require the mutual independence assumption.
In other words, we allow for an unknown large, potentially infinite, number of factors that can
influence individuals’ outcomes and that may interact with observable and unobservable individual
characteristics in extremely rich and flexible ways. To the best of our knowledge, this is the first paper
that allows for such a flexible framework.

We consider this flexible setting because we are interested in investigating how general the
regression function and the common shocks can be while still allowing for meaningful nonparametric
estimates. We focus on the Nadaraya-Watson kernel estimator and study the effects of general common
shocks on its asymptotic properties. Asymptotic results for kernel estimators are typically obtained
by manipulating conditional densities of random variables. However, if the common shocks are too
general, conditional densities do not necessarily exist. Doob [24] (pp. 623–624) and Halmos [25]
(Section 48) present some examples of non-existence. If conditional densities do not exist, then what
we would expect to be the probability limit of the kernel estimator in the present context is either
meaningless or difficult to interpret.3

The idea here is to let the common shocks be as general as possible and to work with well-defined
conditional densities that adhere as closely as possible to the standard kernel literature. To do so,
we appeal to the disintegration theory for conditional distributions that can be found in Pollard [28],
Dellacherie and Meyer [29] and Hoffmann-Jorgensen [30]. We find that an important sufficient
condition to guarantee the existence of conditional densities is that the common shocks must belong to
a separable metric space equipped with the Borel σ-field. We conclude that the sufficient conditions
are mild and not very restrictive in practice.4

3 Formally, the probability limit of the kernel estimator for a nonstationary process can be obtained using
the concept of local time, as in Wang and Phillips [26]. However, the probability limit of the kernel
regression estimator may not be measurable with respect to the conditioning variables, including the common
shocks. This is a particularly important problem when we extend the results to panel data models, as in
Souza-Rodrigues [27].

4 Although separability is not a necessary condition, it seems difficult to avoid it if we are to obtain the existence
of conditional densities; see the discussion about the role of separability in the Appendix. Note that several
separable metric spaces satisfying the sufficient conditions are available, but careful interpretation is needed in
particular cases. For instance, suppose that an infinite-dimensional common shock can be well-approximated
by a finite dimensional object. Because the sigma-field generated by the common shock may be different from
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Given the existence of conditional densities, we adjust the standard assumptions of the kernel
literature to the present case. We show that the Nadaraya-Watson kernel estimator converges in
probability to the Kolmogorov conditional expectation given the sigma-field generated by the common
shocks. The optimal rate of convergence is the same as the rate obtained when the observations are i.i.d.
The asymptotic distribution is mixed normal with weights depending on the common shocks. It is
obtained by exploring a martingale difference sequence central limit theorem. We find that inference
depends on how the common shocks affect the regression variables. A dichotomy similar to that of
Andrews [8] is present here: if the dependent variable is mean independent of the common shocks
given the explanatory variables, the usual t-test has the correct size; but if the dependent variable is
not mean independent, the t statistic diverges to infinity in probability under the null hypothesis.

The closest paper in the literature to ours is that of Andrews [8], who considers a linear regression
model in the presence of general common shocks. He shows that the least-squares estimator converges
in probability to Kolmogorov conditional expectations given the σ-field generated by the common
shocks. The random probability limit is a well-defined object because the Kolmogorov conditional
expectation always exists. Andrews, therefore, does not need to guarantee the existence of conditional
densities. Extending his results to a nonparametric model is important because parametric models
may be misspecified. We show that the price to be paid is that mild restrictions must then be imposed
on the nature of the common shocks.

The nonparametric version of the standard factor model is a special case of the model considered
here. For this class of models, we show that, even though the kernel regression converges in probability
to a random object measurable with respect to the common shocks, it is possible to identify and
estimate the slope of the regression function. However, its location (e.g., the intercept in a linear
model) is not identified even if we normalize common shocks to have a zero mean. To identify and
estimate location, the dependent variable must be mean independent of the common shocks given
the regressors.

Common factor models are typically applied to panel data sets (e.g., [14,17–19]). We view the
present paper as a first step towards nonparametric panel data models that may incorporate a more
general and flexible common factors structure. Indeed, in a companion paper, Souza-Rodrigues [27]
develops a two-step nonparametric estimator that requires a “large-N, large-T” dataset for a
generalized regression model based on the identification results of Berry and Haile [31]. The estimator
applies equally to datasets with a large number of individuals in different groups and a large number
of groups. The empirical application in Souza-Rodrigues [27] considers the impact of hospital volumes
of surgical procedures on individual health status (e.g., mortality rate).5 Group-level observables (i.e.,
hospital volume of surgeries) may be correlated with group-level unobservables (hospital unobserved
quality), which, by its turn, may be indexed by individual characteristics (since an unobserved hospital
characteristic that is helpful for patients with some demographic characteristics may not be as helpful
for other patients). The strategy proposed by Souza-Rodrigues [27] is to run a nonparametric regression
of individual outcomes on individual observables within each group (hospital) in the first step. It
is a nonparametric regression with common shocks where the common shocks are the group-level
observables and unobservables. Because the group-level unobservables may be a (random) function of

the sigma-field generated by the approximating object, the conditional expectations given the common shock
and given the finite-dimensional object are different. Ignoring this difference leads to problems such as the
Borel paradox.

5 The motivation for this application is that numerous studies have documented an inverse relationship between
hospital volumes of operations and mortality rates (see [32]). This suggests that thousands of deaths per year
could have been prevented if hospitals with inadequate experience (i.e., with low volume of operations) had
performed fewer surgical procedures. The evidence, however, is weak for most operations. Furthermore,
existing papers have estimated parametric models that may be misspecified and have not considered the
potential correlation between hospital volume of operations and hospital unobserved quality.
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individual characteristics, it is important to allow for this possibility, as we do here.6 The results of the
present paper can be incorporated in other nonlinear panel data settings.

