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Abstract: We consider a class of panel tests of the null hypothesis of no cointegration and cointegration.
All tests under investigation rely on single-equations estimated by least squares, and they may be
residual-based or not. We focus on test statistics computed from regressions with intercept only
(i.e., without detrending) and with at least one of the regressors (integrated of order 1) being
dominated by a linear time trend. In such a setting, often encountered in practice, the limiting
distributions and critical values provided for and applied with the situation “with intercept only”
are not correct. It is demonstrated that their usage results in size distortions growing with the panel
size N. Moreover, we show which are the appropriate distributions, and how correct critical values
can be obtained from the literature.
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1. Introduction

Most panel tests for the null hypothesis of (no) cointegration rely on single-equations, notable
exceptions being Larsson et al. [1], Groen and Kleibergen [2], Breitung [3] and Karaman Örsal
and Droge [4] who proposed panel system approaches. In particular, the more recent paper
by Miller [5], building on nonlinear instrumental variable likelihood-based rank tests, allows for
cross-correlation between the units. Similarly, recent single-equation tests by Chang and Nguyen [6] or
Demetrescu et al. [7] also rely on nonlinear instrumental variable estimation, while the vast majority of
such panel tests builds on ordinary or fully modified or dynamic least squares (LS). Here, we study
exactly this class of LS-based single-equation panel tests for the null of either cointegration or no
cointegration.

We focus on the situation where the test statistics are computed from regressions with an
intercept only, and with at least one of the integrated regressors displaying a linear time trend
on top of the stochastic trend. Such a constellation is often met in practical applications, see for
instance Coe and Helpman [8] and Westerlund [9] on R&D spillovers (total factor productivity
and capital stock), Larsson et al. [1] on log real consumption and income (per capita), or
Hanck [10] on prices and exchange rate series testing the weak purchasing power parity (PPP).
The relevance of a linear trend in panel data has been addressed in Hansen and King [11] when
commenting on the link between health care expenditure and GDP, see McCoskey and Selden [12];
consequently, Blomqvist and Carter [13], Gerdtham and Löthgren [14] or Westerlund [15] worked
(partly) with detrended series, i.e., they included time as an explanatory variable in their panel
tregressions. Hansen ([16], p. 103), however, argue that “it seems reasonable that excess detrending
will reduce the test’s power”. Therefore, we study the empirically relevant case where test statistics are
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computed from regressions with intercept only (i.e., without detrending) when at least one of the I(1)
regressors displays a linear time trend.

Before becoming more technical, we want to outline our findings as a rule for empirical applications.
Let Z̄(m) denote a generic panel cointegration statistic computed from a regression with intercept only
involving m = k + 1 I(1) variables. The least squares regression may be static in levels,

yi,t = ᾱi + β̄i,1xi,1,t + · · ·+ β̄i,kxi,k,t + ūi,t , t = 1, . . . , T, i = 1, . . . , N ,

where {ui,t} is assumed to be I(1) in the case of no cointegration, or I(0) under the null hypothesis
of cointegration, see Remarks 1 and 3 below, respectively. Alternatively, Z̄(m) may be from the
error-correction regression1,

∆yi,t = κ̄i + γ̄iyi,t−1 + θ̄i,1xi,1,t−1 + · · ·+ θ̄i,kxi,k,t−1 + ε̄i,t , t = 1, . . . , T, i = 1, . . . , N ,

where contemporaneous differences ∆xi,t or additional lags of differences may be required as additional
regressors to render ε̄i,t free of serial correlation, see Remark 2 below. The test statistic may be
constructed from pooling the data or from averaging individual statistics, see e.g., Pedroni [18,19] or
Westerlund [15]. Much of the nonstationary panel literature relies on sequential limit theory where
T → ∞ is followed by N → ∞, such that limiting normality can be established under the assumption
that none of the I(1) regressors follows a deterministic time trend:

√
N
(

Z̄(m) − µ̄m

)
/σ̄m ∼ N (0, 1) .

The constants µ̄m and σ̄m required for appropriate normalization are typically tabulated for
a selected number of values of m, see again Remarks 1 through 3. A different set of such moments
µ̃m and σ̃m is also typically given for detrended regressions, where the test statistic Z̃(m) stems from
regressions of the type (m = k + 1)

yi,t = α̃i + δ̃it + β̃i,1xi,1,t + · · ·+ β̃i,kxi,k,t + ũi,t ,

or
∆yi,t = κ̃i + ψ̃i t + γ̃iyi,t−1 + θ̃i,1xi,1,t−1 + · · ·+ θ̃i,kxi,k,t−1 + ε̃i,t .

We call such regressions “detrended” because, in a single-equation framework, the resulting
parameter estimators are equivalent to what one obtains from a two-step procedure: first, regress
all variables on a linear time trend, and, second, regress the individually detrended residuals on
each other. This equivalence is sometimes called Frisch-Waugh-Lovell Theorem, see e.g., Greene ([20],
Theorem 3.2). For generic Z̃(m) from, e.g., the tests mentioned in Remarks 1 through 3, it holds,
irrespective of an eventual linear trend in the data, that

√
N
(

Z̃(m) − µ̃m

)
/σ̃m ∼ N (0, 1) .

