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Abstract: Forecasting correlations between stocks and commodities is important for diversification
across asset classes and other risk management decisions. Correlation forecasts are affected by
model uncertainty, the sources of which can include uncertainty about changing fundamentals and
associated parameters (model instability), structural breaks and nonlinearities due, for example, to
regime switching. We use approaches that weight historical data according to their predictive content.
Specifically, we estimate two alternative models, ‘time-varying weights’ and ‘time-varying window’,
in order to maximize the value of past data for forecasting. Our empirical analyses reveal that these
approaches provide superior forecasts to several benchmark models for forecasting correlations.
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1. Introduction

Variance and covariance (or correlation) estimates are important inputs for many decisions,
including pricing derivatives, risk measurement, risk management and asset allocation or investment
decisions. For instance, Andersen et al. (2007) discuss how the realized covariance matrix is useful
in risk management applications. On the investment side, Fleming et al. (2003) study how using
realized variance can improve a volatility-timing strategy, while Bandi et al. (2008) focus on the optimal
portfolio choice problem using the realized covariance matrix. Furthermore, Corsi et al. (2013) and
Christoffersen et al. (2014) show that using realized variance improves option pricing performance.

Therefore, accurate forecasting of the covariance matrix is important. Forecasting is fraught
with potential biases and inefficiencies arising from model uncertainty, the sources of which can
include uncertainty about changing fundamentals and associated parameters (model instability),
structural breaks and nonlinearities due, for example, to regime switching. Applying a best-practice
structural model from finance theory will usually require a long history of data for precise estimates of
model parameters. Due to model instability, many forecasters use a nonparametric filter based on a
fixed-length moving window of observable returns, for example, an exponentially-weighted moving
average. However, the question remains: Over what historical sample should the sample average or
the moving-average forecasts be computed? Given model uncertainty or instability, forecasters require
some way of deciding what data sample to use.

The forecasting efficacy of time series models of realized variance has a very extensive literature.1

In this paper, we focus on forecasting correlations of stock returns with commodities. Correlations

1 Early papers related to our application include: (Andersen et al. 2003; Andersen et al. 2005; Andreou and Ghysels 2002;
Barndorff-Nielsen and Shephard 2002; Maheu and McCurdy 2002; Martnes et al. 2004; Liu and Maheu 2009).
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between stock returns and commodities are particularly important since they measure how much
diversification benefit can be achieved by investing across different asset classes. The extant literature
has been mainly focused on whether the co-movements between stocks and commodities have been
steadily increasing since the financialization of commodities markets. Depending on their empirical
setup, there is evidence showing that correlations between the two markets have increased; but also
evidence showing that the impact of financialization is not transparent.2

Either way, it is clear that the time series of variances and correlations between stocks and
commodities exhibit frequent shifts. For example, the average daily realized correlation between
S&P500 futures and gold futures was 0.16 for the period April 2007–February 2015; but −0.38 and 0.54
for the subperiods July 2008–August 2008 and January 2010–February 2010, respectively. This feature
makes forecasting challenging. Using a longer data sample does not necessarily lead to better forecasts
and can possibly introduce additional bias. On the other hand, using a fixed-length moving window
requires some method of selecting the best window length. Motivated by this challenge, we focus on
comparing alternative data usage models, time-varying weights and time-varying window lengths, in
order to maximize the predictive content of historical data.

Breaks in conditioning information or model uncertainty have typically been addressed
with respect to forecasting returns.3 The recognition that predictor variables are imperfect or
uncertain can result in returns being riskier in the long-run than the short-run due to that model
uncertainty.4 Structural break models provide similar intuitions although they are typically less
frequent than the model changes we allow for in this paper.5 More directly related to our
approach is the optimal window-width literature; for example: (Pesaran and Timmermann (2002);
Pesaran and Timmermann (2007)) with respect to returns; and Härdle et al. (2014) with respect to
trading volumes.

Since forecasts are often sensitive to the data sample used to derive the forecast, an approach
that can use historical data optimally (with respect to predictive content) at each point in time should
provide superior real-time forecasts. One such approach is a Bayesian model of learning about model
change as new data arrive. We evaluate two alternatives to the typical benchmarks of a fixed-length
moving window or an expanding window that weights historical data equally.

Our first alternative, a ‘time-varying weights’ model, estimates weights for data histories
according to their out-of-sample predictive content. Following Maheu and Gordon (2008) and
Maheu and McCurdy (2009), historical data are partitioned into submodels, which have different
data histories. Submodel probabilities are estimated each period based on predictive content. Bayesian
model average forecasts for each period combine an estimated model change probability with a
probability-weighted average of submodel forecasts, integrating-out submodel uncertainty. In this case,
the forecasted distributions of realized variances and realized correlations are generated by discrete
mixtures of submodel distributions, using information from all of the submodels, appropriately
weighted by the estimated submodel probabilities. In other words, all of the data are used for
generating forecasts but rather than weighting the submodels equally (cf., Pesaran and Pick 2011), our
submodel weights are estimated each period according to how useful those data are for the forecasts.
In terms of the bias versus efficiency issue, when there is a change in the data-generating process, this
approach will use data prior to a probable model change if those data improve the forecast.

Our second alternative is a ‘time-varying window’ model. This approach builds on the
‘time-varying weights’ model by truncating the data history, every period, at the point of most

2 See: (Christoffersen et al. 2017; Büyükashin et al. 2010; Silvennoinen and Thorp 2010; Tang and Xiong 2012).
3 For example: (Pastor and Stambaugh 2001; Aramov 2002; Cremers 2002; Kim et al. 2005; Lettau and van Nieuwerburgh 2008;

Paye and Timmermann 2006; Rapach and Wohar 2006).
4 For example: (Pastor and Stambaugh 2012; Diris 2014).
5 See: Andreou and Ghysels (2002) in volatility; Liu and Maheu (2008) in realized volatility; Maheu and Gordon (2008) in

macroeconomic variables; and Maheu and McCurdy (2009) in market return distributions.
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mass for the submodel probability distribution. We redo our forecasts using this time-varying window
length. This alternative approach provides a further interesting comparison with the fixed-length
moving window benchmark, as well as with the time-varying weights approach, which assesses the
usefulness of all data histories and weights them accordingly, period by period. It also allows a further
analysis of the bias versus efficiency issue.

