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Abstract: This paper introduces the concept of the realized hierarchical Archimedean copula (rHAC).
The proposed approach inherits the ability of the copula to capture the dependencies among
financial time series, and combines it with additional information contained in high-frequency
data. The considered model does not suffer from the curse of dimensionality, and is able to accurately
predict high-dimensional distributions. This flexibility is obtained by using a hierarchical structure
in the copula. The time variability of the model is provided by daily forecasts of the realized
correlation matrix, which is used to estimate the structure and the parameters of the rHAC. Extensive
simulation studies show the validity of the estimator based on this realized correlation matrix,
and its performance, in comparison to the benchmark models. The application of the estimator to
one-day-ahead Value at Risk (VaR) prediction using high-frequency data exhibits good forecasting
properties for a multivariate portfolio.
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1. Introduction

One of the main objectives of quantitative research is the modelling and approximation of
multivariate distributions. A multivariate model should be flexible enough to capture the stylized
facts of empirical finance. Moreover, increasing interest in short-term quantitative risk management
requires the time-variability of such models. The current paper builds on two actively developing areas
of financial econometrics: copulae and high-frequency data. On the one hand, copulae appear to be
a helpful tool to analyse complex dependence structures, evaluate the risk, and are therefore widely
used to price financial derivatives, see Embrechts et al. (2003), Rodriguez (2007), Hofert and Scherer (2011),
Krämer et al. (2013). On the other hand, models based on high-frequency data yield superior predictions
in comparison to approaches based on daily data. Among others, Andersen et al. (2002), Barndorff-Nielsen
and Shephard (2004) and Zhang et al. (2005) made it possible to compute the daily realized covariances
from high-frequency data. Many researchers have implemented the obtained realized measures to
model financial time series. Most of those studies, however, employ models where the realized
correlation matrix directly characterizes the multivariate distribution, see, for example, Bauer and
Vorkink (2011), Chiriac and Voev (2011), Jin and Maheu (2012), or address GARCH type models, for
example, Hansen et al. (2014), Bauwens et al. (2012), Noureldin et al. (2012), Bollerslev et al. (2016).
There are only a limited number of studies which discuss the implementation of high-frequency data
in copula models. Breymann et al. (2003) and Dias and Embrechts (2004) employ copulae to study the

Econometrics 2017, 5, 26; doi:10.3390/econometrics5020026 www.mdpi.com/journal/econometrics

http://www.mdpi.com/journal/econometrics
http://www.mdpi.com
http://dx.doi.org/10.3390/econometrics5020026
http://www.mdpi.com/journal/econometrics


Econometrics 2017, 5, 26 2 of 31

properties of intraday log-returns. Creal et al. (2013) consider an autoregressive updating equation
and improve the predictive power in Salvatierra and Patton (2015) by including the lagged realized
volatility in the equation.

To the best of our knowledge, the only model that parameterizes the whole Archimedean copula
(AC) by the realized variance-covariance matrix is in Fengler and Okhrin (2016), who introduced
the realized copula parameter. The authors suggested capturing time-varying dependence by using
high-frequency intraday data to estimate the parameter of an AC daily. It has been demonstrated
empirically that the realized copula model outperforms the list of benchmark models in one-day-ahead
out-of-sample VaR prediction. The realized copula model of Fengler and Okhrin (2016) has, however,
several limitations. First, their realized copula is driven by one single parameter, which limits the
flexibility of the model. Second, the estimation procedure is performed by applying a method of
moments kind of estimator, which suffers from the curse of dimensionality.

We propose to extend the work of Fengler and Okhrin (2016) by introducing the realized hierarchical
Archimedean copula (rHAC), which allows more flexibility and is applicable to managing high-
dimensional portfolios. We adapt the estimation procedures described in Segers and Uyttendaele (2014)
and Górecki et al. (2016a) to high-frequency data, which allows estimating the structure and the
parameters of a copula based only on a realized covariance matrix. As a result, the estimate does not
suffer from microstructure noise or jumps. Moreover, it can be applied to high-dimensional portfolios
since the computationally expensive optimization procedure proposed in Fengler and Okhrin (2016) is
reduced to a set of simple tasks. This result is of particular importance in many financial applications,
especially in risk management.

This paper is structured as follows. Section 2 contains a literature review of the theory of the copula
and introduces the concept of a realized copula. An estimator of the structure and the parameters of an
rHAC is presented in Section 3. Simulation studies and a comparison with the benchmark models are
provided in Section 4. Section 5 discusses the construction of the rHAC, and gives a short summary of
competing models. Section 6 describes an application of the proposed models to one-day-ahead VaR
prediction for a multidimensional portfolio. Finally, we summarize the main contribution of the paper.

2. The Concept of the Realized Copula

The concept of the copula was introduced to the statistical literature by Sklar (1959) and further
popularized in the world of finance by Embrechts et al. (1999) in the context of risk management.
Sklar’s theorem, see Sklar (1959), states that a d-dimensional distribution function F (x1, . . . , xd) with
marginals F1, . . . , Fd can be represented as

F(x1, . . . , xd) = Cd

{
F1(x1), . . . , Fd(xd)

}
, (1)

where Cd (u1, . . . , ud) is a d-dimensional copula. In addition, it states that the continuity of the marginal
distributions F1, . . . , Fd ensures the uniqueness of the copula.

Having a huge number of classes of bivariate copulae, see Nelsen (2007), there is still a lack of
multivariate ones. The most popular classes of multivariate copulae currently are elliptical, factor,
pair-copula constructions, and HAC. The first class is often used in practice due to its simplicity and
intuitive interpretation. However, elliptical copulae are not able to capture the stylized facts observed in
financial data. The factor approach overcomes this limitation and has attracted attention in the copula
literature over the last decade, see, for example, Andersen and Sidenius (2004), Van der Voort (2007),
Krupskii and Joe (2013), Oh and Patton (2017). The limitation of the factor copula models is that the
likelihood function is often not known in closed form, which complicates the estimation of the parameters.
Pair-copula constructions are discussed in more detail by Joe (1996), Bedford and Cooke (2001),
Czado (2010), and Kurowicka (2011), and are increasing in popularity. Another popular copula class
is AC, which contains, among others, the Clayton, Gumbel and Frank copulae. The AC parametrized
by the parameter θ is defined as Cd(u1, . . . , ud; θ) = ψθ{ψ

[−1]
θ (u1) + . . . + ψ

[−1]
θ (ud)}, u1, . . . , ud ∈ [0, 1]
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with (−1)jψ
(j)
θ (t) ≥ 0 being non-decreasing and convex on [0, ∞) for t > 0, where j ∈ N. ψθ(0) = 1,

ψθ(∞) = 0 and the pseudo inverse is defined as ψ
[−1]
θ (t) = ψ−1

θ (t) for 0 ≤ t ≤ ψθ(0) and 0 otherwise.
The generators and the densities of some AC are given in Appendix A.

Due to the lack of flexibility of AC, caused by the fact that the whole copula is driven by just
one parameter θ, generalizations such as nested copulae have been introduced. This paper employs a
flexible multivariate copula family, HAC, a special case of which may be defined recursively in the
following way:

ψθd−1

{
ψ
[−1]
θd−1

(ud) + ψ
[−1]
θd−1
◦ Cd−1

(
u1, . . . , ud−1; sd−2, (θ1, . . . , θd−2)

>
)}

, (2)

where θθθ = (θ1, . . . , θd−1)
> is the parameter vector of the HAC and s is the structure of the HAC. As

is evident from (2), the current study assumes that all generators of the HAC belong to the same
parametric family and each of them depends on one single parameter. For simplicity, we compress
the notation of (2) and denote the d-dimensional HAC with k generators which is parametrized by
the structure s and the parameter vector θθθ = (θ1, . . . , θk)

> as Cd (u1, . . . , ud; s, θθθ). The structure s is the
merging ordering s = (. . . (qr)s . . .), where q, r, s ∈ 1, . . . , d, q 6= r 6= s is a reordering of the indices
of the variables Xi, i = 1, . . . , d. The structure of a d-dimensional HAC s can be seen as a tree with
k ≤ d− 1 non-leaf nodes that correspond to the generators and d leaves representing the variables
X = (X1, X2, . . . , Xd)

>. The leaves correspond to the lowest level of the tree. The root corresponding
to the variable Cd(u1, . . . , ud; s, θθθ) is assumed to be the highest level of the tree. The nodes, which are
not the leaves are called internal nodes, each corresponds to the generator. A node which is directly
connected to another node when moving away from the root is called the child node. A node which is
directly connected to another node when moving from the leaves to the root is called the parent node.
Descendants are the children nodes of the node, children of these children, etc. The set of ancestors
includes the parent node of the node, parents of the parents, etc. The structure of the HAC is called
binary if it corresponds to the binary tree, i.e., if each internal node has exactly two children. Further
on, we denote the nodes associated with the generators by DXi , where Xi is the set of leaves (variables)
that are descendant nodes of the node DXi , i = 1, . . . , k. Assuming this notation, the node DXi is an
ancestor of the node DXj (the leave associated with the variable Xl) if Xj ⊂ Xi ( Xl ⊂ Xi), l = 1, . . . , d,
i, j = 1, . . . , k. Another concept that will be used later on is the concept of the lowest common ancestor
(lca). The lca of the nodes DXi (the leave Xq) and DXj (the leave Xr) is the node DXl that is the lowest
node satisfying Xi ⊂ Xl ( Xq ⊂ Xl) and Xj ⊂ Xl (Xr ⊂ Xl), q, r = 1, . . . , d, i, j, l = 1, . . . , k.

To clarify the above-mentioned definitions and avoid introducing the comprehensive notation
of the graph theory, we illustrate the above-named concepts by an example. Consider the
5-dimensional copula

ψ1.5

{
ψ
[−1]
1.5

(
ψ2
[
ψ
[−1]
2 {ψ4

(
ψ
[−1]
4 (u1)+ψ

[−1]
4 (u2)

)
}+ψ

[−1]
2 {ψ2.5

(
ψ
[−1]
2.5 (u3)+ψ

[−1]
2.5 (u4)

)
}
])

+ψ
[−1]
1.5 (u5)

}
that can be written as C5

(
u1, u2, u3, u4, u5; s = ((12)(34)5), θθθ = (4, 2.5, 2, 1.5)>

)
, where ui = F−1

i (xi, νi)

with νi being the parameters of the marginal distributions Fi (·), i = 1, . . . , 5. The tree corresponding to
this copula is presented in the Figure 1. This copula has the binary structure s = ((12)(34)5). There
are k = 4 non-leaf (internal) nodes. The leaves which correspond to the lowest level of the copula tree
are given by the variables X1, X2, X3, X4 and X5. The root DX4 which represents the highest level of
the copula tree corresponds to the variable C5 (u1, u2, u3, u4, u5; s, θθθ), where X4 = (X1, X2, X3, X4, X5)

>.
The root node is the parent node for the node corresponding to the variable X5 and the node
DX3 associated with the variable generated by C4

(
u1, u2, u3, u4; s = (12)(34), θθθ = (4, 2.5, 2)>

)
, where

X3 = (X1, X2, X3, X4)
>. The root node is the ancestor for all other nodes of the given copula tree.

