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Abstract: The two-step GMM estimators of Arellano and Bond (1991) and Blundell and Bond (1998)
for dynamic panel data models have been widely used in empirical work; however, neither of them
performs well in small samples with weak instruments. The continuous-updating GMM estimator
proposed by Hansen, Heaton, and Yaron (1996) is in principle able to reduce the small-sample
bias, but it involves high-dimensional optimizations when the number of regressors is large. This
paper proposes a computationally feasible variation on these standard two-step GMM estimators by
applying the idea of continuous-updating to the autoregressive parameter only, given the fact that
the absolute value of the autoregressive parameter is less than unity as a necessary requirement for
the data-generating process to be stationary. We show that our subset-continuous-updating method
does not alter the asymptotic distribution of the two-step GMM estimators, and it therefore retains
consistency. Our simulation results indicate that the subset-continuous-updating GMM estimators
outperform their standard two-step counterparts in finite samples in terms of the estimation
accuracy on the autoregressive parameter and the size of the Sargan-Hansen test.

Keywords: dynamic panel data models; Arellano-Bond GMM estimator; Blundell-Bond GMM
estimator; subset-continuous-updating GMM estimators
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1. Introduction

In recent decades, dynamic panel data models with unobserved individual-specific
heterogeneity have been widely used to investigate the dynamics of economic activities. Several
estimators have been suggested for estimating the model parameters. A standard estimation
procedure is to first-difference the model, so as to eliminate the unobserved heterogeneity, and
then base GMM estimation on the moment conditions implied where endogenous differences of the
variables are instrumented by their lagged levels. This is the well known Arellano-Bond estimator, or
first-difference (DIF) GMM estimator (see Arellano and Bond [1]). The DIF GMM estimator was found
to be inefficient since it does not make use of all available moment conditions (see Ahn and Schmidt [2]);
it also has very poor finite sample properties in dynamic panel data models with highly persistent
series and large variations in the fixed effects relative to the idiosyncratic errors (see Blundell and
Bond [3]) since the instruments in those cases become less informative.

To improve the performance of the DIF GMM estimator, Blundell and Bond [3] propose taking
into consideration extra moment conditions from the level equation that rely on certain restrictions
on the initial observations, as suggested by Arellano and Bover [4]. The resulting system (SYS) GMM
estimator has been shown to perform much better than the DIF GMM estimator in terms of finite
sample bias and mean squared error, as well as with regard to coefficient estimator standard errors
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since the instruments used for the level equation are still informative as the autoregressive coefficient
approaches unity (see Blundell and Bond [3] and Blundell, Bond, and Windmeijer [5]). As a result,
the SYS GMM estimator has been widely used for estimation of production functions, demand for
addictive goods, empirical growth models, etc. However, it was pointed out later on (see Hayakawa [6]
and Bun and Windmeijer [7]) that the weak instruments problem still remains in the SYS GMM
estimator. Since the increase in the length of the panel leads to a quadratic increase in the number of
instruments, the two-step DIF and SYS GMM estimators are both biased due to many weak moment
conditions; see Newey and Windmeijer [8].

The work by Hansen, Heaton, and Yaron [9] suggests that the continuous-updating GMM
estimator has smaller bias than the standard two-step GMM estimator. However, it involves
high-dimensional optimizations when the number of regressors is large. Given the fact that the
absolute value of the autoregressive parameter must be less than unity as a necessary requirement
for the data-generating process to be stationary, we propose a computationally feasible variation
on the two-step DIF and SYS GMM estimators, in which the idea of continuous-updating is
applied solely to the autoregressive parameter; these two new estimators are denoted “SCUDIF"
and “SCUSYS" below. Following the jackknife interpretation of the continuous-updating estimator
in the work of Donald and Newey [10], we show that the subset-continuous-updating method
that we propose in this paper does not alter the asymptotic distribution of the two-step GMM
estimators, and it hence retains consistency. It is computationally advantageous relative to the
continuous-updating estimator in that it replaces a relatively high-dimensional optimization over
unbounded intervals by a one-dimensional optimization limited to the stationary domain (−1, 1) of
the autoregressive parameter. We conduct Monte Carlo experiments and show that the proposed
subset-continuous-updating versions of the DIF and SYS GMM estimators outperform their standard
two-step counterparts in small samples in terms of the estimation accuracy on the autoregressive
parameter and the rejection frequency of the Sargan-Hansen test.

The layout of the paper is as follows: Section 2 describes the model specification and our
proposed subset-continuous-updating method; Section 3 describes the Monte Carlo experiments and
presents the results; and Section 4 concludes the paper.

2. Subset-Continuous-Updating GMM Estimator

Consider a linear panel data model with one dynamic dependent variable yit, additional
explanatory variables Xit = (x1

it, ..., xK
it), unobserved individual-specific fixed effects µi, and

idiosyncratic errors νit:

yit = θyi,t−1 + Xitβ + uit, where uit = µi + νit, (1)

for i = 1, ..., N and t = 2, ..., T, where N is large and T is small. Here, θ is the autoregressive parameter
and we make a familiar assumption as in the literature that it satisfies |θ| < 1 to ensure the stationarity
of the model; β is a K-dimensional column vector of remaining coefficients. As Blundell, Bond, and
Windmeijer [5] argue, this model specification is sufficient to cover most cases that researchers would
encounter in linear dynamic panel applications.

While our discussion applies to the general setup of dynamic panel data models in Equation (1),
for expositional clarity, we consider a special case with a unique, i.e., K = 1, additional explanatory
variable xit:

yit = θyi,t−1 + βxit + uit, where uit = µi + νit, (2)

for i = 1, ..., N and t = 2, ..., T. We also follow Blundell, Bond, and Windmeijer [5] to allow for
persistence and endogeneity in the explanatory variable xit:

xit = ρxi,t−1 + τµi + λνit + eit, (3)
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where ρ captures the persistence of xit, and τ and λ determine the correlation of xit with the individual
effects µi and the idiosyncratic errors νit, respectively.