Our main contribution is twofold for the case that at least one of the I(1) regressors has a linear
time trend and the regressions are run with intercept only (without detrending). First, it is shown
that the normalization with µ̄m and σ̄m and the resulting critical values for Z̄(m) from the regression
“with intercept only” are not correct in the presence of linear time trends in the data. It is analytically
(Proposition 1) and numerically demonstrated that their usage results in size distortions growing
with the panel size N. Second, we characterize the appropriate limiting distributions by showing

1 Under the alternative of cointegration, the intercept κ from the error correction form can be decomposed in a rather
complicated way, see Juselius ([17], Section 6.2)); below; however, we will maintain the assumption of no cointegration.
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that normalization of Z̄(m) with µ̃m−1 and σ̃m−1 results in a standard normal limit, such that the size
of the tests can be controlled (Theorem 1). Put differently, Theorem 1 means in non-technical terms:
The limiting distribution arising from a regression on k I(1) variables with drift and an intercept
amounts to the limiting distribution in the case of a regression on k− 1 I(1) variables and an intercept
plus a linear time trend. Such a rule is known in a pure time series context for the special case of the
residual-based Phillips-Ouliaris test for no cointegration from Hansen ([16], p. 103): “[...] deterministic
trends in the data affect the limiting distribution of the test statistics whether or not we detrend the
data”; see also the expositions in Hamilton ([21], p. 596, 597) and Hassler ([22], Proposition 16.6).
It is even more relevant in our panel framework since we illustrate numerically and analytically that
the size distortions of an inappropriate normalization grow with the panel size N (either to zero or
one, depending on the specific test). Moreover, we compare our proposal to account for linear trends
in the data with the more traditional method of detrending the regression. By simulation, we show
that power gains of our new strategy according to Theorem 1 over detrending may be considerable.
We hence recommend this strategy as being superior to detrending.

The rest of the paper is organized as follows. The next section sets some notation and assumptions.
Section 3 establishes and discusses our asymptotic results and illustrates them with numerical evidence.
It also compares our suggestion to account for linear trends with the conventional method of detrending.
The last section discusses consequences for applied work. Mathematical proofs are relegated to
the Appendix A.

2. Notation and Assumptions

Restricting our attention to the single-equation framework we partition the m-vector zi,t of
observables into a scalar yi,t and a k-element vector xi,t, z′i,t = (yi,t, x′i,t), m = k + 1. As usual, the index
i stands for the cross-section, i = 1, . . . , N, while t denotes time, t = 1, . . . , T. Each sequence {zi,t},
t = 1, . . . , T, is assumed to be integrated of order 1, I(1), where we allow for a non-zero drift, and
assume for simplicity a negligible starting value, zi,0 = 0. While {zi,t} may be cointegrated or not,
depending on the respective null hypothesis, we rule out cointegration among {xi,t}. Technically, these
assumptions translate as follows, where Wi,m(·) denotes an m-dimensional standard Wiener process,
bxc stands for the integer part of a number x, and⇒ is the symbol for weak convergence.

Assumption 1. With obvious partitioning according to (yi,t, x′i,t)
′, we assume (i = 1, . . . , N)

zi,t = µi,z t +
t

∑
j=1

ei,j =

(
µi,y
µi,x

)
t +

t

∑
j=1

(
ei,y,j
ei,x,j

)
, t = 1, . . . , T .

The stochastic zero mean process {ei,t} is integrated of order 0 in that it satisfies

T−0.5
brTc

∑
t=1

ei,t ⇒ Ω0.5
i Wi,m(r) = Ω0.5

i

(
Wi,y(r)
Wi,x(r)

)
, r ∈ [0, 1] ,

with

Ωi =

(
ω2

i,yy ω′i,xy
ωi,xy Ωi,xx

)
,

where ω2
i,yy > 0 and Ωi,xx is positive definite.

Now, we turn to assumptions with respect to the tests. Let S̄(m)
i and S̃(m)

i stand again for generic
test statistics computed from individual single-equation least squares regressions with “intercept only”
and “intercept plus linear trend”, respectively. The superscript (m) stands for the dimension of the I(1)
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vector entering the equations. One route to panel testing relies on so-called group statistics averaging
individual statistics. We denote them as follows:

Ḡ(m) =
1
N

N

∑
i=1

S̄(m)
i or G̃(m) =

1
N

N

∑
i=1

S̃(m)
i .

Similarly, panel statistics rely on pooling the data across the dimension within, i.e., summing over
terms showing up in the numerator and denominator separately,

P̄(m) = g

(
N

∑
i=1

N̄(m)
i,T ,

N

∑
i=1

D̄(m)
i,T

)
or P̃(m) = g

(
N

∑
i=1

Ñ(m)
i,T ,

N

∑
i=1

D̃(m)
i,T

)
.

A typical example for the mapping g is g(x, y) = x/
√

y in the case of t-type statistics. Here, it is

assumed that the generic N̄(m)
i,T and D̄(m)

i,T or Ñ(m)
i,T and D̃(m)

i,T are computed from individually demeaned
or detrended regressions, respectively. We allow for group and panel statistics by introducing the
generic notation Z̄(m) and Z̃(m), and maintain for the panel the joint null hypothesis

H0 =
N⋂

i=1

Hi,0 . (1)

A distinction between the individual null hypotheses Hi,0 of cointegration or absence of
cointegration is not required, and both cases are treated in the generic assumption as follows.

Assumption 2. Consider linear single-equation least squares regressions (i = 1, . . . , N, t = 1, . . . , T)

yi,t = ᾱi + β̄′ixi,t + ūi,t and yi,t = α̃i + δ̃i t + β̃′ixi,t + ũi,t , (2)

or
∆yi,t = κ̄i + γ̄i yi,t−1 + θ̄′i xi,t−1 + ε̄i,t and ∆yi,t = κ̃i + ψ̃i t + γ̃i yi,t−1 + θ̃′i xi,t−1 + ε̃i,t , (3)

where contemporaneous differences ∆xi,t or lags of ∆zi,t−j, j > 0, may be required as additional regressors in
(3) to ensure residuals free of serial correlation. Let Z̄(m) and Z̃(m) stand for group statistics Ḡ(m) and G̃(m) or
for panel statistics P̄(m) and P̃(m) computed from regressions with “intercept only” and “intercept plus linear
trend”, respectively. We assume under the null hypothesis (1) that

√
N
(

Z̄(m) − µ̄m

)
⇒ N (0, σ̄2

m) if µi,z = 0 for all i = 1, . . . , N ,
√

N
(

Z̃(m) − µ̃m

)
⇒ N (0, σ̃2

m) for µi,z unrestricted ,

as T → ∞ followed by N → ∞.

