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Abstract: This paper discusses the consistency of trend break point estimators when the number of
breaks is underspecified. The consistency of break point estimators in a simple location model with
level shifts has been well documented by researchers under various settings, including extensions
such as allowing a time trend in the model. Despite the consistency of break point estimators of level
shifts, there are few papers on the consistency of trend shift break point estimators in the presence
of an underspecified break number. The simulation study and asymptotic analysis in this paper
show that the trend shift break point estimator does not converge to the true break points when the
break number is underspecified. In the case of two trend shifts, the inconsistency problem worsens
if the magnitudes of the breaks are similar and the breaks are either both positive or both negative.
The limiting distribution for the trend break point estimator is developed and closely approximates
the finite sample performance.
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1. Introduction

A time series can have multiple breaks. For example, U. S. Treasury bill rates can be observed
to have multiple level changes over time, while the Grilli and Yang primary commodity price index
shows multiple trend shifts. It is common that the number of breaks is unknown and misspecified.
Bai (1995, 1997) [1,2] and Chong (1994, 1995) [3,4] study the consequences of underspecifying the
number of break points in linear structural break models. They point out that when the number
of breaks in a mean shift model is underspecified, the break point estimator is still consistent for
a subset of the true break points. Their discussion covers the mean shift model with and without trend.
Bai (1997) [2] shows that the mean break point estimator by sequential estimation is not only consistent
but also converges at the same rate as with simultaneous estimation. Bai and Perron (1998) [5] extend
the estimation of a single unknown break to multiple unknown breaks under both fixed and shrinking
shift magnitudes. Based on the consistency property of the mean shift break point estimator, they
propose a sequential procedure for multi-break estimates without estimating the multiple breaks
simultaneously. Dynamic programming is introduced by Bai and Perron (2003) [6] to deal with the
computational burden in multiple break point estimation. Kejriwal and Perron (2010) [7] extend the
work of Perron and Yabu (2009) [8,9] to propose a sequential test of the multiple-trend-shift model
robust to persistence in noise.

Although trending components are considered by researchers in the mean shift model, there is
little discussion of the consistency of multiple trend shift break point estimators when the number of
breaks is underspecified. Consistency analysis is important both for break point estimation and for
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structural breaks in the linear regression model. The main motivation of this paper is to address the
gap in the literature concerning the consistency of trend shift break point estimators when the break
number is underspecified.

The second motivation of this paper is to explore how to approximate the finite sample
distributions of the break point estimator for a multiple break model. Specifically, asymptotics of
the break point estimator in a trend shift model are provided for the case of an underspecified break
number by employing Pitman drifts. The accuracy of the asymptotic approximation to the finite
sample distribution is examined. This work follows Yang (2012) [10] who has shown that the finite
sample distribution of the single break point estimator is not normal, but depends on the break dates
and magnitudes.

In this paper, finite sample simulations are used to illustrate the potential inconsistency of the
break point estimator in the trend shift model with an underspecified break number. Then, the limits
of the break point estimator under fixed break magnitudes are provided. Both the simulation results
and the expression of the limits show that for the trend shift model, the break point estimator can be
inconsistent for any of the true break points, while for the mean shift model, the break point estimator
converges to one of the true breaks. Then, extending Yang’s (2012) work [10] on the single break point
estimator, new asymptotics are provided for the break point estimators under local alternatives.

As will be shown in this paper, the mean shift model leads to a consistent break point estimator
while the trend shift model does not. Taking first differences of the trend shift model is shown by
Yang (2010) [11] to provide a solution to the inconsistency problem. When the break magnitudes are
sufficiently large, the first-difference break point estimator has much higher peaks in the density at the
true breaks than the levels break point estimator. When the break magnitudes are small, the densities
of the two break point estimators depend on the break magnitudes and locations and the strength of
the serial correlation. A detailed analysis of the first-difference estimator is omitted in this paper but
can be found in Yang (2010) [11] and Yang (2012) [10].