The lca of the nodes associated with the variables X1 and X2 is the node DX1 that corresponds to the
variable C2 (u1, u2; s = (12), θθθ = 4), where X1 = (X1, X2)

>. The lca of the nodes corresponding to the
variables X1 and X5 is the root node DX4 as it is the lowest node satisfying X1 ⊂ Xl and X5 ⊂ Xl ,
l = 1, . . . , d.
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●

X1 X2 X3 X4

X5θ = 2

θ = 4 θ = 2.5

θ = 1.5

Figure 1. A 5-dimensional copula structure.

Although copula models are flexible enough to capture nonlinear dependencies, many empirical
applications require the time variability of the parameters (and the structure) of the whole copula.
For example, the empirical evidence makes it reasonable to assume that the dependence between
asset log-returns gets stronger during periods of financial turbulence. A vast amount of literature is
devoted to dynamic copula models, including the parsimonious rolling window approach and more
sophisticated models, such as, for example, the local change point procedure of Härdle et al. (2013).
Recent developments in time-varying copula models take advantage of the rapidly growing availability
of high-frequency observations and include the realized measures (volatility and correlations) in
the copula models to improve their predictive power, see, for example, Salvatierra and Patton (2015).
The improvement is obtained due to the fact that the actual realizations of the volatility of log-returns
which are not directly observable can be estimated by the sum of finely-sampled squared realizations
of log-return over a fixed time interval when the high-frequency observations are available. Such
a nonparametric ex-post measurement of the log-return variation is called the realized volatility.
In an analog manner, the realized covariances are defined by summing all the cross products of
intraday log-returns. The formal definition of the realized measures is given in Appendix B. Despite
the constantly growing research on incorporating the realized measures into multivariate Gaussian
models, discussed in Chiriac and Voev (2011) and Bauer and Vorkink (2011), and into GARCH type
models, for example, Hansen et al. (2014) and Bollerslev et al. (2016), there is still a gap in the literature
on how the parameters of non-Gaussian copula can be estimated daily based on high-frequency
observations. It is important to note here that such standard copula estimation techniques as the
Maximum Likelihood (ML) method or the inversion of Kendall’s τ can not be directly applied to
tick-by-tick observations. Estimating the copula by applying these approaches to high-frequency data
would estimate the multivariate distribution of high-frequency log-returns, which in general does
not coincide with the multivariate distribution of daily log-returns. Such a model would estimate
the intraday dependence and produce the forecast of the multivariate distribution of log-returns in
the next second and could not be used for one-day-ahead VaR forecasts. For further details on the
standard estimation procedures, refer to Nelsen (2007), Trivedi and Zimmer (2007), Jaworski et al. (2013),
Cherubini et al. (2011), Joe (2014) and Durante and Sempi (2015). In contrast to the direct application of
the ML approach to tick-by-tick data or high-frequency estimator of Kendall’s τ, there is a considerable
literature discussing how to estimate the correlation matrix of daily log-returns via a realized correlation
matrix or similar methods, see Barndorff-Nielsen et al. (2004), Barndorff-Nielsen and Shephard (2004),
Zhang et al. (2005), Hayashi and Yoshida (2005), De Pooter et al. (2008). The idea of using the information
concentrated in the realized covariance matrix to estimate the parameters of a copula daily has been
employed by Fengler and Okhrin (2016), who used a combination of the results from a lemma of
Hoeffding (1940) and Sklar’s theorem (1) to express the covariance σij between two random variables
Xi and Xj in terms of the marginal distributions Fi(·) and Fj(·) and the copula C2 (·, ·; θ)
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σij(θ) =
∫ ∞

−∞

∫ ∞

−∞

{
Fi,j

(
x, y; θ, νi, νj

)
− Fi

(
x; νi

)
Fj

(
y; νj

)}
dxdy

=
∫ ∞

−∞

∫ ∞

−∞

[
C2

{
Fi

(
x; νi

)
, Fj

(
y; νj

)
; θ

}
− Fi

(
x; νi

)
Fj

(
y; νj

)]
dxdy; i, j = 1 . . . d,

(3)

where θ is the parameter of the copula and νi, νj are the parameters of the marginal distributions Fi(·)
and Fj(·). In the high-frequency framework, the covariance σij in (3) is replaced by the element rij,t of
the realized covariance matrix Rt computed at day t. From now on, we denote the diagonal elements of
matrix Rt by ri,t instead of rii,t, i = 1, . . . , d. As has been shown in Breymann et al. (2003) and discussed
in more detail in Hautsch (2011), with an increasing sampling frequency, the marginal distributions
of log-returns can be assumed to be Gaussian with zero mean and the standard deviation equal to
√ri,t, t = 1, . . . , d, this leads us to assume throughout this study that margins are N(0, ri,t). Thus, if
the realized covariance matrix Rt can be computed, according to Fengler and Okhrin (2016), it can be
assumed that for the Archimedean copula driven by one single parameter θ the integral in (3) depends
on just the parameter of the copula which belongs to some parametric family C = {C (·; θ) , θ ∈ Θ}.
Therefore, after replacing the covariances in (3) by their realized counterparts and standardizing the
variables, the expression (3) can be rewritten for the realized correlations as

ρij,t = f
(
θij,t
)
=
∫ ∞

−∞

∫ ∞

−∞

[
C2

{
Φ(x), Φ(y); θij,t

}
−Φ(x)Φ(y)

]
dxdy; i, j = 1 . . . d, i 6= j, (4)

where Φ(·) is the cdf of the standard normal distribution and ρij,t =
rij,t√ri,t ·rj,t

is the element of the
realized correlation matrixPt calculated at day t, t = 1, . . . , T. According to (4), the realized correlations
depend solely on the copula parameter, under the assumption of some parametric family. Based on (4),
the parameter of the copula can be estimated based on just the realized correlation matrix:

θ̂t = argmin
θ

g>t (θ)Wgt (θ) , (5)

where gt (θ) is a vector of length d(d−1)
2 where all the gij,t (θ) = ρij,t − f (θ) are stacked together and W

is a
(

d(d−1)
2 × d(d−1)

2

)
-dimensional positive definite weighting matrix. When the copula parameter

is estimated from (5) and the diagonal elements of the realized covariance matrix Rt are calculated,
the multivariate distribution of X = (X1, X2, . . . , Xd)

> is fully specified. It is important to note that
Fengler and Okhrin (2016) consider the restrictive setting of AC. Therefore, all bivariate copulae in (4)
coincide and are driven by one single parameter θ.

In practice, one is usually interested in predicting a multivariate distribution, rather than just
estimating it. This can be done in two ways. The parameter of the realized copula can be estimated
daily and predicted using some time-series model. Alternatively, the realized correlation matrix can
be predicted and the parameter of the copula can be estimated from P̂t+1|t, which is one-day-ahead
prediction of the realized correlation matrix Pt+1 obtained by applying the specific time series model
in the spirit of Bauer and Vorkink (2011) or Chiriac and Voev (2011). The limitation of both approaches
comes from the estimation procedure (5), which suffers from the curse of dimensionality and enables
the estimation of the realized copula only in moderate dimensions. Moreover, as was mentioned
earlier, the whole realized copula in Fengler and Okhrin (2016) is driven by just one parameter θ, which
might be too restrictive for multivariate portfolios.

We propose to overcome these limitations by using the HAC instead of the simple AC. This extension
is not straightforward, as in addition to the parameter vector θθθ of Cd(u1, . . . , ud; s,θθθ), the structure of
the copula s needs to be estimated. The estimation of the parameter vector θθθ of a d-dimensional copula
Cd(u1, . . . , ud; s,θθθ) should be addressed as well. The procedure of Fengler and Okhrin (2016) allows the
estimation of the parameters at the bottom level of the copula. The estimation of the parameters of the
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higher levels is not trivial, as the realized correlation among the original variables and the variables
determined by the copulae of the bottom levels can not be specified. This motivates the estimation of
the structure and the parameters of the hierarchical copula based just on the realized correlation matrix.
Recent studies in the copula literature address the question of how the structure (or the structure and the
parameters) of a hierarchical copula can be estimated based on Kendall’s τ correlation matrix, see, for
example, Segers and Uyttendaele (2014), Górecki et al. (2016a, 2016b), Uyttendaele (2016). We propose
to combine the methods discussed in Segers and Uyttendaele (2014) and Górecki et al. (2016a) and
adapt them to the realized correlation matrix with the final goal of improving one-day-ahead VaR
prediction for multivariate portfolios.

3. Estimating the Realized Hierarchical Archimedean Copula

This section discusses how the structure and the parameters of an HAC can be estimated based
on the realized correlation matrix Pt only. From now on, we refer to such a copula as an rHAC. In this
section, the subindex t is dropped to simplify the notation. We suggest generalizing the clustering
method proposed by Górecki et al. (2016a) by applying an adaptation of the algorithm introduced
in Segers and Uyttendaele (2014) in order to estimate the structure of an HAC. Consequently, the
parameters can be estimated by applying (4) to the specific average of the realized correlations.
We restrict ourselves to the case when all the generators of the copula belong to the same Archimedean
family and satisfy the nesting condition. A brief discussion of this will be provided later in this section.

3.1. Estimating the Structure

In analog to the method mentioned in Górecki et al. (2016a) for Kendall’s τ, we suggest defining
the distance between two variables Xi and Xj as

hij = 1− ρij, (6)

where ρij is the realized correlation between Xi and Xj, i, j = 1, . . . , d. Next, the dependence-based
distance matrix is used as the input for an agglomerative cluster analysis. The obtained hierarchical
clustering dendrogram corresponds to the estimated structure of the HAC. This approach is, however,
valid only for HACs with binary (bivariate) structure. The introduction of an additional merging
parameter that allows collapsing a binary structure into a general one is discussed in Uyttendaele (2016).
The optimal choice of such a parameter still needs to be addressed in the literature. To reduce the
computational costs, we will adapt the method proposed in Segers and Uyttendaele (2014) to the
distance (6) to recover the general structure of an rHAC.