Tests, e.g., by Kao [23], Pedroni [18,19], Westerlund [9,24] or Westerlund [15] meet Assumption 2
under different sets of restrictions, and they will be considered in the next section, see Remarks 1
through 3. In particular, these authors tabulate values of (µ̄m, σ̄m) and (µ̃m, σ̃m), m ≥ 2. Our assumption
of a single equation approach is motivated by the fact that much of applied work relies on this.
However, such an assumption comes at a price: In (2), we have to assume that the regressors xi,t
alone are not cointegrated (Ωi,xx is positive definite according to Assumption 1), and, in (3), we have
to assume under the alternative of cointegration that ∆yi,t adjust to deviations from the long-run
equilibrium, and not ∆xi,t.

Much of the earlier panel cointegration literature assumed independent units invoking a central
limit theorem to establish Assumption 2, see e.g., Pedroni [18,19] and Kao [23]. Cross-sectional
independence, however, is not maintained in our Assumption 2. Westerlund [15,24] e.g., allows for
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cross-correlation driven by a common factor. To account for this, he suggests replacing xi,t and yi,t by
the cross-sectionally demeaned time series,

xi,t − x̄t and yi,t − ȳt , where x̄t =
1
N

N

∑
i=1

xi,t , ȳt =
1
N

N

∑
i=1

yi,t .

This way, he establishes that the limiting results maintained under Assumption 2 are met under
cross-sectional correlation (subject to some restrictions).

3. Results

3.1. Asymptotic Theory

The first paper allowing for linear time trends in a panel cointegration context was by Kao [23].
He considers a residual-based unit root test for the null hypothesis of no cointegration in the tradition
of Phillips and Ouliaris [25]. His test builds on pooling the data while allowing for a individual-specific
intercept. Kao [23] does not consider regressions containing a linear time trend as additional regressors,
but allows for a linear drift in the data when performing a regression with a fixed effect intercept.
In the case of the k = 1 regressor (i.e., m = 2), Kao ([23], Equation (15)) observed that the linear time
trend dominates the I(1) component; hence, the limiting distribution amounts to that of the panel unit
root test by Levin et al. [26] upon detrending. To be precise: let µ̃1 and σ̃1 denote the normalizing
constants provided by Levin et al. [26] for detrended panel unit root tests; then, one should use them
for the pooled residual-based panel cointegration statistic P̄(2) in a bivariate regression if the regressor
is I(1) with drift, see Kao ([23], Theorem 4):

√
N
(

P̄(2) − µ̃1

)
⇒ N (0, σ̃2

1 ) under µi,x 6= 0 . (4)

In Theorem 1, we extend Kao’s result for any panel or group statistics from static or dynamic
regressions with m ≥ 2 computed from regressions with intercept only in the presence of linear
time trends.

Theorem 1. Let the data satisfy Assumption 1, and the generic test statistic Z̄(m) meets Assumption 2 for
m ≥ 2. Furthermore, assume that µi,x 6= 0 for all i = 1, . . . , N. Under the null hypothesis (1), it then holds
true that √

N
(

Z̄(m) − µ̃m−1

)
⇒ N (0, σ̃2

m−1)

as N → ∞, where (µ̃m−1, σ̃m−1) are from Assumption 2.

For proof, see Appendix A.
Note that Assumption 2 does not impose any restriction on µi,y. As is shown in the proof,

Theorem 1 holds irrespective of whether {yi,t} displays a linear trend or not (µi,y 6= 0 or µi,y = 0).
Two research strategies can be employed in the presence of linear time trends when dealing with

statistics resulting from regressions with intercept only. The first one simply ignores the linear time
trends in the data and standardizes Z̄(m) with µ̄m and σ̄m. The second strategy accounts for the drift in
the data according to Theorem 1; in other words, it applies Z̄(m) upon standardizing with µ̃m−1 and
σ̃m−1. We summarize as follows:

Strategy SI : When Z̄(m) is computed from panel regressions without detrending, then compare√
N
(

Z̄(m) − µ̄m

)
/σ̄m with quantiles from the standard normal distribution, i.e., ignore the presence

of linear trends in the data.
Strategy SA: When Z̄(m) is computed from panel regressions without detrending, then compare√

N
(

Z̄(m) − µ̃m−1

)
/σ̃m−1 with quantiles from the standard normal distribution, i.e., account for the

presence of linear trends in the data.
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For the rest of the paper, we assume that an applied econometrician is able to distinguish between
the two cases, whether a linear time trend underlies the variables (e.g., log income or log prices) or not
(e.g., interest or inflation rates). Hence, we maintain the assumption behind Theorem 1: the researcher
knows that at least one regressor is I(1) with drift (µi,x 6= 0). We assume that strategy SA is only
employed when linear trends are truly present and thus refrain from the discussion of misspecification:
what happens if there are no linear time trends in the data, but one erroneously accounts for trends.

The situation analyzed in Theorem 1 has not been considered in the previous panel cointegration
literature, with the notable exception of Kao [23]. Consequently, all applied papers that we are aware
of standardize Z̄(m), with µ̄m and σ̄m ignoring the effect of deterministic trends in the series, which
amounts to strategy SI . The effect of strategy SI under linear time trends is discussed for growing N in
the following proposition. The resulting size distortions depend on whether the test is right-tailed or
left-tailed (null hypothesis is rejected for too large or too small values, respectively).