The paper is organized as follows. Section 2 describes the general settings of the mean shift
and trend shift models, assumptions, and break point estimators. Section 3 introduces finite sample
simulations to demonstrate the consistency properties of different break point estimators. Section 4
derives the expression of the limits of the single break point estimator when the break sizes are fixed
and the data sequences have two breaks under I(0) errors. Both mean shift and trend shift break
point estimators are discussed. Section 5 establishes the asymptotic distributions of the break point
estimators assuming the breaks are Pitman drifts, which approximate the finite sample distributions
accurately. Sections 4 and 5 relate the mean shift results to those of Bai (1997) [2]. The last section
concludes the paper. Proofs are provided in the Appendix.

2. The Models, Assumptions, and Break Point Estimators

In this section, I define a mean shift and a trend shift model with multiple breaks. For simplicity,
I only include the case where a single break model is estimated while the number of breaks is two.
The results can be extended to models with more than two breaks.

Let us start with a mean shift model with two breaks:

yt = µ + δ1DUt(λ
c
1) + δ2DUt(λ

c
2) + ut, (1)

where

DUt(λ
c
i )

.
=

{
0, t ≤ Tc

b,i
1, t > Tc

b,i
, i = 1, 2;

λc
1 and λc

2 are the true break fractions with Tc
b,1 = λc

1T and Tc
b,2 = λc

2T; Tc
b,i denotes the time of a break.

T is the sample length; δ1 and δ2 are the break magnitudes. For convenience of discussion, we define
the relative break magnitude ratio ν

.
= δ2/δ1.
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When model (1) is underspecified, the estimated model is given by

yt = µ + δDUt(λ) + ut, (2)

where

DUt(λ)
.
=

{
0, t ≤ Tb
1, t > Tb

;

λ is the underspecified single break fraction with Tb = λT.
For comparison, the trend shift model with two breaks is

yt = µ + βt + δ1DTt(λ
c
1) + δ2DTt(λ

c
2) + ut, (3)

where DTt(λc
i )

.
= (t− Tc

b,i) · DUt(λc
i ), i = 1, 2.

If model (3) is misspecified with only one break, the estimated model is

yt = µ + βt + δDTt(λ) + ut, (4)

where DTt(λ)
.
= (t− Tb) · DUt(λ).

It is assumed that the error ut is I(0), namely

ut = d(L)et, (5)

where

d(L) =
∞

∑
i=0

diLi,
∞

∑
i=0

i|di| < ∞, d(1)2 > 0;

L is the lag operator; {et} is a martingale difference sequence with supt E(e4
t ) < ∞,

E(et|et−1, et−2, · · · ) = 0, and E(e2
t |et−1, et−2, · · · ) = σ2

e .
The break point estimators are obtained by minimizing the sum of squared residuals (SSR) over

the trimming set Λ .
= {λ∗, · · · , 1− λ∗}, namely

λ̂MS = arg min
λ∈Λ∗
{SSRMS(λ)},

λ̂TS = arg min
λ∈Λ∗
{SSRTS(λ)},

where

SSRMS(λ)
.
=

T

∑
t=1

[yt − µ̂MS − δ̂MSDUt(λ̂)]
2, (6)

SSRTS(λ)
.
=

T

∑
t=1

[yt − µ̂TS − β̂TSt− δ̂TSDTt(λ̂)]
2, (7)

with µ̂MS and δ̂MS the OLS estimators from model (2) with no restrictions imposed, whereas µ̂TS, β̂TS,
and δ̂TS are the OLS estimators from model (4) with no restrictions imposed.
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3. Illustration of the Inconsistency Problem of the Trend Shift Break Point Estimator

In this section a simple simulation is used to illustrate the consistency/inconsistency of λ̂MS
and λ̂TS in the presence of an underspecified break number. The data are generated based on
models (1) and (3) with two breaks, where T = 100, 250, 500, 1000, {λc

1, λc
2} = {1/3, 2/3}, ν = −2, −1,

1, 2 (we set δ1 = 1 without loss of generality), and ut is an i.i.d. N(0, 1) process. Equations (6) and
(7) are used to estimate λ̂MS and λ̂TS separately in each replication. While trimming is not necessary,
to ensure the invertibility of the regression matrix I use 2% trimming, i.e., λ∗ = 0.02. The replications
N = 20,000, 10,000, 5000, 2500 are used for T = 100, 250, 500, 1000 respectively.

