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Abstract: Testing for the equality of integration orders is an important topic in time series analysis
because it constitutes an essential step in testing for (fractional) cointegration in the bivariate case.
For the multivariate case, there are several versions of cointegration, and the version given in
Robinson and Yajima (2002) has received much attention. In this definition, a time series vector is
partitioned into several sub-vectors, and the elements in each sub-vector have the same integration
order. Furthermore, this time series vector is said to be cointegrated if there exists a cointegration
in any of the sub-vectors. Under such a circumstance, testing for the equality of integration orders
constitutes an important problem. However, for multivariate fractionally integrated series, most tests
focus on stationary and invertible series and become invalid under the presence of cointegration.
Hualde (2013) overcomes these difficulties with a residual-based test for a bivariate time series. For the
multivariate case, one possible extension of this test involves testing for an array of bivariate series,
which becomes computationally challenging as the dimension of the time series increases. In this
paper, a one-step residual-based test is proposed to deal with the multivariate case that overcomes
the computational issue. Under certain regularity conditions, the test statistic has an asymptotic
standard normal distribution under the null hypothesis of equal integration orders and diverges to
infinity under the alternative. As reported in a Monte Carlo experiment, the proposed test possesses
satisfactory sizes and powers.
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1. Introduction

By allowing the equilibrium error to follow a fractionally integrated process, fractional
cointegration constitutes a useful extension of classical cointegration. It has received considerable
attention in the statistics, finance and econometric literature. There are several notions of (fractional)
cointegration for a p-dimensional time series Xt (see Engle and Granger (1987) [1], Johansen (1996) [2],
Flôres and Szafarz (1996) [3] and Robinson and Yajima (2002) [4] among others). In the definition
studied in Robinson and Yajima (2002) [4], a p-vector Xt is partitioned into several sub-vectors such that
elements in each sub-vector have the same integration order. Furthermore, Xt is said to be (fractionally)
cointegrated if a cointegration exists in any of the sub-vectors. Under this setting, partitioning Xt

requires testing for the homogeneity of integration orders of multiple time series, which has attracted
much interest. Current procedures usually assume stationarity and invertibility. For example, Heyde
and Gay (1993) [5] and Hosoya (1997) [6] investigate this problem based on a parametric setting, and
Robinson (1995) [7] and Lobato (1996 and 1999) [8,9] study the problem using the semiparametric
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framework. When cointegration exists or the time series becomes nonstationary, some of these tests
become invalid.

Robinson and Yajima (2002) [4] construct a single-test statistic that is valid in the presence
of cointegration for testing the homogeneity of the fractional integration orders of multiple
(asymptotically) stationary and invertible time series. They propose estimating the fractional
integration order using the local Whittle likelihood method and introduce a user-chosen number
to deal with the inversion of an asymptotically singular matrix. Nielsen and Shimotsu (2007) [10]
extend this test statistic to accommodate both (asymptotically) stationary and nonstationary time
series by applying the exact local Whittle likelihood method of Shimotsu and Phillips (2005) [11]. The
simulation results in Nielsen and Shimotsu (2007) [10] show that the test statistic is sensitive to the
choice of the user chosen number, which is assumed to satisfy certain conditions. Hualde (2013) [12]
proposes a residual-based test, which covers the nonstationary and noninvertible series, and is valid
irrespective of whether cointegration exists. Although this test is developed for a bivariate series,
extending it to the multivariate case is non-trivial because multiple comparisons are needed when
high-dimensional series are involved. There are two ways to extend the Hualde (2013) [12] result. The
first involves testing the equality of each pair of integration orders, which requires p(p− 1)/2 simple
tests for a p-dimensional series. When p is large, this test procedure becomes computationally intensive.
The second extension is to explore the possibility of a one-step single test, which is pursued here.