The present paper also relates to the literature of spatial dependence.7 Typically, in this literature,
common shocks are presumed to have predominantly local effects, and the dependence is modelled as
a function of an exogenously-given spatial or economic distance, with some form of stationary mixing
condition analogous to the time series data. Recent nonparametric versions of spatial models have
been considered by Martins-Filho and Yao [37], Gerolimetto and Magrini [38], among others. Although
the present paper can incorporate common shocks with differential local effects (e.g., assuming that
individual factor loadings include geographic location), we do not allow individual outcomes to
depend on the characteristics of other individuals. We therefore view spatial dependence models as
complementary to ours.

Robinson [44] provides an alternative way of modelling cross-sectional dependence. He considers
a nonparametric kernel regression in which the disturbances are represented by a (possibly infinite)
sum of independent random variables with unknown weights. The structure in the disturbances is
sufficiently rich to cover spatial dependence models, but, since it does not require known economic
distances, it can accommodate stronger forms of dependence than mixing conditions. Robinson [44]
investigates the properties of kernel estimators, and Robinson and Lee [45] study the properties of
sieve estimators within this framework. The present paper can accommodate disturbances of the
type represented by Robinson [44], but with a vector of common shocks in place of the vector of
independent random variables. We do not require the vector of common shocks to be independent
random variables, and we allow for potentially correlated random weights in the summation term
for the disturbances. However, the restrictions we need to impose on the common shocks differ from
the assumptions in Robinson [44]. Furthermore, we require i.i.d. sampling schemes that are neither
assumed by Robinson [44], nor by the spatial dependence literature. Our model is therefore neither
more general than, nor is it a special case of Robinson’s model.

The paper is organized as follows: Section 2 presents the regression model and discusses sufficient
conditions to guarantee the existence of conditional densities. Section 3 establishes the asymptotic
properties of the Nadaraya-Watson kernel regression estimator and discusses its implications. Section 4
concludes. The Appendix presents the disintegration theory and briefly discusses the role of
separability of common shocks in the existence of conditional densities. The Supplemental Material
presents results for the kernel density estimator, contains all relevant proofs and discusses the
probabilistic framework adapted from Andrews [8] that justifies the approach taken here.

2. Regression Model and Conditional Densities

The dataset is {Yi, Xi : i = 1, ..., n}, where Yi ∈ Y (⊆ R) and Xi ∈ X (⊆ Rk). Consider the model:

Yi = m (Xi, C (Si)) + εi, (1)

where Si ∈ S (⊆ Rds , with ds ∈ N) is a vector of individual-specific random variables; C (.) ∈ C is the
common shock; and εi is the idiosyncratic error. Some components of Si may be observable (in which
case, it may be incorporated in Xi) or it may be completely unobservable. We allow the common shock
C (.) to be either a random vector (possibly infinite-dimensional) or a random function of Si. In the
latter case, the common shocks may affect individuals differently. As usual, we use upper-case letters
to denote random quantities and lower-case letters to denote realizations.

6 The second step runs a nonparametric instrumental variable regression across groups (hospitals) of the
predicted outcome obtained in the first step on the group-level observables. It separates the impacts of
group-level observables (hospital volume of surgeries) and unobservables (hospital unobserved quality).

7 See, e.g., [33–41], and the discussion in [42]. For a recent survey, see [43].
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The standard parametric factor model is a special case of our model and is typically written as:

Yi = α + X′i β + Ui, Ui =
J

∑
j=1

SijCj + εi, (2)

where Si =
(
Si1, ..., Si J

)
is the vector of individual-specific factor loadings; C =

(
C1, ..., CJ

)
is the vector

of unobserved common factors; εi is the idiosyncratic error that is independent of (Xi, Si, C) and has
zero mean; and (α, β) is the vector with the parameters of interest. Cross-sectional dependence
in the disturbances is generated by the term S′iC. The standard model can also accommodate
cross-sectional dependence on regressors Xi. For example, consider the expanded vectors C =

(
C1, C2)

and Si =
(
S1

i , S2
i
)

and take Xi = S1′
i C1 and Ui = S2′

i C2 + εi. Note that if C1 = C2, then Xi and Ui are
correlated even when S1

i and S2
i are independent of each other (e.g., [8,10,11]). The nonparametric

version of (2) takes Yi = m1 (Xi) + Ui, with the same structure for the disturbances Ui.8

The standard factor model (2) is a special case of our model (1) with the regression function
given by the linear and additively separable m (Xi, C (Si)) = α + X′i β + C (Si) and the common shock
function given by C (Si) = ∑J

j=1 SijCj. We therefore generalize the standard model in the following
ways: (i) we let the regression function m (.) be nonparametric; (ii) we allow the regressors Xi to freely
interact with the common shock C (.); and (iii) we let the common shock be a general function of
individual-specific factor loadings Si (subject to the restrictions discussed below). Furthermore, factor
models typically impose independence between Si and (Xi, C) and assume that C =

(
C1, ..., CJ

)
is

a mutually independent vector, while we do not need to impose these independence assumptions.
We, however, do not consider a fully-non-separable model; we maintain the additive separability
assumption in the idiosyncratic error εi.

Robinson [44] also considers a nonparametric version of (2), but with another structure for Ui. He
considers the model:

Yi = m1 (Xi) + Ui, Ui = σi (Xi)
∞

∑
j=1

bijej,
∞

∑
j=1

b2
ij < ∞, (3)

where σi are scalar unknown functions; e′js are independent random variables with zero mean and unit

variance; and b′ijs are unknown fixed weights.9 The present paper compares to Robinson [44] when
the following holds: m (Xi, C (Si)) = m1 (Xi) + σi (Xi)C (Si), with C (Si) = ∑∞

j=1 SijCj, Sij = bij and
Cj = ej. Unlike Robinson [44], we allow for (potentially correlated) random coefficients b′ijs and do not
restrict e′js to be independent variables with zero mean and unit variances. The restrictions we need to
impose on the function C (Si) are discussed below and are of a different nature than the assumptions
used by Robinson [44].

Data Generation

Denote the vector Wi = (Yi, Xi, Si, C) ∈ W , whereW ⊆ Y ×X × S × C. Define the measurable
space (W ,A), where A is the Borel sigma-field. The random elements {Wi : i ≥ 1} are defined
on
(
WN,AN), where WN is the product space and AN is the product Borel sigma-field on WN.