We assume, at the outset, that µi, νit, and eit have the following properties:

E(µi) = 0, E(νit) = 0, E(eit) = 0 for i = 1, ..., N and t = 2, ..., T, (4)

E(νitµi) = 0, E(eitµi) = 0 for i = 1, ..., N and t = 2, ..., T, (5)

E(νitνis) = 0, E(eiteis) = 0 for i = 1, ..., N and ∀t 6= s, (6)

E(νiteis) = 0 for i = 1, ..., N and ∀t, s. (7)

Furthermore, we impose mean-stationarity restrictions on the initial conditions:

xi1 =
τ

1− ρ
µi + εi1 for i = 1, ..., N, (8)

yi1 =
1

1− θ

(
1 +

βτ

1− ρ

)
µi + ξi1 for i = 1, ..., N, (9)

and

E(εi1) = E(µiεi1) = E(ξi1) = E(µiξi1) = 0 for i = 1, ..., N, (10)

E(εi1νit) = E(ξi1νit) = 0 for i = 1, ..., N and t = 2, ..., T. (11)

Under these conditions, we consider both the DIF GMM estimator of Arellano and Bond [1]
and the SYS GMM estimator of Blundell and Bond [3], which are derived from the following
moment conditions:

E[g(w, θ0, β0)] = 0, (12)

where w denotes the data, (θ0, β0) are true parameters, and

g = Z′d∆u for the DIF GMM estimator,
g = Z′sp for the SYS GMM estimator.

(13)

In the above equations, Z′d is the md × N(T − 2) matrix (Z′d1, Z′d2, ..., Z′dN) and Z′s is the
ms × 2N(T − 2) matrix (Z′s1, Z′s2, ..., Z′sN), where the number of instruments for the DIF GMM
estimator is md = (T − 2)(T − 1) and the instrument count for the SYS GMM estimator is
ms = md + 2(T − 2) in the case of K = 1; ∆u′ is the N(T − 2) vector (∆u′1, ∆u′2, ..., ∆u′N) and p′ is
the 2N(T − 2) vector (p′1, p′2, ..., p′N) with

∆ui =


∆ui3
∆ui4

...
∆uiT

 , ui =


ui3
ui4
...

uiT

 , pi =

(
∆ui
ui

)
.

The instrument matrix for the differenced equation is Zdi = (Zy
di, Zx

di), where

Zy
di =


yi1 0 0 · · · 0 · · · 0
0 yi1 yi2 · · · 0 · · · 0
...

...
...

. . .
...

. . .
...

0 0 0 · · · yi1 · · · yi,T−2

 ,

and Zx
di is similarly defined. The instrument for the system equation Zsi is a block matrix with Zdi

and Zli on the main diagonals and zeros otherwise, i.e.,
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Zsi =

(
Zdi 0
0 Zli

)
,

where Zli is the instrument matrix for the level equation and Zli = (Zy
li, Zx

li), where

Zy
li =


∆yi2 0 · · · 0

0 ∆yi3 · · · 0
...

...
. . .

...
0 0 · · · ∆yi,T−1

 ,

and Zx
li is defined similarly.

In words, the DIF GMM estimator is obtained from the moment conditions where endogenous
differences of the variables are instrumented by their lagged levels and the SYS GMM estimator
utilizes further moment conditions where endogenous level variables are instrumented by their
lagged differences. The validity of these moment conditions is tested by the Sargan-Hansen test of
overidentifying restrictions (see Sargan [11] and Hansen [12]).

Let wi (i = 1, ..., N) denote the i-th observation and gi(θ, β) = g(wi, θ, β). The sample first and
second moments of the g are given by:

ĝ(θ, β) =
1
N

N

∑
i=1

gi(θ, β), (14)

Ω̂(θ, β) =
1
N

N

∑
i=1

gi(θ, β)gi(θ, β)′. (15)

Two-Step GMM Estimator: The standard two-step GMM estimator is the solution to the
following minimization problem:(

θ̂, β̂
)
= argmin

θ,β
ĝ(θ, β)′

[
Ω̂
(

θ̃, β̃
)]−1

ĝ(θ, β), (16)

where
(

θ̃, β̃
)

is a preliminary estimator, e.g., the first-step estimator.1 The first-order conditions are:

ĝ′θ
[
Ω̂
(

θ̃, β̃
)]−1

ĝ = 0, (17)

1 To obtain a consistent first-step estimator, we use

Wd =

(
1
N

N

∑
i=1

Z′diHdZdi

)−1

and Ws =

(
1
N

N

∑
i=1

Z′siHsZsi

)−1

,

in place of
[
Ω̂
(

θ̃, β̃
)]−1

in Equation (16), suggested by Arellano and Bond [1] and Blundell, Bond, and Windmeijer [5]
for the DIF and SYS GMM estimators, respectively, where Hd is a (T-2) square matrix that has twos in the main diagonal,
minus ones in the first subdiagonals, and zeros otherwise, i.e.,

Hd =


2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

 ,

and Hs is the matrix

Hs =

(
Hd 0
0 IT−2

)
.
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ĝ′β
[
Ω̂
(

θ̃, β̃
)]−1

ĝ = 0, (18)

where ĝ = ĝ
(

θ̂, β̂
)

, ĝθ = ∂ĝ
(

θ̂, β̂
)

/∂θ and ĝβ = ∂ĝ
(

θ̂, β̂
)

/∂β.
Subset-Continuous-Updating GMM Estimator: Motivated by the fact that the autoregressive

parameter θ in a stationary dynamic panel data model lies in the bounded interval (−1, 1), we
propose to apply the idea of continuous-updating of Hansen, Heaton, and Yaron [9] solely to this
bounded parameter θ. The subset-continuous-updating GMM estimator is obtained as the solution
to the following minimization problem:

β̂(θ) = argmin
β

ĝ(θ, β)′
[
Ω̂
(

θ, β̃
)]−1

ĝ(θ, β) conditional on θ, (19)

and

θ̂ = argmin
θ

ĝ
(

θ, β̂(θ)
)′ [

Ω̂
(

θ, β̂(θ)
)]−1

ĝ
(

θ, β̂(θ)
)

, (20)

where β̃ is a preliminary estimator.2 The first-order condition with respect to θ is:(
ĝθ + ĝβ

∂β̂

∂θ

)′ [
Ω̂
(

θ̂, β̂(θ̂)
)]−1

ĝ− ĝ′
[
Ω̂
(

θ̂, β̂(θ̂)
)]−1

Λ̂
[
Ω̂
(

θ̂, β̂(θ̂)
)]−1

ĝ = 0, (21)

where

Λ̂ =
1
N

N

∑
i=1

ĝi

(
ĝθ,i + ĝβ,i

∂β̂

∂θ

)′
, (22)

and ĝ = ĝ
(

θ̂, β̂
)

, ĝθ = ∂ĝ
(

θ̂, β̂
)

/∂θ, ĝβ = ∂ĝ
(

θ̂, β̂
)

/∂β, ĝi = g
(

wi, θ̂, β̂
)

, ĝθ,i = ∂g
(

wi, θ̂, β̂
)

/∂θ,

and ĝβ,i = ∂g
(

wi, θ̂, β̂
)