In this paper, a residual-based testing procedure for the equality of integration orders of a multiple
fractionally integrated process is proposed. The test encompasses both the stationary/nonstationary
and invertible/noninvertible situations, and is valid even when the time series is cointegrated.
The procedure is computationally feasible because it is a one-step test without inverting ill-conditioned
matrices under cointegration. The test can be computed very fast even when dealing with a large p.
The test statistic converges to a standard normal distribution under the null hypothesis that all
integration orders are equal, and diverges when there are different integration orders.

This paper is organized as follows. In Section 2, the testing procedure and asymptotic theory
are presented. Empirical sizes and powers of the proposed test are given via a Monte Carlo study in
Section 3. Section 4 concludes the paper.

2. Integration Orders

Consider the following p-dimensional time series (x1,t, x2,t, . . . , xp,t)
′
, with prime denoting

transposition and t ∈ {0,±1,±2, . . .},

x1,t = ∆−δ1{υ1,t1(t > 0)}, x1,t = 0, t ≤ 0,
... (1)

xp,t = ∆−δp{υp,t1(t > 0)}, xp,t = 0, t ≤ 0,

where 1(·) is the indicator function, ∆ = 1 − L, L is the lag operator, and υt = (υ1,t, . . . , υp,t)
′

is
a vector of zero mean covariance stationary processes. Note that the series {xi,t} is nonstationary
for δi > 1/2 and “asymptotically stationary” for δi < 1/2, i = 1, . . . , p. By Taylor’s expansion,

∆α = ∑∞
j=0 πj(−α)Lj, πj(α) =

(α)j
j! , where (α)j = (α)(α + 1) . . . (α + j− 1). If α is not a negative integer,

then πj(α) =
Γ(j+α)

Γ(α)Γ(j+1) . When α is a negative integer, then πj(α) = 0 for j > −α and ∆−α becomes the
usual formula of differencing with integer orders. The symbol || · || is used to represent the Euclidean
norm and A ∼ B means that A/B converge to a constant or converge in distribution to a random
variable as n goes to ∞.

Assumption 1. Consider the process υt = A(L)εt, t ∈ Z with A(L) = ∑∞
j=0 AjLj. Assume that

1.1. ∑∞
j=1 j||Aj||2 < ∞;
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1.2. εt are i.i.d vectors with mean zero, positive definite covariance matrix Ω and E||εt||q < ∞ for some
q > max{2, 1/(δ̄ + 1/2)}, where δ̄ = min{δi}

p
i=1.

1.3. fii(0) > 0, i = 1, 2, where f (λ) is the spectral density matrix of υt and fij(0) is the (i, j) − th
element of f (0).

Assumption 1 is mild because it is satisfied by the usual stationary and invertible autoregressive
moving average (ARMA) processes. This is a common assumption for applying the functional
limit theorem of Marinucci and Robinson (2000) [13], and it has appeared in a similar form as
Assumptions A–C of Marmol and Velasco (2004) [14], Assumption A of Hualde (2013) [12] and
Assumption 1 of Wang, Wang and Chan (2015) [15]. In Particular, the moment condition in
Assumption 1.2 is discussed by Johansen and Nielsen (2012) [16]. As pointed out in Wang, Wang
and Chan (2015) [15], Assumption 1.1 ensures that the limiting process of the partial sum of υt has
nondegenerated finite-dimensional distributions. Assumption 1.1 implies that f (λ) is Lip(γ), γ > 0.

Under Assumption 1, model (1) means that all xi,t, i = 1, . . . , p are type-II fractionally integrated
processes. Furthermore, based on the fractional cointegration definition given in Robinson and
Yajima (2002) [4], if the integration orders of xit, i = 1, . . . , p are the same and there exists a non-zero
linear combination β

′
xt that is I(b)(b < δi), then the p-dimensional time series xt is said to be

cointegrated. Furthermore, any multiple time series containing xt as a sub-vector is also said to be
cointegrated.

To test whether all of the δi, i = 1, . . . , p are the same, we need to estimate δi precisely. Thus, the
following assumptions are introduced.