3.1.1. Segers’ and Uyttendaele’s Algorithm

According to Segers and Uyttendaele (2014), the structure of a nested HAC s can be uniquely
recovered from the structures of the set of (d

3) triples
(
Xq, Xr, Xs

)
with distinct q, r, s = 1, . . . , d using

the concept of lca. According to the definition given in Section 2, the lca of Xq and Xr is the node
which is the lowest node that has both Xq and Xr as descendants, q, r = 1, . . . , d. In the first step, the
structures of the triples are estimated and the lcas of all pairs of variables in each triple are found. For
a given tree, there are d− 2 lcas that correspond to all possible pairs

(
Xq, Xr

)
, q, r = 1, . . . , d. In the

second step, the pairs of variables which correspond to the same equivalence class are merged together
step by step, resulting in the tree of the HAC. Two pairs of variables

(
Xq, Xr

)
and

(
Xp, Xs

)
are said to

belong to the same equivalence class if they share the same lca in the tree s.
As an example, we consider the 4-dimensional HAC with the predefined structures of the triples

presented in Figure 2. Consider the first triple (U1, U2, U3) with the structure ((12)3). The lca of
(U1, U2) is the node DU1U2 . For simplicity of notation, we write D12 instead of DU1U2 . The parent node
of U1 and U2 is given by D12. The ancestor nodes of U1 and U2 are the nodes D12 and D123. Therefore,
the lca of (U1, U2) in the structure ((12)3) is the node D12 and the lca of (U1, U3) is the node D123.
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The lcas of each pair are:


U1 U2 U3 U4

U1 {D12, D12} {D123, D134} {D124, D134}
U2 {D123, D234} {D124, D234}
U3 {D34, D34}
U4


In the given example, the pairs (U1, U2) and (U3, U4) do not share lcas with any other pair.

Therefore, U1 and U2 belong to the same equivalence class and are merged together in the first step.
The same is true for the pair (U3, U4). Consequently, it is observed that the pairs (U1, U3), (U1, U4),
(U2, U3) and (U2, U4) belong to the same equivalence class and are merged together in the second step.
The final structure of the copula is s = ((12)(34)). For further examples on how the structure of an
HAC can be recovered by applying the concept of an lca, we refer to Segers and Uyttendaele (2014).

D123

U3 D12

U1 U2

D124

U4 D12

U1 U2

D134

U1 D34

U3 U4

D234

U2 D34

U3 U4

Figure 2. A set of trivariate structures corresponding to the copula with s = ((12)(34)).

In this method, the structure of the individual triples should be found first. Each triple can have a
binary or a trivial structure. The structure of the triple is called trivial if all three variables are merged
together in one step, and binary otherwise. Formally speaking, for each triple of variables

(
Xq, Xr, Xs

)
,

q, r, s = 1, . . . , d we aim to test the null hypotheses H0 : ‘the structure is trivial (q, r, s)’ against H1 : ‘the
structure is binary ((q, r) , s)’. Segers and Uyttendaele (2014) suggest estimating the individual triples
using a rank-based method. Let Kqr(w) = P{C2

(
Xq, Xr

)
6 w} be Kendall’s distribution between

Xq and Xr. Its empirical counterpart is then K̂qr(w) = 1
n ∑n

m=1 I
(
wm,qr 6 w

)
, where 0 < w < 1,

wm,qr =
1

n+1 ∑n
l=1 I

(
xlq < xmq, xlr < xmr

)
and I (·) is the identity function. The distance between the

empirical Kendall distributions of pairs
(
Xs, Xq

)
and (Xs, Xr) is defined as

δsq,sr =
∫ 1

0
|K̂sq(x)− K̂sr(x)|dx =

1
n

n

∑
m=1
|w(m),sq − w(m),sr|, (7)

where w(1),ij, . . . , w(n),ij are ordered pseudo-observations of w1,sq . . . wn,sq. Segers and Uyttendaele (2014)
point out that a trivial trivariate structure usually results in three distances which are approximately the
same, but a binary structure results in one small distance and two larger approximately equal distances.
In order to calculate the test statistic, Segers and Uyttendaele (2014) suggest drawing K samples from
the nonparametrically estimated trivariate Archimedean copula using the work of Genest et al. (2011).

As the present paper addresses the framework when the copula family is assumed to be known,
we modify the algorithm proposed in Segers and Uyttendaele (2014) and simulate from the copula
coming from a predefined class. The test statistic is simulated under the assumption that the structure
is trivial, therefore, the parameter of the copula can be found by inversion of the average empirical
counterpart of Kendall’s τ, i.e., θ̂ = v−1 (τ̂avg

)
, where τ̂avg =

(
τ̂qr + τ̂qs + τ̂rs

)
/3, q, r, s = 1, . . . , d.

The inverse v−1 (τavg
)

corresponds to the solution of the equation

τij(θ) = v (θ) = 4
∫ 1

0

∫ 1

0
C2(ui, uj; θ)dC2(ui, uj; θ)− 1; i, j = 1 . . . d, (8)

where τij = 2 P
{ (

Xi − Xj
) (

Yi −Yj
)
> 0

}
− 1, with (Xi, Yi) and

(
Xj, Yj

)
are independent draws from

(X, Y). For some copula functions, the integral in (8) is known in closed form as a function of θ, for
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example, for the Gumbel and Clayton copulae θGumbel(τ) =
1

1−τ and θClayton(τ) =
2τ

1−τ , respectively.
To sum up, the modification of the algorithm of Segers and Uyttendaele (2014) which allows identifying
the structure of an HAC based on Kendall’s distance is summarized in Algorithm 1.

Algorithm 1 Adaptation of the algorithm of Segers and Uyttendaele (2014).

Input: sample (x1, x2, . . . , xd)
> of size n, significance level α?, parametric family of the HAC.

for l = 1, . . . , (d
3) do

B Select a triple from
(

xq, xr, xs
)>, q, r, s = 1, . . . , d, q 6= r 6= s, call it (z1, z2, z3)

>.
B Compute the distances δ12,13, δ12,23 and δ13,23 according to (7), order them and call the result

δ(1), δ(2), δ(3).
B Compute the test statistic

δ =
|δ(1) − δ(2)|+ |δ(1) − δ(3)|

2
. (9)

B Compute τ̂avg = τ̂12+τ̂13+τ̂23
3 and estimate θ̂ = v−1 (τ̂avg

)
according to (8).

for k = 1, . . . , K do
B Draw a sample of size n from (U1, U2, U3)

> ∼ C3

(
u1, u2, u3; (123), θ̂

)
being a trivial

copula.
B Compute δ(k) for the simulated sample k in analog to (9).

end for
B Compute δcrit by taking the α = α? quantile of the empirical distribution of δ(k), k = 1, . . . , K.
if δ > δcrit then reject the H0: the true trivariate structure is the trivial structure.
end if

end for
B Recover the full structure of the d-dimensional HAC from the set of (d

3) triples of variables using
the concept of the lowest common ancestor (lca).
Return: the estimated structure of the HAC ŝ.

The significance level of the individual tests α? should be selected considering the multiple testing
procedure. For the significance level of the test to be α, the significance level of the individual tests

should satisfy α = 1− (1− α?)(
d
3). However, this approach is not recommended for high-dimensional

samples. Therefore, in the empirical part of the paper, we use the rule of thumb proposed in
Uyttendaele (2016) and choose the significance level of the individual tests to be smaller or equal than
the overall significance level. It is worth noting that the method of Segers and Uyttendaele (2014) is
much more general as no prior specification of the copula generators is necessary and generators
might differ from level to level of the hierarchy. In contrary, our method assumes that generators on
all levels of the hierarchy belong to the same predefined family. However, the method proposed in
Segers and Uyttendaele (2014) and its modification described in Algorithm 1 are not applicable to the
case of high-frequency data because of the absence of a high-frequency estimator of Kendall’s τ and
Kendall’s distribution. The computation of the empirical Kendall’s distribution (7) involves realizations
of X1, . . . , Xd. Therefore, the estimation of a multivariate distribution of daily observations would
require data of a longer time horizon in comparison to the case when the copula is parameterized
by solely the realized correlation matrix. The structure and the parameters would have to be fixed
within some time window, resulting in the reduced time flexibility of the estimated multivariate
distribution. Moreover, Algorithm 1 employs Kendall’s distance as the test statistic, which leads to
large computational costs in higher dimensions.

3.1.2. Clustering Estimator of the Structure

We propose to proceed analogously to Segers and Uyttendaele (2014) and recover the full structure
of an HAC from the set of triples of variables. The estimation of the structure of the individual triples is
made using a test that, in contrast to Segers and Uyttendaele (2014), does not involve the observations
themselves and is based solely on pairwise correlations.
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Consider the triple
(
Xq, Xr, Xs

)
and assume that the estimated distance ĥqr = min

(
ĥqr, ĥqs, ĥrs

)
,

where ĥqr is defined in (6). Therefore, the variables Xq and Xr are merged together into the variable(
Xq, Xr

)
in the first step. The distance between the cluster

(
Xq, Xr

)
and Xs is calculated according to

the complete linkage rule:
ĥqr,s = max

{
ĥqs, ĥrs

}
. (10)

Preliminary simulation studies have shown that the choice of the clustering algorithm is of minor
importance. We refer to Kaufman and Rousseeuw (2005) and Hastie et al. (2009) for more details on
cluster analysis.

It can be observed that the difference between merging distances ĥqr,s and ĥqr is generally bigger
if the trivariate copula has a binary structure. Therefore, the measure

∆ĥ = ĥqr,s − ĥqr (11)

can be chosen as the test statistic to distinguish between trivial and binary structure of a triple.
To sum up, the testing procedure is performed in the following way: for each triple, it is assumed

that the structure is trivial, the average correlation is computed, and inverted to the parameter of
the trivial copula f−1 (ρavg

)
according to (4). The test statistic is obtained by simulating k = 1, . . . , K

samples from the trivial copula and calculating K distances ∆ĥ(k) according to (11). The sample size
of the simulated sample corresponds to the sample size of the original sample. Finally, the empirical
difference of the merging distances is compared to the quantile of the simulated one. The proposed
procedure is briefly summarized in Algorithm 2.

Algorithm 2 Structure determination using cluster analysis.
Input: the realized correlation matrix P of the dimension d× d calculated based on the sample
(x1, x2, . . . , xd)

> of size n, significance level α?, parametric family of the HAC.
for l = 1, . . . , (d

3) do
B Select a triple from (q, r, s)>, q, r, s = 1, . . . , d, q 6= r 6= s, call it (1, 2, 3)>.
B Compute ĥ12, ĥ13, and ĥ23 according to (6).
B Merge the two closest variables and calculate ∆ĥ according to (11).
B Compute ρavg = ρ12+ρ13+ρ23

3 and estimate θ̂ = f−1 (ρavg
)
.

for k = 1, . . . , K do
B Draw a sample of size n from (U1, U2, U3)

> ∼ C3

(
u1, u2, u3; (123)θ̂

)
being a trivial copula.

B Transform (u1, u2, u3)
> to {F−1

1 (u1), F−1
2 (u2), F−1

3 (u3)}>.
B Compute ∆ĥ(k) for the simulated sample k according to (11).

end for
B Compute hcrit by taking the α = α? quantile of the empirical distribution of ∆ĥ(k), k = 1, . . . , K.

if ∆ĥ > hcrit then reject the H0: the true trivariate structure is the trivial structure.
end if

end for
B Recover the full structure of the d-dimensional rHAC from the set of (d

3) triples of variables using
the concept of the lowest common ancestor (lca).
Return: the estimated structure of the HAC ŝ.