Proposition 1. Let the assumptions from Theorem 1 hold true. Furthermore, assume

µ̃m−1 < µ̄m . (5)

Under the null hypothesis, one has the following results for strategy SI :

(a) For a left-tailed test, the probability to reject according to strategy SI increases with growing N to 1;
(b) for a right-tailed test, the probability to reject according to strategy SI decreases with growing N to 0.

For proof, see Appendix A.
We now discuss a couple of panel tests satisfying Assumption 2 and (5), such that Theorem 1 and

Proposition 1 apply.

Remark 1. The residual-based unit root tests for the null hypothesis of no cointegration proposed by
Pedroni [18,19] build on static regressions as in (2). The null hypothesis (1) is rejected for too negative values
of the test statistic (of Z̄(m) in our generic notation). The expected values and standard deviations (µ̄m, σ̄m)

and (µ̃m, σ̃m) showing up in Assumption 2 are available from Pedroni ([18], Table 2) for m > 2 and from
Pedroni ([19], Corollary 1) for m = 2. In order to apply Theorem 1 (strategy SA) for m = 2, one requires µ̃1

and σ̃1. These values stem from the detrended Dickey-Fuller distribution in the case of group statistics and have
been tabulated by Nabeya ([27], Table 4): µ̃1 = −2.18136 and σ̃1 = 0.74991. Throughout this, we observe
µ̃m−1 < µ̄m < 0. Hence, Proposition 1(a) applies. If strategy SI is employed under linear trends, and then
the probability to reject the true null hypothesis converges into one with growing panel size N. Alternatively,
Westerlund [24] suggested group and panel variance ratio type tests along the lines of Breitung [28]. The null
hypothesis of no cointegration is rejected again for too small values of the variance ratio statistic, and (µ̄m, σ̄m)

and (µ̃m, σ̃m) showing up in Assumption 2 are given in Westerlund ([24], Table 1) for m ≥ 2. To apply
Theorem 1 with m = 2, we need µ̃1 and σ̃1. For the detrended Breitung distribution we obtain by simulation
µ̃1 = 0.0110 and σ̃1 = 0.005197, which are the values corresponding to the case of group statistics. Again, we
observe 0 < µ̃m−1 < µ̄m, so that (5) holds. Consequently, Proposition 1(a) applies, and the probability to reject
the true null hypothesis under strategy SI grows with N as long as there is a linear trend in the data. To sum up:
in the case of residual-based tests for no cointegration, strategy SI results in massive size distortions; numerical
evidence for finite N is given in Table 1 below.

Remark 2. The error-correction tests by Westerlund [15] relies on regressions of type (3). It is again a left-tailed
test: The null hypothesis of no cointegration is rejected for too negative t-values associated with γ. Values
of (µ̄m, σ̄m) and (µ̃m, σ̃m) are tabulated in Westerlund ([15], Table 1) for m ≥ 2. In case of m = 1 (i.e., no
xi,t on the right-hand side), the limiting distributions are of the usual Dickey-Fuller type. Hence, µ̃1 and
σ̃1 for group statistics are again from detrended Dickey-Fuller-type distributions and given in Nabeya ([27],
Table 4) (see above). Comparing µ̄m with µ̃m, we find µ̃m−1 < µ̄m < 0 meeting (5) again. Consequently,
strategy SI is increasingly liberal in the presence of linear time trends, and the probability to reject the true null
hypothesis approaches 1 in the limit as long as the series display a linear time trend. For numerical evidence,
see Table 2 below.
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Remark 3. We now flip the null and the alternative hypotheses. Westerlund [9] suggested testing the null
hypothesis of cointegration. He proposed a CUSUM group test statistic for this null hypothesis to be applied
with tabulated values (µ̄m, σ̄m) and (µ̃m, σ̃m), m ≥ 2. To apply Theorem 1 for m = 2, we provide as moments of
the univariate, detrended distribution by simulation: µ̃1 = 0.6367 and σ̃1 = 0.145952. This test is right-tailed
and in accordance with Westerlund ([9], Table 1) 0 < µ̃m−1 < µ̄m. Thus, this time Proposition 1(b) comes in.
Under strategy SI in the presence of linear trends, the test is increasingly undersized with growing N. Such a
conservative behaviour implies low power under the alternative hypothesis.

3.2. Numerical Evidence

The statements obtained from Proposition 1 may be quantified more precisely by means of
Equations (A2) and (A3) given in the Appendix. These rejection probabilities apply approximately
(for large N) under the null hypothesis at nominal significance level α. We report results for the group
t-tests by Pedroni [18,19] and by Westerlund [15] in Tables 1 and 2.

Table 1. Approximate effective size of the group t-test by Pedroni [18,19] computed from (A2) at
nominal level α under strategy SI for µi,x 6= 0.

N = 10 20 30 40 50

α = 0.01 0.030 0.053 0.079 0.107 0.137
k = 1 α = 0.05 0.126 0.190 0.249 0.307 0.361

α = 0.10 0.227 0.314 0.389 0.455 0.515

α = 0.01 0.017 0.024 0.030 0.036 0.043
k = 2 α = 0.05 0.080 0.102 0.122 0.141 0.159

α = 0.10 0.154 0.188 0.217 0.243 0.268

α = 0.01 0.014 0.017 0.020 0.022 0.025
k = 3 α = 0.05 0.067 0.078 0.087 0.096 0.104

α = 0.10 0.130 0.148 0.162 0.175 0.187

Table 2. Approximate effective size of the group t-test by Westerlund [15] computed from (A2) at
nominal level α under strategy SI for µi,x 6= 0

N = 10 20 30 40 50

α = 0.01 0.139 0.352 0.564 0.732 0.846
k = 1 α = 0.05 0.394 0.669 0.836 0.924 0.967