We suppose the common shocks across observations are captured by the σ-field generated by C,
denoted by σ(C) ⊂ AN. We impose the following assumption:

8 In a panel data setting, one typically allows for time-varying regressors Xit, but restricts Si, so that it does not
vary over time, and the common shock C, so that it does not vary across individuals. Fixed-effect panel data
models let Xit and Si be correlated.

9 Note that this approach does not require known economic distances, but can readily accommodate them by
taking Ui = σi (Xi)∑∞

j=1 bijei, e = (e1, ..., en) and by making some assumptions regarding how bij depends on
the distance |i− j|.
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Assumption 1 The sequence {Wi : i ≥ 1} is i.i.d. conditional on the σ-field σ (C) ⊂ AN.

As shown by Andrews [8], this assumption is valid when the units are drawn randomly from the
population. One difference between the present paper and Andrews [8] is that he states the existence
of some σ-field, such that the data are i.i.d. conditional on it without specifying a priori how this
σ-field is constructed, while we impose more structure and state explicitly how the σ-field is generated.
Andrews’ framework is, therefore, more general than ours in this respect. Note that neither the spatial
dependence models nor Robinson’s [44] approach require random sampling.10

Existence of Conditional Densities

Because we make use of the Nadaraya-Watson kernel estimator and because the kernel estimator
requires the existence of conditional densities, we now discuss the existence problem.

To guarantee the existence of conditional densities that allow for very general common shocks,
we make use of the disintegration theory. Disintegration of a probability measure is a collection of
regular conditional probabilities, each satisfying (i) a concentration property (i.e., conditional on an
event, the probability of its complement is zero) and (ii) a decomposition property (i.e., the probability
of an event is a weighted sum of the conditional probability measures, also known as the law of total
probability).11 The reader unfamiliar with disintegration theory might want to read the Appendix (or
the references cited there) before proceeding.

Define the sub-vector Zi = (Yi, Xi, Si) ∈ Z ⊆ Y ×X × S , for i ≥ 1. We want to guarantee the
existence of the conditional density of Zi given C. By Assumption 1, the probability distribution of
{Wi : i ≥ 1}, denoted by PN, is exchangeable on

(
WN,AN). Call Pi the marginal distribution of Wi

under PN. We impose the following:

Assumption 2 (i)W is a metric space.

(ii) λ is a sigma-finite Radon measure on (W ,A).12

(iii) C maps (W ,A) into (C,B). C is a separable metric space, and B is the Borel σ-field.

(iv) µ is a sigma-finite measure on (C,B). Let the measure λ
(
C−1) induced by C and λ on (C,B)

be absolutely continuous with respect to µ.

(v) Let Pi, for any i ≥ 1, be absolutely continuous with respect to λ. Denote its Radon-Nikodym
density by fi(z, c).

Assumption 2(iii) requires C to be a separable metric space. This is trivially satisfied when C
belongs to a finite-dimensional Euclidean space. However, if C is an infinite dimensional vector
of random variables, we need restrictions, such as C = `p, for some 1 ≤ p < ∞, where `p is the
space of sequences with finite ‖·‖p-norm, and we need to rule out the case C = `∞, because `∞ is
non-separable. Similarly, if C is a random function of Si, it must belong to spaces, such as the Lp (S)
space for 1 ≤ p < ∞, or the space of bounded and continuous functions defined on a closed bounded
subset of S and equipped with the sup-norm, or the Hölder space, etc. However, it cannot belong
to the space of bounded functions with the sup-norm, L∞ (S), because it is not separable. See the
discussion about the role of separability for existence of conditional densities in the Appendix.13

10 When Andrews [8] specializes to factor structure models, he imposes more restrictions on the common shocks,
which makes his approach more similar to ours.

11 A regular conditional probability, Pr (Y|X = x), is a family of probability distribution, such that (i) for a fixed
x, Pr (·|X = x) is a probability measure and (ii) for a fixed measurable set A, Pr (A|X = x) is a measurable
function mapping x to [0, 1].

12 The measure λ is Radon if (i) λ (K) < ∞ for each compact K and λ (B) = sup {λ (K) : B ⊇ K, K compact} .
13 It is possible to characterize all of the objects in Assumption 2 whenW = Z × C. First, we have that (i)W is a

separable metric space provided that C is a separable metric space, as well, and (ii) the Borel σ-field A onW
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The restrictions in Assumption 2 are mild and sufficient to guarantee the existence of
conditional densities of Zi given C for any i ≥ 1. The reason for sufficiency is the
following: first, Assumptions 2(i)–(iv) are sufficient for the sigma-finite Radon measure λ to have
a (C, µ)-disintegration; i.e., they guarantee the existence of a collection of measures, denoted by
Λ = {λc : c ∈ C}, that satisfy the aforementioned concentration and decomposition properties (but
note that λ′cs do not have to be probability measures; see Definition 3 and Theorem 1 in the Appendix).

Second, if the disintegration Λ = {λc : c ∈ C} exists and the probability measure Pi on (W ,A) is
absolutely continuous with respect to λ with density fi(z, c) (Assumption 2(v)), then two implications
follow (see Theorem 2 in the Appendix): (i) the probability distribution of C induced by Pi (i.e., the
image measure Qi = Pi (C−1)) is absolutely continuous with respect to µ with density:

qi (c) ≡
∫

fi (z̃, c) dλc (z̃) (4)

and (ii) the probability measure Pi has a conditional distribution given C, denoted by the collection
P i =

{
Pi

c : c ∈ C
}

, where Pi
c is defined by having density:

fi (z|c) ≡
fi (z, c)
qi (c)

1 {0 < qi (c) < ∞} (5)

with respect to λc for Qi-almost all c ∈ C. The conditional density fi (z|c) is therefore similar to
elementary conditional densities: it is the ratio of the joint density fi (z, c) and the marginal qi (c).
However, it does not require C to belong to a finite-dimensional Euclidean space.