/∂β.
We call the solution to the above minimization problem a subset-continuous-updating estimator

to reflect the fact that we are applying the idea of continuous-updating of Hansen, Heaton, and Yaron [9]
on a subset of model parameters. Given the linearity of the DIF and SYS GMM moment conditions,
the minimization problem in Equation (19) yields a closed-form solution for β̂ as a function of θ. The β̂

estimator is of course consistent conditional on a consistent estimator θ̂. The θ̂ estimator is consistent
according to the jackknife interpretation in the work of Donald and Newey [10]. More specifically,
consider the regression of ĝθ,i + ĝβ,i∂β̂/∂θ on ĝi, let

B̂ =

(
1
N

N

∑
i=1

ĝiĝ′i

)−1(
1
N

N

∑
i=1

ĝi

(
ĝθ,i + ĝβ,i

∂β̂

∂θ

)′)
=
[
Ω̂
(

θ̂, β̂(θ̂)
)]−1

Λ̂ (23)

denote the matrix of coefficients. The vector of residuals follows:

η̂i = ĝθ,i + ĝβ,i
∂β̂

∂θ
− B̂′ĝi. (24)

2 In the Monte Carlo experiments, we conduct a bounded optimization over θ ∈ (−1, 1) using the two-step DIF or SYS GMM
estimator of θ as the starting value until a convergence criterion is met. We set both the step tolerance and the function
tolerance to a relatively small number, 10−8.



Econometrics 2016, 4, 47 6 of 13

By definition, the residual η̂i is orthogonal to the regressor ĝi, i.e.,

1
N

N

∑
i=1

η̂iĝ
′
i = 0. (25)

Then, we can rewrite the first-order condition with respect to θ in Equation (21) as:(
ĝθ + ĝβ

∂β̂

∂θ
− B̂′ĝ

)′ [
Ω̂
(

θ̂, β̂(θ̂)
)]−1

ĝ = 0, (26)

which simplifies to essentially the same equation given by Donald and Newey [10] (at the bottom of
page 240):

1
N

N

∑
i=1

(
1
N

N

∑
j 6=i

η̂′j

[
Ω̂
(

θ̂, β̂(θ̂)
)]−1

)
ĝi = 0. (27)

Let Âi denote the term inside the parentheses in Equation (27):

Âi =
1
N

N

∑
j 6=i

η̂′j

[
Ω̂
(

θ̂, β̂(θ̂)
)]−1

. (28)

This term converges to the same limit for all i = 1, ..., N as N → ∞ since ĝ converges to zero
in probability, i.e., ĝ = op(1). As Donald and Newey [10] point out, Equation (27) is simply
a modification of the usual interpretation of a GMM estimator that allows “a linear combination
coefficient for each observation, which excludes its own observation from the Jacobian of the
moments.” Given that Âi has the same limit, this modification does not change the asymptotic
distribution of the estimator, which implies that our subset-continuous-updating estimator retains
consistency.

While we use a scalar parameter β for expositional clarity here, our subset-continuous-updating
method applies to a K-dimensional vector of parameters β without any extra computational burden
because the continuous-updating is imposed on the scalar parameter θ only; see Equation (20).
Applying our subset-continuous-updating method to the dynamic panel data model, the resulting
SCUDIF and SCUSYS GMM estimators have exactly the same asymptotic distributions as their
two-step counterparts in terms of the first-order terms. They are computationally advantageous
relative to the continuous-updating estimator in that they replace a K + 1-dimensional numerical
optimization over the unbounded domain of (θ, β) by a one-dimensional optimization over a
bounded domain θ ∈ (−1, 1). It is worth noting that our subset-continuous-updating estimator can be
easily extended to the AR(2) case, where necessary. This extension leads to a two-dimensional, instead
of one-dimensional, optimization, which is more computationally burdensome, but the optimization
is at least still limited to the well-defined, bounded region of the parameter space corresponding to
stationary dynamics. Per Box and Jenkins [13], this AR(2) stationary region is a triangle.

3. Monte Carlo Experiments

In this section, we conduct Monte Carlo experiments to compare the performance of our
subset-continuous-updating estimators with the standard two-step estimators in finite samples. We
consider the model and assumptions specified in Section 2. Without loss of generality, we consider
one additional explanatory variable beyond the lagged dependent variable, i.e., we restrict K = 1.
This restriction is made for expositional clarity here, as our proposed estimation method applies
to models with multiple explanatory variables (K > 1) without any extra computational burden
because the continuous-updating is imposed solely on the bounded scalar parameter θ. The model
specification is described by Equations (2) and (3).
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For each Monte Carlo replication, µi, νit, and eit are all drawn from the normal distribution with
zero means and standard deviations σµ, σν, and σe. The initial observations are drawn from the mean
stationary distribution as in Equations (8) and (9).3 Then, we generate the data xit and yit and discard
the first 30 observations before selecting our sample. We keep the following parameters fixed in the
various Monte Carlo simulations:

β = 1, τ = 0.25, σ2
ν = 1, σ2

e = 0.16.

These parameter values are taken from Blundell, Bond, and Windmeijer [5]. The parameters that are
varied in the Monte Carlo experiments include:

θ = {0.5, 0.8} for a moderate vs. high persistence in yit,

ρ = {0.5, 0.8} for a moderate vs. high persistence in xit,

λ = {−0.1,−0.4} for a low vs. high level of idiosynchratic-error endogeneity in xit,

σ2
µ = {1/4, 4} for a small vs. large variance of fixed effects relative to idiosyncratic errors.

Following Blundell, Bond, and Windmeijer [5], we fix the sample size N at 500 and consider
T = {4, 8}. We also further consider an even longer panel, i.e., T = 12. These results are presented
in Tables 1–3, respectively, where we compare our subset-continuous-updating estimators (denoted
SCUDIF and SCUSYS) to the standard two-step estimators of Arellano and Bond [1] and Blundell and
Bond [3] (denoted DIF and SYS) from three perspectives: (1) the estimation accuracy, quantified by
median absolute errors (MAE), (2) the sampling standard deviations across all simulation repetitions
(SD), (3) the Windmeijer [14] corrected standard errors (SE),4 (4) the size of the two-tailed t-test under
the null hypothesis that the parameter equals the true value at the 5% significance level, and (5) the
rejection frequency of the 5% Sargan-Hansen test (denoted RFSH). All results are obtained from 10,000
Monte Carlo repetitions. The following findings are worth noting.