α = 0.10 0.566 0.808 0.921 0.969 0.988

α = 0.01 0.089 0.208 0.344 0.478 0.598
k = 2 α = 0.05 0.283 0.484 0.644 0.763 0.846

α = 0.10 0.436 0.645 0.783 0.870 0.924

α = 0.01 0.067 0.150 0.247 0.349 0.450
k = 3 α = 0.05 0.232 0.392 0.531 0.647 0.738

α = 0.10 0.372 0.553 0.687 0.783 0.852

Generally, the size distortions in Tables 1 and 2 grow with N, while decreasing with m = k + 1
at the same time. The fact that SI is too liberal is characteristic for these tests where we reject for too
negative values (of

√
N(Z̄(m) − µ̄m)/σ̄m in our generic notation). Overrejection is not the general case,

however, as we see when reversing the null and alternative hypotheses. To quantify distortions for the
CUSUM test discussed in Remark 3, we use Equation (A3) from the Appendix. When evaluating SI

2 The univariate distribution is the supremum over the absolute value of a so-called second-level Brownian bridge, which
shows up with the detrended KPSS test, too; see Kwiatkowski et al. [29].
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under µi,x 6= 0, we observe rejection probabilities equal to zero up to three digits for N = 10, 20, . . .;
this strongly supports the limiting result from Proposition 1 (b).

3.3. Regressions with a Linear Time Trend

For regressions with intercept only, strategy SI has been used in the literature and applied with
the tests mentioned in the remarks above. We have illustrated its failure to control size under the null
hypothesis in the presence of a linear time trend. In practice, one may use two strategies to account
for linear time trends. The first one is the new SA according to Theorem 1 from regressions without
detrending. The second one consists of detrending the series, or equivalently running detrended
regressions, i.e., including δ̃it and ψ̃it in (2) and (3), respectively. The empirical strategy then becomes
the following:

Strategy SD: Compute Z̃(m) from detrended panel regressions and compare the normalization√
N
(

Z̃(m) − µ̃m

)
/σ̃m with quantiles from the standard normal distribution.

By Assumption 2, this strategy will provide asymptotically correct size. However, tests from
detrended regressions will be prone to power losses relative to strategy SA, which is more parsimonious.
For this reason, we next investigate the price of strategy SD relative to SA in terms of power.

In Monte Carlo experiments, we study in particular the error-correction test (group t-statistic) by
Westerlund [15]. Before turning to a power analysis, we make sure that size is under control. For the
data-generating process (DGP), we consider hence the null hypothesis of no cointegration under linear
time trends:

yi,t = δit + xi,1,t + xi,2,t + · · ·+ xi,k,t + ri,0,t , (6)

t = 1, 2, . . . , T , i = 1, 2, . . . , N ,

xi,j,t = µi,j,x + xi,j,t−1 + vi,j,t , j = 1, 2, ..., k , (7)

where {vi,j,t} are normal iid sequences,N (0, σ2
i,j), independent of each other. Finally, ri,0,t = ri,0,t−1 + vi,0,t is

an independent random walk entering (6). The DGP under the alternative of cointegration becomes

∆yi,t = −0.02 (yi,t−1− δi(t− 1)− xi,1,t−1− xi,2,t−1− · · · − xi,k,t−1) + vi,0,t , (8)

where xi,j,t and vi,0,t are generated as before. Using the regression

∆yi,t = κ̄i + γ̄iyi,t−1 + θ̄′ixi,t−1 + φ̄′i∆xi,t + ε̄i,t , (9)

we computed the group t-statistic proposed by Westerlund [15]. Strategy SD is employed with

∆yi,t = κ̃i + ψ̃it+ γ̃iyi,t−1 + θ̃′ixi,t−1 + φ̃′i∆xi,t + ε̃i,t . (10)

All reported rejection frequencies rely on 10,000 replications.
The leading case consists of the following parameterization, where only the first component of

the regressors {xi,t} is driven by a linear time trend:

T = 250 , µ′i,x = (1, 0, . . . , 0) , σ2
i,0 = σ2

i,1 = · · · = σ2
i,k = 1 . (11)

This mimics with k = 2 or k = 3 a typical macro panel with monthly data and e.g., income, interest
rates and inflation rates as regressors. Table 3 reports the frequencies of rejection for different values of
δi from (6), and rejection is based on strategy SA according to Theorem 1. It illustrates how well the
rule of Theorem 1 works: the experimental sizes are close to the nominal ones. This is particularly
true for δi = 1, while the test is mildly conservative for δi = 0.1, and a bit more conservative for
δi = 0, in particular for N large relative to T = 250. Next, we consider strategy SD with the same data.



Econometrics 2016, 4, 45 9 of 16

The rejection frequencies are given in Table 4. We observe that the experimental size from detrended
regressions is close to the nominal one under the null hypothesis of no cointegration, irrespective of δi.

Since strategies SA and SD both hold the nominal size, the question of which one is more powerful
naturally arises. The results contained in Table 5 are very clear: first, the power increases with δi;
second, strategy SA always outperforms SD considerably, and has, e.g., rejection frequencies more than
twice as large for N = 10 or k = 3. In particular, detrending becomes all the more costly; relative to
strategy SA, the larger N is, which is intuitively clear: including a linear time trend in a regression
requires the estimation of an additional parameter; in a panel of N units, detrending thus involves the
estimation of N additional parameters compared to strategy SA. At the same time, these estimated
trends can be spuriously correlated with the stochastic trends in the data, and, therefore, incorrectly
lead to support for cointegration, in particular when the time dimension is relatively short.

Table 3. Experimental size at nominal level α under SA according to Theorem 1 for (11); data-generating
process (DGP): (6) and (7).