Assumption 2. Under both the null and alternative hypotheses,

2.1. there exists a positive constant K < ∞ and estimates δ̂i of δi, i = 1, . . . , p, respectively, such that

p

∑
i=1
|δ̂i| ≤ K, (2)

and there exists κ > 0,
δ̂i − δi ∼ n−κ ; (3)

2.2. Letting f̂ (0) be an estimate of f (0), then f̂ (0)
p→ f (0), where

p→ stands for the convergence in
probability.

Assumption 2 is very mild, as condition (2) is satisfied if δ̂i, i = 1, . . . , p are optimizers of the
corresponding functions over compact sets. δi, i = 1, · · · , p can be estimated by semiparametric
methods (see, for example, the log periodogram estimate of Geweke and Porter-Hudak (1983) [17]
studied by Hurvich et al. (1998) [18] or the narrow-band Gaussian or Whittle estimate introduced by
Künsch (1987) [19] and studied in Robinson (1995) [7] and Lobato (1999) [9]. Equation (3) is satisfied
by many estimation methods, such as that used in Beran (1995) [20] and Tanaka (1999) [21]. As
pointed out by Hualde and Velasco (2008) [22], Equation (3) is satisfied if δi is estimated from xi,t
using the usual parametric or semiparametric methods. For example, the Whittle pseudo-maximum
likelihood estimation proposed by Velasco and Robinson (2000) [23] satisfies (3). In particular, if a
parametric structure is imposed on υt, then a

√
n-consistent estimator results by means of a multivariate

extension of Robinson (2005) [24]. Assumption 2.2 is quite common and is satisfied by many classic
semiparametric or nonparametric estimates. Actually, a stricter condition on the convergence rate of
f̂ (0) ( f̂ (0)− f (0) = Op(n−χ), with χ being a positive constant) is used in many articles, such as Hualde
and Robinson (2006) [25], Hualde and Robinson (2010) [26], Hualde and Velasco (2008) [22] and Wang
(2008) [27], among others. In particular, Hualde and Robinson (2006) [25] discuss the convergence
rate of some estimates of f , including a weighted periodogram estimate that satisfies Assumption 2.2.
Hualde and Velasco (2008) [22] point out that the nonparametric estimate of f (0) introduced in
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their paper satisfies Assumption 2.2. Once δ̂i is estimated, the nonparametric estimator of f (0) can
be based on the weighted averages of the periodogram of the proxy v̂t = (x1,t(δ̂1), . . . , xp,t(δ̂p))

′
,

where xi,t(δ̂i) = ∆δ̂i{xi,t1(t > 0)}.
Let hn > 0 be a sequence such that

h−1
n + n−κhn → 0 as n→ ∞. (4)

Let d = ∑
p
i=1 δi, d̂ = ∑

p
i=1 δ̂i and

â = (I1, I2, . . . , Ip)
′
, (5)

where Ii = 1{Ai ∩ Bi}, Ai = {nκ(δ̂i − max
j=1,...,p,j 6=i

{δ̂j}) ≥ −hn} and Bi = {nκ(δ̂i − max
j=1,...,i−1

{δ̂j}) > hn}.

Furthermore, for i = 1, let max
j=1,...,i−1

{δ̂j} = −∞. Clearly, B1 is the entire sample space with P(B1) = 1.

Defining δ∗i = d−δi
p−1 and δ̂∗i = d̂−δ̂i

p−1 , we denote:

F̂ = F(δ̂, f̂ (0)) =
â
′
∑t xt(δ̂∗1 , . . . , δ̂∗p)

(2nπ)1/2 â′ f̂ (0)â
,

as the test for H0 : δ1 = · · · = δp against the alternative H1: there exists at least a pair of (i, j) such that
δi 6= δj.

Theorem 1. Letting Assumptions 1 and 2 hold, xt is defined in (1), and then F̂ d→ N(0, 1) under H0 and

F̂ = Op(n
p∗max{δi}−d

p−1 ) under H1, where d→ stands for convergence in distribution as n→ ∞.