Figure 1a,b plots the histograms of λ̂MS with i.i.d. errors. In all cases with the increase of T,
the distribution of λ̂MS has shorter tails and, when T = 1000, concentrates at the two break points
or one of them depending on the relative break magnitude ratios. Interestingly, when |ν| = 1 and
T = 100, the density of λ̂MS is bimodal, which can be explained by Yang (2012) [10] through the
behavior of the mean shift break point estimator, where the break point estimates concentrate around
the end points in the no break model.

Figure 1c,d plots the histograms of λ̂TS. When ν = −2, the density peaks at a point greater than
2/3. When ν = −1, λ̂TS has two equal peaks at λ = 0.2 and 0.8. When ν = 1, the histogram of λ̂TS has
only one peak at λ = 0.5, and with the increase of T the break date estimates are more concentrated.
When ν = 2, the histogram of λ̂TS peaks at a point between 1/3 and 2/3. This shows that when the
number of breaks is underspecified, the trend shift break point estimator does not converge to either
of the true break points, and that the limit of the break point estimator λ̂TS depends on the break
magnitudes and locations.

Empirical data also shows that the break point estimators behave differently when the break
number is underspecified in mean shift model and trend shift model. Using the US ex-post real interest
rate in Figure 2 as an example of mean shifts (the three-month treasury bill rate between the first
quarter of 1961 and the third quarter of 1986 deflated by the CPI inflation rate taken from the Citibase
data bank), Bai and Perron (1998) [5] detect three mean shifts in years 1965, 1972, and 1980 while a
single mean shift point estimator detects one of the real breaks in 1980. Using the extended Grilli
and Yang commodity price index as an example of trend shifts (Copper during 1900–2003), Harvey,
Leybourne, and Taylor (2009) [12] identify two breaks in 1945 and 1971, while a single trend shift
estimator identifies one in 1930, which is not close to the HLT dates.

Both the finite sample histograms and empirical data suggest an interesting pattern: when the
break number is underspecified, the mean shift break point estimator converges to a subset of the true
break points, while the trend shift counterpart does not converge to either of the true break points and
its limit depends on the break dates and magnitudes.
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Figure 1. Cont.
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Figure 1. Histograms of the single break point estimator λ̂MS or λ̂TS when {λc
1, λc

2} = {1/3, 2/3} and
δ1 = 1 always. From top to bottom on each page: T = 100, 250, 500, 1000. (a) Histograms of λ̂MS when
ν = −2(δ2 = −2),−1(δ2 = −1); (b) Histograms of λ̂MS when ν = 1(δ2 = 1), 2(δ2 = 2); (c) Histograms
of λ̂TS when ν = −2(δ2 = −2),−1(δ2 = −1); (d) Histograms of λ̂TS when ν = 1(δ2 = 1), 2(δ2 = 2).
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(a)

(b)

Figure 2. Single break point estimate (dotted line) while multiple mean shifts or trend shifts exist
(dashed line). (a) US ex-post real interest rate during Q1 1961–Q3 1986; (b) Primary commodity price
index (Copper) relative to the price of manufacture during 1900–2003.

4. Limits of the Break Point Estimators when the Break Magnitudes are Fixed

Similar to the discussion in Bai (1997) [2] for the mean shift results, the limits of the single trend
break point estimator λ̂TS are derived in this section when the break sizes are fixed and the data
sequences have two trend breaks.

Theorem 1. Assume there are two break fractions λc
1 and λc

2 with fixed break magnitudes in models (1) and (3)
while the break number is underspecified as one.

1. For the mean shift model (1), under assumption (5) with fixed break magnitudes δ1 = δ∗1 and δ2 = δ∗2 , the
break point estimator λ̂MS converges to one of the true breaks:

(λ̂MS − arg max
λ∈Λ
|G2MS(λ, λc

1) + ν · G2MS(λ, λc
2)|) = Op(T−1/2), (8)

where ν = δ∗2 /δ∗1 and

G2MS(λ, λc)
.
=

Ψ(λ, λc)√
λ(1− λ)

,

Ψ(λ, λc)
.
=

{
(1− λc)λ, if λ ≤ λc

(1− λ)λc, if λ > λc .
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Essentially

(
λ̂MS − λc

1
)
= Op(T−1/2), i f

λc
1

λc
2

δ2
1 ≥

(1− λc
2)