We compare our time-varying weights and time-varying window forecasts to standard benchmark
forecasts. Our first benchmark, motivated by the conclusion of Welch and Goyal (2008) for forecasting
returns, is the sample average of realized variances and realized correlations based on an expanding
window as new data arrive. Our second benchmark, motivated by industry practice, is the
moving average associated with a fixed-length moving window. Further, since our method is not
dependent on any particular statistical model, but rather evaluates the usefulness of alternative
samples of historical data, we provide several robustness checks for the forecasting efficacy of the
time-varying weights and time-varying window approaches. These include long-horizon forecasts,
as well as exponentially-weighted moving average and AR(1) forecasting models. Our approach is
equally applicable to more advanced conditional forecasting models such as HAR (Heterogeneous
Auto-Regressive) model (Corsi 2009). However, our focus is on the time-varying usage of the historical
data rather than specific statistical models.

Our empirical analyses for forecasts of variances and correlations between stocks and commodities
reveal that both the time-varying weights and time-varying window approaches provide much superior
forecasts than fixed-length moving window and expanding window models that weight historical data
equally. Our result is also strong for long-horizon forecasts. The time-varying weights model dominates
for all cases according to the log-likelihood metric for forecasting the distributions of realized variances
and realized correlations. On the other hand, the time-varying window-length model dominates when
evaluating forecasts of realized variances and realized correlations using mean absolute error, average
sum of squared errors and R2 metrics from forecast regressions. Our comparisons with alternative
benchmarks, in particular, exponentially-weighted moving-average and AR(1) forecasting models,
show that optimizing with respect to historical data usage adds value relative to those alternatives,
as well.

The rest of the paper is organized as follows. The next section describes the high-frequency data
sources and construction of realized measures. Section 3 and our Appendix are devoted to detailed
descriptions of our model, estimation and deriving forecasts. Estimation results and forecast accuracy
are discussed in Section 4. Section 5 performs various robustness checks, and Section 6 concludes.

2. Data

In this section, we discuss the data and describe how we constructed the variables, which are the
focus of our forecasts. We will focus on various realized variance RV and realized correlation RCorr
measures in this paper, although our approach can be applied to general datasets.

For each period, assume that we have L number of intra-period returns available. Using the
notation ri;t,l to denote continuously-compounded return of security i at time t and intra-period l, we
construct the realized variance measure of security i over period t as follows.

RVi,t =
L

∑
l=1

r2
i;t,l (1)

It is well known that empirically-observed intra-period returns exhibit serial autocorrelations.
This violates the assumption that guarantees the consistent convergence of the above formula to the
actual variance. Thus, we follow Hansen and Lunde (2006) to make a kernel adjustment:
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RVi;t,ACq = ω0γ̂0 + 2
q

∑
j=1

ωjγ̂j; (2)

γ̂j =
L−j

∑
l=1

ri;t,lri;t,l+j (3)

using the Bartlett scheme to define weights, so that ωj = 1− j
q+1 , j = 0, 1, . . . , q.

Our first dataset consists of monthly realized variances from February 1885–December 2013
inclusive. The early part of the sample from 1885–1925 uses daily returns from Schwert (1990).
Daily returns from January 1926 forward were obtained from the Center for Research in Security Prices
(CRSP) for the S&P500 index (and earlier representations of that index). The number of lags q used to
adjust for intra-period serial autocorrelation was chosen to be three. This gives us 1543 months of RV
data for the U.S. equity market.

Our next dataset uses intraday returns data from futures markets to construct daily RV measures.
Starting from April 2007 and ending in February 2015, we obtained intraday futures prices for S&P 500
futures with trading symbol SP on the CME (Chicago Mercantile Exchange) , for COMEX (Commodity
Exchange, Inc.) gold futures with trading symbol GC on the COMEX and for light crude oil futures
with trading symbol CL on the NYMEX (New York Mercantile Exchange) . These intraday prices are
from TickData at a 15-min frequency.6 We will use the trading symbol of each futures price to denote
them for the remainder of this paper.

The first measure of interest is the daily realized variance of these three futures. Using the same
steps as above, we compute daily RV using the 15-min continuously-compounded returns. We again
adjust for possible intraday autocorrelations using the Bartlett scheme. A 15-min grid was chosen to
minimize any effect coming from microstructure noise. This yields 2050 observations of daily RV for
each of the three futures.

Our next measure of interest is daily realized correlations, RCorr, for the three futures contracts.
Using the cross-product of intraday returns at the same 15-min frequency, we first construct a daily
realized covariance between security i and j, denoted by RCovi,j,t, as follows:

RCovi,j,t =
L

∑
l=1

ri;,t,lrj;,t,l . (4)

Then, the daily realized correlation between security i and j is constructed in the usual manner:

RCorri,j,t =
RCovi,j,t√
RVi,tRVj,t

. (5)

Lastly, for the ease of estimation, we will work with transformations of these realized
measures. It is well-known that the log of realized variance closely follows a normal distribution
(Andersen et al. 2001). Similarly, the Fisher transformation of realized correlations also closely
follows a normal distribution. Therefore, we will work with the following set of variables in the
estimation section:

log RVi,t = log(RVi,t) (6)

FisRCorri,j,t = 0.5 log(
1 + RCorri,j,t

1− RCorri,j,t
) (7)

6 The COMEX gold futures (GC) intra-day prices are missing for June 2011 in the raw data. We have thus disregarded this
period in the empirical analysis of the paper.
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Three time series of daily realized correlations between futures pairs are plotted in Figure 1.
The plots illustrate the fact that these daily realized correlations are highly time-varying and nowhere
close to being constant, thus making the effort to model and predict them worthwhile. To verify
the validity of our normality assumptions, Table 1 reports descriptive statistics for logRV and Fis
RCorr. Without loss of generality, we can safely make an assumption that these variables are normally
distributed as evidenced by skewness and kurtosis values in the last two columns. Figure 2 also
provides QQ-plots for FisRCorr, which again verifies that the normality assumption is not too strong
for these transformed variables.
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Figure 1. Daily realized correlations for three futures contracts, April 2007–February 2015. Plots are the
daily realized correlation measures for three futures contracts labelled as SP, GC and CL. These daily series
are computed using a 15-min grid of changes in log futures prices from TickData beginning 2 April 2007 and ending
17 February 2015.