Remark 1. Denote the set of indices of the maxima of δi as S = {j, δj = max{δi}
p
i=1}, and let m0 be the

smallest index of the maxima, that is, m0 = min{S}. Furthermore, let a = em0 , where em0 is the unit vector
that equals one at the m0-th coordinate and zero otherwise. Then, it is shown in the proof of Theorem 1 that
â

p→ a.

Remark 2. The vector â can also be set as a vector of constants: a = (a1, · · · , ap)
′
, which satisfies a

′
f (0)a 6= 0.

As f̂ (0) → f (0) in probability, a
′
f̂ (0)a > 0 with probability 1. However, with {δi}

p
i=1 unknown, it is not

guaranteed that F̂ diverges under H1 at a rate as fast as that specified in Theorem 1. Wang (2008) [27] shows
that different pre-determined â may lead to different divergence rates.

Remark 3. As pointed out in Remark 2, the choice of â has an influence on the diverging speed of F̂. From the
proof of Theorem 1, to get the theoretical diverging speed of F̂ as in Theorem 1, define â by Equations (4) and
(5). Then, â

p→ em0 when n→ ∞, with m0 being the smallest index of the maxima of {δi}
p
i=1. Consequently,

the denominator of F̂ converges to (2nπ)1/2 fm0,m0(0) > 0. Similar to the analysis in Hualde (2013) [12] and
Wang, Wang and Chan (2015) [15], it is natural to replace condition (4) by setting hn = 0, in which case â
converges to a random limit under H0. Furthermore, the limits of the numerator and denominator of F̂ are
dependent, which complicates analysis of the asymptotic distribution of F̂. From the definition of â, it is obvious
that the power of the proposed test with hn = 0 is superior to that of tests with other choices of hn. However,
when the sample size n → ∞, the powers of different cases will become the same. In practice, hn = lognκ or
hn = nκ/2 are two possible choices. In particular, if the parametric method in Hualde and Robinson (2011) [28]
is used, κ = 1/2, then we can set hn = n1/4.

Remark 4. If (x1,t, x2,t, . . . , xp,t) is cointegrated with β
′
xt = ∆but, β 6= 0, b < δ1 = δ2 = · · · = δp, then

f (0) would be singular. In this situation, most of the tests in the literature involve the inverse of f (0) and become
invalid under H0. However, the proposed test still works in the presence of cointegration. As fm0,m0(0) > 0 by
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Assumption 1, and â
p→ a = em0 as mentioned in Remark 1, we have a

′
f (0)a > 0. Furthermore, as shown in

Theorem 1, â
′
f (0)â converges to a

′
f (0)a > 0 in probability. Then, â

′
f̂ (0)â is positive with probability 1, and F̂

remains valid under cointegration.

3. Simulation

To assess the performance of our testing procedure, we conduct two Monte Carlo experiments.
For both experiments, we generate (x1,t, x2,t, x3,t)

′
as in (1) with vt being a three-dimensional white

noise with E(vt) = 0, Var(υi,t) = 1 for i = 1, 2, 3, Cov(vi,t, vj,t) =0.5. We compute F̂ parametrically,
which means δ̂i, i = 1, 2, 3 are estimated as in Hualde and Robinson (2011) [28] and f (0) is estimated
by f̂ (0) = (2πn)−1/2 ∑n

t=1 υ̂tυ̂
′
t.

For the first experiment, using 10,000 replications and 3 different sample
sizes n = 100, 250 and 500, we compute the proportion of rejecting F̂ for nominal size α = 0.01,

0.05, and 0.1 with different combinations of (δ1, δ2, δ3). Letting φ =
p∗max

i=1,...,p
{δi}−d

p−1 , we consider
φ = 0, 0.3, 0.6, 0.8 and 1.0. To investigate the sensitivity of the choice of hn, we present the result for
h1n = 0, h2n = log(nκ), h3n = nκ/2 with κ = 1/2 in Table 1.