Firstly, we find evidence that the standard two-step DIF and SYS GMM estimates of θ are
sensitive to the variance ratio σ2

µ/σ2
ν , which is consistent with the results of Hayakawa [6] and

Bun and Windmeijer [7]. In particular, for any given combination of θ, ρ, and λ, the DIF and SYS
GMM estimates of the autoregressive parameter become more biased as the variance ratio increases.
In most cases, the bias in the β estimates also increases with the variance ratio. For example, with
(θ, ρ, λ) = (0.8, 0.8,−0.4) and T = 4, the MAEs of θ̂DIF and θ̂SYS both become double when the
variance ratio increases from 1/4 to 4; the MAEs of β̂DIF and β̂SYS become twice and four thirds
bigger, respectively. In contrast, while the variance ratio also affects the estimation accuracy of the
SCUDIF and SCUSYS GMM estimators, the MAE values for these estimators deteriorate less quickly
than do the corresponding values for the standard two-step DIF and SYS GMM estimators.

Secondly, compared to the standard two-step DIF and SYS GMM estimators, our proposed
subset-continuous-updating counterparts are noticeably less biased in estimating the autoregressive
parameter, especially in the case of large variance ratios and relatively long panels, where the
problem of too many weak instruments becomes more prominent. Consequently, for example, with

3 After we draw µi , νit, and eit from the normal distribution, we simply set the initial values of xit and yit to

xi1 =
τ

1− ρ
µi + εi1 where εi1 = λνi1 + ei1,

yi1 =
1

1− θ

(
1 +

βτ

1− ρ

)
+ ξi1 where ξi1 = β(λνi1 + ei1) + νi1

to ensure mean stationarity.
4 The standard error estimates for the two-step DIF and SYS GMM estimators of θ and β are calculated as in Windmeijer [14].

The same is obtained for the SCUDIF and SCUSYS GMM estimators of β conditional on θ. The standard error estimates
for the SCUDIF and SCUSYS GMM estimators of θ are instead obtained from the Hessian matrix of the single-dimensional
optimization problem.
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(θ, ρ, λ) = (0.8, 0.8,−0.4), σ2
µ/σ2

ν = 4, and T = 12, the MAE of θ̂SCUDIF is two-thirds that of θ̂DIF and
the MAE of θ̂SCUSYS is only one-fourth of that of θ̂SYS. Summarizing the θ MAE results in Tables 1–3,
the following matrix displays the frequencies in the cases corresponding to the large variance ratio of
σ2

µ/σ2
ν = 4 with which our proposed subset-continuous-updating estimators have smaller MAE than

the corresponding two-step estimators across the different (θ, ρ, λ) combinations:

Estimation accuracy on θ T = 4 T = 8 T = 12
SCUDIF outperforms DIF 75.0% 100.0% 75.0%
SCUSYS outperforms SYS 87.5% 100.0% 100.0%

With regard to the β estimation, we do not observe any clear pattern in terms of the relative
performance of these two sets of estimators. For example, with (θ, ρ, λ) = (0.8, 0.8,−0.4), σ2

µ/σ2
ν = 4,

and T = 12, both SCUDIF and SCUSYS are respective improvements on DIF and SYS in estimating β.
However, when xit becomes less persistent, i.e., ρ = 0.5, while SCUDIF still significantly outperforms
DIF, SCUSYS performs worse than SYS in terms of the estimation accuracy on β.

Turning to the size estimates for the t-tests, we find that none of the standard two-step or the
subset-continuous-updating estimators consistently yields well-sized t-tests for either θ or for β. For
the DIF and SYS tests, this is a bias problem: the Windmeijer [14] corrected standard errors are
generally good estimates of the sampling standard deviations for these standard two-step estimators,
but this is no guarantee of a well-sized t-test when the parameter estimates suffer substantial biases.
For example, with (θ = 0.8, ρ = 0.5, λ = −0.4) and σ2

µ/σ2
ν = 4, the empirical rejection frequencies of

the t-tests of H0 : θ = 0.8 and H0 : β = 1 are both greater than 50% at all of the dataset lengths. The
SCUDIF and SCUSYS estimators are less biased, but these subset-continuous-updating estimators
lead to standard error estimates which are somewhat downward biased; hence, these tests are also
over-sized. These results suggest that bootstrap-simulation based methods are necessary for credible
structural parameter inference with samples of the lengths considered here, regardless of which of
these estimators one chooses. We note, however, that the more precise estimation provided by the
SCUDIF and SCUSYS theta estimators is also advantageous using simulation-based inference.

Lastly and most importantly, the standard two-step estimators tend to over-reject the
Sargan-Hansen test and our subset-continuous-updating counterparts are generally well-sized.
Given the fact that the endogenous variable xit and the dependent variable yit are both mean
stationary, lagged levels and lagged differences of xit and yit are valid instruments for the
first-difference equation and the level equation, respectively. Thus, presuming that the model is
in all other respects well-specified, the null hypothesis of the Sargan-Hansen test is satisfied. With
any panel length that we consider, T = {4, 8, 12}, the rejection frequency of the Sargan-Hansen test
for our subset-continuous-updating estimators lies around 5% whereas it sometimes exceeds 15%,
for instance with θ = 0.8, σ2

µ/σ2
ν = 4, and T = {8, 12}, when the standard two-step estimators are

adopted. In the worst case scenario, (θ, ρ, λ) = (0.8, 0.5,−0.1), σ2
µ/σ2

ν = 4, and T = 8, the rejection
frequency is even higher than 25%. In other words, the Sargan–Hansen associated with the standard
two-step SYS GMM estimator has a 25 percent chance of incorrectly rejecting a true null hypothesis.
In contrast, the 5% Sargan-Hansen test associated with the subset-continuous-updating SYS GMM
estimator has a reasonable rejection frequency (size) of 6.2%.

In conclusion, the subset-continuous-updating method that we propose in this paper is shown to
improve the estimation accuracy on the autoregressive parameter and the size of the Sargan-Hansen
test in a dynamic panel data model when the variance ratio becomes large. No extra computational
burden is incurred when we apply this method to models with multiple explanatory variables.
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Table 1. Monte Carlo results, N = 500 and T = 4.