Because C is common to all i, the equality Q = Qi follows for all i ≥ 1. In addition,
fi (z|c) = f j (z|c) for all i 6= j and for Q-almost all c ∈ C by Assumption 1. We state this result
as a lemma:

Lemma 1. Let Assumptions 1 and 2 hold. Then, there exist conditional densities of Zi given C, for all i ≥ 1,
defined by:

fi (z|c) =
f1 (z, c)

q (c)
1 {0 < q (c) < ∞} , (6)

for Q-almost all c ∈ C, where q (c) ≡
∫

f1 (z̃, c) dλc (z̃).14

Example 1. Suppose Si is scalar and C is the separable Hilbert space L2 (S). Take a basis
{

φj
}∞

j=1 for L2 (S)
and represent the common shock by C (Si) = ∑∞

j=1 Cjφj (Si), where Cj ∈ R for j ≥ 1. Note that one can define
Sij = φj (Si), in which case the random coefficients are not independent of each other. More important for us
is to note that selecting a function in C is equivalent to selecting the infinite dimensional vector

{
Cj
}∞

j=1 in

equals the product Borel σ-fieldAZ ⊗B, where we denote AZ the Borel σ-field on Z (see [46], Proposition 1.5).
Second, let πc be the projection ofW onto the coordinate space C, i.e., πc :W → C. Then, (i) the sub-sigma
field π−1

c (B) is contained in A and (ii) because C (w) = πc (w), for all w ∈ W ; the sigma-field generated by
C is σ (C) = π−1

c (B) ⊂ A. Furthermore, if we define the sigma-finite Radon λ on (W ,A) to be the product
measure λ = ν⊗ µ, where ν is defined on (Z ,AZ) and µ on (C,B), then the measure λ

(
C−1) induced by C

and λ on (C,B) equals µ, and so, λ
(
C−1) is (trivially) absolutely continuous with respect to µ. Finally, we

have to assume both ν and µ are sigma-finite Radon, so that λ is sigma-finite Radon on A, as well.
14 Note that we can manipulate the conditional density (6) on Z ⊗ C as is usually done. Fix C = c and

think of Z ⊗ {c} as a copy of Z embedded into the product space. For a fixed c ∈ C, take the measure
λc living on Z ⊗ {c} to coincide with the Lebesgue measure on Z . If r(·) is a vector-valued function with
E ‖r(Z)‖ < ∞, then:

E [r(Z)|C = c] =
∫

r(z̃)dPc (z̃) =
∫

r(z̃) f (z̃|c) dλc (z̃) =
∫

r(z̃) f (z̃|c) dz̃.
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`2. Let B (L2) be the Borel σ-field on L2 and B (`2) be the Borel σ-field on `2. Because the spaces L2 and `2

are homeomorphic, their topologies are equivalent, and so, B (L2) and B (`2) are equivalent.15 As a result, the
event {C (·) = c} on L2 is equivalent to the (potentially more intuitive) event {(C1, C2, ...) = (c1, c2, ...)} on
`2. In addition, conditioning on {C (·) = c} is equivalent to conditioning on {(C1, C2, ...) = (c1, c2, ...)}. We
have, therefore, f (z|c (·)) = f (z|c1, c2, ...) and:

Pr (Zi ∈ A|C (·) = c) = Pr (Zi ∈ A|C1 = c1, C2 = c2, ...)

=
∫

A
f (z̃|c1, c2, ...) dz̃, (7)

for any measurable set A.16

Example 1 intends to translate properties of conditional probabilities given an element in some
abstract space of functions into properties in (hopefully) more concrete spaces defined by random
vectors. Example 1, however, does not apply when C is not a Hilbert space. Although we may
approximate any of the separable metric spaces by other simpler spaces, the conditioning argument
does not hold without running into problems, such as the Borel paradox (see, e.g., [47]). For instance,
take C to be the set of bounded and continuous functions, (BC (S) , ‖·‖∞). It is separable, and any c ∈ C
can be well approximated by a polynomial of order J < ∞, say pJ (·) with some coefficients

(
bj
)J

j=1.

Because we can take J such that
∥∥c− pJ

∥∥
∞ < ε, for some ε > 0, the probability of the event {C (·) = c}

is close to the probability of the event
{(

Bj
)J

j=1 =
(
bj
)J

j=1

}
. However, the topology of (BC (S) , ‖·‖∞) is

not the same as the topology of the Euclidean RJ for any finite J. Therefore, the Borel σ-field on BC (S)
is different from the Borel σ-field on any RJ . Conditioning on different σ-fields delivers different
conditional probability distributions, and so, we are not guaranteed to have Pr (Z ∈ A|C (·) = c) close
to Pr

(
Z ∈ A| ∩J

j=1

{
Bj = bj

})
for all measurable sets A. We can still obtain the existence of conditional

densities, but we cannot derive conclusions based on some approximation ∑J
j=1 bj pj (Si) for C (Si), no

matter how large J is.

3. Regression Estimator

Next, we consider the properties of the Nadaraya-Watson kernel regression estimator:

m̂ (x) =
∑n

i=1 YiK
(

Xi−x
hn

)
∑ n

i=1K
(

Xi−x
hn

) , (8)

where K(·) is the kernel function and hn is the bandwidth. As previously mentioned, the objective
here is to work as closely as possible to the standard kernel literature. The assumptions we impose
are therefore similar to the standard assumptions (see Pagan and Ullah [48]), but with the population
density and regression function substituted for the corresponding conditional functions and with the

15 Any infinite-dimensional separable Hilbert space, sayH, is isometrically isomorphic to a suitable `2 (I), where
the cardinality of the set I is the cardinality of an arbitrary Hilbertian basis for H, i.e., there exists a linear
operator L : H → `2 (I), such that ‖Lh‖2 = ‖h‖H, where h ∈ H, ‖·‖H is the norm on H and ‖·‖2 is the
`2-norm.

16 Conditioning on the event {(C1, C2, ...) = (c1, c2, ...)} is only one possibility. For some a ∈ R, we could

condition either on the event {C (Si) = a} =
{

∑∞
j=1 Cjφj (Si) = a

}
, or on the event {c (Si) = a} ={

∑∞
j=1 cjφj (Si) = a

}
, where the randomness of the event comes from Si, or on {C (s) = a} ={

∑∞
j=1 Cjφj (s) = a

}
, where the randomness comes from (C1, C2, ...).
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extra “Q-almost all c” qualifiers added. For brevity, we relegate the properties of the kernel density
estimator to the Supplemental Material.