It is important to note that the estimation of the marginal distributions Fi (·) is a trivial task, as
the distribution of the high-frequency log-returns can be assumed to be Gaussian N (0, ri), i = 1, . . . , d
based on the results described in Hautsch (2011).

Note:

In order to illustrate the test statistic (11), samples from C3 (u1, u2, u3; s = (1, 2, 3); θ = 1.4) and
C3
(
u1, u2, u3; s = ((1, 2), 3); θθθ = (1.7, 1.2)>

)
are drawn (the copulae are assumed to be Gumbel).
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The left plot in Figure 3 illustrates the dendrogram of the hierarchical cluster analysis based on
the distance (6) and complete linkage merging rule for a random sample of size 100 from the trivial
Gumbel copula. The central part of Figure 3 shows the dendrogram for the binary trivariate Gumbel
copula. It can be observed that the difference between merging distances ĥ12,3 − ĥ12 is much smaller
for the trivial copula. We simulated k = 1, . . . , 100 random samples from each of the above mentioned
copulae, and each time calculated ∆ĥ(k) according to (11). The kernel density estimate of the ∆ĥ
based on 100 random samples is presented in the right part of Figure 3. For the given copulae, the
density estimate of ∆ĥ for the trivial copula is more concentrated. This example only illustrates the
validity of the proposed test statistic. The distance between these two distributions is influenced by
the values of the parameters, and more research should be done to find the asymptotic properties of
the proposed test.
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Figure 3. Dendrograms for the trivial Gumbel copula C3 (u1, u2, u3; s = (123); θ = 1.4), the binary Gumbel

copula C3

(
u1, u2, u3; s = ((12)3);θθθ = (1.7, 1.2)>

)
(center) and kernel density estimate of ∆ĥ = ĥ12,3 − ĥ12,

where ĥ12,3 = max
{

ĥ13, ĥ23

}
, blue for the trivial structure and green for the binary structure.

3.1.3. Benchmark Models

Many recent studies have addressed the question of the structure’s estimation of an HAC,
for example, Okhrin et al. (2013, 2015), Górecki et al. (2014, 2016b) and Uyttendaele (2016). Most of the
studies illustrate the performance of the proposed methods by means of simulations. The consistensy
of the structure’s estimator still has to be addressed in the literature. Some of these studies are much
more general than Algorithm 2. However, they are not applicable in the current framework, where
the observations can not be directly used, as discussed in the previous section. Moreover, in the
overwhelming majority of cases, the methods perform in a similar way for big samples. To illustrate
the validity of Algorithm 2, it will be compared, by means of simulations, to the recursive procedure
proposed in Okhrin et al. (2013) and further improved by Górecki et al. (2014). It has been implemented
in the R package HAC by Okhrin and Ristig (2014). The idea of the method is to construct a binary tree
by recursively merging the variables with the largest values of the estimated parameter. Subsequently,
the obtained tree is collapsed using a predefined merging parameter. As is the case with many others,
this method can not be applied to high-frequency data. However, it will provide an opportunity to
evaluate the loss of precision and gain in computational speed when the general structure is estimated
based solely on the realized correlation matrix.

3.2. Estimating the Parameters

As was mentioned in Section 2, the parameters of the copula can be estimated by the inversion of
the realized correlation according to (4). However, this is usually done only for the correlation between
two variables. Some generalizations for Kendall’s τ have already been addressed in the literature.
Nelsen (1996) discusses how the parameter of a three-dimensional binary copula can be found by
inverting the average coefficient of agreement. Genest et al. (2011) have described the average Kendall’s
τ based approach to the trivial copulae with an odd number of parameters. Górecki et al. (2016a)
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mention the estimation of the parameters of a binary HAC based on Kendall’s τ correlation matrix
and discuss a trivial extension to HAC with general structures in Górecki et al. (2016b).

We suggest following the idea of averaging the correlation coefficient ρij, i, j = 1, . . . , d over some
given set of variables to estimate the parameters of the rHAC. The question whether the procedure
based on the average realized correlation gives a valid estimate has not been addressed in the literature.

Suppose that k parameters of the HAC θi, i = 1, . . . , k corresponding to k merging nodes need
to be estimated. Let ρ? (Xi) be the average correlation of the pairs of variables with the lca at node
DXi , i = 1, . . . , k, where Xi is the set of descendant leaves (variables) of the node DXi , i = 1, . . . , k.
Thus, the parameter θi of the HAC may be estimated by inverting the average correlation measure
ρ? (Xi), i = 1, . . . , k. For the HAC with the structure presented in Figure 1, the node associated
with the parameter θ3 = 2 is the node D1234. The children nodes of the node D1234 are the nodes
D12 and D34. The node D12 is associated with the parameter θ1 = 4 and the node D34 is associated
with the parameter θ2 = 2.5. Moreover, the node D1234 is the ancestor for the nodes associated
with the variables X1, X2, X3 and X4. The lca of the pair (X1, X2) is the node D12 and the lca of
the pair (X3, X4) is the node D34. Therefore, the pairs of variables with the lca at node D1234 are
(X1, X3), (X1, X4), (X2, X3) and (X2, X4). Therefore, the average correlation corresponding to the
parameter θ3 is given by ρ? (X1, X2, X3, X4) =

1
4{ρ13 + ρ23 + ρ14 + ρ24}. The parameter θ3 is estimated

by inverting the mentioned above average correlation, i.e., θ̂3 = f−1{ρ? (X1, X2, X3, X4)}. Analogically,
ρ? (X1, X2, X3, X4, X5) =

1
4{ρ15 + ρ25 + ρ35 + ρ45}, θ̂4 = f−1{ρ? (X1, X2, X3, X4, X5)}. A summary of

the estimation procedure is given in Algorithm 3.

Algorithm 3 Average correlation estimator
Input: the realized correlation matrix P , the estimated structure ŝ from Algorithm 2, parametric
family of the HAC.
B Let θi, i = 1, . . . , k be the set of the HAC parameters to be estimated.
B Let Xi, i = 1, . . . , k be the set of the descendants of the node DXi ; X is the set of all variables.
for i = 1, . . . k do

ρ? (Xi) =
1∣∣(Xj, Xk

)
∈ X : lca

(
Xj, Xk

)
= DXi

∣∣ ∑ ρjk
(Xj ,Xk)∈X : lca(Xj ,Xk)=DXi

(12)

θ̂i (Xi) = f−1{ρ? (Xi)} (13)
end for
Truncate the parameters according to the nesting condition, i.e., θ̂i ≤ θ̂j, if Xj ⊂ Xi, i, j = 1, . . . , k.

Return: estimated parameter vector θ̂θθ =
(

θ̂1, . . . , θ̂k

)>
of the HAC.

Simulation studies show that the proposed estimator is asymptotically unbiased and follows a
Gaussian distribution. In the case when the realized correlation is replaced by Kendall’s correlation
and the parameter is estimated by applying (8) to the average Kendall’s τ. Let τ̂? (Ui) be the average
empirical Kendall’s τ of the pairs of variables with the lca at node DUi and is defined analogically to (12).
Let Li be a set of the pairs of variables with the lca at node DUi , i.e., Li = (Uj, Ul) : lca(Uj, Ul) = DUi ,
j < l, i ∈ 1, . . . , k, then the asymptotic variance of the average Kendall’s τ associated with the node
DUi and the parameter θi can be estimated as

Var
{

τ̂?(Ui)
}
=

1
|Li|2 ∑ ∑

(Uj ,Ul)∈Li ,(Up ,Uq)∈Li

cov{τ̂il , τ̂pq}, (14)

and n cov{τ̂jl , τ̂pq} →n→∞
16 cov{C2(Uj, Ul ; θ̂i) + C̄2(Uj, Ul ; θ̂i), C2(Up, Uq; θ̂i) + C̄2(Up, Uq; θ̂i)} , where

C̄2(Uj, Ul ; θ̂i) = Uj + Ul − 1 + C2(1−Uj, 1−Ul ; θ̂i) is the survival copula and |L| is the cardinality of
the set L. Combined with the expression (8), this implies
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Var
(
θ̂i
)
=

[
v−1

{
τ?(Ui)

}′]2

Var
{

τ̂?(Ui)
}

.

The estimator of the variance is a straightforward application of the result developed in
Genest et al. (2011).

4. Simulation Results

In this section, we show the validity of the clustering estimator (CE) presented in Algorithms 2
and 3 and compare it to the adaptation of the method of Segers and Uyttendaele (2014) (SU) and
the approach of Okhrin et al. (2013) (OOS) which was improved by Górecki et al. (2014) and was
implemented in the R package HAC by Okhrin and Ristig (2014). We compare the introduced estimator
only to a couple of currently available studies and leave the recent advances discussed in, for example,
Górecki et al. (2014, 2016b), Uyttendaele (2016) and Okhrin et al. (2015) outside the scope of this study
since the objective of the simulation studies is rather to answer the question whether the proposed
algorithm is valid in the case of linear correlation, than to find the best possible estimator of an HAC.
We are aware of the fact that the linear correlation based estimator might be not as efficient as an
ML approach or a nonlinear correlation based estimator, as it contains information only about linear
dependencies among the variables. However, in the framework of high-frequency data, this is so far
the only possible way to proceed. Moreover, we aim to define a minimal recommended sample size.

In the current simulation study no high-frequency observations are presented. In order to compare
different methods, CE is applied to the Kendall’s correlation matrix and to the linear correlation
matrix estimated in the usual manner over the whole sample path that corresponds to the correlation
matrices of the daily log-returns. In the case of the SU estimator, the parameters are estimated by
the sequential inversion of Kendall’s τ. For the estimation of the structure according to Algorithms 1
and 2, we set K = 500 and α? = 0.01. A full ML is applied to the structures estimated by OOS. For
illustrative purposes, the 5-dimensional copulae structures presented in Figure 4 are considered. For
each structure, Clayton, Gumbel and Frank copulae are analysed with the parameters corresponding
to τττ = (0.40, 0.25, 0.10)> and τττ = (0.45, 0.35, 0.25, 0.10)>. The marginal distributions are assumed to
be known. For each of the above mentioned estimators, we proceed as follows: a sample of size n is
simulated from the copula, and the structure is estimated. If the estimated structure coincides with
the true one, the parameters are estimated. The procedure is repeated m times until 200 structures
are estimated correctly. Thus, the estimators of the structure are compared in terms of the proportion
of correctly estimated structures 200/m. For the comparison of the estimation of the parameters, we
introduce the characteristic E = ‖θθθ − θ̂θθ‖, which is the Euclidean norm of the difference between the
vector of true parameters and the estimated ones. Tables 1 and 2 present the mean E, the variance
Var(E) and the 25% q0.25(E), 50% q0.5(E) and 75% q0.75(E) quantiles of E for different structures.