λ = −0.1 σ2
µ/σ2

ν = 1/4 σ2
µ/σ2

ν = 4
(θ, ρ) MAE(θ) SD(θ) SE(θ) Size(θ) MAE(β) SD(β) SE(β) Size(β) RFSH MAE(θ) SD(θ) SE(θ) Size(θ) MAE(β) SD(β) SE(β) Size(β) RFSH

(0.5, 0.5)

DIF 0.0625 0.0914 0.0922 5.5 0.2341 0.3479 0.3463 5.4 5.2 0.1240 0.1707 0.1721 8.7 0.3543 0.5018 0.5057 7.2 5.7
SCUDIF 0.0627 0.0945 0.0665 16.7 0.2328 0.3538 0.3180 7.4 4.8 0.1287 0.2004 0.1447 25.8 0.3679 0.5760 0.3384 23.0 4.1

SYS 0.0366 0.0525 0.0525 5.4 0.1565 0.2321 0.2309 4.9 4.6 0.0652 0.0749 0.0753 17.4 0.2203 0.3025 0.3019 9.7 10.2
SCUSYS 0.0377 0.0546 0.0375 18.4 0.1569 0.2327 0.2282 5.3 4.4 0.0515 0.0792 0.0499 26.8 0.2191 0.3196 0.2978 9.5 6.0

(0.5, 0.8)

DIF 0.0593 0.0872 0.0877 5.5 0.2811 0.4285 0.4309 4.5 4.9 0.1139 0.1598 0.1612 8.6 0.5146 0.7863 0.7799 6.9 6.2
SCUDIF 0.0592 0.0917 0.0642 16.9 0.2859 0.4456 0.3519 11.1 4.3 0.1316 0.2141 0.1482 34.0 0.6021 1.0479 0.4074 40.6 4.1

SYS 0.0335 0.0488 0.0485 6.0 0.1037 0.1592 0.1632 4.2 4.3 0.0568 0.0639 0.0612 20.0 0.1986 0.2217 0.2214 19.0 14.2
SCUSYS 0.0340 0.0509 0.0346 19.0 0.1042 0.1605 0.1605 4.7 4.1 0.0462 0.0767 0.0400 33.7 0.2124 0.2565 0.2249 22.2 10.3

(0.8, 0.5)

DIF 0.1423 0.2010 0.2058 8.5 0.3243 0.4624 0.4726 7.2 6.2 0.3336 0.3647 0.3702 19.5 0.6584 0.7767 0.7656 17.5 7.2
SCUDIF 0.1442 0.1778 0.2230 14.9 0.2950 0.4431 0.3114 16.5 4.5 0.2000 0.3446 0.4377 26.5 0.4862 0.7555 0.3129 39.5 4.3

SYS 0.0388 0.0593 0.0578 7.2 0.1475 0.2223 0.2270 4.4 4.5 0.0836 0.0652 0.0605 48.0 0.1695 0.2529 0.2671 4.9 12.8
SCUSYS 0.0422 0.0683 0.0419 23.6 0.1508 0.2268 0.2213 5.5 4.1 0.0738 0.1466 0.0980 48.9 0.2066 0.3466 0.2877 9.0 5.7

(0.8, 0.8)

DIF 0.1073 0.1592 0.1598 6.7 0.4205 0.6486 0.6479 6.0 5.4 0.2202 0.2791 0.2827 12.6 0.8422 1.1380 1.1334 11.2 4.9
SCUDIF 0.1124 0.1658 0.1786 18.1 0.4179 0.7014 0.3375 28.8 4.0 0.2000 0.3246 0.3684 32.6 0.7872 1.3599 0.3669 56.6 2.6

SYS 0.0301 0.0461 0.0459 6.4 0.0910 0.1433 0.1450 4.3 4.7 0.0586 0.0457 0.0429 44.3 0.1138 0.1752 0.1871 4.8 9.5
SCUSYS 0.0330 0.0539 0.0338 23.5 0.0935 0.1528 0.1400 6.0 4.1 0.0542 0.0893 0.0389 53.6 0.1523 0.2717 0.2051 13.4 5.5

λ = −0.4 σ2
µ/σ2

ν = 1/4 σ2
µ/σ2

ν = 4
(θ, ρ) MAE(θ) SD(θ) SE(θ) Size(θ) MAE(β) SD(β) SE(β) Size(β) RFSH MAE(θ) SD(θ) SE(θ) Size(θ) MAE(β) SD(β) SE(β) Size(β) RFSH

(0.5, 0.5)

DIF 0.0974 0.1288 0.1319 10.0 0.2623 0.3349 0.3407 12.3 7.8 0.1909 0.1961 0.2020 22.4 0.4626 0.4750 0.4872 22.8 11.6
SCUDIF 0.0936 0.1500 0.1037 18.2 0.2483 0.3835 0.2241 24.5 5.3 0.1776 0.2575 0.1893 34.2 0.4215 0.6052 0.2334 49.1 4.9

SYS 0.0452 0.0668 0.0666 6.1 0.1237 0.1712 0.1727 6.9 5.2 0.0921 0.1027 0.0981 23.5 0.1753 0.2489 0.2474 9.9 10.5
SCUSYS 0.0483 0.0718 0.0479 20.4 0.1235 0.1743 0.1574 9.9 4.9 0.0735 0.1242 0.0678 33.8 0.1864 0.2912 0.2082 16.0 4.2

(0.5, 0.8)

DIF 0.0631 0.0888 0.0899 7.6 0.2501 0.3409 0.3472 8.6 6.6 0.1144 0.1404 0.1425 14.4 0.4260 0.5365 0.5426 14.0 7.7
SCUDIF 0.0626 0.0993 0.0682 17.9 0.2390 0.3787 0.2361 20.7 5.2 0.1116 0.1890 0.1283 33.9 0.4030 0.7097 0.2556 43.9 4.0

SYS 0.0331 0.0484 0.0484 5.5 0.0705 0.1057 0.1059 4.7 4.8 0.0611 0.0681 0.0639 22.8 0.1265 0.1637 0.1656 15.5 10.8
SCUSYS 0.0349 0.0513 0.0345 19.7 0.0713 0.1073 0.0997 6.6 4.6 0.0459 0.0837 0.0415 32.7 0.1371 0.2080 0.1618 15.8 5.5

(0.8, 0.5)

DIF 0.2941 0.2778 0.2659 30.4 0.6348 0.5928 0.5655 31.6 12.9 0.5076 0.3054 0.2996 53.7 1.0708 0.6656 0.6335 53.0 10.3
SCUDIF 0.2000 0.2754 0.2961 21.6 0.3877 0.6099 0.2122 42.9 5.8 0.2216 0.3771 0.4255 33.1 0.6169 0.8182 0.1970 60.8 5.9

SYS 0.0503 0.0809 0.0782 6.9 0.1254 0.1861 0.1861 5.4 4.9 0.0966 0.0698 0.0643 54.1 0.1238 0.1931 0.2059 3.9 8.4
SCUSYS 0.0593 0.0950 0.0624 28.2 0.1312 0.1992 0.1567 13.3 4.0 0.1053 0.1853 0.1103 59.9 0.1845 0.3784 0.2153 15.8 3.3

(0.8, 0.8)

DIF 0.1067 0.1350 0.1360 13.0 0.4377 0.5473 0.5444 13.9 8.5 0.2115 0.1941 0.1923 29.4 0.8441 0.7932 0.7753 28.7 9.2
SCUDIF 0.1034 0.1491 0.1360 21.7 0.3989 0.6164 0.2341 44.3 4.6 0.2000 0.2705 0.2288 38.1 0.6728 1.1154 0.2419 67.7 3.3