Table 1. Summary statistics for realized measures.

Symbol Mean Variance Skewness Kurtosis

Panel A: Summary Statistics for Realized Variances

Monthly Frequency, Sample Period 1885–2013

logRV (S&P) −6.5229 0.9012 0.7168 4.1608
RV (S&P) 0.0026 2.45E-05 6.2809 54.4785

Daily Frequency, Sample Period April 2007–February 2015

logRV (SP) −10.3408 1.7155 0.3836 3.8697
logRV (GC ) −10.6170 1.4464 0.2023 3.3387
logRV (CL ) −9.1946 1.4406 0.2025 3.3763
RV (SP) 9.34E-05 7.91E-08 9.2736 118.6787
RV (GC) 5.51E-05 2.03E-08 14.8284 325.9368
RV (CL) 2.23E-04 1.86E-07 6.0766 57.7090
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Table 1. Cont.

Symbol Mean Variance Skewness Kurtosis

Panel B: Summary Statistics of Realized Correlations

Daily Frequency, Sample Period April 2007–February 2015

FisRCorr (SP, GC) 0.1806 0.1656 −0.0773 2.6457
FisRCorr (SP, CL) 0.3398 0.1438 −0.2480 2.9505
FisRCorr (GC, CL) 0.3338 0.1288 −0.0292 2.8818
RCorr (SP, GC) 0.1570 0.1255 −0.2723 2.2468
RCorr (SP, CL) 0.2952 0.1011 −0.6201 2.8742
RCorr (GC, CL) 0.2912 0.0904 −0.4602 2.6393

Notes: This table provides summary statistics of realized measures constructed from high-frequency data.
The top panel shows the descriptive statistics of realized variance measures, and the bottom panel shows
the descriptive statistics of realized correlation measures. We compute monthly realized variance (RV) of the
S&P index using the daily returns data from 1885–2013. Daily realized variances and correlations for three
futures contracts written on the S&P500 index, gold and light crude oil are computed using the 15-min grid of
changes in log futures prices from TickData beginning 2 April 2007 and ending 17 February 2015. We use
symbols SP, GC and CL to denote the S&P500 index, gold and light crude oil futures, respectively. We apply
the kernel adjustment of Hansen and Lunde (2006).
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Figure 2. QQ-plot of FisRCorr (Fisher-transformed Realized Correlation), April 2007–February 2015.
QQ-plots of Fisher transformed daily realized correlation measures for three futures contracts labelled
as SP, GC and CL. These daily series are computed using a 15-min grid of changes in log futures prices
from TickData beginning 2 April 2007 and ending 17 February 2015.

3. Model

Following Maheu and Gordon (2008) and Maheu and McCurdy (2009), a key ingredient of our
modelling approach is submodels that correspond to different data histories. In this section, we
describe how submodels are defined for our application and discuss how we estimate them.
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3.1. Submodels

As shown in the previous section, it seems reasonable to assume that the unconditional
distributions of logRV and FisRCorr are Gaussian. Henceforth, we assume that the dataset of interest,
denoted by xt from here on, follows a Gaussian distribution.

Suppose that one has a specific model in mind that she/he believes to describe xt. In order to
make a forecast for next period t at time t−1, one needs to decide how much data history to use to
calibrate the model parameters. Intuitively, it sounds reasonable to use the entire dataset available at
time t−1. In other words, one can use all observed data points {x1, . . . , xt−1}. However, one can also
question whether information contained in early parts of the sample are useful, and sometimes even
harmful, for forecasts. For example, the underling data-generating process may not be stable over
time, but rather may experience frequent model changes with respect to its parameters. In this case,
including the old observations will introduce a bias. Therefore, wisely choosing the optimal window of
data history becomes a critical issue when there are possible frequent model changes throughout time.

This motivates us to define submodels indexed by the starting point of a data history for
calibration. Let θ denote the set of parameters of the specific model we would like to estimate.
The notation Mτ denotes a submodel that uses data history starting from τ to the time t−1. Hence,
at time t−1, M1 denotes a submodel that uses the entire data history {x1, . . . , xt−1}; M2 denotes a
submodel that disregards the first observation and uses {x2, . . . , xt−1}; and Mτ denotes a submodel
that uses {xτ , . . . , xt−1}. Each submodel represents a possible model change in the underlying data
generating process. When a model change in the underlying data-generating process occurs, data
prior to the change can introduce a bias to the estimation if included. Therefore, it becomes more
informative to use a partial dataset starting from the date of the model change.

Obviously, we cannot identify exactly where the model change occurs. We can only infer the
probability of each model being the right one based on its predictive content. This is the key intuition
of our approach, which we discuss in the next subsection.

3.2. Combining Submodels

In this subsection, we discuss how to combine and estimate the probabilities associated with each
submodel. As submodel probabilities are chosen to maximize the predictive density at each time t, we
will follow a recursive procedure to update probabilities as time progresses.

For convenience, we first introduce the following notation for the information set generated by
observations between time periods a and b:

Ωa,b ≡
{
I{xa, . . . , xb} if a ≤ b

{∅} if a > b.
(8)

Using this notation, we write the predictive density of xt at time t− 1 given the parameter vector
θ under the submodel Mτ as p(xt|Ωτ,t−1, θ, Mτ). Recall that the submodel Mτ assumes that any data
prior to time τ contain no signal. Therefore, conditioning on the submodel Mτ effectively becomes
using the information set Ωτ,t−1 to build the predictive density.

To compute the predictive density associated with xt under the submodel Mτ , we need to integrate
out the uncertainty associated with the parameter vector θ as below:

p(xt|Ωτ,t−1, Mτ) =
∫

p(xt|Ωτ,t−1, θ, Mτ)p(θ|Ωτ,t−1, Mτ)dθ. (9)

We will discuss how to implement the first term inside the above integral in the next section.
Meanwhile, the second term inside the above integral is effectively the posterior distribution of the
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parameter vector under the submodel Mτ . Following the usual Bayes’ rule with the notation p(θ|Mτ)

to denote the prior distribution of the parameter vector associated with the submodel Mτ , we have:

p(θ|Ωτ,t−1, Mτ) ∝

{
p(xτ , . . . , xt−1|θ, Mτ)p(θ|Mτ) if τ < t

p(θ|Mτ) if τ = t
(10)

That is, if τ is less than t, we only use the data starting from time τ up to t− 1 to update our belief
on the parameter vector. If τ is equal to t, then we have no information to rely on to update our belief,
and thus, the posterior is equal to the prior.