(1− λc
1)

δ2
2 ;
(
λ̂MS − λc

2
)
= Op(T−1/2), otherwise. (9)

2. For the trend shift model (3), under assumption (5) with fixed break magnitudes δ1 = δ∗1 and δ2 = δ∗2 , the
break point estimator λ̂TS has the following limit:

(λ̂TS − arg max
λ∈Λ
|G2TS(λ, λc

1) + ν · G2TS(λ, λc
2)|) = Op(T−3/2), (10)

where ν = δ∗2 /δ∗1 and

G2TS(λ, λc)
.
=

∫ 1
0 F(r, λ)F(r, λc)dr√∫ 1

0 F(r, λ)2dr
,

F(r, λ)
.
=

{
λ3 − 2λ2 + λ− (2λ3 − 3λ2 + 1)r, if r ≤ λ

λ3 − 2λ2 − (2λ3 − 3λ2)r, if r > λ
.

The limit of λ̂MS is either λc
1 or λc

2 as shown in Figure 3, which is consistent with the results in
Bai (1997) [2] using a different theoretical framework. Not surprisingly, G2MS(λ, λc

i ) is maximized at
λc

i and λ̂MS converges to one of the true break points.
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Figure 3. G2MS(λ, λc) and G2TS(λ, λc) with λc = 0.5.

The limit of λ̂TS has different patterns. It is still true that G2TS(λ, λc
i ) achieves a maximum at

λ = λc
i as shown in Figure 3. What makes it different from the mean shift case is when we sum up the

two G2TS terms, the function smooths out through the two peaks at each λc
i . Hence, when the number

of trend breaks is two while assumed to be one, |G2TS(λ, λc
1) + ν · G2TS(λ, λc

2)| peaks neither at λc
1

nor at λc
2. Figure 4 plots |G2(λ, λc

1) + ν · G2(λ, λc
2)| with ν = ±1 and λc

1 = 1/4 and λc
2 = 3/4. In both

cases |G2(λ, λc
1) + ν · G2(λ, λc

2)| peaks at neither of the true break points. Certainly, if |ν| is smaller
than 1, λ̂TS will be closer to λc

1; and if |ν| is bigger than 1, λ̂TS will be closer to λc
2. This clearly explains

the reason for the inconsistency of the trend shift break point estimator when the break number is
underspecified.
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for trend shift model, where ν = 1 and −1, {λc

1, λc
2} = {1/4, 3/4}.

Figure 5 plots the λ’s where |G2TS(λ, λc
1) + ν · G2TS(λ, λc

2)| is maximized along ν when
{λc

1, λc
2} = {1/3, 2/3} and {1/4, 3/4}. When ν = 0, |G2TS(λ, λc

1) + ν · G2TS(λ, λc
2)| is maximized at

λc
1. When |ν| goes to ∞, the limit of the break point estimator will be the true break λc

2. Other than
these practically uninteresting cases, the limits of arg max{|G2TS(λ, λc

1) + ν · G2TS(λ, λc
2)|} will not be

the true break points. Take {λc
1, λc

2} = {1/3, 2/3} as an example. When ν < −1, the limiting point
is greater than 2/3. When −1 < ν < 0, the limiting point is less than 1/3. In both cases, the limiting
points are beyond the range of the two true breaks. When ν > 0, the limiting points are between the
true breaks. When ν = 1, the limiting point is at λ = 0.5, the trend shift break point estimator is far
away from the true breaks. As ν goes away from 1, the limit of the trend shift break point estimator
gets closer to one of the true breaks. The limits tell us the magnitude of the discrepancy between the
spurious break and true breaks. Numerically when |ν| > 4.3 or |ν| < 1

4.3 , the limits of the spurious
break point will be between ±2.5% of the true breaks. This threshold can be extended to other cases
with different break locations.
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We summarize the findings on the consistency/inconsistency of λ̂MS and λ̂TS under
assumption (5) as follows:

1. For the mean shift model with two breaks, if the break magnitudes are not zero, the single break
point estimator λ̂MS is consistent for either λ1 or λ2:

lim
T→∞

λ̂MS → λc
1 or λc

2.