SYS 0.0272 0.0429 0.0428 5.9 0.0601 0.0940 0.0945 3.5 5.2 0.0540 0.0459 0.0430 42.0 0.0820 0.1300 0.1378 6.4 8.4
SCUSYS 0.0309 0.0499 0.0317 23.6 0.0619 0.1029 0.0837 8.1 4.6 0.0510 0.0943 0.0385 53.0 0.1167 0.2754 0.1502 16.4 4.1

Note: Statistics are based on 10,000 Monte Carlo replications. MAE stands for the median absolute error; SD is the sampling standard deviation across 10,000 simulation replications and SE
stands for the average standard error estimate. Size (in percent) is the rejection frequency of the two-tailed t-test, and RFSH (in percent) is the rejection frequency of the 5% Sargan-Hansen test.
DIF and SYS stand for the standard two-step Arellano-Bond and Blundell-Bond GMM estimators. Their subset-continuous-updating counterparts are denoted SCUDIF and SCUSYS. The total
number of instruments is md = 6 for DIF and SCUDIF and ms = 10 for SYS and SCUSYS.
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Table 2. Monte Carlo results, N = 500 and T = 8.

λ = −0.1 σ2
µ/σ2

ν = 1/4 σ2
µ/σ2

ν = 4
(θ, ρ) MAE(θ) SD(θ) SE(θ) Size(θ) MAE(β) SD(β) SE(β) Size(β) RFSH MAE(θ) SD(θ) SE(θ) Size(θ) MAE(β) SD(β) SE(β) Size(β) RFSH

(0.5, 0.5)

DIF 0.0251 0.0345 0.0347 7.1 0.0969 0.1304 0.1289 7.6 5.5 0.0353 0.0443 0.0443 8.9 0.1080 0.1381 0.1381 9.1 5.6
SCUDIF 0.0242 0.0361 0.0245 19.3 0.0943 0.1305 0.1263 7.7 5.2 0.0319 0.0479 0.0327 32.4 0.1011 0.1397 0.1288 9.2 5.0

SYS 0.0167 0.0244 0.0241 5.8 0.0778 0.1116 0.1101 6.1 5.4 0.0383 0.0349 0.0320 22.6 0.1174 0.1435 0.1340 12.7 11.0
SCUSYS 0.0171 0.0252 0.0171 19.7 0.0773 0.1117 0.1093 6.2 5.3 0.0197 0.0294 0.0205 29.4 0.1017 0.1421 0.1360 8.1 5.6

(0.5, 0.8)

DIF 0.0235 0.0325 0.0328 7.0 0.0880 0.1203 0.1197 6.9 5.2 0.0319 0.0414 0.0415 8.5 0.1098 0.1444 0.1431 8.1 5.3
SCUDIF 0.0229 0.0343 0.0238 21.8 0.0837 0.1211 0.1111 8.1 4.7 0.0305 0.0460 0.0291 39.6 0.1009 0.1506 0.1167 13.0 4.7

SYS 0.0158 0.0228 0.0225 6.2 0.0512 0.0760 0.0751 5.7 4.8 0.0462 0.0300 0.0275 40.2 0.1493 0.0962 0.0909 41.9 17.1
SCUSYS 0.0161 0.0237 0.0162 21.7 0.0513 0.0763 0.0744 6.2 4.8 0.0200 0.0278 0.0178 39.7 0.1441 0.1135 0.1056 31.2 9.6

(0.8, 0.5)

DIF 0.0568 0.0584 0.0595 13.8 0.1322 0.1465 0.1454 12.6 6.4 0.1023 0.0800 0.0820 22.8 0.1952 0.1738 0.1715 19.4 7.0
SCUDIF 0.0431 0.0650 0.0439 32.4 0.1069 0.1520 0.1246 12.3 5.0 0.0658 0.0994 0.0542 52.4 0.1306 0.1921 0.1258 20.3 4.6

SYS 0.0194 0.0264 0.0263 8.7 0.0757 0.1083 0.1073 6.3 5.0 0.0813 0.0275 0.0240 80.2 0.0870 0.1137 0.1124 8.0 26.0
SCUSYS 0.0194 0.0281 0.0188 29.6 0.0762 0.1090 0.1065 6.9 4.9 0.0290 0.0477 0.0227 52.0 0.0976 0.1365 0.1286 8.3 6.2

(0.8, 0.8)

DIF 0.0410 0.0456 0.0455 11.5 0.1347 0.1591 0.1553 10.8 5.6 0.0666 0.0624 0.0617 17.6 0.2074 0.2137 0.2049 16.0 5.8
SCUDIF 0.0340 0.0531 0.0345 34.8 0.1140 0.1752 0.1065 21.8 4.5 0.0543 0.0864 0.0417 55.2 0.1656 0.2754 0.1102 39.3 4.0

SYS 0.0154 0.0201 0.0201 9.3 0.0447 0.0675 0.0672 5.1 5.6 0.0573 0.0196 0.0168 81.5 0.0642 0.0699 0.0693 14.4 22.4
SCUSYS 0.0149 0.0222 0.0145 31.2 0.0462 0.0695 0.0673 6.1 5.0 0.0237 0.0403 0.0130 59.7 0.1003 0.0963 0.0901 23.0 8.4

λ = −0.4 σ2
µ/σ2

ν = 1/4 σ2
µ/σ2

ν = 4
(θ, ρ) MAE(θ) SD(θ) SE(θ) Size(θ) MAE(β) SD(β) SE(β) Size(β) RFSH MAE(θ) SD(θ) SE(θ) Size(θ) MAE(β) SD(β) SE(β) Size(β) RFSH

(0.5, 0.5)

DIF 0.0447 0.0449 0.0454 15.8 0.1514 0.1007 0.1007 33.8 9.3 0.0637 0.0531 0.0534 22.5 0.1826 0.1102 0.1096 39.9 9.6
SCUDIF 0.0341 0.0499 0.0342 22.8 0.1078 0.1059 0.0848 28.3 7.3 0.0413 0.0615 0.0395 40.6 0.1150 0.1190 0.0850 31.8 6.9

SYS 0.0216 0.0313 0.0309 5.9 0.0937 0.0809 0.0804 21.6 6.7 0.0624 0.0496 0.0437 31.5 0.0810 0.1121 0.1025 10.7 10.9
SCUSYS 0.0226 0.0334 0.0222 23.1 0.0871 0.0817 0.0752 22.5 6.4 0.0266 0.0402 0.0273 35.6 0.0837 0.1072 0.0917 14.7 4.1