Having established the predictive density associated with each submodel, we now turn to discuss
how to combine the submodels recursively over time and how to estimate the submodel probabilities.
Recall that our intuition builds upon the assumption that there is a chance at each time t that past data
become uninformative. In order to rigorously model this intuition, we introduce the process λt to
describe the probability of past data becoming uninformative at each time t. In other words, at each
time t, there is λt probability that the data prior to time t are no longer useful and will only distort the
prediction. As we discussed earlier, this can be due to many reasons including the model changes in
the underlying data generating process.

To introduce the idea, we first limit our discussion to the case where λt is deterministic and
known. In the next section, we will extend to the case where λt is stochastic and also needs to be
estimated. For convenience, we use the notation Λt = {λ2, . . . , λt} to refer to the set of probabilities
λt up to time t. Note that since model change at Time 1 does not mean anything, we let Λ1 be the
empty set.

Let us begin from time t = 0. At this point, we do not have any observations so the predictive
density of x1 is simply its normally distributed prior belief p(x1|Ω0,0, M1). We will discuss below how
hyperparameters are set for the prior belief. Now, at time t = 1, we have one observation x1. We have
two cases to consider now. That is, past data can either be useful or become uninformative at Time 2,
which will happen with probability λ2. This allows us to write the predictive density of x2:

p(x2|Ω1, Λ2) = p(x2|Ω1,1, M1)p(M1|Ω1, Λ1)(1− λ2) + p(x2|Ω2,1, M2)λ2. (11)

The first term on the right-hand side of the above equation is the product of the predictive density
assuming that all available data are useful, times the probability of all data being still useful at Time 2.
The second term is simply the predictive density given that past data have become uninformative
at Time 2, times its probability of occurrence. In this latter case, the conditional predictive density is
simply the prior distribution. Note that p(M1|Ω1, Λ1) denotes the submodel probability associated
with the submodel M1 at Time 1. Since there is only one submodel at Time 1, M1, this term is simply
equal to one.

Once we observe x2, we can update the submodel probabilities at time t = 2 using the above
equation. Note that the above equation can be also interpreted as a decomposition of the predictive
density into two terms, one conditional on the submodel M1 and the other conditional on the submodel
M2. Therefore, by dividing both sides of the equation with the left-hand side, we obtain the submodel
probabilities for submodels M1 and M2 at Time 2:

p(M1|Ω2, Λ2) =
p(x2|Ω1,1, M1)p(M1|Ω1, Λ1)(1− λ2)

p(x2|Ω1, Λ2)
; (12)

p(M2|Ω2, Λ2) =
p(x2|Ω2,1, M2)λ2

p(x2|Ω1, Λ2)
. (13)



Econometrics 2017, 5, 54 9 of 29

Now, to illustrate how the recursive updating works, consider time t = 3. Again, the past data
become uninformative with the probability λ3. Using the same intuition as in Equation (11), we can
write the predictive density of x3 as below:

p(x3|Ω2, Λ3) = [p(x3|Ω1,2M1)p(M1|Ω2, Λ2) + p(x3|Ω2,2, M2)p(M2|Ω2, Λ2)](1− λ3) (14)

+ p(x3|Ω3,2, M3)λ3.

This equation has exactly the same interpretation as the previous one, the first term being the
product of the predictive density of x3, given that some data prior to time t = 3 are useful, and its
probability. Similarly, the second term is the predictive density of x3, given that past data become
uninformative at time t = 3, times its probability of occurrence. Once we observe x3, we can update
the submodel probabilities for submodels M1, M2 and M3 in the same fashion as in the previous case.
Updated submodel probabilities at time t = 3 are then given by:

p(M1|Ω3, Λ3) =
p(x3|Ω1,2M1)p(M1|Ω2, Λ2)(1− λ3)

p(x3|Ω2, Λ3)
; (15)

p(M2|Ω3, Λ3) =
p(x3|Ω2,2, M2)p(M2|Ω2, Λ2)(1− λ3)

p(x3|Ω2, Λ3
; (16)

p(M3|Ω3, Λ3) =
p(x3|Ω3,2, M3)λ3

p(x3|Ω2, Λ3)
. (17)

Using the same method, submodel probabilities of following time periods can be computed
recursively. The intuition behind this Bayesian updating of submodel probabilities is to allocate the
highest probability to the submodel that gives the highest predictive power to the realized observation.
Hence, if the newly-observed data point favours a specific submodel, the Bayesian updating procedure
will allocate the highest probability to that specific submodel.

In general, the general predictive density at time t is written as:

p(xt|Ωt−1, Λt) = [
t−1

∑
τ=1

p(xt|Ωτ,t−1, Mτ)p(Mτ |Ωt−1, Λt−1)](1− λt) (18)

+ p(xt|Ωτ,t−1, Mt)λt.

Notice that elements inside the summation of the right-hand side require predictive densities
from the past submodels. Thus, the equation needs to be computed recursively. Its decomposition has
exactly the same intuition as before. General formulae for the submodel probabilities follow in the
same manner:

p(Mτ |Ωt, Λt) =


p(xt |Ωτ,t−1,Mτ)p(Mτ |Ωt−1,Λt−1)(1−λt)

p(xt |Ωt−1,Λt)
1 ≤ τ < t

p(xt |Ωτ,t−1,Mt)λt
p(xt |Ωt−1,Λt)

τ = t.
(19)

3.3. Model Uncertainty

Given the series of submodels introduced in the previous section, we now need to model the
process that governs model change. At each point of time, there is a certain probability that model
change will occur, thus making past data uninformative. As before, we denote the probability of
model change at time τ as λτ . In other words, each λτ is a probability associated with the Bernoulli
distribution at time τ.

Estimation of λ also follows a Bayesian approach. We assume the prior distribution of λ to be
a beta distribution. The estimation of the posterior distribution of λ is independent of submodel
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estimations, hence being less computationally intensive. Specifically, the posterior distribution of λ at
time t given the information set Ωt−1 is:

p(λ|Ωt−1) ∝ p(λ)
t−1

∏
j=1

p(xj|Ωt−j, λ). (20)

Each predictive likelihood in the product can be computed using Equation (18) discussed in the
previous section. Here, we have used the notation λ = Λj = {λ, . . . , λ} for simplicity.