Table 1. Empirical sizes and powers based on different δ and α.

n 100 250 500

hn α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

h1n

φ = 0 0.0603 0.1572 0.2874 0.0453 0.1356 0.2317 0.0415 0.1228 0.1969
φ = 0.3 0.5687 0.6726 0.7508 0.6615 0.7473 0.7881 0.7357 0.8113 0.8522
φ = 0.6 0.8730 0.9116 0.9288 0.9334 0.9598 0.9657 0.9767 0.9814 0.9892
φ = 0.8 0.9427 0.9562 0.9653 0.9693 0.9805 0.9833 0.9861 0.9896 0.9932
φ = 1.0 0.9733 0.9750 0.9820 0.9922 0.9951 0.9964 0.9972 0.9985 0.9987

h2n

φ = 0 0.0134 0.056 0.1127 0.0060 0.0533 0.105 0.0057 0.0523 0.1024
φ = 0.3 0.4724 0.5803 0.6437 0.5360 0.6875 0.7480 0.7371 0.8158 0.8463
φ = 0.6 0.8651 0.9082 0.9224 0.9392 0.9537 0.9556 0.9675 0.9804 0.9893
φ = 0.8 0.9427 0.9562 0.9653 0.9693 0.9805 0.9833 0.9861 0.9896 0.9932
φ = 1.0 0.9733 0.9750 0.9820 0.9922 0.9951 0.9964 0.9972 0.9985 0.9987

h3n

φ = 0 0.0047 0.0507 0.1068 0.0046 0.0482 0.1035 0.0049 0.0484 0.1033
φ = 0.3 0.4230 0.5399 0.6045 0.5168 0.6404 0.7006 0.6385 0.7334 0.7842
φ = 0.6 0.8457 0.8873 0.9162 0.9384 0.9625 0.9706 0.9727 0.9748 0.9881
φ = 0.8 0.9427 0.9562 0.9653 0.9693 0.9805 0.9833 0.9861 0.9896 0.9932
φ = 1.0 0.9733 0.9750 0.9820 0.9922 0.9951 0.9964 0.9972 0.9985 0.9987

First, consider the sizes, that is, φ = 0. We observe that for h1n, F̂ is oversized and the empirical
sizes of case h2n and h3n are very close to the nominal sizes. As n increases, the empirical sizes under
all scenarios approach the nominal sizes as expected. We also examine the power for φ = 0.3, 0.6, 0.8
and 1.0. It can be seen that the empirical power increases as n and φ increase, and that F̂ performs very
well for all choices of hin, i = 1, 2, 3. As expected, a smaller hn leads to better power, so h1n has the best
power and h2n has better power than h3n. As φ increases, the difference decreases substantially, and it
is clear that for φ ≥ 0.6, the powers of all hin, i = 1, 2, 3 are almost the same. One explanation is that
when φ is large enough, n−κhin, i = 1, 2, 3 become relatively small compared with φ, leading to the
same â. As ARMA models are common in modeling stationary time series, autoregressive fractionally
integrated moving averaging (ARFIMA) models constitute a reasonable approximation to xt when the
parametric method in Hualde and Robinson (2011) [28] is considered. In practice, if there is insufficient
information about the true model, a general ARFIMA(p1, δ0, p2) model is entertained first and a model
selection procedure based on some information criteria is conducted to choose p1 and p2.
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For the second experiment, we conduct a simulation to compare the proposed test F̂ with the test
in Nielsen and Shimotsu (2007) [10]:

T̂0 = m(Sδ̂)
′
(

S
1
4

D̂−1 (ĜoĜ
)

D̂−1S
′
+ k2

n Ip−1

)−1
(Sd̂),

where m is the bandwidth parameter; δ = (δ1, δ2, · · · , δp)
′

is the vector of integration orders of
(x1,t, x2,t, . . . , xp,t)

′
; o is the Hadamard product; Ip−1 is the (p − 1)-dimensional identity matrix;

S = [Ip−1,−ι], with ι being the (p − 1)-vector of ones; kn is a positive sequence satisfying certain
assumptions; G is the spectral density matrix of the δ’th differenced process around the origin; and
D is the diagonal matrix of G. Using 5,000 replications and 3 different sample sizes n = 128, 256 and
512, we report the rejection frequencies of F̂ with h3n = nκ , κ = 1/2, as well as T̂0 with bandwidth
parameter m = [n0.6] and two choices of kn, that is k1n = 1/log(n) and k2n = 1/(log(n))1/2 in Table 2.
Here, [z] denotes the largest integer smaller than or equal to z. The fractional integration order δ is
estimated by the exact local Whittle likelihood for T̂0.