We maintain Assumptions 1 and 2 from now on. In addition, we impose the following conditions:

Condition 1. Let K be the class of all Borel measurable nonnegative bounded real-valued functions K(u), such
that: (i)

∫
K(u)du = 1; (ii)

∫
|K(u)| du < ∞; (iii) |K(u)| ‖u‖k → 0 as ‖u‖ → ∞; (iv) κ =

∫
K2(u)du < ∞;

(v) supu |K(u)| < ∞; and (vi) µ2 =
∫

u2K(u)du < ∞.

Condition 2. For Q-almost all c ∈ C, the conditional density f (x|c) is continuous at any point x0.

Condition 3. (i) hn → 0 as n→ ∞ and (ii) nhn → ∞ as n→ ∞.

Condition 4. For Q-almost all c, (i) f (x|c) is twice continuously differentiable with respect to x in some
neighbourhood of x0 and (ii) the second-order derivatives of f (x|c) with respect to x are bounded in this
neighbourhood.

Condition 5. For Q-almost all c, the point x0 is in the interior of the support of X conditional on {C = c} and
f (x0|c) ≥ ξ > 0, for some finite ξ.

Condition 6. The kernel K is a symmetric function satisfying
∫

uK(u)du = 0.

Condition 7. (i) E [εi|Xi, σ (C)] = 0 a.s.; and (ii) let σ2 (x, c) = E
(
ε2

i |Xi = x, C = c
)
, and assume

σ2 (X, C) < ∞ a.s..

Condition 8. For Q-almost all c, the function m (x, c) is twice continuously differentiable with respect to x in
some neighbourhood of x0.

Conditions 1–5 suffice to obtain the asymptotic properties of the kernel density estimator
(consistency, rate of convergence and asymptotic distribution; see the Supplemental Material).
Condition 6 is standard in the literature.

Condition 7(i) implies m (x, C) = E [Y|X = x, σ (C)]. In the standard factor model, this
translates into:

m (x, C) = E [Y|X = x, C] = α + x′β +
J

∑
j=1

E
[
Sij|X = x, C

]
Cj. (9)

Note that m (x, C) is a random object because C has not been fixed. Typically in the literature, Si is
assumed to be independent of (Xi, C), in which case E

[
Sij|X = x, C

]
= E

[
Sij
]
≡ bij, where bij is an

unknown constant. Unlike the standard model, here, we allow J to be infinite (as long as C belongs
to an appropriate separable metric space); we do not require Si to be independent of (Xi, C), and we
allow for more complicated interactions between X and C.

Condition 7(ii) allows for conditional heteroskedasticity; and Condition 8 is used to apply
Q-almost sure Taylor expansions similar to what is usually done in the kernel literature.

Remark 1. Condition 8 requires m (x, c) to be twice continuously differentiable in x for almost all c. To fix
ideas, consider the following case: let Si = Xi, C (·) ∈ L2 (X ) and m (X, C) = m1 (Xi) +C (Xi). Conditioned
on the event {Xi = x} ∩ {C (·) = c}, we have that:

E [Yi|Xi = x, C (·) = c] = m1 (x) +

(
∞

∑
j=1

cjφj (x)

)
= m (x, c) ,
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while conditioning only on the event {Xi = x}, we obtain the random object:

E [Yi|Xi = x, C (x)] = m1 (x) +

(
∞

∑
j=1

Cjφj (x)

)
= m (x, C) .

Therefore, to satisfy Condition 8, we need E [Yi|Xi, C (Xi)] to be twice continuously differentiable with respect to
both the first and second arguments, and we also need C (·) to be twice continuously differentiable with respect
to x.17

To obtain the consistency of m̂ (x), we first show that the kernel density converges in probability
to the conditional density f (x|C). Then, we prove that the mean-squared error of m̂ (x) conditional
on σ (C) converges to zero in probability. Finally, consistency follows by the dominated convergence
theorem. We then show that the rate of convergence is the same as the rate of convergence without
common shocks. The pointwise asymptotic distribution is obtained using the martingale difference
sequence central limit theorem.

Proposition 1. Let E
[
·|X = {xi}n

i=1
]

denote the conditional expectation given xi, i = 1, ..., n. Let
Assumptions 1 and 2 and Conditions 1–8 hold. Then:

1. m̂ (x)
p−→ m (x, C) as n→ ∞.

2. m̂ (x)−m (x, C) = Op

(
n−

2
4+k

)
.

3. Suppose also that
∫
|K(u)|2+δ du < ∞ and E

[
|εi|2+δ

]
< ∞, for some δ > 0. Define σ2 (x, C) =

E
(
ε2

i |Xi = x, C
)
. Then, (i) as n→ ∞:

√
nhk

n
(
m̂ (x)− E

[
m̂ (x) |X = {xi}n

i=1 , C
]) d−→

(
σ2 (x, C)
f (x|C)

∫
K2 (u) du

)
N (0, 1)

and (ii) if, in addition,
√

nhk
nh2

n → 0 as n→ ∞, then:√
nhk

n (m̂ (x)−m (x, C)) d−→
(

σ2 (x, C)
f (x|C)

∫
K2 (u) du

)
N (0, 1)

as n→ ∞.

Proposition 1.1 shows that the kernel regression estimator converges in probability to the random
object m (x, C) = E [Y|X = x, σ (C)]. In general, m (x, C) is different from the conditional expectation
m (x) = E [Y|X = x]; the equality m (x, C) = m (x) only holds when Y is mean independent of C given
X. To see how this difference may affect the interpretation of potential estimands, take the standard
factor model as an example.18 In this case, m (x, C) is given by (9), while m (x) is given by:

m (x) = E [Y|X = x] = α + x′β +
J

∑
j=1

E
[
SijCj|X = x

]
. (10)

If we assume, as is usually done, that Si is independent of (Xi, C), we have that E
[
SijCj|X = x

]
=

bijE
[
Cj|X = x

]
. If there is no cross-sectional dependence on regressors resulting from the common

17 It should be clear that it is not possible to separately identify m1 (X) from C (X) in this example.
18 Recall that the nonparametric version of the factor model takes Yi = m1 (Xi) + Ui, with Ui = ∑J

j=1 SijCj + εi.
The parametric model imposes m1 (x) = α + x′β.
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shocks, then E
[
Cj|X = x

]
= E

[
Cj
]
. In addition, if we normalize E

[
Cj
]

= 0 for all j, then

m (x) = α + x′β, while m (x, C) = α + x′β + ∑J
j=1 bijCj. Because Y is not mean independent of C

given X, m̂ (x)
p−→ m (x, C) 6= m (x).