(0.5, 0.8)

DIF 0.0244 0.0318 0.0318 8.3 0.0868 0.0879 0.0853 16.9 6.1 0.0313 0.0377 0.0374 10.7 0.1026 0.0978 0.0957 19.2 6.8
SCUDIF 0.0224 0.0338 0.0234 22.9 0.0741 0.0897 0.0728 18.8 5.4 0.0272 0.0409 0.0253 40.4 0.0790 0.1016 0.0739 22.7 6.0

SYS 0.0154 0.0222 0.0220 6.1 0.0405 0.0523 0.0507 9.1 5.0 0.0497 0.0319 0.0285 42.2 0.0782 0.0740 0.0687 25.2 14.2
SCUSYS 0.0161 0.0236 0.0161 23.8 0.0405 0.0523 0.0498 9.9 4.9 0.0184 0.0281 0.0185 37.6 0.0609 0.0840 0.0755 11.6 5.2

(0.8, 0.5)

DIF 0.1627 0.0820 0.0797 54.4 0.3560 0.1615 0.1526 65.9 13.5 0.2329 0.0974 0.0941 70.2 0.4788 0.1926 0.1782 77.0 14.0
SCUDIF 0.0665 0.0994 0.0607 42.9 0.1477 0.1833 0.0848 44.2 6.9 0.0895 0.1302 0.0653 57.6 0.1725 0.2341 0.0851 50.8 6.0

SYS 0.0257 0.0370 0.0358 7.9 0.0936 0.0869 0.0857 18.9 6.3 0.0940 0.0287 0.0248 84.1 0.0591 0.0805 0.0792 7.2 17.5
SCUSYS 0.0281 0.0405 0.0249 38.8 0.0903 0.0891 0.0737 26.9 5.7 0.0452 0.0755 0.0305 61.7 0.0988 0.1274 0.0900 21.1 4.1

(0.8, 0.8)

DIF 0.0432 0.0388 0.0383 19.4 0.1645 0.1288 0.1248 26.6 7.5 0.0642 0.0483 0.0468 27.5 0.2301 0.1623 0.1524 34.1 7.8
SCUDIF 0.0284 0.0437 0.0277 37.8 0.1012 0.1395 0.0720 34.7 5.4 0.0376 0.0589 0.0294 53.8 0.1259 0.1864 0.0730 44.6 5.3

SYS 0.0136 0.0188 0.0183 8.9 0.0348 0.0479 0.0471 7.2 5.2 0.0522 0.0190 0.0165 78.0 0.0552 0.0502 0.0499 21.7 16.9
SCUSYS 0.0140 0.0206 0.0133 33.9 0.0362 0.0492 0.0445 10.2 4.9 0.0195 0.0362 0.0135 54.7 0.0628 0.0881 0.0695 16.0 5.4

Note: Statistics are based on 10,000 Monte Carlo replications. MAE stands for the median absolute error; SD is the sampling standard deviation across 10,000 simulation replications and SE stands
for the average standard error estimate. Size (in percent) is the rejection frequency of the two-tailed t-test, and RFSH (in percent) is the rejection frequency of the 5% Sargan-Hansen test. DIF and
SYS stand for the standard two-step Arellano-Bond and Blundell-Bond GMM estimators. Their subset-continuous-updating counterparts are denoted SCUDIF and SCUSYS. The total number of
instruments is md = 42 for DIF and SCUDIF and ms = 54 for SYS and SCUSYS.
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Table 3. Monte Carlo Results, N = 500 and T = 12.

λ = −0.1 σ2
µ/σ2

ν = 1/4 σ2
µ/σ2

ν = 4
(θ, ρ) MAE(θ) SD(θ) SE(θ) Size(θ) MAE(β) SD(β) SE(β) Size(β) RFSH MAE(θ) SD(θ) SE(θ) Size(θ) MAE(β) SD(β) SE(β) Size(β) RFSH

(0.5, 0.5)

DIF 0.0166 0.0231 0.0230 7.2 0.0752 0.0896 0.0879 12.0 4.5 0.0205 0.0265 0.0266 8.5 0.0813 0.0918 0.0900 12.8 4.8
SCUDIF 0.0171 0.0257 0.0175 21.6 0.0738 0.0894 0.0872 11.9 4.4 0.0197 0.0299 0.0195 37.0 0.0770 0.0918 0.0884 12.2 4.5

SYS 0.0125 0.0177 0.0175 5.9 0.0620 0.0822 0.0808 7.9 4.3 0.0327 0.0234 0.0210 35.8 0.0807 0.0988 0.0924 12.1 8.1
SCUSYS 0.0133 0.0193 0.0133 22.0 0.0616 0.0822 0.0801 8.2 4.3 0.0145 0.0209 0.0145 35.7 0.0733 0.0980 0.0936 8.9 3.9

(0.5, 0.8)

DIF 0.0156 0.0219 0.0217 6.9 0.0530 0.0688 0.0684 8.7 5.2 0.0192 0.0251 0.0250 8.1 0.0590 0.0749 0.0739 10.2 5.3
SCUDIF 0.0167 0.0246 0.0173 25.2 0.0517 0.0688 0.0669 8.7 5.0 0.0197 0.0290 0.0174 44.1 0.0553 0.0760 0.0694 10.5 5.1

SYS 0.0119 0.0167 0.0164 6.5 0.0370 0.0545 0.0536 5.8 4.9 0.0430 0.0218 0.0195 57.7 0.1160 0.0683 0.0632 46.3 13.0
SCUSYS 0.0126 0.0184 0.0126 26.8 0.0368 0.0545 0.0527 6.1 5.0 0.0155 0.0214 0.0130 45.7 0.1134 0.0767 0.0705 38.0 7.5

(0.8, 0.5)

DIF 0.0361 0.0335 0.0336 17.6 0.0953 0.0914 0.0921 16.5 6.1 0.0541 0.0410 0.0414 24.4 0.1149 0.0977 0.0978 21.0 6.3
SCUDIF 0.0267 0.0399 0.0260 37.9 0.0753 0.0933 0.0861 13.0 5.2 0.0347 0.0527 0.0270 53.8 0.0791 0.1022 0.0866 15.1 5.1

SYS 0.0136 0.0187 0.0187 7.7 0.0612 0.0795 0.0791 8.3 4.7 0.0760 0.0203 0.0180 91.7 0.0663 0.0825 0.0816 9.9 22.1
SCUSYS 0.0139 0.0204 0.0136 34.3 0.0610 0.0797 0.0786 8.4 4.6 0.0175 0.0271 0.0143 52.0 0.0701 0.0948 0.0908 8.9 4.6