N = 10 20 30 40 50

δi = 0

α = 0.01 0.010 0.009 0.008 0.008 0.008
k = 1 α = 0.05 0.048 0.048 0.043 0.040 0.041

α = 0.10 0.093 0.095 0.087 0.080 0.083

α = 0.01 0.008 0.009 0.007 0.009 0.006
k = 2 α = 0.05 0.046 0.040 0.039 0.040 0.034

α = 0.10 0.093 0.082 0.083 0.082 0.073

α = 0.01 0.010 0.010 0.012 0.010 0.011
k = 3 α = 0.05 0.051 0.052 0.052 0.049 0.052

α = 0.10 0.101 0.101 0.102 0.098 0.098

δi = 0.1

α = 0.01 0.009 0.010 0.009 0.008 0.008
k = 1 α = 0.05 0.050 0.048 0.048 0.044 0.043

α = 0.10 0.096 0.095 0.096 0.089 0.088

α = 0.01 0.009 0.009 0.008 0.009 0.007
k = 2 α = 0.05 0.044 0.047 0.045 0.046 0.040

α = 0.10 0.093 0.094 0.090 0.092 0.085

α = 0.01 0.013 0.013 0.013 0.013 0.011
k = 3 α = 0.05 0.055 0.056 0.058 0.056 0.054

α = 0.10 0.107 0.112 0.110 0.107 0.108

δi = 1

α = 0.01 0.009 0.010 0.008 0.009 0.009
k = 1 α = 0.05 0.047 0.045 0.045 0.042 0.044

α = 0.10 0.095 0.092 0.095 0.090 0.091

α = 0.01 0.011 0.009 0.008 0.010 0.009
k = 2 α = 0.05 0.051 0.046 0.045 0.044 0.042

α = 0.10 0.097 0.093 0.090 0.086 0.084

α = 0.01 0.011 0.013 0.011 0.013 0.013
k = 3 α = 0.05 0.056 0.054 0.055 0.055 0.056

α = 0.10 0.105 0.108 0.108 0.107 0.107
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Table 4. Experimental size at nominal level α under SD (detrending) for (11); DGP: (6) and (7).

N = 10 20 30 40 50

δi = 0

α = 0.01 0.010 0.010 0.008 0.010 0.010
k = 1 α = 0.05 0.047 0.047 0.045 0.048 0.044

α = 0.10 0.098 0.095 0.091 0.091 0.087

α = 0.01 0.012 0.012 0.013 0.012 0.012
k = 2 α = 0.05 0.057 0.057 0.056 0.059 0.057

α = 0.10 0.112 0.108 0.106 0.108 0.111

α = 0.01 0.013 0.008 0.012 0.013 0.010
k = 3 α = 0.05 0.055 0.050 0.050 0.055 0.049

α = 0.10 0.104 0.099 0.101 0.098 0.099

δi = 0.1

α = 0.01 0.009 0.009 0.010 0.009 0.010
k = 1 α = 0.05 0.051 0.050 0.049 0.051 0.048

α = 0.10 0.097 0.103 0.100 0.100 0.096

α = 0.01 0.012 0.013 0.013 0.015 0.014
k = 2 α = 0.05 0.059 0.062 0.061 0.058 0.063

α = 0.10 0.116 0.117 0.115 0.113 0.117

α = 0.01 0.011 0.012 0.012 0.012 0.013
k = 3 α = 0.05 0.054 0.052 0.052 0.052 0.055

α = 0.10 0.107 0.104 0.104 0.104 0.107

δi = 1

α = 0.01 0.011 0.010 0.013 0.011 0.010
k = 1 α = 0.05 0.052 0.047 0.048 0.050 0.050

α = 0.10 0.104 0.095 0.096 0.098 0.095

α = 0.01 0.015 0.011 0.014 0.014 0.012
k = 2 α = 0.05 0.062 0.061 0.060 0.062 0.058

α = 0.10 0.119 0.119 0.116 0.119 0.115

α = 0.01 0.013 0.015 0.012 0.014 0.013
k = 3 α = 0.05 0.053 0.056 0.053 0.053 0.054

α = 0.10 0.110 0.106 0.101 0.112 0.105

We have varied the leading case with the parameterization from (11). First, we allowed for more
and stronger trends in the regressors,

µ′i,x = (1, 1, . . . , 1) , or µ′i,x = (1, 2, . . . , k) ,

with all other parameters fixed. This corrects the mild undersizedness of strategy SA reported in
Table 3 yielding empirical sizes very close to the nominal one. At the same, time power relative to
Table 5 is increased, with strategy SA still dominating SD. Second, we have increased the magnitude of
the random walks, namely σ2

i,0 = σ2
i,1 = · · · = σ2

i,k = 4, while the other parameters are from (11) and
δi = 0 (see Table 6). Here, the linear trends are less pronounced, such that SA results in slightly more
conservative tests (compared to the first panel in Table 3), and similarly, power is reduced (compared
to the first panel in Table 5). Still, SA clearly dominates SD in Table 6. Third, we simulated shorter
panels, T = 100. This makes both strategies, SA and SD, conservative under H0, which is accompanied
by a loss of power.
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Table 5. Experimental power at nominal level 5% for (11); DGP: (8) and (7).