Although we cannot estimate m (x) consistently, it is possible to identify and estimate β by noting
that m (x1, C) − m (x2, C) = (x1 − x2)

′ β, for x1 6= x2. Similarly, for nonparametric factor models,
Yi = m1 (Xi) + Ui, one can identify and estimate the slope of m1 (x). However, the presence of the
common shocks ∑J

j=1 bijCj prevents the identification of the intercept α in the linear model (and the
identification of the location of m1 (x) in the nonparametric model) even if we normalize E

[
Cj
]
= 0

for all j.

Remark 2. The nonparametric factor model with J = ∞, E
[
Sij|X = x, C

]
= bij and E

[
Cj
]
= 0, for all j,

has a structure similar to the one proposed by Robinson [44]. Yet, while Robinson [44] shows that the kernel
regression estimator converges in probability to m (x), we obtain convergence to m (x, C). An important
distinction comes from the assumption on the sampling process. Because we have exchangeable data given
the common shocks (Assumption 1), the conditions we impose are not sufficient to “get rid of” C in the limit.
Robinson [44], in contrast, does not impose the conditional i.i.d. sampling process.

Returning to the standard factor model, if we assume now the presence of cross-sectional
dependence on regressors captured by, say, Xi = S1′

i C with Si =
(
S1

i , S2
i
)
, then E

[
Cj|X = x

]
6=

E
[
Cj
]

and:

m (x, C) = α + x′β +
J

∑
j=1

bijCj,

m (x) = α + x′β +
J

∑
j=1

bijE
[
Cj|X = x

]
.

Again, Y is not mean independent of C given X, so m̂ (x)
p−→ m (x, C) 6= m (x), but it is still possible

to identify β in the parametric model and the slope of m1 (x) in the nonparametric version.19

In the standard factor model, Y is mean independent of C given X only if the common shocks have
no direct effect on Y. This is the case when E

[
Sij
]
= bij = 0. When this is true, m (x, C) = m (x), and the

kernel regression converge in probability to m (x), even when there is cross-sectional dependence on X.
In this case, we identify both parameters α and β in the linear model and m1 (x) in the nonparametric
model. Note that assuming E

[
Sij
]
= 0 for all j is not an innocuous normalization, but a substantive

assumption.

Remark 3. The last case is similar to Andrews [8]. Let Xi = S1′
i C1 and Ui = S2′

i C2 + εi, where C =
(
C1, C2)

is mutually independent and Si =
(
S1

i , S2
i
)

(see Andrews’ Assumption SF1). Imposing E
[
Sij|X = x, C

]
=

E
[
Sij
]
= 0 is similar to imposing Andrews’ Condition SF3. Assuming Condition 7(i) together with mutual

independence
(
S1

i , S2
i , εi

)
is similar to Andrews’ Condition SF2.

Proposition 1.2 shows that the rate of convergence of the kernel regression in the presence of
common shocks is the same as the rate of convergence without common shocks.

Proposition 1.3 presents the asymptotic distribution of the kernel regression estimator. It shows

that even when m̂ (x)
p−→ m (x, C) = m (x), the common shocks affect the asymptotic distribution of

19 Note that if we were able to estimate the conditional expectation m (x) instead of m (x, C), it would be

impossible to separate x′β from ∑J
j=1 bijE

[
Cj|X = x

]
, and so, we would not be able to identify β.
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the kernel regression because they may impact both the conditional variance of Y and the conditional
density of X. This result is similar to that of Andrews [8], Robinson [44] and others.

Remark 4. A consequence of Proposition 1.3 is that inference results depend on whether Y is mean independent
of C given X. To test a null hypothesis, say, H0 : m (x) = m0 (x) against H1 : m (x) 6= m0 (x), the
corresponding t statistics is:

Tn =
√

nhk
n

(m̂ (x)−m0 (x))(
σ̂2(x)
f̂ (x)

∫
K2 (u) du

)1/2 .

The usual two-sided t test with significance level α rejects the null if |Tn| > z1−α/2, where zα is the α quantile
of the standard normal distribution. If Y is mean independent of C given X, then Pr (|Tn| > z1−α/2)→ α as
n→ ∞. Otherwise, we have Pr (|Tn| > z1−α/2)→ 1 as n→ ∞.20

Remark 5. The bandwidth can be chosen by minimizing the approximated integrated mean squared error
(AMISE) conditional on σ (C). The bandwidth must be a σ(C)-measurable random variable, hn (C). In
the Supplemental Material, we show that hn (C) = Op

(
n−

1
4+k

)
, and one might expect both plug-in and

cross-validation estimators to be consistent. The usual concerns in the literature about how to select the
bandwidth are present here, but for brevity, we do not investigate the topic further. We only emphasize that
the bandwidth choice based on the unconditional AMISE is infeasible because it is impossible to estimate the
distribution of C (and integrate that out) using a single cross-sectional dataset.

4. Conclusions

In this paper, we investigate a nonparametric regression estimator for cross-sectional data in
the presence of very general, potentially infinite-dimension, common shocks. In a companion paper
Souza-Rodrigues [27], we extend the results to a “large-N, large-T” panel data framework for a
nonlinear generalized regression model. We plan to investigate extensions to finite-T panel data
models in the future.