2. For the trend shift model1 with two breaks, if the break magnitudes are not zero, the single break
point estimator λ̂TS is inconsistent for either λ1 or λ2:

lim
T→∞

λ̂TS 6→ λc
1 and lim

T→∞
λ̂TS 6→ λc

2.

The limit depends on λc
1, λc

2, and ν:

lim
T→∞

λ̂TS = arg max
λ∈Λ
|G2TS(λ, λc

1) + ν · G2TS(λ, λc
2)|.

5. Limiting Distributions of λ̂MS and λ̂TS by Employing Pitman Drifts

As shown in the literature, asymptotic results derived under Pitman drifts often closely
approximate the finite sample behavior of the test statistics or estimators involved. In the following,
the limiting distributions of λ̂TS and λ̂MS are developed under Pitman drifts.

Theorem 2. Assume there are two break points λc
1 and λc

2 in the linear model while the break number is
underspecified as one.

1 If DUt’s are included together with DTt’s in model (3), under the condition of fixed break magnitudes, the trend shifts will
dominate the mean shifts in the (in)consistency of the break point estimator, following the results in Theorem 1. If [t · DUt]’s
are included in model (3), the slope change will force a large level shift. Under this condition, the consistency property of
mean shifts will be dominant and the inconsistency problem in break point estimator will not persist anymore.
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1. For the mean shift model (1), under assumptions (5) and δ1 = T−1/2δ∗1 and δ2 = T−1/2δ∗2 , where δ∗1 and
δ∗2 are constant scalars, the break point estimator λ̂MS has the following limiting distribution:

λ̂MS ⇒ arg max
λ∈Λ
{
[(λW(1)−W(λ)) + M1Ψ(λ, λc

1) + M2Ψ(λ, λc
2)]

2

λ(1− λ)
}, (11)

where M1
.
=

δ∗1
d(1) , M2

.
=

δ∗2
d(1) , and

Ψ(λ, λc)
.
=

{
(1− λc)λ, if λ ≤ λc

(1− λ)λc, if λ > λc .

2. For the trend shift model (3), under assumptions (5) and δ1 = T−3/2δ∗1 and δ2 = T−3/2δ∗2 , where δ∗1 and
δ∗2 are constant scalars, the break point estimator λ̂TS has the following limiting distributions:

λ̂TS ⇒ arg max
λ∈Λ
{[
∫ 1

0
F(r, λ)dW(r) + M1

∫ 1

0
F(r, λ)F(r, λc

1)dr +

M2

∫ 1

0
F(r, λ)F(r, λc

2)dr]2
∫ 1

0
F(r, λ)2dr}, (12)

where M1
.
=

δ∗1
d(1) ≡

δ1T3/2

d(1) , M2
.
=

δ∗2
d(1) ≡

δ2T3/2

d(1) , ν = M2/M1 ≡ δ2/δ1, and F(r, λ) is defined in
Theorem 1.

The asymptotics in Theorem 2 are an extension of work by Yang (2012) [10] from the single-break
case to the multiple-break case. To understand the effect of M1, λc

1, M2, and λc
2 on the limiting

distributions, I decompose the part inside the arg min in Equations (11) and (12) into three parts, where

GMS(λ, λc
1, λc

2)
.
= G1MS(λ) + M1 · G2MS(λ, λc

1) + M2 · G2MS(λ, λc
2)

.
=

(λW(1)−W(λ))√
λ(1− λ)

+ M1 ·
Ψ(λ, λc

1)√
λ(1− λ)

+ M2 ·
Ψ(λ, λc

2)√
λ(1− λ)

; (13)

GTS(λ, λc)
.
= G1TS(λ) + M1 · G2TS(λ, λc

1) + M2 · G2TS(λ, λc
2)

.
=

∫ 1
0 F(r, λ)dW(r)√∫ 1

0 F(r, λ)2dr
+

M1 ·
∫ 1

0 F(r, λ)F(r, λc
1)dr√∫ 1

0 F(r, λ)2dr
+ M2 ·

∫ 1
0 F(r, λ)F(r, λc

2)dr√∫ 1
0 F(r, λ)2dr

. (14)

For the asymptotic distribution of λ̂MS, with the form of G1MS(λ) + M1 · G2MS(λ, λc
1) + M2 ·