●

U1 U2 U3 U4 U5

θ = 1.33 θ = 0.67

θ = 0.22

●

U1 U2

U3 U4 U5

θ = 1.07

θ = 1.67

θ = 0.67

θ = 0.22

Figure 4. Structures of the 5-dimensional copulae used in the simulation studies.
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Table 1. Simulation results for the Clayton copula with the structure ((123)(45)) and θθθ = (1.33, 0.67, 0.22)>.

n 200/m E Var(E) q0.25(E) q0.5(E) q0.75(E)

CE τ

30 0.262 0.738 0.175 0.465 0.686 0.930
50 0.370 0.518 0.078 0.312 0.449 0.650
70 0.449 0.435 0.040 0.290 0.401 0.543
100 0.570 0.356 0.023 0.249 0.338 0.460
200 0.797 0.236 0.013 0.158 0.221 0.279
300 0.847 0.190 0.007 0.126 0.180 0.241
500 0.873 0.137 0.004 0.091 0.124 0.177
800 0.905 0.113 0.003 0.070 0.107 0.144

1000 0.840 0.110 0.003 0.070 0.097 0.142

CE ρ

30 0.268 1.716 3.813 0.525 0.816 1.519
50 0.439 1.104 2.468 0.355 0.556 0.725
70 0.472 0.853 1.828 0.309 0.466 0.650
100 0.592 0.483 0.645 0.242 0.342 0.461
200 0.797 0.247 0.014 0.166 0.228 0.314
300 0.866 0.198 0.008 0.128 0.181 0.255
500 0.870 0.146 0.005 0.093 0.135 0.192
800 0.917 0.115 0.004 0.067 0.110 0.155

1000 0.873 0.115 0.003 0.070 0.106 0.153

SU

30 0.203 0.727 0.136 0.469 0.679 0.934
50 0.276 0.532 0.069 0.336 0.513 0.663
70 0.349 0.449 0.051 0.292 0.401 0.562
100 0.441 0.360 0.024 0.259 0.336 0.464
200 0.645 0.250 0.015 0.164 0.231 0.301
300 0.722 0.188 0.008 0.123 0.171 0.239
500 0.847 0.138 0.005 0.093 0.124 0.178
800 0.905 0.113 0.003 0.070 0.107 0.144

1000 0.840 0.110 0.003 0.070 0.097 0.142

OOS

30 0.141 0.323 0.027 0.224 0.297 0.422
50 0.216 0.298 0.021 0.188 0.267 0.376
70 0.300 0.257 0.014 0.178 0.240 0.321
100 0.402 0.225 0.011 0.154 0.212 0.270
200 0.647 0.154 0.006 0.093 0.151 0.194
300 0.740 0.129 0.003 0.089 0.119 0.162
500 0.915 0.103 0.002 0.069 0.099 0.134
800 0.980 0.075 0.001 0.052 0.073 0.094

1000 0.983 0.071 0.001 0.049 0.065 0.092

Table 1 shows the simulation results for the 5-dimensional Clayton copula presented in Figure 4
with sample sizes n = 30, 50, 70, 100, 200, 300, 500, 800, 1000. The results make evident that the OOS
method outperforms all the competitors for small samples for the Clayton copula with the structure
s = ((123)(45)). However, there are some outliers, which can be seen from the sample variance of
E. This means that the full ML estimate had a large deviation from the true value of the parameter
for a few samples. The interquantile range q0.75(E) − q0.25(E) is still smaller for the ML in small
samples. The same results for the variance are observed for the CE ρ, therefore, this estimator is not
recommended for small samples. In contrast, Table 2 shows that for the structure s = (((12)3)(45)),
OOS is not the best method for estimating the structure in small samples. This is due to the fact that
the performance of this estimator depends on the choice of the merging parameter. The results for
the other copulae are presented in Appendix C and show that there is no leading method in terms of
estimating the structure. The method to choose depends on the type of the copula and the values of the
parameters. For a large enough sample, all the methods perform similarly. The general conclusion to
be drawn for the estimation of the parameters is that the variance of the CE r estimator is the highest for
small samples and that the full ML has the smallest variance, however, some exceptions are observed.
It is worth noting that the simulation results are used just for comparison purposes, as the difference
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in the parameters influences the proportion of the correctly estimated structures more severely than
does the type of the copula. Additionally, the dimension of the copula should always be taken into
consideration in order to select the minimal sufficient sample size. The question of convergence of the
estimator to the true structure still needs to be addressed in the literature.

Table 2. Simulation results for the Clayton copula with the structure (((12)3)(45)) and θθθ =

(1.67, 1.07, 0.67, 0.22)>.

n 200/m E Var(E) q0.25(E) q0.5(E) q0.75(E)

CE τ

30 0.288 1.095 0.551 0.664 0.954 1.268
50 0.374 0.766 0.145 0.480 0.727 0.966
70 0.407 0.659 0.188 0.443 0.566 0.772
100 0.601 0.506 0.050 0.357 0.485 0.638
200 0.858 0.336 0.026 0.223 0.315 0.431
300 0.939 0.288 0.017 0.192 0.271 0.361
500 0.995 0.213 0.007 0.151 0.206 0.262
800 1.000 0.167 0.005 0.113 0.153 0.209

1000 1.000 0.158 0.004 0.114 0.148 0.202

CE ρ

30 0.262 2.352 3.969 0.830 1.413 5.358
50 0.421 1.420 2.553 0.543 0.838 1.260
70 0.475 0.978 1.593 0.412 0.612 0.873
100 0.621 0.687 0.755 0.364 0.516 0.713
200 0.885 0.352 0.028 0.242 0.318 0.424
300 0.952 0.324 0.022 0.219 0.292 0.402
500 1.000 0.228 0.013 0.154 0.216 0.276
800 1.000 0.183 0.007 0.121 0.164 0.220

1000 1.000 0.169 0.006 0.110 0.161 0.210

SU

30 0.252 1.072 0.329 0.657 0.959 1.329
50 0.401 0.756 0.146 0.464 0.699 0.926
70 0.448 0.657 0.097 0.447 0.598 0.809
100 0.401 0.508 0.050 0.360 0.471 0.616
200 0.615 0.353 0.026 0.234 0.339 0.447
300 0.760 0.300 0.018 0.194 0.284 0.369
500 0.939 0.207 0.006 0.147 0.206 0.253
800 0.995 0.167 0.005 0.113 0.153 0.209

1000 1.000 0.158 0.004 0.114 0.148 0.202

OOS

30 0.388 0.539 0.096 0.333 0.447 0.657
50 0.536 0.420 0.046 0.278 0.376 0.508
70 0.666 0.359 0.024 0.244 0.328 0.451
100 0.774 0.305 0.017 0.212 0.291 0.364
200 0.953 0.226 0.008 0.165 0.217 0.271
300 0.985 0.198 0.007 0.135 0.183 0.246
500 0.998 0.146 0.004 0.099 0.137 0.179
800 1.000 0.112 0.002 0.081 0.108 0.141

1000 1.000 0.106 0.002 0.070 0.101 0.133

In Figure 5, we take a closer look at the individual components of θθθ. We compare only CE based
on Kendall’s correlation and the full ML, as the CE ρ and SU behave very similarly in terms of the
properties of θ̂θθ. It is evident that both estimators are asymptotically unbiased, however, CE has a
higher variance. In addition to the kernel density estimates of CE and ML, we add a kernel density
estimate of the Gaussian sample (blue line) with the mean θθθ and the variance estimated from (14) and
observe that it coincides with the kernel density estimate of CE.
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Figure 5. KDE of θ̂CE (green), θ̂MLE (red) and KDE of the Gaussian distribution N{θ̂CE, V̂ar(θ̂CE)}
sample (blue) for the Gumbel copula with the structure ((123)(45)) and θθθ = (1.67, 1.33, 1.11)>.

It is worth noting that the computational advantage is on the side of CE. Figure 6 shows
the average computational time in seconds for all the above mentioned estimators over 100 trials.
The difference in the computational time becomes crucial with growing dimensions, for example, in
Segers and Uyttendaele (2014), the SU estimation of a 7-dimensional copula needs roughly 20 min
versus 15 s for the proposed clustering estimator (CE).

The main conclusion of this section is that the linear correlation based clustering estimator is
applicable in practice and can be applied to high-frequency data, where moderate samples are atypical.
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Figure 6. Average log computational time (in seconds) over 100 simulations for the estimation of the
Clayton copula by clustering estimator (CE) and the benchmark models depending on the dimension.

5. Forecasting VaR Using High-Frequency Data

5.1. Predicting rHAC

The model introduced in this section extends the work of Fengler and Okhrin (2016) to higher
dimensions. The computationally expensive estimating procedure (5) is reduced to a set of simple
tasks of the form (13). Moreover, this procedure allows avoiding the question of the optimal choice of
the weighting matrix W in (5).

As mentioned in Section 2, the combination of a lemma of Hoeffding (1940) and Sklar’s theorem (1)
allows to express the pairwise covariances in terms of the copula and the corresponding marginal
distributions. Under the assumption that the marginal distributions Fi(xi, ri,t+1), i = 1, . . . , d, are
Gaussian N (0, ri,t+1), the multivariate distribution of daily log-returns Xt+1|Ft ∼ F (·; Rt+1) is
parametrized solely by a Ft-measurable covariance matrix Rt+1. This is due to the fact that the
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structure st+1 and the parameters θθθt+1 of the HAC are estimated from realized correlation matrix
Pt+1 using Algorithms 2 and 3 and the margins are fully specified by the realized volatilities ri,t+1,
i = 1, . . . , d, i.e.,

FXt+1 (x, Rt+1) = Cd

{
F1

(
x1, r1,t+1

)
, . . . , Fd

(
xd, rd,t+1

)
; st+1; θθθt+1

}
, (15)

where x = (x1, x2, . . . , xd)
>. The prediction of the multivariate distribution of daily log-returns is based

on the predicted realized covariance matrix R̂t+1|t obtained by the Heterogeneous Autoregressive
(HAR) model introduced by Corsi (2009) and applied in the spirit of Bauer and Vorkink (2011). First,
the individual elements of the realized covariance matrix are stacked together into a joint matrix. Then,
the matrix logarithm At = logm (Rt) is calculated to guarantee that the matrix is positive definite.
In the next step, the covariances are stacked into one vector at = vech (At) and modeled using the
logarithmic version of the HAR model:

log at+1 = β0 + βDlog aD
t + βW log aW

t + βMlog aM
t + εt+1, (16)

where aD
t = at, aW

t = 1
5 ∑4

i=0 at−i, aM
t = 1

22 ∑21
i=0 at−i, and εt+1 is an error term. When the coefficients

in (16) are estimated using ordinary least squares, the prediction ât+1 is obtained. The prediction
R̂t+1|t is obtained by applying the reverse vech-operator to ât+1 and taking the matrix exponential

R̂t+1|t = expm
(

Ât+1|t

)
. The prediction of the realized correlation matrix P̂t+1|t is obtained by dividing

the elements of R̂t+1|t by the product of the square roots of the corresponding predicted realized

volatilities, i.e., ρ̂ij,t+1|t =
r̂ij,t+1|t√

r̂i,t+1|t ·r̂j,t+1|t
. Since we consider only one-day-ahead prediction, we assume

that the prediction bias caused by the nonlinear transformation is small and omit the bias adjustment,
analogously to Chiriac and Voev (2011).