N = 10 20 30 40 50

SA: Theorem 1 for δi = 0

k = 1 0.486 0.727 0.859 0.933 0.965
k = 2 0.284 0.433 0.559 0.672 0.751
k = 3 0.155 0.234 0.288 0.336 0.387

SD: Detrended regression for δi = 0

k = 1 0.235 0.379 0.497 0.615 0.707
k = 2 0.163 0.247 0.331 0.399 0.452
k = 3 0.087 0.118 0.133 0.156 0.173

SA: Theorem 1 for δi = 0.1

k = 1 0.536 0.772 0.904 0.953 0.981
k = 2 0.311 0.485 0.622 0.726 0.802
k = 3 0.174 0.252 0.319 0.384 0.439

SD: Detrended regression for δi = 0.1

k = 1 0.262 0.402 0.531 0.636 0.716
k = 2 0.170 0.261 0.337 0.417 0.476
k = 3 0.090 0.127 0.143 0.168 0.186

SA: Theorem 1 for δi = 1

k = 1 0.824 0.974 0.997 1.000 1.000
k = 2 0.526 0.759 0.890 0.950 0.979
k = 3 0.292 0.419 0.553 0.661 0.734

SD: Detrended regression for δi = 1

k = 1 0.395 0.605 0.757 0.852 0.911
k = 2 0.219 0.330 0.433 0.524 0.595
k = 3 0.101 0.129 0.145 0.170 0.189

Table 6. Experimental size and power at nominal level 5% for T = 250, µ′i,x = (1, 0, . . . , 0), δi = 0, and
σ2

i,j = 4; DGP: (6) or (8) and (7).

N = 10 20 30 40 50

SA: size

k = 1 0.043 0.039 0.037 0.036 0.034
k = 2 0.043 0.041 0.037 0.034 0.031
k = 3 0.050 0.049 0.045 0.045 0.042

SA: power

k = 1 0.410 0.622 0.771 0.869 0.920
k = 2 0.252 0.383 0.501 0.604 0.683
k = 3 0.147 0.205 0.257 0.304 0.364

SD: size

k = 1 0.048 0.047 0.049 0.048 0.049
k = 2 0.056 0.063 0.061 0.062 0.062
k = 3 0.058 0.052 0.053 0.051 0.057

SD: power

k = 1 0.236 0.387 0.522 0.622 0.699
k = 2 0.178 0.273 0.350 0.437 0.493
k = 3 0.102 0.136 0.161 0.192 0.213
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4. Conclusions

In time series econometrics, it has been known for a long time that “the deterministic
trends in the data affect the limiting distributions of the test statistics whether or not we detrend
the data” (Hansen [16], p. 103). This has been shown for the residual-based Phillips-Ouliaris (or
Engle-Granger) cointegration test by Hansen [16], see also the exposition in Hamilton ([21], p. 596,
597). Analogous results have been given for other cointegration tests by Hassler [30,31], see also the
summary by Hassler ([22], Proposition 16.6). In this paper, these findings are carried over to the panel
framework, and they are shown to continue to hold for single-equation tests relying on least squares,
no matter whether the null hypothesis is absence or presence of cointegration. In a regression involving
m ≥ 2 variables, much of the panel cointegration theory relies on normalization with suitable constants
µ̄m and σ̄m and letting the panel dimension N go to infinity to obtain a standard normal distribution.
The numbers µ̄m and σ̄m are tabulated for the case of regressions with intercept only. Different figures
µ̃m and σ̃m are tabulated for regressions with intercept and linear time trend. We show the following:
when statistics are computed from regressions with m integrated variables with intercept only, but
one of the integrated regressors is dominated by a linear time trend, then normalization with µ̃m−1

and σ̃m−1 is required to achieve asymptotically valid inference under the null hypothesis (Theorem 1).
Normalization with µ̄m and σ̄m, however, which has been the conventional strategy so far, results in a
loss of size control under the null hypothesis. In fact, employing µ̄m and σ̄m in the presence of linear
time trends gives rejection probabilities converging with N to 1 or 0, depending on whether the null
hypothesis is no cointegration or cointegration, respectively (see Proposition 1). To avoid such size
distortions, one may employ the strategy following Theorem 1, or one may work with detrended
regressions. Detrending, however, comes at a price: a regression with intercept only will provide more
powerful tests (see e.g., Hamilton [21], p. 598); according to our simulations, power gains of our new
strategy over detrending may be considerable and growing with N, and this also holds true if there is
a linear trend superimposing the level relation. Our Monte Carlo evidence, however, is limited to the
case of testing for the null hypothesis of no cointegration.

Hence, we propose the following empirical strategy if at least one of the integrated regressors is
driven by a linear time trend when testing for no cointegration. First, test the null hypothesis of no
cointegration with our new strategy SA from Theorem 1, since it is more powerful than tests relying
on detrending. If the null hypothesis of no cointegration is rejected according to Theorem 1, then one
may test, in a second step, whether a linear time trend is present, superimposing the level relation
between yi,t and xi,t. If strategy SA does not reject the null hypothesis of no cointegration, then one
may, of course, try a test building on detrending, although it will tend to be less powerful, since it
requires the estimation of N additional parameters.
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gratefully acknowledged.
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Appendix A

Appendix A.1. Proof of Theorem 1

Since group statistics Ḡ(m) are computed from individual regressions and since panel statistics
P̄(m) build on pooled regressions, we suppress the index i and consider the generic case with {yt}
and {xt} satisfying Assumption 1. Furthermore, we focus on the stochastic regressors and ignore the
constant intercept without loss of generality. We will proceed in four steps.
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Step 1: First, note that the regressors may be rotated in such a way that all linear trends are
concentrated in one scalar component. To that end, define the k-element vector λ1 := µx/

√
µ′xµx of

unit length with

τt := λ′1xt =
√

µ′xµx t + λ′1

t

∑
j=1

ex,j .

At the same time, there exist k − 1 linearly independent k-element columns collected in the
k× (k− 1)-matrix Λ2. Due to the Gram-Schmidt orthogonalization, one may assume that the invertible
matrix Λ := (λ1, Λ2) is orthogonal: ΛΛ′ = Ik. All columns of Λ2 eliminate the linear trend in xt:

ξt := Λ′2xt = Λ′2
t

∑
j=1

ex,j .

Hence, ξt is a (k− 1)-vector integrated of order 1 without drift. Now, we are able to write

Λ′xt =

(
τt

ξt

)
.