G2MS(λ, λc
2) in the limiting distributions, Theorem 2 provides a bridge between the asymptotics under

the null of no breaks and the asymptotics under local alternatives of up to two breaks.
The asymptotics are continuous at {M1, M2} = {0, 0}, i.e., M1 and M2 could be as small as

possible in the asymptotics. When M1 and M2 are small, the random component G1MS dominates GMS
and the distribution is close to the case of no breaks. For a small M, λ̂TS concentrates more around the
middle range exhibiting a bell shape, while λ̂MS concentrates more around the boundaries exhibiting
a U shape. The detailed explanation is given in Yang (2012) [10]. For a moderate M, the limiting
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distribution of λ̂MS exhibits a shape of W, resulting from the mixed effects of G1MS and G2MS in the
asymptotics. If T → ∞, both M1 and M2 increase to ∞,

lim
T→∞

λ̂MS,TS → arg max
λ∈Λ
|G2MS,TS(λ, λc

1) + ν · G2MS,TS(λ, λc
2)|.

The limiting distributions in Theorem 2 are nonstandard. M1, M2, λc
1 and λc

2 show up in the
approximations, and capture the effects of M’s and λc’s on the asymptotics. Besides other deterministic
variables in Theorem 2, the main random variables in the asymptotic distributions are functions of
a Wiener process. The Wiener process in the asymptotic distributions was approximated by using
standard normal i.i.d. random deviates. Integrals were approximated by normalized partial sums of
1000 steps using 10,000 replications.

Figure 6 plots the finite sample distributions of λ̂MS and λ̂TS with T = 100 and asymptotic
distributions for µ = β = 0, {λc

1, λc
2} = {1/3, 2/3}. Errors are i.i.d. N(0, 1). The left panels of

Figure 6 are for λ̂MS and the right panels are for λ̂TS. From the top to the bottom are the cases of
{δ1, δ2} = {1, 1}, {5, 5}, {1,−1}, and {5,−5}. The pdfs of λ̂MS and λ̂TS are plotted in separated figures
with the same scales to show the performance comparison in the presence of an underspecified break
number. Kernel smoothing is used to obtain the pdf based on the simulations. Figure 6 compares
the asymptotic limits given by Theorem 2 to finite sample distributions. The two lines in each panel
are near-identical, which shows that the asymptotics does a good job of approximating finite sample
distributions of the break point estimators.
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Figure 6. The asymptotic distributions and the finite sample distributions of λ̂TS and λ̂MS when
T = 100, {λc

1, λc
2} = {1/3, 2/3}, and ut is an i.i.d. N(0, 1) process. The left: the distributions of

λ̂MS; the right: the distributions of λ̂TS. From the top to the bottom: {δ1, δ2} = {1, 1}, {5, 5}, {1,−1},
and {5,−5}.

6. Conclusions

This paper analyzes the consistency of trend shift break point estimators when the number of
breaks is underspecifed. The limit of the trend shift break point estimator for fixed break sizes is
shown to be dependent on the break magnitudes and locations. In general, the trend shift break
point estimator does not consistently estimate one of the true break points. Using the Pitman drift
assumption, the limiting distribution of the trend shift break point estimator is shown to closely
resemble the finite sample distributions.
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Appendix A.

Appendix A.1. Proof of Theorem 1

Theorem 1 can be proved simply by following the steps provided in the proof of Theorem 2 below.
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Appendix A.2. Proof of Theorem 2

Appendix A.2.1. Asymptotic Distribution of λ̂MS

Let SSR0
MS be the SSR under the assumption of no breaks. Following Equation (6), we obtain

SSR0
MS − SSRMS(λ) = [

T

∑
t=1

D̃Ut(λ)
2]δ̂2

MS.

The OLS estimator of δ from (2) is given by

δ̂MS = [
T

∑
t=1

D̃U2
t (λ)]

−1
T

∑
t=1

[D̃Ut(λ)ỹt],

where {D̃Ut(λ)} and {ỹt} are the residuals from the OLS regressions of {DUt(λ)} and {yt} on [1]′,

D̃Ut(λ) = DUt(λ)−
T

∑
t=1

DUt/T = DUt(λ)− D̄U(λ).