We stress once again that only the realized correlation matrix is used for the estimation procedure.
The computational costs of such an estimator are low, and the rHAC model still shows excellent
forecasting properties.

5.2. Competitor Models

In order to show a competitive advantage of the rHAC, we apply it to one-day-ahead VaR
prediction for a multidimensional portfolio and compare the performance of the rHAC to three classes
of benchmark models:

• Rolling window copula models
• Dynamic copula models

– Copula DCC model Engle (2002)
– Dynamic copula model by Patton (2004)
– GAS, GRAS by Creal et al. (2013) and Salvatierra and Patton (2015)

• Realized covariance model by Bauer and Vorkink (2011)

The first class employs copula models with parameters fixed over the given time interval.
The second includes dynamic copula models which assume that the parameter of the copula follows
some autoregressive process. The third class, which is both popular and successful, comprises the
realized volatility models. A more detailed description of the benchmark models is given in Appendix E.

6. Application

This section illustrates the rHAC model using high-frequency log-returns of stocks traded on the
New York Stock Exchange. First, we give a description of the data used in the empirical part of this
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section. Thereafter, we apply the rHAC and the above mentioned competing models to one-day-ahead
VaR prediction. The interpretation of the results is provided at the end of this section.

Value-At-Risk Prediction

The selected data set consists of the tick-by-tick prices of 6 assets obtained from TickData: AA
(Alcoa Inc.), AXP (American Express), BAX (Baxter International Inc.), C (Citigroup Inc.), INTC
(Intel Corporation) and KO (Coca-Cola Co.). The selection of the number of assets was motivated
by the computational intensity of some of the competing models. A well-diversified portfolio was
chosen. The selected companies represent the following industrial sectors: consumer products,
technology, financial services, chemicals, health care, communications, and energy. The considered time
period is from January 2005 to March 2010 which corresponds to T = 1346 trading days. This choice
stems from the fact that the correlations among the log-returns increased during the financial crisis.
We are interested in testing whether the rHAC model is able to capture the crashes appearing in
2008 and 2009. To answer this question, we compare the VaR level α to the exceedance ratio α̂ = N

T ,
where the VaR is defined as the quantile of the profit and loss (P&L) distribution lt = (Vt+1 −Vt) =

∑d
j=1 aj,tSj,t{exp

(
xj,t+1

)
− 1}, j = 1, . . . , d. Vt =

d
∑

j=1
aj,tSj,t is the value of the portfolio at time t, aj,t are

some weights, Sj,t is the jth asset’s closing price at day t, xj,t+1 is the jth asset’s log-return at day t + 1,
d is the number of assets in the portfolio, T is the sample size, and N = ∑T

t=1 I{lt < V̂aRt(α)} is the
number of exceedances of the realization of distribution lt. From now on, portfolios with equal wealth
allocation are considered, i.e., aj,t = Vt/

(
d× Sj,t

)
, j = 1, . . . , d.

Before applying the models, the dataset was cleaned according to Brownless and Gallo (2006),
namely the quotes with normal trading conditions, positive price and volume with the timestamp
within office trading hours of NYSE are used. Then, outliers have been removed according to a specific
bid–ask spread rule.

After the dataset was cleaned, the log-returns were aggregated to the 1-minute frequency and the
realized volatilities and correlations were obtained using the realized kernel estimator, which allows
reducing the microstructure noise. More details on this estimator are given in Appendix B.

The prediction of the realized volatilities and the realized correlations is made using the HAR
model (16). The realized volatilities of the selected assets and their out-of-sample predictions are
given in Appendix D, Figure A1. The time series of the selected realized correlations together with the
predicted values are given in Appendix D, Figure A2. The results coincide with the conclusions of
Audrino and Corsi (2010), who state that the prediction of the realized correlations is more difficult
than the prediction of the realized volatility due to their large variance. When the realized correlations
and the realized volatilities are estimated and the forecast is made, the out-of-sample prediction of the
one-day-ahead VaR at the 0.5%, 1%, 5% and 10% levels can be made using the clustering estimator
according to Algorithm 4.

In the VaR modelling, it is required that the exceedances are independent and the percentage of
the exceedances corresponds to the predefined VaR level. Three backtesting procedures have been
used to test these properties. The first testing procedure is the unconditional coverage testing due to
Kupiec (1995), which compares the exceedance ratio to the VaR level. The second procedure is the VaR
duration test of Christoffersen and Pelletier (2004), which checks the independence of the exceedances.
This backtesting tool is based on the number of days between the violations of the risk metric.

The dynamic quantile (DQ) test of Engle and Manganelli (2004) enables testing the two required
properties simultaneously. In the most widespread version of the test, the demeaned exceedances are
regressed on their first lag and the lagged values of the VaR:

I
{

lt < V̂aRt(α)

}
− α = γ0 + γ1I

{
lt−1 < V̂aRt−1(α)

}
− α + γ2V̂aRt−1(α) + εt. (17)
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The null hypothesis for independence and conditional coverage is given by H0: γ0 = 0 , γ1 = 0
and γ2 = 0.

Algorithm 4 Applying rHAC to the VaR

Input: predicted realized covariance matrix R̂t+1|t, predicted realized correlation matrix P̂t+1|t,
log-returns xj,t, j = 1, . . . , d.
B Predict the R̂t+1|t using HAR, compute P̂t+1|t.
B Estimate the structure ŝt+1|t and the parameter vector θ̂θθt+1|t of the rHAC from P̂t+1|t using
Algorithms 2 and 3 with α? = 0.01.
for i = k, . . . , 1000 do

B Simulate a sample uj,t+1|t from Cd

(
·; ŝt+1|t, θ̂θθt+1|t

)
, j = 1, . . . , d.

B Compute xj,t+1|t =
√

r̂j,t+1|t ·Φ−1
(

uj,t+1|t

)
.

B Calculate P&L l(k)t+1
end for
B Calculate the V̂aRt+1|Ft (α) as

V̂aRt+1|Ft (α) = F̂−1
lt+1|Ft

(α)

Return: V̂aRt+1|Ft (α).

To verify this method, the results are compared to the benchmark models described in Section 5.2.
The backtesting results of the unconditional coverage and independence tests are presented in
Table 3. The p-values indicate that the copula models give more accurate prediction for the
AA-AXP-BAX-C-INTC-KO portfolio, at the 0.5%, 1% and 5% levels, and do not match the 10% level
quantile well. The unconditional coverage test supports both the rolling window and rHAC models.
However, the independence test of Christoffersen and Pelletier (2004) speaks in favor of the rHAC model.

The time series of the P&L for the given portfolio and the corresponding VaR bounds are illustrated
in Figure 7. The rHAC method has been found to be effective in handling the 1% and 0.5% quantiles,
which is especially important in risk management. No models with a similar predictive power have been
found. The hitting ratios of the dynamic copula and the realized covariance approaches are disappointing.

Table 3. VaR performance for the AA-AXP-BAX-C-INTC-KO. The hitting ratio α̂ and the p-values of
the Kupiec test (K), Christoffersen (C), and the dynamic quantile (DQ) test.

Model Level α̂ K C DQ

Rolling window, Clayton, GED

α = 0.005 0.0030 0.2712 0.0317 0.6756
α = 0.01 0.0076 0.3510 0.0000 0.6619
α = 0.05 0.0514 0.8163 1.0000 0.1290
α = 0.10 0.1043 0.0000 0.0000 0.0070

Rolling window, rGumbel, GED

α = 0.005 0.0045 0.8076 0.0018 0.4378
α = 0.01 0.0083 0.5257 0.0000 0.0053
α = 0.05 0.0506 0.9148 0.0000 0.0186
α = 0.10 0.0990 0.0000 0.0000 0.0016

DCC, t-copula

α = 0.005 0.0232 0.0001 0.0000 0.0139
α = 0.01 0.0304 0.0000 0.0000 0.0041
α = 0.05 0.0728 0.0000 0.0000 0.0001
α = 0.10 0.1112 0.0000 0.0000 0.0000

DCC, t-copula, GED

α = 0.005 0.0054 0.0671 0.0000 0.9796
α = 0.01 0.0162 0.0403 0.0000 0.0000
α = 0.05 0.0470 0.0000 0.0000 0.3045
α = 0.10 0.0924 0.0000 0.0000 0.2985
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Table 3. Cont.

Model Level α̂ K C DQ

Patton, Clayton

α = 0.005 0.0509 0.0000 0.0377 0.6360
α = 0.01 0.0616 0.0000 0.0601 0.7315
α = 0.05 0.1036 0.0000 0.2041 0.7414
α = 0.10 0.1366 0.0001 0.3031 0.4549

Patton, rGumbel

α = 0.005 0.0332 0.0000 0.0786 0.8460
α = 0.01 0.0370 0.0000 0.0425 0.6558
α = 0.05 0.0612 0.0709 0.0653 0.5654
α = 0.10 0.0937 0.4372 0.1178 0.3615

GAS, Clayton, GED

α = 0.005 0.0303 0.0000 0.0549 0.0726
α = 0.01 0.0427 0.0000 0.0079 0.1935
α = 0.05 0.0822 0.0000 0.0493 0.0078
α = 0.10 0.1404 0.0000 0.4827 0.0046

GRAS, Clayton, GED

α = 0.005 0.0303 0.0000 0.0002 0.0001
α = 0.01 0.0388 0.0000 0.0000 0.0001
α = 0.05 0.0869 0.0000 0.0234 0.0014
α = 0.10 0.1381 0.0000 0.5202 0.0164

GAS, rGumbel, GED

α = 0.005 0.0217 0.0000 0.0208 0.0838
α = 0.01 0.0295 0.0000 0.0052 0.0150
α = 0.05 0.0760 0.0001 0.0035 0.0007
α = 0.10 0.1296 0.0007 1.0000 0.0027

GRAS, rGumbel, GED

α = 0.005 0.0202 0.0000 0.0052 0.0884
α = 0.01 0.0326 0.0000 0.0001 0.0639
α = 0.05 0.0706 0.0014 0.0242 0.0228
α = 0.10 0.1327 0.0002 1.0000 0.0345

RCov, Bauer and Vorkink

α = 0.005 0.0350 0.0000 0.2920 0.0009
α = 0.01 0.0474 0.0000 0.1937 0.0008
α = 0.05 0.1213 0.0000 0.8088 0.0038
α = 0.10 0.1773 0.0000 0.0017 0.0017

rHAC, Clayton

α = 0.005 0.0047 0.8589 0.5042 0.0000
α = 0.01 0.0085 0.5873 0.5064 0.0028
α = 0.05 0.0551 0.4098 0.1521 0.0000
α = 0.10 0.1140 0.0995 0.1482 0.0000

As was mentioned above, VaR prediction using the competing models gets computationally
difficult in higher dimensions, which is not the case for the rHAC approach. The VaR regions of the
rHAC model and the model of Bauer and Vorkink (2011) for a portfolio consisting of 17 assets (AA
(Alcoa Inc.), AXP (American Express), BAX (Baxter International Inc.), C (Citigroup Inc.), DOW (Dow
Chemical Company), GS (Goldman Sachs Group), HAS (Hasbro Inc.), HOG (Harley-Davidson Inc.),
INTC (Intel Corporation), KO (Coca-Cola Co.), MET (Metlife Inc.), MSFT (Microsoft Corporation), NKE
(Nike Inc.), PFE (Pfizer), VZ (Verizon Communications), XOM (Exxon Mobil Corporation) are given in
Figure 8. The p-values for three considered backtesting procedures can be found in Table 4. It is evident
that the multidimensional realized copula model does not suffer from the curse of dimensionality,
and performs satisfactorily in the sense of unconditional coverage for moderate α levels in higher
dimensions. The null hypothesis of the unconditional coverage test for the Gaussian model of Bauer
and Vorkink (2011) is rejected at all VaR levels.
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Figure 7. Exceedances for the VaR (0.01) of the AA-AXP-BAX-C-INTC-KO portfolio. P & L (black dots),
the lower VaR(0.01) (blue solid line), exceedances (red crosses).
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Figure 8. Exceedances for the VaR(0.01) of the AA-AXP-BAX-BLK-C-DOW-GS-HAS-HOG-INTC-
KO-MET-MSFT-NKE-PFE-VZ-XOM portfolio. P&L (black dots), the lower VaR(0.01) (blue solid line),
exceedances (red crosses).