Step 2: Second, we show that the deterministic term in τt dominates the I(1) component, which is
clear from

T−1τbrTc =
√

µ′xµx
brTc

T
+ Op(T−0.5)⇒

√
µ′xµx r , 0 ≤ r ≤ 1 .

More precisely, we can show that empirical moments involving τt equal those with t
√

µ′xµx up to
Op
(
T−0.5). We have from Park and Phillips ([32], Lemma 2.1) that the row vector(

1
T2

T

∑
t=1

τt,
1

T3

T

∑
t=1

τ2
t ,

1
T2.5

T

∑
t=1

τtξ
′
t,

1
T2

T

∑
t=1

τt∆x′t−j

)

equals √
µ′xµx

(
1

T2

T

∑
t=1

t,
√

µ′xµx

T3

T

∑
t=1

t2,
1

T2.5

T

∑
t=1

tξ ′t,
1

T2

T

∑
t=1

t∆x′t−j

)
+ Op

(
T−0.5

)
;

furthermore, if µy 6= 0,(
1

T3

T

∑
t=1

τtyt,
1

T2

T

∑
t=1

τt∆yt

)
=
√

µ′xµx

(
1

T3

T

∑
t=1

tyt,
1

T2

T

∑
t=1

t∆yt

)
+ Op

(
T−0.5

)
,

or, if µy = 0,(
1

T2.5

T

∑
t=1

τtyt,
1

T1.5

T

∑
t=1

τt∆yt

)
=
√

µ′xµx

(
1

T2.5

T

∑
t=1

tyt,
1

T1.5

T

∑
t=1

t∆yt

)
+ Op

(
T−0.5

)
.

Now, we are equipped to deal with the two cases: residual-based tests from (2) and t-type tests
from (3).

Step 3: Consider the least squares regression (without intercept for brevity)

yt = β̂′xt + ût
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with

β̂ =

(
T

∑
t=1

xtx′t

)−1

Λ Λ′
T

∑
t=1

xtyt =

(
T

∑
t=1

Λ′xtx′t

)−1 T

∑
t=1

Λ′xtyt

=

(
T

∑
t=1

(
τt

ξt

)
x′t

)−1 T

∑
t=1

(
τt

ξt

)
yt .

Similarly,

β̂′Λ =
T

∑
t=1

(
τt , ξ ′t

)
yt

(
T

∑
t=1

(
τt

ξt

) (
τt , ξ ′t

))−1

.

Consequently, the empirical residuals are

ût = yt − β̂′Λ Λ′xt = yt −
T

∑
t=1

(
τt , ξ ′t

)
yt

(
T

∑
t=1

(
τt

ξt

) (
τt , ξ ′t

))−1(
τt

ξt

)
. (A1)

For yt, we have by assumption

yt = δ t + β′xt + ut = δ t + β′Λ Λ′xt + ut

= δ t + β′λ1τt + θ′ξt + ut , θ := Λ′2β .

If {ut} is I(1), then the series are not cointegrated. If {ut} is I(0), then there is cointegration,
where a linear time trend may superimpose the cointegrating relation (δ 6= 0) or not (δ = 0). In any
case, {yt} is composed of the (k− 1)-vector {ξt}, which is I(1), and a linear time trend asymptotically
(since δ t + β′λ1τt ≈ (δ + β′λ1

√
µ′xµx) t in the sense of Step 2). Therefore, the residuals {ût} behave

asymptotically as if they were computed from a regression on (k− 1) I(1) regressors and on a linear
trend. This establishes Theorem 1 for the case of residual-based tests.

Step 4: Consider the dynamic least squares regression (without intercept and without (lagged)
differences as further regressors for brevity):

∆yt = γ̂yt−1 + θ̂′xt−1 + ε̂t .

In order to investigate error-correction tests relying on the t statistic tγ, we employ what is
sometimes called the Frisch-Waugh-Lovell theorem. In the first stage, regress both ∆yt and yt−1 on
xt−1, and denote the fitted values as f0,t and f1,t, respectively. In the second stage, the regression of f0,t
on f1,t produces a slope estimator that is numerically identical to γ̂, and so are the residuals, while the
t-statistics differ negligibly due to differences in degrees of freedom. As in Step 3, Equation (A1), one
can argue that both f0,t and f1,t behave asymptotically, as if they were computed from a regression
on (k− 1) I(1) regressors and on a linear trend. Hence, because of the Frisch-Waugh-Lovell theorem,
tγ behaves as if xt−1 in (3) had been replaced by a linear time trend as regressor plus (k− 1) regressors
that are I(1). This establishes Theorem 1 for the case of error-correction tests, and the proof is complete.
�

Appendix A.2. Proof of Proposition 1

According to Theorem 1, the statistic Z̄(m) requires under µi,x 6= 0 normalization with µ̃m−1 and
σ̃m−1, in order to result in a standard normal distribution under H0. Let z1−α denote a quantile from the
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standard normal distribution. In the case where the panel tests are left-tailed, the rejection probability
of strategy SI under the null hypothesis becomes approximately for large N (at nominal level α):

P

(
√

N
Z̄(m) − µ̄m

σ̄m
< −z1−α

)
= Φ

(√
N

µ̄m − µ̃m−1

σ̃m−1
− σ̄m

σ̃m−1
z1−α

)
. (A2)

Analogously for right-tailed tests, the rejection probability of strategy SI becomes under µi,x 6= 0
according to Theorem 1 with growing N:

P

(
√

N
Z̄(m) − µ̄m

σ̄m
> z1−α

)
= 1−Φ

(√
N

µ̄m − µ̃m−1

σ̃m−1
+

σ̄m

σ̃m−1
z1−α

)
. (A3)

For N → ∞, one gets the limits given in Proposition 1 from (A2) and (A3). �
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