Acknowledgments: I am grateful to Donald Andrews, Xiaohong Chen, Philip Haile, Steven Berry, Tai Otsu,
Yuichi Kitamura, Ed Vytlacil, Peter Phillips, Marfisa Queiroz, two anonymous referees, and the participants of
the Econometrics Lunch at Yale. Financial support from Charles V. Hickox Fellowship at Yale University, Yale

20 In the Supplemental Material, we provide conditions under which the kernel density estimator is consistent:

f̂ (x)
p−→ f (x|C). For the variance σ2 (x, c) = E

(
Y2

i |Xi = x, C = c
)
− [m (x, c)]2, we can take σ̂2 (x) to be:

σ̂2 (x) =

Σn
i=1Y2

i K
(

Xi−x
h

)
Σn

i=1K
(

Xi−x
h

)
− [m̂ (x)]2 .

The first term on the right-hand side converges in probability to E
(
Y2

i |Xi = x, C
)

using the same arguments as
in Proposition 1. The second term on the right-hand side converges in probability to [m (x, C)]2 by the Slutsky

theorem. Therefore, σ̂2 (x)
p−→ σ2 (x, C). Next, note that:

Tn =

√
nhk

n
(m̂ (x)−m (x, C))(
σ̂2(x)
f̂ (x)

∫
K2 (u) du

)1/2 +

√
nhk

n
(m (x, C)−m0 (x))(
σ̂2(x)
f̂ (x)

∫
K2 (u) du

)1/2 .

The first term on the RHS converges in distribution to N (0, 1) by Proposition 1.3(ii). The second term on the
RHS is such that: (a) f̂ (x) ≥ ξ > 0, for some finite ξ, with probability approaching one because f (x|c) ≥ ξ > 0
for Q-almost all c (see the Supplemental Material). If (b) σ2 (x, C) is finite Q-almost surely (implying σ̂2 (x)
is finite with probability approaching one); and if (c) m (x, C) 6= m0 (x) with positive probability; then, the
second term on the RHS diverges in probability to ±∞. As a result, |Tn| → ∞ as n→ ∞ under the null.
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Appendix A. Disintegration Theory

We follow the discussion in Pollard [28] (Chapter 5 and Appendix F).21 Throughout this section,
let the measurable space be (Ω,F ), and let C be a measurable map from (Ω,F ) into (C,B). Let λ be
a sigma-finite measure on F and µ be a sigma-finite measure on B. The definition of conditional
distributions given in Pollard [28] (p. 113) is:

Definition 1. Let P be a probability measure on (Ω,F ), and let Q be the probability distribution of C induced
by P. A family P = {Pc : c ∈ C} of probability measures on F is called the conditional probability distribution
of P given C if:

1. Pc {C 6= c} = 0, for Q-almost all c ∈ C;

and for each nonnegative measurable function f on Ω:
2. the map c 7→

∫
f (ω) dPc (ω) is B-measurable; and

3. the equality
∫

f (ω) dP =
∫
[
∫

f (ω) dPc (ω)] dQ (c) holds.

The conditional probability distribution P = {Pc : c ∈ C} is a family of probability measures
satisfying (i) a concentration property (Pc {C 6= c} = 0), (ii) a measurability condition (Property 2) and
(iii) a decomposition property (Property 3). Unfortunately, the conditional probability distribution may
not exist. The Kolmogorov conditional expectation, on the other hand, always exists. For completeness,
we state the definition below Pollard [28] (p. 126):

Definition 2. Let f be a random variable on Ω and P be a probability measure on (Ω,F ). For each
sub-sigma-field G ⊂ F , the conditional expectation E ( f |G) is the random variable defined on (Ω,G), such that,
for all sets A ∈ G, with indicator functions IA,∫

{IA (ω) f (ω)} dP (ω) =
∫
{IA (ω) [E ( f |G) (ω)]} dP (ω) . (11)

The random variable E ( f |G) is called the conditional expectation of f given the sub-sigma-field G and it is
unique up to P-equivalence.

If the conditional probability distribution of P given C exists, P = {Pc : c ∈ C}, the B-measurable
function defined by:

E ( f |C = c) =
∫

f (ω) dPc (ω)

satisfies the equality (11) for Q-almost all c ∈ C.
The problem with the Kolmogorov conditional expectation is that each of its usual properties

(mainly, being a linear increasing functional of f satisfying the monotone convergence property) holds
Q-almost everywhere, but with possible uncountably many negligible sets in which these properties
do not hold. The accumulation of these null sets may lead to paradoxes when one is trying to compute
the conditional expectation (see, e.g., [47]). To avoid these difficulties, topological assumptions are
invoked to guarantee the existence of conditional probability distributions P = {Pc : c ∈ C}, such
that all of the properties of the Kolmogorov conditional expectation are satisfied except in countably

21 Dellacherie and Meyer [29], Hoffmann-Jorgensen [30] (Chapter 6 and Section 10.11), Pachl [49], and Chang
and Pollard [50] are also important references.
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many Q-negligible sets. By collecting all of these countably many Q-negligible sets into a single Q-null
set, we avoid the problems and paradoxes coming from an accumulation of uncountably many null
sets. Under the topological assumptions, the family P = {Pc : c ∈ C} is a version of the Kolmogorov
conditional expectation that does not run into such difficulties and, as a by-product, guarantees the
existence of conditional densities. The conditional densities may then be (carefully) manipulated
preserving the intuition we have for the cases where the conditioning event has positive probability.

The existence of conditional probability distribution follows from a general decomposition called
disintegration. The definition of disintegration given in Chang and Pollard [50] (p. 292) is:

Definition 3. The measure λ has a disintegration Λ = {λc : c ∈ C} with respect to C and µ (or a
(C, µ)-disintegration) if:

1. λc is a sigma-finite measure on F concentrated on {C = c}, that is λc {C 6= c} = 0 for µ-almost all c;

and for each nonnegative measurable function f on Ω:
2. the map c 7→

∫
f (ω) dλc (ω) is B-measurable; and

3. the equality
∫

f (ω) dλ =
∫
[
∫

f (ω) dλc (ω)] dµ (c) holds.

From the definitions, it is clear that a (C, µ)-disintegration Λ = {λc : c ∈ C} can be a conditional
probability distribution P = {Pc : c ∈ C}. Yet, it is useful to let Λ be a collection of sigma-finite
measures, so that we can define conditional densities with respect to dominating measures.