Table 4. VaR performance for the AA-AXP-BAX-BLK-C-DOW-GS-HAS-HOG-INTC-KO-MET-MSFT-
NKE-PFE-VZ-XOM. The hitting ratio α̂ and the p-values of the Kupiec test (K), Christoffersen (C), and
the DQ test.

Model Level α̂ K C DQ

rHAC, Clayton

α = 0.005 0.0040 0.6008 0.1006 0.0006
α = 0.01 0.0088 0.6593 0.5534 0.0000
α = 0.05 0.0192 0.0000 0.3231 0.0000
α = 0.10 0.0791 0.0107 0.6305 0.0000

RCov, Bauer and Voev

α = 0.005 0.0799 0.0000 0.7393 0.9752
α = 0.01 0.1102 0.0000 0.7745 0.0710
α = 0.05 0.1294 0.0000 0.3221 0.0582
α = 0.10 0.1925 0.0000 0.0002 0.1289

7. Conclusions

The concept of the realized hierarchical Archimedean copula has been introduced. This model
allows combining the flexibility of copula models with the additional information contained in
high-frequency data. It has been suggested to combine the estimation procedures described in Segers
and Uyttendaele (2014) and Górecki et al. (2016a) and adapt them to high-frequency data. This estimator
is of particular importance in short-term financial risk management, as the structure and the parameters
of the copula are estimated daily based solely on the realized correlation matrix.

Based on the simulation results, it has been concluded that the linear correlation matrix based
estimator performs well for large enough samples; it is unbiased but less efficient that the full maximum
likelihood estimator. However, it is less computationally intensive than benchmark models and does
not suffer from the curse of dimensionality.

In the empirical part of the study, the proposed estimator has been applied to predict the VaR
based on high-frequency data for two portfolios, one of 6 and the other of 17 assets. The results have
been compared to the benchmark approaches including dynamic copulas and realized covariance
models. Based on three tests (Kupiec, Christoffersen, DQ), it has been concluded that the VaR regions
obtained by the high-dimensional realized copula models outperform the benchmark models in higher
dimensions, especially for lower VaR levels.
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Appendix A. The Generators and the Densities of Some ACs

Table A1. Archimedean copulae: Gumbel, Clayton and Frank.

Copula Generator Distribution Parameter

Gumbel (− log t)θ exp
[
−
{

∑d
i=1 (− log ui)

θ
} 1

θ
]

θ ∈ [1, ∞)

Clayton 1
θ

(
t−θ − 1

)
max

[ {(
∑d

i=1 u−θ
i

)
− d + 1

}− 1
θ , 0
]

θ ∈ (0, ∞)

Frank − log
(

exp(−θt)−1
exp(−θ)−1

)
1
θ log

{
1 + ∏d

i=1(exp(−θui)−1)
(exp(−θ)−1)d−1

}
θ ∈ (0, ∞)

Appendix B. Realized Covariance and Realized Kernel Estimator

Assume that the d-dimensional log-price process follows a Brownian semimartingale

Xt = Xt−1 +
∫ t

t−1
σu dWu

where [t− 1; t] is a period corresponding to one trading day, σt is a càdlàg volatility matrix process
and Wt is a d-dimensional vector of independent Brownian motions. It is important to note that the
price process is superimposed by the market microstructure noise Uτi , i.e., one observes

Pτi = Xτi + Uτi ,

where t− 1 = τ0 < τ1 < . . . < τN = t, E(Uτi ) = 0, ∑h |hΩh| < ∞ and Ωh = cov(Uτi , Uτi−h) for h > 0.
The realized covariance over the time interval [t− 1; t] is defined as the sample analog of the quadratic
variation of X given by

[X]t,t−1 =
∫ t

t−1
Σudu

with Σ = σσ> and is denoted by Rt in Section 2.
One of the estimators which reduces the effect of microstructure noise is the realized kernel

estimator proposed by Barndorff-Nielsen et al. (2008). As the realized covariances are obtained by
summing all the cross products of log-returns that have a non zero overlapping of their respective
time span, the data should be synchronized first. The procedure which is called refresh time sampling
and described in Hautsch (2011) is applied to synchronize the data. The first refresh time is defined
as τ∗1 = max{τ1,1, . . . , τd,1} and τ∗i+1 = min{τj,kj

|τj,kj
> τ∗i , ∀k j = 1, . . . , Nj; j ∈ 1 . . . d}, where Nj

is the number of price observations for asset j. As a result, a new high-frequency vector of returns
pi = Pτ∗i

− Pτ∗i−1
is produced, where i = 1, . . . , n, and n is the number of the synchronized observations.

The multivariate realized kernel estimator is given by

K(P) =
H

∑
h=−H

k
(
|h|

H + 1

)
Γh,

where Γh is the autocovariance matrix defined as

Γh =

{
∑n

j=|h|+1 pj p>j−h, h ≥ 0

∑n
j=|h|+1 pj−h p>j , h < 0

,
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and k(y) is the Parzen kernel

k(y) =


1− 6y2 + 6y3 0 ≤ y ≤ 1/2
2(1− y)3 1/2 ≤ y ≤ 1
0 y > 1

.

The multivariate bandwidth parameter H is selected according to Barndorff-Nielsen et al. (2008).

Appendix C. Simulation Results

Table A2. Simulation results for the Gumbel copula with the structure ((123)(45)) and θθθ =

(1.67, 1.33, 1.11)>.

n 200/m E Var(E) q0.25(E) q0.5(E) q0.75(E)

CE τ

30 0.290 0.391 0.037 0.254 0.358 0.492
50 0.377 0.247 0.014 0.169 0.222 0.313
70 0.493 0.215 0.013 0.131 0.203 0.268

100 0.552 0.183 0.008 0.116 0.159 0.235
200 0.707 0.117 0.003 0.073 0.110 0.153
300 0.784 0.099 0.002 0.069 0.088 0.124
500 0.844 0.072 0.001 0.047 0.064 0.095
800 0.897 0.063 0.001 0.042 0.059 0.081
1000 0.881 0.053 0.001 0.031 0.046 0.068

CE ρ

30 0.251 0.372 0.041 0.245 0.319 0.475
50 0.401 0.234 0.013 0.152 0.219 0.297
70 0.404 0.219 0.010 0.139 0.210 0.272

100 0.463 0.178 0.007 0.111 0.169 0.240
200 0.571 0.123 0.004 0.082 0.110 0.161
300 0.633 0.101 0.002 0.070 0.096 0.124
500 0.651 0.071 0.001 0.047 0.067 0.090
800 0.714 0.062 0.001 0.043 0.061 0.077
1000 0.707 0.054 0.001 0.033 0.048 0.069

SU

30 0.247 0.368 0.034 0.233 0.348 0.467
50 0.292 0.259 0.018 0.172 0.241 0.316
70 0.412 0.221 0.014 0.138 0.206 0.275

100 0.410 0.175 0.007 0.117 0.158 0.219
200 0.604 0.127 0.003 0.088 0.118 0.159
300 0.680 0.098 0.002 0.068 0.087 0.122
500 0.820 0.074 0.001 0.047 0.068 0.096
800 0.877 0.061 0.001 0.041 0.057 0.078

OOS

30 0.160 0.218 0.015 0.142 0.192 0.256
50 0.284 0.179 0.006 0.129 0.175 0.216
70 0.428 0.143 0.005 0.093 0.135 0.175

100 0.526 0.125 0.004 0.077 0.116 0.159
200 0.743 0.090 0.002 0.059 0.085 0.112
300 0.855 0.075 0.001 0.050 0.070 0.093
500 0.960 0.059 0.001 0.038 0.056 0.076
800 0.997 0.045 0.000 0.028 0.044 0.059
1000 1.000 0.042 0.000 0.027 0.039 0.054

Table A3. Simulation results for the Frank copula with the structure ((123)(45)) and θθθ =

(4.16, 2.37, 0.91)>.

n 200/m E Var(E) q0.25(E) q0.5(E) q0.75(E)

CE τ

30 0.325 1.843 0.681 1.211 1.799 2.260
50 0.394 1.343 0.431 0.879 1.260 1.722
70 0.503 1.176 0.231 0.852 1.077 1.440

100 0.513 0.893 0.127 0.641 0.840 1.107
200 0.714 0.636 0.080 0.453 0.597 0.749
300 0.772 0.500 0.052 0.327 0.458 0.664
500 0.866 0.405 0.031 0.264 0.388 0.524
800 0.893 0.305 0.019 0.217 0.289 0.393
1000 0.909 0.267 0.013 0.187 0.254 0.331
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Table A3. Cont.

n 200/m E Var(E) q0.25(E) q0.5(E) q0.75(E)

CE ρ

30 0.264 2.564 2.372 1.420 2.081 3.888
50 0.403 1.800 1.661 0.943 1.384 2.176
70 0.430 1.306 0.824 0.777 1.104 1.473
100 0.423 0.996 0.437 0.652 0.913 1.177
200 0.557 0.628 0.082 0.414 0.579 0.813
300 0.637 0.532 0.049 0.361 0.524 0.663
500 0.685 0.415 0.034 0.284 0.392 0.513
800 0.667 0.324 0.021 0.220 0.310 0.416