The only difference in building the predictive likelihood when λ is estimated is that we now need
to integrate out the uncertainty associated with λ in Equation (18). Hence, the new equation for the
predictive likelihood becomes:

p(xt|Ωt−1) =
∫

p(xt|Ωt−1, λ)p(λ|Ωt−1)dλ; (21)

where the integral can be computed by a Monte Carlo sampling from the posterior distribution of λ

derived in Equation (20). Details of the estimation procedure are discussed in Appendix A.

3.4. Forecasts

We would like to emphasize that the modelling framework allows one to model the entire
unconditional distribution. Therefore, we can make forecasts on any quantities of interest, not limited
to the first two moments. We briefly discuss how the forecasts can be computed in this subsection.

Let g denote any function of the underlying process xt. We are interested in computing its expected
value E[g(xt+1)|Ωt]. To compute this expectation, we need to consider all possible submodels up to
time t and also the additional submodel that allows model change to occur at time t + 1. Given the
probability of model change up to time t + 1, Λt+1, we can decompose the expectation as follows:

E[g(xt+1)|Ωt, Λt+1] =

[ t

∑
τ=1

E[g(xt+1)|Ωτ,t, Mτ ]p(Mτ |Ωt, Λt)

]
(1− λt+1)

+ E[g(xt+1)|Ωt+1,t, Mt+1]λt+1. (22)

Each of the expectations need to be computed in the same MCMC manner as we discussed in
the previous section. Then, each of the expectations are aggregated where the weights are given by
posterior submodel probabilities computed using Equation (19).

Computation of the posterior moments of the parameter vector θ is done in a similar manner, and
the details are discussed in Appendix B.

4. Results

In this section, we report the forecasting performance of our model and compare it to the
benchmark models. First, we use Mincer –Zarnowitz regressions from Mincer and Zarnowitz (1969)
to assess each model’s ability to forecast the first moment of the realized variances and correlations.
We also conduct brief likelihood comparisons to assess the distributions of these realized variances and
correlations. Then, we take a deeper look at other measures that speak to why our model is superior to
the benchmark models. Overall, all results strongly support using time-varying weights as opposed to
the benchmark special cases.

4.1. Model Comparisons

Recall that our model is designed in part to capture the optimal window of data history for model
estimation. Therefore, benchmark models to compare can be those using fixed windows of data history.
Without any possible model changes, statistical analysis suggests using all data available to improve
the precision of the parameter estimation. On the other hand, it has been common practice in industry
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to use only a fixed number of recent observations for estimation; perhaps due to the same intuition
about model change that we have discussed for our case of forecasting variances and correlations.
That is, old data histories can be misleading when there are model changes and can introduce bias to
forecasts. Therefore, following the commonly-used practitioner’s approach, our second benchmark is
to use a 60-period rolling window.

For ease of notation, we denote by M1 the benchmark model using the entire available data
history weighted equally. Subscript 1 references that data begin from Time Period 1. Similarly, we
denote by Mt−60 the alternative benchmark model, which following popular practitioner’s practice,
uses the most recent 60 observations. Lastly, we use the notation M∗ to denote our model that uses the
time-varying weights of different submodels at each time.

Our approach is designed to forecast the entire unconditional distribution rather than focusing
on specific moments of the distribution. Nevertheless, to compare how each model performs with
respect to forecasting the first moment of our variables of interest (realized variances and realized
correlations), we use the conventional Mincer–Zarnowitz regressions to assess forecast bias and the
efficiency of each model. The Mincer–Zarnowitz regression is designed to assess a model’s ability to fit
the observed data point. Therefore, it only focuses on the model’s ability to forecast the first moment
of the data. Although the first moment may be the most interesting one to forecast, higher moments of
the distributions will also matter depending on the application. As discussed further below, we also
use tests for the fit of the entire distribution.

The following MZ regressions are used for each model to estimate the slope and intercept
coefficients, as well as the proportion of the variability in the target that is explained by the forecasts
(the R2 of the regression). For model M1 and Mt−60, the forecast is simply the sample average
of the data history used, that is Et−1[logRVi;t|Ωt−1, M1] and Et−1[logRVi;t|Ωt−1, Mt−60], respectively.
For model M∗, the forecast is computed using historical data with time-varying weights on each
submodel following the approach described in the previous section. The detailed implementation is
discussed in Appendix B (Equation (A.9)).

logRVi;t = a + b× Et−1[logRVi;t|Ωt−1, M1] + ut

logRVi;t = a + b× Et−1[logRVi;t|Ωt−1, Mt−60] + ut

logRVi;t = a + b× Et−1[logRVi;t|Ωt−1, M∗] + ut

Analogous regressions are also run for FisRCorr.
The top panel of Table 2 summarizes the results using monthly logRV from 1885–2013. The last

column is a robustness check for the initial prior on λ, which is set to a much higher level to check
whether the result is driven by the initial choice of the prior on the λ process. The intercept and slope
coefficients estimate the bias of the forecasting model. Having an intercept equal to zero and slope
equal to one corresponds to unbiased forecasts. Thus, we assess each model by comparing how close
the intercept and slope coefficients are to zero and one, respectively. Moreover, the R2 metric is used to
assess the efficiency of model fit.

Table 2. Forecast regression results for logRV.

Expanding Window Constant Window Time-Varying Weights
(M1) (Mt−60) (M∗)

Panel A: Monthly Frequency, Sample Period 1885–2013

Intercept −4.6094 −1.9388 −0.2893
(−3.50) *** (−7.11) *** (−1.25)

Slope 0.2906 0.7014 0.9574
(−3.55) *** (−7.19) *** (−1.21)

R2 0.14% 16.14% 33.21%
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Table 2. Cont.