Table 2. Empirical sizes and powers of F̂ and T̂0.

n 128 256 512

α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

F̂ with h3n

φ = 0 0.02 0.0566 0.1148 0.016 0.0514 0.1118 0.0138 0.0514 0.1106
φ = 0.3 0.5172 0.6224 0.6842 0.5718 0.6698 0.7120 0.6398 0.7342 0.7842
φ = 0.6 0.8622 0.8976 0.9134 0.9328 0.9572 0.9680 0.9712 0.9758 0.9854
φ = 0.8 0.9592 0.9682 0.9742 0.9800 0.9850 0.9874 0.9902 0.9926 0.9938
φ = 1.0 0.9694 0.9758 0.9802 0.9858 0.9884 0.9902 0.9968 0.9976 0.9984

T̂0 with k1n

φ = 0 0.1310 0.2438 0.3278 0.1280 0.2438 0.3278 0.1010 0.2008 0.3076
φ = 0.3 0.5584 0.7144 0.7860 0.5584 0.7184 0.7860 0.5684 0.7184 0.7968
φ = 0.6 0.9722 0.9890 0.9944 0.9722 0.9890 0.9944 0.9742 0.9890 0.9974
φ = 0.8 0.9964 0.9994 0.9994 0.9968 0.9994 0.9994 0.9972 0.9996 0.9996
φ = 1.0 0.9988 0.9998 1 1 1 1 1 1 1

T̂0 with k2n

φ = 0 0.0490 0.1154 0.1808 0.0490 0.1154 0.1808 0.0498 0.1156 0.1810
φ = 0.3 0.3680 0.5662 0.6658 0.3680 0.5662 0.6658 0.3780 0.5682 0.6678
φ = 0.6 0.9352 0.9772 0.9868 0.9552 0.9782 0.9868 0.9552 0.9782 0.9868
φ = 0.8 0.9872 0.9962 0.9980 0.9892 0.9964 0.9980 0.9892 0.9964 0.9980
φ = 1.0 0.9950 0.9986 0.9994 1 1 1 1 1 1

We find that all of the three tests are oversized, and that their empirical powers increase when φ

increases. However, the empirical powers and empirical sizes of T̂0 do not change much when the
sample size changes from 128 to 512, while those of F̂ improve significantly when n increases.

We first compare the simulation results of T̂0 with k1n and k2n. It is obvious that T̂0 is sensitive to
the choice of kn: T̂0 works reasonably well for k2n = 1/(logn)1/2 and T̂0 over-rejects substantially for
k1n = 1/logn. The test T̂0 is oversized for both k1n and k2n, and k2n has a better empirical size and k1n
better empirical power. This phenomenon is also reported in Nielsen and Shimotsu (2007) [10].

We then compare F̂ with T̂0 and find that, for all sample sizes n, F̂ has much better empirical sizes
than T̂0 for both k1n and k2n. The empirical power of F̂ is not as good as that of T̂0 when the sample
size is relatively small (128 and 256). However, as the sample size increases to 512, the empirical power
of F̂ becomes superior to that of T̂0.

4. Conclusions

A residual-based test for testing the equality of the integration orders of multiple fractionally
integrated processes is proposed in this paper. The test is valid under cointegration and is
computationally feasible. One needs only to estimate the integration order and the spectral density
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function of the process that generates the fractionally integrated processes. The proposed test enjoys
standard asymptotics and possesses satisfactory finite sample behavior.
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Appendix A

Lemma A1. Let δi, δ∗i and δ̂∗i be defined as in Section 2. Then n−1/2 ∑n
t=1 ∆δ̂∗i xi,t − n−1/2 ∑n

t=1 ∆δ∗i xi,t ={
op(1), under H0,

op(nδi−δ∗i ), under H1.