When the DGP is given by (1), simple algebra gives

δ̂MS = [
T

∑
t=1

D̃U2
t (λ)]

−1
T

∑
t=1

D̃Ut(λ)[D̃Ut(λ
c
1)δ1 + D̃Ut(λ

c
2)δ2 + ut]

= [
T

∑
t=1

D̃U2
t (λ)]

−1
T

∑
t=1

D̃Ut(λ)[D̃Ut(λ
c
1)δ1 + D̃Ut(λ

c
2)δ2]

+[
T

∑
t=1

D̃U2
t (λ)]

−1
T

∑
t=1

D̃Ut(λ)ut.

Multiplying both sides of the above equation by T1/2, we have

T1/2δ̂MS = [T−1
T

∑
t=1

D̃U2
t (λ)]

−1[T−1
T

∑
t=1

D̃Ut(λ)(D̃Ut(λ
c
1)δ
∗
1 + D̃Ut(λ

c
2)δ
∗
2 )] +

[T−1
T

∑
t=1

D̃U2
t (λ)]

−1[T−1/2
T

∑
t=1

D̃Ut(λ)ut].

Using

[T−1
T

∑
t=1

D̃U2
t (λ)]⇒

∫ 1

0
[I(r > λ)− (1− λ)]2dr = λ(1− λ),

and

[T−1
T

∑
t=1

D̃Ut(λ)D̃Ut(λ
c)] ⇒

∫ 1

0
[I(r > λ)− (1− λ)][I(r > λc)− (1− λc)]dr

=

{
(1− λc)λ, if λ ≤ λc

(1− λ)λc, if λ > λc ,
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and

T−1/2[
T

∑
t=1

D̃Ut(λ)ut] ⇒ d(1)
∫ 1

0
[I(r > λ)− (1− λ)]dW(r)

= d(1)[λW(1)−W(λ)],

we obtain

T1/2δ̂MS ⇒
δ∗1

λ(1− λ)
Ψ(λ, λc

1) +
δ∗2

λ(1− λ)
Ψ(λ, λc

2) +
d(1)

λ(1− λ)
[λW(1)−W(λ)],

where

Ψ(λ, λc) =

{
(1− λc)λ, if λ ≤ λc

(1− λ)λc, if λ > λc .

From this result, it immediately follows that

SSR0
MS − SSRMS(λ)

⇒ 1√
λ(1− λ)

[d(1)(λW(1)−W(λ)) + δ∗1 Ψ(λ, λc
1) + δ∗2 Ψ(λ, λc

2)]
2.

Applying the CMT theorem gives

λ̂MS = arg max
λ∈Λ
{SSR0

MS − SSRMS(λ))

⇒ arg max
λ∈Λ
{
[(λW(1)−W(λ)) + M1Ψ(λ, λc

1) + M2Ψ(λ, λc
2)]

2

λ(1− λ)
},

where M1 =
δ∗1

d(1) and M2 =
δ∗2

d(1) .
It is straightforward to show that M1G2(λ, λc

1) + M2G2(λ, λc
2) is maximized at either λc

1 or λc
2.

The first derivative of G2MS w.r.t. λ is given by:

G2′MS(λ, λc) =


(1−λc)λ

2(1−λ)
√

λ(1−λ)
, if λ ≤ λc

(1−λ)λc

2(1−λ)
√

λ(1−λ)
, if λ > λc

.

Assume λc
1 < λc

2, then it follows that

[M1G2(λ, λc
1) + M2G2(λ, λc

2)]
′ = M1

(1− λc
1)λ

2(1− λ)
√

λ(1− λ)
+ M2

(1− λc
2)λ

2(1− λ)
√

λ(1− λ)
,

when λ ≤ λc
1;

[M1G2(λ, λc
1) + M2G2(λ, λc

2)]
′ = M1

(1− λ)λc
1

2(1− λ)
√

λ(1− λ)
+ M2

(1− λc
2)λ

2(1− λ)
√

λ(1− λ)
,

when λc
1 ≤ λ ≤ λc

2;

and

[M1G2(λ, λc
1) + M2G2(λ, λc

2)]
′ = M1

(1− λ)λc
1

2(1− λ)
√

λ(1− λ)
+ M2

(1− λ)λc
2

2(1− λ)
√

λ(1− λ)
,

when λ ≥ λc
2.
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Through simple algebra, one can show that the peak values of [M1G2(λ, λc
1) + M2G2(λ, λc

2)] will be
obtained at either λc

1 or λc
2.