Expanding Window Constant Window Time-Varying Weights
(M1) (Mt−60) (M∗)

Panel B: Daily Frequency, Sample Period April 2007–February 2015

logRV (SP)

Intercept −3.5967 −1.1799 −0.5597
(−4.14) *** (−4.69) *** (−2.46) **

Slope 0.6682 0.8855 0.9482
(−4.11) *** (−4.73) *** (−2.36) **

R2 3.34% 40.21% 48.44%

logRV (GC)

Intercept 3.9854 −1.2219 −0.6585
(2.68) *** (−3.43) *** (−1.83) *

Slope 1.4097 0.8856 0.9426
(2.86) *** (−3.41) *** (−1.69) *

R2 4.64% 25.99% 27.85%

logRV (CL)

Intercept 6.4257 −0.4784 −0.0078
(6.83) *** (−2.27) ** (−0.04)

Slope 1.7750 0.9466 1.0012
(7.25) *** (−2.34) ** (0.05)

R2 12.18% 46.50% 49.14%

Notes: Mincer–Zarnowitz regressions of realized logRV on forecasts from each model are reported. The top
panel reports the regression result for monthly logRV of the S&P500 index. The bottom panel reports
the regression results for daily logRV of three futures contracts written on the S&P index, gold and light
crude oil. We use symbols SP, GC and CL to denote the S&P500 index, gold and light crude oil futures,
respectively. t-statistics for the intercept being different than 0 and the slope being different than 1 are
reported in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% confidence
levels, respectively. R2 associated with these forecast regressions indicates the proportion of variability in the
out-of-sample realized variable that is predicted by the forecasts.

Note first that the performance of model M1 is very disappointing. It only generates R2 of 0.14%
with heavily biased coefficients. It was somewhat expected as we anticipate frequent model changes
for the monthly RV process as discussed in Section 2. Once we use the most recent 60 time periods, or
five years of observation, as in the forecasting model Mt−60, the performance increases significantly, in
that the R2 is much higher (16.14%) and the forecasts are much less biased.

Figure 3 graphically illustrates these results by plotting the target logRV against model predictions.
We see that using the entire data sample weighted equally as in the M1 model generates forecasts that
are too smooth, being unable to capture the frequently-occurring model changes of the logRV process.
In contrast, taking the recent five years of observations allows forecasts to respond to the model
changes in a better fashion. However, this Mt−60 model still lacks the ability to react fast enough.

Now, we turn our attention to the our model M∗ that uses data histories associated with submodels
each period. Improvement in the forecasting performance is quite noticeable with respect to both the
bias and efficiency metrics. The R2, that is the proportion of variability in out-of-sample RV explained
by forecasts using the M∗ model, increases to 33.21%, which is more than double that of the Mt−60

model, and the forecasts are much less biased than those for the other two models as indicated by the
intercept and slope coefficients.

Figure 3 illustrates these differences graphically. We see that the model M∗ is able to react faster
to capture possible model change. Note again that all three models we compare are the same model
in the statistical sense. They only differ in the data sample we use to estimate the parameters; thus,
the difference in the performance should solely come from the difference in data samples used to
estimate the parameters and generate the forecasts. Our results, even for the first moment of the
monthly realized variance forecasts, illustrate the improvements originating from being able to select
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time-varying weights of different data histories at each point in time. That is, choosing a fixed-length
moving window generates additional bias and forecasts that track our target less efficiently. Overall,
this result confirms the importance of using the time-varying weights when making forecasts. We will
discuss this in more detail in the next subsection.
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Figure 3. Monthly S&P logRV Forecasts, 1885–2013. In each plot, the forecasts for monthly logRV
from two alternative models are compared to realized logRV for the period 1885–2013. The top plot
compares how well the equally-weighted expanding-window forecasts track the one-month-ahead
realized logRV as compared to the forecasts from the equally-weighted moving-average model, which
uses the past five years of observations. The middle plot compares the M∗ model’s (time-varying
weights) forecasts to the one-month-ahead realized logRV. The bottom plot is the same as the middle
plot, except that we use a higher prior for lambda, the probability of model change.

In the bottom panel of Table 2, we report the same analyses performed for forecasts of daily
logRV from April 2007–February 2015 for three futures. The daily futures RV were constructed from
15-min intraday futures prices as discussed in Section 2 above. For all three SP, GC and CL futures, the
model M1 performs poorly as before, while the model Mt−60 does a much better job. The model M∗
still remains dominant, particularly providing much less biased forecasts. However, a less dramatic
increase in R2 is observed when compared to the model Mt−60, perhaps indicating that 60 days is close
to the best fixed window-length to use for daily realized variance data. It is not too surprising since
60 days has been found to be a good ad hoc number to use by many practitioners. Figures similar to
Figure 3 for daily forecasts of three Futures’ logRV exhibit similar findings and are omitted for brevity.
More or less, we see the same pattern as for monthly data that the model M∗ is the best at reacting to
model changes in the underlying data.

Next, we perform the same analyses of the Fisher transformed daily realized correlations for
the three futures. Table 3 reports results using the same period of data from April 2007–February
2015 as for the realized variances. Again, the same broad conclusions can be drawn from the realized
correlations forecasts. However, improvements in both the bias and the R2 associated with the M∗
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model are more pronounced. In particular, the estimated intercept and slope coefficients are such that
forecasts are strikingly close to being unbiased. In addition, the M∗ model forecasts provide a much
better fit in general compared to those for the log of realized variance. It is likely the case that the
realized correlations exhibit more variation in the length between the occurrence of model changes.
In that case, our model using the time-varying weights is better suited for capturing the realized
correlation than the realized variance.

Table 3. Forecast regression results for FisRCorr.

Expanding Window Constant Window Time-Varying Weights Time-Varying Weights
(M1) (Mt−60) (M∗) (Higher λ Prior)

FisRCorr (SP, GC)
Intercept 0.0865 0.0274 −0.0125 −0.0125

(2.50) ** (2.77) *** (−1.37) (−1.38)
Slope 0.4787 0.8247 1.0121 1.0169

(−3.06) *** (−5.53) *** (0.41) (0.58)
R2 0.40% 25.83% 38.15% 38.50%

FisRCorr (SP, CL)
Intercept 0.1726 0.0414 −0.0076 −0.0146

(8.26) *** (3.63) *** (−0.67) (−1.30)
Slope 0.6240 0.8844 1.0006 1.0180

(−5.26) *** (−4.28) *** (0.02) (0.68)
R2 3.77% 35.49% 42.26% 43.55%

FisRCorr (GC, CL)
Intercept −0.5591 0.0585 −0.0118 −0.0168

(−5.98) *** (4.03) *** (−0.85) (−1.21)
Slope 2.2142 0.8092 0.9963 1.0215

(5.26) *** (−5.17) *** (−0.11) (0.61)
R2 4.51% 19.79% 29.21% 30.16%

Notes: Mincer–Zarnowitz regressions of daily realized FisRCorr on forecasts from each model are reported.
We use symbols SP, GC and CL to denote S&P500 index, gold and light crude oil futures, respectively.
t-statistics for the intercept being different than 0 and the slope being different than 1 are reported in
parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% confidence levels, respectively.
R2 associated with these forecast regressions indicates the proportion of variability in the out-of-sample
realized variable that is predicted by the forecasts.