Proof. Let g(λ, zt) = ∆λzt. Then g(λ, zt) = ∑t−1
i=0 πi(λ)zt−i if zt = 0 for t ≤ 0, where πi(·),

i = 1, . . . , t− 1 are as defined in Section 2 and the derivatives g(r)(λ, zt) = ∑t−1
i=1 π

(r)
i (λ)zt−i,

where π
(r)
i (λ) = drπi(λ)/dλr. Based on Taylor’s expansion around δi, for a certain constant R

to be defined subsequently, we can show that

n−1/2
n

∑
t=1

∆δ̂∗i xi,t − n−1/2
n

∑
t=1

∆δ∗i xi,t

=n−1/2
n

∑
t=1

(g(δi − δ̂∗i ; υi,t)− g(δi − δ∗i ; υi,t))

=
1√
n

R−1

∑
r=1

(δ∗i − δ̂∗i )
r

r!

n

∑
t=1

g(r)(δi − δ∗i ; υi,t) +
(δ∗i − δ̂∗i )

R

R!
√

n

n

∑
t=1

g(R)(δi − δ̃; υi,t) (A1)

=

{
op(1), under H0,

op(Tδi−δ∗i ), under H1,
(A2)

where δ̃ ∈ (min(δ∗i , δ̂∗i ), max(δ∗i , δ̂∗i )).
(A1) and (A2) can be derived based on reasoning similar to that of Theorem 1 of Wang, Wang and

Chan (2015) [15] or Theorem 1 of Hualde (2013) [12], under Assumptions 1 and 2. In particular, to
verify (A2), we apply the functional central limit theorem as in Marinucci and Robinson (2000) [13],
which is guaranteed by Assumption 1.

Proof of Theorem 1. First, we show that â
p→ a, where â = (I1, I2, . . . , Ip), with Ii = 1{Ai ∩ Bi},

Ai := {nκ(δ̂i − max
j=1,...,p,j 6=i

{δ̂j}) ≥ −hn}, Bi = {nκ(δ̂i − max
j=1,...,i−1

{δ̂j}) > hn}, and B1 is as defined in

Section 2.
Note that ∀i ∈ {1, . . . , p},

1{Ai ∩ Bi}+ 1{Ac
i ∪ Bc

i } = 1,
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and â
p→ a is immediately obtained if we show that

1{nκ(δ̂i − max
j=1,...,p,j 6=i

{δ̂j}) ≥ −hn} = op(1), if δi < max
j=1,...,p

{δj}, (A3)

1{nκ(δ̂i − max
j=1,...,p,j 6=i

{δ̂j}) < −hn} = op(1), if δi = max
j=1,...,p

{δj}, (A4)

1{nκ(δ̂i − max
j=1,...,i−1

{δ̂j}) > hn} = op(1), if δi ≤ max
j=1,...,i−1

{δj}, (A5)

1{nκ(δ̂i − max
j=1,...,i−1

{δ̂j}) ≤ hn} = op(1), if δi > max
j=1,...,i−1

{δj}. (A6)

The reason is that, if i = m0, with m0 as defined in Remark 1, δi = max
j=1,...,p

{δi} and δi > max
j=1,...,i−1

{δi},

then 1{Ac
i ∪ Bc

i } ≤ 1{Ac
i }+ 1{Bc

i } = op(1) + op(1) = op(1) and 1{Ai ∩ Bi}
p→ 1.

Otherwise, if i 6= m0, which means δi < max
j=1,...,p

{δi} or δi ≤ max
j=1,...,i−1

{δi}, then 1{Ai ∩ Bi} ≤

1/2(1{Ai}+ 1{Bi}) = op(1) + op(1) = op(1).