Based on this disintegration, we can define a new measure µ⊗Λ on the product (Ω× C,F ⊗B),
by the iterated integral:

(µ⊗Λ) (A) =
∫ [∫

IAdλc (ω)

]
dµ (c)

for all sets A ∈ F ⊗ B. The measure µ ⊗ Λ has to be well-defined to satisfy Condition 3 of the
Definition 3.

The existence of disintegration is guaranteed by the following theorem (Theorem 6 in Pollard [28],
Appendix F)).

Theorem 1. (Existence of disintegration) Let λ be a sigma-finite Radon measure on the Borel sigma-field F of
a metric space Ω. Let µ be a sigma-finite measure on B that dominates the image measure λ

(
C−1) (i.e., the

measure on B induced by the map C and the measure λ). If the set:

graph (C) ≡ {(ω, c) ∈ Ω× C : C (ω) = c}

is F ⊗ B measurable, then λ has a (C, µ)-disintegration, Λ = {λc : c ∈ C}, uniquely determined up to
µ-equivalence (i.e., if {λ∗c : c ∈ C} is another (C, µ)-disintegration, then µ {c ∈ C : λc 6= λ∗c } = 0).

To guarantee the existence of the (C, µ)-disintegration, we need, therefore, to restrict: (i) Ω to be
a metric space with the Borel sigma-field F ; (ii) λ to be a sigma-finite Radon measure; and (iii) the
set graph (C) ≡ {(ω, c) ∈ Ω×F : C (ω) = c} to be F ⊗B measurable. Depending on the problem at
hand, it may be reasonable to assume (i) directly. To see the importance of the requirements (ii) and (iii),
we briefly describe how the proof works. We then finally discuss the existence of conditional densities.

First, assume that Ω is a compact metric space, and letK0 be a compact paving. A compact paving
is a class of compact sets in Ω that is closed under finite unions and intersections. One can show
that K0 is countable when Ω is compact. The proof carefully constructs a finitely additive measure
λc : K0 → R+, for some c ∈ C, so that the desired “measure-like” properties of the disintegration
(Definition 3) hold for µ-almost all c. Because K0 is countable, all of the desired properties of λc hold,
except on countably many negligible sets, which can be collected into a single negligible set. It is
shown, then, that there exists a unique extension of λc to a countably additive measure defined on a
sigma-field containing K0 (see [28], Appendix A)). The extension is (inner) approximated by compact
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sets. By construction, all of the desirable properties hold for the extension of λc and for all c /∈ N,
where N is a single set with µ (N) = 0. The proof then shows that c 7−→ λc (A) is B-measurable for
all Borel sets A ∈ F . Finally, the argument is extended for Ω that is not compact, but the measure λ

concentrates all of the mass on a disjoint union of countably many compact Borel sets; i.e., the measure
λ is a sigma-finite Radon measure. Intuitively, the proof explores compact approximations as a way to
obtain countable additivity from finite additivity and to collect the negligible sets into a single null
set N.

Pachl [49] shows that a sigma-finite Radon λ (Requirement (ii)) is a necessary condition for
existence of disintegration. Therefore, even when Ω is not compact (or not separable), λ must have
separable support.22

The third requirement, the F ⊗ B-measurability of the set graph (C), is also necessary because
the measure:

(µ⊗Λ) (A) =
∫ [∫

IAdλc (ω)

]
dµ (c) = λ {ω ∈ Ω : (ω, C (ω)) ∈ A}

is well-defined only if A ∈ F ⊗ B. The condition is not innocuous: it is well known that the graph (C)
may not be F ⊗B-measurable even when C is measurable. The F ⊗B-measurability can be obtained
if the σ-field B is countably generated and contains all of the singleton sets {c} (see [28], p. 344).
In particular, if B is the Borel σ-field on the separable metric space C, these conditions are satisfied
(see [28], p. 103).

A separable C with the Borel σ-field B is sufficient, but not necessary, for the F ⊗B-measurability
of the graph (C). It is possible, but not trivial to obtain such a result for non-separable spaces.
Hansell [51] provides very abstract (and somewhat difficult to interpret) sufficient conditions for
the F ⊗ B-measurability when C is not separable. Yet, even if the F ⊗ B-measurability holds for a
non-separable C, the Radon measure λ puts all mass on a separable subset of C. To see why, let G
be a countable union of compact sets on Ω, such that λ (Gc) = 0, where Gc is the complement of G.
The map g : Ω→ Ω× C defined by g (ω) = (ω, C (ω)) is such that λ concentrates all mass in the set
g (G). If C is Borel measurable, the set g (G) ⊂ Ω× C is separable and, so, is C (G) (see Bogachev [52],
Corollary 6.10.17)). The image measure of C under λ therefore puts all mass on a separable subset of C
when C is non-separable. Therefore, although C does not have to be separable to obtain the existence
of disintegration, it seems difficult to get away from separability in this context.

The next theorem provides the conditions under which conditional densities exist (Theorem 12 in
Pollard [28], Chapter 5).

Theorem 2. (Conditional densities) Let P be a probability measure on (Ω,F ) with density f (ω) with respect
to the sigma-finite measure λ. Let λ have a (C, µ)-disintegration Λ = {λc : c ∈ C}. Then:

1. The image measure Q = P
(
C−1) (i.e., the probability distribution of C induced by P) is absolutely

continuous with respect to µ, with density q (c) ≡
∫

f (ω) dλc (ω).
2. The set {(ω, c) ∈ Ω× C : q (c) = ∞ or q (c) = 0} has zero µ⊗Λ measure.
3. The probability measure P has conditional distribution {Pc : c ∈ C} given C, where Pc is defined by

having density:

f (ω|c) ≡ f (ω)

q (c)
{0 < q (c) < ∞} (12)

with respect to λc, for Q-almost all c ∈ C.

22 Formally, the necessary condition is that λ must be approximated by a compact paving that is closed under
countable unions.
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The formula in (12) is the general version of the conditional density as the ratio of the joint density
to the marginal density, but not requiring C to belong to a Euclidean space. To guarantee the existence
of the conditional density, we therefore need the existence of the (C, µ)-disintegration Λ = {λc : c ∈ C}.
For a more detailed discussion, see [28–30,50].
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