Appendix A.2.2. Asymptotic Distribution of λ̂TS

Let SSR0
TS be the SSR under the assumption of no breaks. From Equation (7), we have the standard

result that

SSR0
TS − SSRTS(λ) = [

T

∑
t=1

D̃Tt(λ)D̃Tt(λ)]δ̂
2
TS,

where

δ̂TS =
T

∑
t=1

D̃Tt(λ)D̃Tt(λ)]
−1

T

∑
t=1

D̃Tt(λ)ỹt.

{D̃Tt(λ)} and {ỹt} are the residuals from the OLS regressions of {DTt(λ)} and {yt} on [1 t]′.

When the DGP is given by (3), simple algebra gives

T3/2δ̂TS

=

[
T−1

T

∑
t=1

T−1D̃Tt(λ)D̃Tt(λ)T−1

]−1 [
T−1

T

∑
t=1

T−1D̃Tt(λ)D̃Tt(λ
c
1)T
−1(T3/2δ1) +

T−1
T

∑
t=1

T−1D̃Tt(λ)D̃Tt(λ
c
2)T
−1(T3/2δ2)

]
+

[
T−1

T

∑
t=1

T−1D̃Tt(λ)D̃Tt(λ)T−1

]−1 [
T−1/2

T

∑
t=1

T−1D̃Tt(λ)ut

]
.

Using

T−1D̃Tt(λ)⇒ F(r, λ)
.
= (r− λ)1(r > λ) + (λ3 − 2λ2 + λ)− (2λ3 − 3λ2 + 1)r,

and

T−1
T

∑
t=1

T−1D̃Tt(λ)D̃Tt(λ
c)T−1 ⇒

∫ 1

0
F(r, λ)F(r, λc)dr,

and

T−1/2
T

∑
t=1

T−1D̃Tt(λ)ut ⇒ d(1)
∫ 1

0
F(r, λ)dW(r),

we obtain

T3/2δ̂TS

⇒ [
∫ 1

0
F(r, λ)2dr]−1[δ∗1

∫ 1

0
F(r, λ)F(r, λc

1)dr + δ∗2

∫ 1

0
F(r, λ)F(r, λc

2)dr] +

[
∫ 1

0
F(r, λ)2dr]−1[d(1)

∫ 1

0
F(r, λ)dW(r)]

=
[δ∗1
∫ 1

0 F(r, λ)F(r, λc
1)dr + δ∗2

∫ 1
0 F(r, λ)F(r, λc

2)dr] + d(1)
∫ 1

0 F(r, λ)dW(r)∫ 1
0 F(r, λ)2dr

.



Econometrics 2017, 5, 4 19 of 19

From this results, it immediately follows that

[SSR0
TS − SSRTS(λ)]

= [T3/2δ̂TS]
2[T−1

T

∑
t=1

T−1D̃Tt(λ)D̃Tt(λ)T−1]

⇒

[
d(1)

∫ 1
0 F(r, λ)dW(r) + δ∗1

∫ 1
0 F(r, λ)F(r, λc

1)dr + δ∗2
∫ 1

0 F(r, λ)F(r, λc
2)dr

]2

∫ 1
0 F(r, λ)2dr

.

Furthermore, using the CMT we obtain the limit of the break point estimator as

λ̂TS

= arg max
λ∈Λ
{SSR0

TS − SSRTS(λ)}

⇒ arg max
λ∈Λ
{

∫ 1
0 F(r, λ)dW(r)√∫ 1

0 F(r, λ)2dr
+

M1
∫ 1

0 F(r, λ)F(r, λc
1)dr + M2

∫ 1
0 F(r, λ)F(r, λc

2)dr√∫ 1
0 F(r, λ)2dr

2

},

where M1
.
= δ∗

d(1) ≡
δ1T3/2

d(1) and M2
.
= δ∗

d(1) ≡
δ2T3/2

d(1) .

Please refer to Yang (2012) [10] for more details about λ̂TS and λ̂MS.
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