(0.8, 0.8)

DIF 0.0242 0.0257 0.0255 12.3 0.0718 0.0817 0.0789 12.8 5.2 0.0343 0.0317 0.0313 18.1 0.0958 0.0964 0.0911 16.7 5.2
SCUDIF 0.0202 0.0307 0.0192 39.2 0.0585 0.0865 0.0647 16.0 4.6 0.0270 0.0419 0.0197 56.6 0.0721 0.1109 0.0658 23.7 4.4

SYS 0.0111 0.0143 0.0142 9.8 0.0329 0.0489 0.0490 5.1 4.6 0.0545 0.0139 0.0123 94.8 0.0630 0.0476 0.0485 25.3 22.6
SCUSYS 0.0108 0.0162 0.0105 36.7 0.0332 0.0494 0.0490 5.5 4.5 0.0168 0.0258 0.0102 59.9 0.0874 0.0648 0.0629 29.5 7.0

λ = −0.4 σ2
µ/σ2

ν = 1/4 σ2
µ/σ2

ν = 4
(θ, ρ) MAE(θ) SD(θ) SE(θ) Size(θ) MAE(β) SD(β) SE(β) Size(β) RFSH MAE(θ) SD(θ) SE(θ) Size(θ) MAE(β) SD(β) SE(β) Size(β) RFSH

(0.5, 0.5)

DIF 0.0319 0.0294 0.0291 18.2 0.1493 0.0638 0.0628 65.6 9.1 0.0393 0.0321 0.0319 23.2 0.1591 0.0660 0.0646 68.0 9.4
SCUDIF 0.0227 0.0346 0.0230 26.6 0.1247 0.0666 0.0577 56.9 8.0 0.0251 0.0386 0.0219 44.6 0.1253 0.0700 0.0579 56.7 7.7

SYS 0.0158 0.0227 0.0225 6.2 0.1107 0.0582 0.0571 49.0 6.2 0.0534 0.0340 0.0291 45.1 0.0498 0.0738 0.0674 7.9 9.0
SCUSYS 0.0176 0.0257 0.0173 27.5 0.1027 0.0592 0.0544 47.7 6.0 0.0190 0.0285 0.0180 43.2 0.0714 0.0696 0.0627 22.5 3.3

(0.5, 0.8)

DIF 0.0148 0.0210 0.0206 6.7 0.0624 0.0472 0.0455 29.1 6.2 0.0168 0.0230 0.0226 8.0 0.0667 0.0495 0.0474 30.1 6.4
SCUDIF 0.0160 0.0238 0.0159 28.4 0.0579 0.0480 0.0434 29.1 6.1 0.0174 0.0264 0.0157 45.0 0.0595 0.0509 0.0439 30.3 5.8

SYS 0.0117 0.0165 0.0161 7.4 0.0372 0.0371 0.0360 17.7 5.2 0.0471 0.0226 0.0199 62.7 0.0476 0.0499 0.0454 18.4 10.8
SCUSYS 0.0130 0.0186 0.0125 31.2 0.0363 0.0370 0.0357 17.4 5.2 0.0141 0.0212 0.0131 43.9 0.0368 0.0529 0.0488 8.5 4.3

(0.8, 0.5)

DIF 0.1016 0.0456 0.0444 63.9 0.2555 0.0851 0.0820 88.0 13.4 0.1297 0.0522 0.0502 74.1 0.2967 0.0954 0.0895 91.5 14.1
SCUDIF 0.0386 0.0580 0.0327 46.5 0.1287 0.0962 0.0576 57.2 8.3 0.0448 0.0696 0.0315 59.2 0.1331 0.1104 0.0577 57.6 8.3

SYS 0.0177 0.0256 0.0252 7.4 0.1147 0.0614 0.0610 46.7 7.0 0.0897 0.0209 0.0184 94.8 0.0384 0.0572 0.0564 5.4 18.4
SCUSYS 0.0210 0.0302 0.0170 45.2 0.1062 0.0638 0.0536 50.7 6.6 0.0254 0.0422 0.0174 58.9 0.0790 0.0754 0.0628 26.1 4.1

(0.8, 0.8)

DIF 0.0231 0.0215 0.0210 18.1 0.0947 0.0631 0.0587 37.3 6.7 0.0294 0.0247 0.0238 23.2 0.1103 0.0710 0.0647 41.6 6.6
SCUDIF 0.0170 0.0255 0.0153 40.9 0.0619 0.0690 0.0431 35.4 5.7 0.0201 0.0303 0.0146 55.2 0.0673 0.0800 0.0434 39.0 5.5

SYS 0.0095 0.0131 0.0127 8.8 0.0321 0.0362 0.0347 13.5 4.8 0.0495 0.0135 0.0119 92.3 0.0470 0.0358 0.0353 28.9 17.1
SCUSYS 0.0105 0.0154 0.0094 40.2 0.0329 0.0369 0.0331 17.3 4.9 0.0122 0.0208 0.0092 54.6 0.0383 0.0550 0.0482 10.9 4.3

Note: Statistics are based on 10,000 Monte Carlo replications. MAE stands for the median absolute error; SD is the sampling standard deviation across 10,000 simulation replications and SE stands
for the average standard error estimate. Size (in percent) is the rejection frequency of the two-tailed t-test, and RFSH (in percent) is the rejection frequency of the 5% Sargan-Hansen test. DIF and
SYS stand for the standard two-step Arellano-Bond and Blundell-Bond GMM estimators. Their subset-continuous-updating counterparts are denoted SCUDIF and SCUSYS. The total number of
instruments is md = 110 for DIF and SCUDIF and ms = 130 for SYS and SCUSYS.
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4. Conclusions

The two-step GMM estimators of Arellano and Bond [1] and Blundell and Bond [3] for dynamic
panel data models have been widely used in empirical work. However, neither of them performs
well in small samples with weak instruments. The continuous-updating GMM estimator proposed
by Hansen, Heaton, and Yaron [9] is in principle able to reduce the small-sample bias, but it involves
high-dimensional optimizations when the number of regressors is large. Given the fact that the
absolute value of the autoregressive parameter is less than unity for a dynamic panel data model
to be stationary, we propose a computationally feasible variation on the standard two-step GMM
estimators by applying the idea of continuous-updating to the autoregressive parameter only. We
show that our subset-continuous-updating method does not alter the asymptotic distribution of the
two-step GMM estimators and hence retains consistency. According to our Monte Carlo simulation
results, the subset-continuous-updating GMM estimators for dynamic panel data models outperform
their standard two-step counterparts in finite samples in terms of the estimation accuracy on the
autoregressive parameter and the size of the Sargan–Hansen test.
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