Figure 4 again illustrates the differences between the forecasted values and realized values for
correlation between SP and GC futures. The other two cases are omitted for brevity where the same
conclusions hold in all cases.

So far, we have been focusing on assessing each model’s ability to forecast the first moment of
the underlying process. We now turn our attention to the statistical measure that can assess higher
moments, as well, that is the distributions of log(RV)and FisRCorr. Given the normality assumption
of the underlying process, the marginal predictive likelihood at each point of time only requires the
forecasts of mean and variance of xt. For the case of model M∗, we compute the forecasts of mean and
variance using Equation (A.9), while the sample mean and sample variance of the corresponding data
history are used for the benchmark models. Then, the sum of log marginal predictive likelihood is
computed by the expression below.

log(ML) = ∑
t

log(p(xt|Ωt−1)) (23)

Table 4 summarizes these results. Cases with higher prior values on λ are again included to make
sure our approach is robust to the initial choice of λ. The results again heavily favour the model M∗
over the two benchmark models. A dramatic increase in the log-likelihood is observed for all the
datasets. The results here are not directly comparable to the MZ regression results discussed above,
but they indicate that M∗ model has superior forecasts of the distributions of realized variance and
correlation relative to the benchmark models. Using a Bayes factor criterion for comparison of the
log(ML) across models indicates very strong or decisive evidence in favour of the M∗ model.
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Overall, all of the above statistical tests heavily support the model M∗ over the other two models.
Again, the differences are purely coming from the fact that each model uses different data histories,
thus highlighting the importance of having a flexible framework to capture model changes in the
underlying data.
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Figure 4. Daily FisRCorr (SP, GC) forecasts, April 2007–February 2015. In each plot, the forecasts for
daily FisRCorr (SP, GC) from two alternative models are compared to realized FisRCorr (SP, GC) for
the period 2 April 2007–17 February 2015. The top plot compares how well the equally-weighted
expanding-window forecasts track the one-day-ahead realized FisRCorr (SP, GC) as compared to
the forecasts from the equally-weighted moving-average model, which uses the past 60 days of
observations. The bottom plot compares the M∗ model’s (time-varying weights) forecasts to the
one-day-ahead realized FisRCorr (SP, GC).

Table 4. Log-likelihoods for alternative forecast models.

Expanding Window Constant Window Time-Varying Weights Time-Varying Weights
(M1) (Mt−60) (M∗) (Higher λ Prior)

Panel A: Monthly Frequency, Sample Period 1885–2013

log(ML): logRV (S&P) −2043.01 −1929.67 −1742.83 −1714.76

Panel B: Daily Frequency, Sample Period April 2007–February 2015

log(ML): FisRCorr (SP, GC) −1023.83 −703.28 −542.52 −514.54
log(ML): FisRCorr (SP, CL) −892.03 −411.52 −345.85 −311.43
log(ML): FisRCorr (GC, CL) −776.67 −528.84 −418.49 −400.80

Notes: This table reports the sum of the log-likelihoods over the sample periods (log(ML)) for the monthly
and daily forecasts. We use Equation (23) to compute log(ML). The top panel reports the log(ML) for monthly
logRV of the S&P index. The bottom panel reports log(ML) for daily FisRCorr between three futures contracts.
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4.2. Submodel Probability Distributions

The submodel probability distribution at each point in time indicates how much weight the model
M∗ allocates to each of the submodels available at that time; that is, for all of the submodels from
the start of the sample to the current time. Although all available submodels are considered, the
peak of the submodel distribution at each point of time identifies the submodel that receives the most
weight from the perspective of maximizing the M∗ model’s predictive content at that time. Optimal
submodel weights are estimated for each period, and new submodels are added as we move through
time. The top panel of Figure 5 provides a 3D plot of how the submodel probability distribution
varies over time for the M∗ model’s predictive density for monthly logRV from 1885–2013. The y-axis
represents the index of each submodel Mτ , that is the time τ that a submodel was introduced; the
x-axis represents each time period; and the vertical axis represents the probability associated with
submodel Mτ at each time t. If the submodel distribution has a high peak, it means that most of the
submodel probability weight is concentrated on that specific submodel, that is very few submodels,
perhaps only one, have meaningful contributions to the model M∗. In contrast, a lower peak and wider
spread over the y-axis means that there are many submodels that contribute to the model M∗ forecasts.
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Figure 5. Submodel probabilities over time: monthly logRV. The top panel shows the 3D-plot of the
submodel probabilities over time with a new submodel being introduced every 12 months. The bottom
panel plots are submodel probabilities over time associated with specific submodels for monthly
logRV forecasts.

The bottom panel of Figure 5 is a 2D-plot representing the time-varying weight associated with
some specific submodels over time. In other words, it is a slice from the plot in the top panel of Figure 5
when we fix the y-axis to be the specific submodel introduced at that time. The solid line represents the
submodel probabilities associated with the submodel starting from year 1886. We observe that it has
a weight almost equal to one at the beginning, then loses its weight significantly and rather quickly.
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The other three dotted lines represent the submodels starting from 1926, 1976 and 2006, respectively,
from left to right. These submodels get less weight over time, perhaps due to the changes in the
fundamentals of the data-generating process. In particular, the submodel starting from 2006 has very
little weight, and its contribution disappears almost immediately. This is in line with the fact that the
financial crisis of 2008 made the past data almost useless as the realized variance shoots up during the
crisis periods. Thus, it again confirms the ability of our model to learn in real time by assigning very
little probability weight to submodels that provide no predictive content.