1000 0.709 0.295 0.016 0.207 0.286 0.379

SU

30 0.222 1.812 0.737 1.150 1.678 2.279
50 0.272 1.399 0.422 0.934 1.355 1.758
70 0.401 1.140 0.256 0.787 1.062 1.433
100 0.425 0.886 0.147 0.593 0.830 1.111
200 0.601 0.661 0.079 0.479 0.633 0.790
300 0.662 0.502 0.050 0.336 0.474 0.653
500 0.813 0.399 0.033 0.256 0.375 0.522
800 0.905 0.304 0.019 0.214 0.294 0.385

1000 0.917 0.268 0.013 0.185 0.255 0.331

OOS

30 0.186 1.249 0.343 0.853 1.152 1.472
50 0.296 1.028 0.234 0.752 0.942 1.273
70 0.442 0.891 0.149 0.595 0.846 1.135
100 0.524 0.707 0.096 0.486 0.651 0.885
200 0.828 0.548 0.054 0.363 0.529 0.699
300 0.905 0.453 0.042 0.303 0.448 0.574
500 0.985 0.362 0.025 0.259 0.353 0.473
800 1.000 0.289 0.017 0.198 0.266 0.371

1000 1.000 0.255 0.013 0.168 0.249 0.328

Table A4. Simulation results for the Gumbel copula with the structure (((12)3)(45)) and
θθθ = (1.82, 1.54, 1.33, 1.11)>.

n 200/m E Var(E) q0.25(E) q0.5(E) q0.75(E)

CE τ

30 0.335 0.521 0.087 0.320 0.466 0.614
50 0.398 0.363 0.023 0.264 0.336 0.445
70 0.493 0.313 0.026 0.192 0.287 0.392

100 0.557 0.270 0.015 0.188 0.256 0.325
200 0.772 0.172 0.005 0.117 0.160 0.217
300 0.885 0.144 0.004 0.095 0.133 0.182
500 0.990 0.105 0.003 0.070 0.097 0.130
800 1.000 0.086 0.001 0.062 0.078 0.105
1000 1.000 0.079 0.001 0.052 0.074 0.099

CE ρ

30 0.345 0.481 0.091 0.300 0.408 0.587
50 0.427 0.358 0.030 0.238 0.321 0.441
70 0.475 0.315 0.029 0.189 0.277 0.403

100 0.581 0.276 0.016 0.187 0.259 0.324
200 0.781 0.168 0.005 0.117 0.152 0.218
300 0.881 0.143 0.005 0.097 0.127 0.173
500 0.990 0.106 0.002 0.069 0.100 0.128
800 1.000 0.087 0.002 0.060 0.077 0.103
1000 1.000 0.080 0.001 0.052 0.077 0.103

SU

30 0.255 0.536 0.086 0.322 0.458 0.622
50 0.290 0.367 0.029 0.258 0.341 0.452
70 0.402 0.326 0.027 0.220 0.306 0.377

100 0.418 0.274 0.016 0.185 0.251 0.329
200 0.631 0.173 0.005 0.123 0.162 0.218
300 0.697 0.140 0.004 0.094 0.128 0.173
500 0.885 0.105 0.003 0.068 0.096 0.131
800 0.990 0.086 0.001 0.062 0.078 0.105
1000 0.990 0.078 0.001 0.051 0.074 0.098
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Table A4. Cont.

n 200/m E Var(E) q0.25(E) q0.5(E) q0.75(E)

OOS

30 0.291 0.333 0.038 0.188 0.280 0.427
50 0.356 0.235 0.017 0.146 0.202 0.304
70 0.512 0.219 0.014 0.138 0.189 0.264
100 0.552 0.170 0.007 0.108 0.153 0.210
200 0.772 0.128 0.003 0.087 0.122 0.156
300 0.863 0.106 0.002 0.072 0.101 0.134
500 0.953 0.086 0.001 0.059 0.080 0.106
800 0.983 0.068 0.001 0.048 0.067 0.084

1000 0.993 0.062 0.001 0.042 0.061 0.079

Table A5. Simulation results for the Frank copula with the structure (((12)3)(45)) and
θθθ = (4.89, 3.51, 2.37, 0.91)>.

n 200/m E Var(E) q0.25(E) q0.5(E) q0.75(E)

CE τ

30 0.324 2.466 1.389 1.648 2.253 2.975
50 0.400 1.842 0.529 1.293 1.754 2.335
70 0.459 1.542 0.398 1.106 1.404 1.950

100 0.536 1.174 0.222 0.877 1.117 1.407
200 0.749 0.861 0.101 0.651 0.829 1.048
300 0.881 0.649 0.059 0.467 0.652 0.803
500 1.000 0.529 0.043 0.379 0.505 0.637
800 1.000 0.421 0.024 0.308 0.404 0.502
1000 1.000 0.354 0.023 0.244 0.335 0.442

CE ρ

30 0.344 3.009 2.284 1.870 2.690 3.931
50 0.403 2.214 1.594 1.424 1.867 2.523
70 0.451 1.723 0.872 1.086 1.528 2.116

100 0.625 1.321 0.457 0.944 1.240 1.561
200 0.800 0.944 0.122 0.697 0.887 1.169
300 0.909 0.694 0.076 0.499 0.673 0.837
500 1.000 0.559 0.053 0.405 0.537 0.675
800 1.000 0.434 0.028 0.319 0.416 0.522
1000 1.000 0.384 0.023 0.267 0.361 0.477

SU

30 0.226 2.539 1.191 1.792 2.368 2.896
50 0.273 1.863 0.617 1.292 1.767 2.330
70 0.400 1.635 0.489 1.153 1.494 2.031

100 0.401 1.253 0.215 0.946 1.214 1.499
200 0.606 0.877 0.107 0.648 0.846 1.055
300 0.719 0.665 0.065 0.466 0.668 0.814
500 0.909 0.514 0.042 0.362 0.497 0.619
800 0.995 0.420 0.024 0.308 0.404 0.502
1000 0.995 0.353 0.023 0.244 0.335 0.439

OOS

30 0.261 1.829 1.017 1.188 1.582 2.216
50 0.374 1.357 0.440 0.838 1.226 1.666
70 0.468 1.203 0.326 0.775 1.136 1.464

100 0.580 0.932 0.163 0.631 0.884 1.163
200 0.802 0.720 0.085 0.530 0.702 0.889
300 0.890 0.596 0.053 0.442 0.570 0.723
500 0.953 0.462 0.032 0.340 0.434 0.573
800 0.983 0.389 0.021 0.284 0.372 0.471
1000 0.990 0.337 0.020 0.226 0.324 0.431
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Appendix D. Realized Volatilities and Correlations
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Figure A1. Time series of the selected daily realized volatilities (lines) and their one-day-ahead
out-of-sample predictions (bold black).
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Figure A2. Time series of the selected daily realized correlations (grey) and their one-day-ahead
out-of-sample predictions (bold black).

Appendix E. Benchmark Models

Appendix E.1. Rolling Window Copula Model

The rolling window copula setting models the joint distribution of the standardized innovations
εt =

xi,t√ri,t
, i = 1, . . . , d, t = 1, . . . , T via a copula with a parameter that is constant over some time

period, where xi,t is the log-return and ri,t is the realized volatility of the ith asset at day t. In this study,
the Clayton copula with a rolling window of w = 200 days is applied. For the generalization of this
approach, we refer to the locally adaptive change point algorithm of Härdle et al. (2013). This model is
more flexible due to the time-varying rolling window. However, this model falls outside of the scope
of this paper, due to its computational complexity.
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Appendix E.2. Dynamic Copula Models

Appendix E.2.1. Copula DCC Model

Another essential class of VaR models incorporates the DCC models of Engle (2002). The mean
process of the log-returns is assumed to be µt = 0 and the correlation Rt of the standardized residuals
εt =

xi,t√ri,t
, i = 1, . . . , d, t = 1, . . . , T is assumed to follow a dynamic process. These correlations are

used as the input for the Student’s t copula, i.e.,

(ε1,t, . . . , εd,t)
> ∼ Cd{F1,t (ε1,t) , . . . , Fd,t (εd,t) ; ν, Rt}.

The number of degrees of freedom ν is kept constant, while Rt is the conditional correlation
matrix of the DCC model. In this study, we use a GJR-GARCH(1, 1) model for the univariate time
series and DCC (1, 1) for the correlation of the log-returns. The normal and GED distributions are
used to capture the margins F1,t (ε1,t) , . . . , Fd,t (εd,t).

Appendix E.2.2. The Patton (2004) Model

While in the previous setting the mean process is assumed to be µt = 0, Patton (2004) suggests that
the parameter of the copula should depend on a conditional mean process µt. This can be formalized
as follows:

(ε1,t, . . . , εd,t)
> ∼ Cd{F1,t (ε1,t) , . . . , Fd,t (εd,t) ; θt}, θt = Λ

(
d

∑
i=0

γiµi,t

)
.

εt =
xi,t√ri,t

, i = 1, . . . , d, t = 1, . . . , T are the standardized residuals, γi, i = 1, . . . , d are unknown

parameters, and the function Λ(·) ensures the validity of the copula parameter, Λ(x) = exp(x) for the
Clayton copula and Λ(x) = exp(x) + 1 for the Gumbel copula. The marginal time series are modelled
as AR(1)-GARCH(1, 1) processes with GED innovations.

Appendix E.2.3. GAS and GRAS Models

Even more complex models have been proposed by Creal et al. (2013) and Salvatierra and Patton (2015).
In the GAS model of Creal et al. (2013), the copula parameter follows the autoregressive process

Λ (θt) = ω + βΛ (θt−1) + αst−1,

where st−1 = St−1δt−1, δt−1 =
∂logc(ut−1,θt−1)

∂θt−1
is the score function of the copula of the transformed

standardized residuals ui,t = Fi,t (εi,t) and St−1 is a scaling matrix. The univariate time series are
assumed to be GARCH(1, 1) with GED margins.

The updating equation of the GRAS model of Salvatierra and Patton (2015) additionally includes
the realized measure RMt =

2
d(d−1) ∑d

i>j rij,t

Λ (θt) = ω + βΛ (θt−1) + αst−1 + γRMt−1,

where rij,t is the realized correlation.

Appendix E.2.4. Realized Covariance Models

The third popular class of the models are the realized covariance models. According to the
methodology proposed by Bauer and Vorkink (2011), the time series of the realized covariance matrices
Rt are transformed using the matrix logarithm At = log (Rt). Thus, the positive-definiteness of the
matrix At is guaranteed. In the next step, the upper-triangular elements of the matrix At are stacked
together in a vector at = vech (At), which is modeled using the HAR model. Thereafter, the vector
ât+1 is transformed back into the matrix Ât+1. The final prediction is obtained by taking the matrix
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exponential, i.e., R̂t+1 = expm
(

Ât+1

)
. The predicted realized covariance matrix is used as the input

for a multivariate Gaussian distribution.
Another realized volatility model which uses the Cholesky decomposition instead of the

logarithmic transformation is addressed in Chiriac and Voev (2011). As it performs similarly to that of
Bauer and Vorkink (2011), we do not use it in the empirical part of the study.
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