Therefore, Ii
p→ 1{i = m0}, and furthermore â

p→ a.
Then, we prove (A3)–(A6). As the definition of 1{Bi} is similar to the terms that appear

in Hualde (2013) [12] and Wang, Wang and Chan (2015) [15], (A5) and (A6) can be proved with
similar reasoning. We prove (A3), which means that δi is smaller than max

k=1,...,p
{δk} = δj. Denote

Qn = nκ(δ̂i − δ̂j − (δi − δj)), then |Qn| = Op(1) based on Assumption 2. First, we show that

1{Ai} = 1{nκ(δ̂i − max
k=1,...,p,k 6=i

{δ̂k}) ≥ −hn}

= 1{nκ(δ̂i − δ̂j) ≥ −hn}
= 1{Qn + nκ(δi − δj) ≥ −hn}

≤ |Qn |
−hn+nκ(δj−δi)

= op(1),

(A7)

by (4).
Similarly, for (A4), when δi = max{δk

k=1,...,p
} ≥ max{δk

k=1,...,p,k 6=i
},

1{Ac
i } = 1{nκ(δ̂i − max

k=1,...,p,k 6=i
{δ̂k}) < −hn}

≤ ∑
p
k=1,k 6=i 1{nκ(δ̂i − δ̂k) < −hn}

= ∑
p
k=1,k 6=i 1{Qn + nκ(δi − δk) < −hn}

= op(1),

(A8)

since

1{Qn + nκ(δi − δk) < −hn},

=

{
1{−Qn > hn} ≤ |Qn |

hn
= op(1), if δi = δk,

1{nκ(δi − δk) < −hn −Qn} ≤ |Qn |+hn
nκ(δi−δk)

= op(1), if δi > δk.

Next, we prove that

F(δ, f (0)) = ∑n
t=1 a

′
xt(δ

∗
1 ,...,δ∗p)

(2nπ)1/2a′ f (0)a
,{

d→ N(0, 1), under H0,
= Op(n(p∗max{δi}−d)/(p−1)), under H1.

(A9)
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Under H0, δ∗i = δi,
n−1/2a

′
∑t xt(δ1,...,δp)

(2π)1/2a′ f (0)a
converges in distribution to N(0, 1) in view of the

functional limit theorem of the I(0) process. Under H1, δi − δ∗i = p∗δi−d
p−1 ,

a
′

∑t vt(−(δ1−δ∗1 ),...,−(δp−δ∗p))

(2nπ)1/2a′ f (0)a
=

Op(n
p∗max{δi}−d

p−1 ), based on the properties of the integrated process.
Finally, we show that

n−1/2
n

∑
t=1

(â
′
xt(δ̂

∗
1 , . . . , δ̂∗p)− a

′
xt(δ

∗
1 , . . . , δ∗p))

=
(â− a)

′

√
n

n

∑
t=1

xt(δ
∗
1 , . . . , δ∗p)) +

â
′

√
n

n

∑
t=1

(xt(δ̂
∗
1 , . . . , δ̂∗p)− xt(δ

∗
1 , . . . , δ∗p)) (A10)

=

{
op(1) under H0,

op(n(p∗max{δi}−d)/(p−1)), under H1.

By Lemma A1, || 1√
n ∑n

t=1(xt(δ̂∗1 , . . . , δ̂∗p) − xt(δ∗1 , . . . , δ∗p))|| is op(nmax{δi−δ∗i }); additionally, p ∗
max{δi} − d = 0 under H0. Thus, it is op(n(p∗max{δi}−d)/(p−1)) under H1, and is op(1) under H0.

|| 1√
n ∑n

t=1 xt(δ∗1 , . . . , δ∗p))|| is Op(n(p∗max{δi}−d)/(p−1)) and ||(â − a)|| is op(1),

so (â−a)
′

√
n ∑n

t=1 xt(δ∗1 , . . . , δ∗p)) is op(n(p∗max{δi}−d)/(p−1)).

Furthermore, based on (A9) and (A10) and given that â
′
f̂ (0)â

p→ a
′
f (0)a > 0, the proof of

Theorem 1 is complete.
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