4.3. Time-Varying Window Length

Given the results in the previous section, we now turn to a the deeper analysis of why the model
M∗ performs so well. In order to do so, we introduce the measure that we call time-varying window
length (W∗), designed to suggest a length of data history to be used at each time period. Loosely
speaking, we can think that the model Mt−60 corresponds to the case where W∗ is equal to 60 in all
time periods.

To construct W∗, recall from Equation (19) that we have the posterior submodel probabilities for
each submodel Mτ . Since each submodel Mτ corresponds to the model using the data window of
length t + 1− τ, we can compute the average length of the data window at time t by averaging these
by the submodel probabilities. Thus, we define W∗ at time t as follows:

W∗t =
t

∑
τ=1

(t + 1− τ)p(Mτ |Ωt). (24)

For example, consider the following artificial case. Suppose that t = 3 and the submodel
probabilities are calibrated to be p(M1|Ωt) = 0.2, p(M2|Ωt) = 0.6 and p(M3|Ωt) = 0.2. In this case,
using the above formula, we have W∗t = 2. Note that the model M∗ in this case not only uses the
submodel M2, but also uses the submodels M1 and M3 with lower probability weights. However, since
the highest weight is placed on the submodel M2, the W∗t measure turns out to be two to represent that
the average length of the data history is two at that point in time. Therefore, W∗t , at each t, provides a
convenient measure of a time-varying window length.

Table 5 summarizes the descriptive statistics of the W∗ measures over the sample period. We see
that the mean W∗ for monthly logRV is around 24, being much smaller than 60. Meanwhile, the mean
W∗ for daily FisRCorr data are closer to 60 days for the (SP, GC) and (SP, CL) pairs and a bit larger than
60 days for the (GC, CL) pair. This provides an explanation as to the difference in performance for
each dataset we observed using MZ regressions. If the mean W∗ is close to 60, the model Mt−60 will
perform much better relative to the M∗ model than the case for which the mean W∗ is far from 60, as
in the case of monthly logRV.

Table 5. Summary statistics for time-varying window length.

Symbol Mean Std. Dev. Skewness Kurtosis

Panel A: Monthly Frequency, Sample Period 1885–2013

logRV (S&P) 23.60 10.98 0.907 3.797

Panel B: Daily Frequency, Sample Period April 2007–February 2015

FisRCorr (SP, GC) 68.47 54.46 1.489 4.757
FisRCorr (SP, CL) 66.60 36.75 0.741 3.101
FisRCorr (GC, CL) 87.69 55.88 1.176 4.599

Notes: We report the descriptive statistics of time-varying window length for monthly logRV of the S&P
index and daily FisRCorr between three futures contracts. Time-varying window length is computed using
Equation (24).
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Table 6 provides two analyses of the characteristics of the underlying data that influence the mean
W∗. To have a valid comparison, we only present the results for FisRCorr as they have equal sample
periods. We first observe that FisRCorr (GC, CL) has the smallest standard deviation of the three series
and exhibits the longest length for the mean W∗ measure. Moreover, the levels of persistence, as
measured by the first two autocorrelation coefficients, show that the less persistent time series have a
longer mean window length. This is particularly pronounced for FisRCorr (GC, CL).

Table 6. Characteristics of the underlying data for time-varying window length.

Panel A: Cross-Sectional Characteristics

W∗ Characteristics of Correlation Time-Series
Symbol Mean Standard Deviation AR(1) Coefficient AR(2) Coefficient

Daily Frequency, Sample Period April 2007–February 2015
FisRCorr (SP, GC) 68.47 0.4069 0.5570 0.5200
FisRCorr (SP, CL) 66.60 0.3792 0.5690 0.5372
FisRCorr (GC, CL) 87.69 0.3589 0.4202 0.3964

Panel B: Time-Series Regression on VIX

Symbol Intercept VIX R2 N

Daily Frequency, Sample Period April 2007–February 2015
FisRCorr (SP, GC) 110.8256 −1.9169 13.25% 1949

(40.86) *** (−17.24) ***
FisRCorr (SP, CL) 88.6728 −0.9988 7.90% 1949

(47.02) *** (−12.92) ***
FisRCorr (GC, CL) 146.98 −2.6829 24.64% 1949

(56.66) *** (−25.23) ***

Notes: In Panel A, we report the characteristics of the underlying data, as well as mean time-varying window
length for daily FisRCorr between three futures contracts. The time-varying window length is computed
using Equation (24).

W∗t =
t

∑
τ=1

(t + 1− τ)p(Mτ |Ωt)

In Panel B, we report the linear regression result of regressing the W∗ time series on VIX. t-statistics are
reported in parentheses below coefficient estimates. ***, **, and * indicate statistical significance at the 1%, 5%,
and 10% confidence levels, respectively.

W∗t = a + bVIXt + εt

We next examine potential sources of the time series variability of W∗. Our forecasting approach
was designed to capture probabilistic model change, such as regime switches, varying importance of
economic fundamentals, etc., as revealed in the changing data generating process (DGP). We chose
CBOE (Chicago Board Options Exchange) Volatility Index, VIX, as an indicator or representative
variable to proxy the business conditions or economic regime at each point of time. Larger VIX values
are interpreted as bad states, while smaller VIX values are viewed as good states. Panel B of Table 6
reports the results of simple linear regressions to test the relationship between the VIX index and three
W∗ time series of interest. The estimated coefficients associated with the VIX index are all negative and
statistically significant, indicating that high VIX periods are associated with low W∗ values, and vice
versa. This finding suggests that our forecasting approach adjusts the length of data history to be used
at each point of time (time-variation in the W∗ data), at least partly in response to changes in the DGP.

To observe how W∗ varies over time, we plot the time series of W∗ in Figure 6. There is significant
time variation revealed for the W∗ time series for all of our realized variance and correlation datasets.
For the case of realized correlations, W∗ can be as small as a single digit and can be as large as almost
250 days, roughly a year, depending on the time period. Our forecasting approach was designed
to learn about changes in the DGP and update the submodel probabilities accordingly. When the
submodel probabilities change, the time-varying window W∗ measure will change.
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Figure 6. Time-varying window length for monthly logRV and daily FisRCorr. The time-varying window
length (W∗t ) for monthly logRV and for three series of daily FisRCorr are plotted on the Y-axes; units are
in number of months and days, respectively.

4.4. Time-Varying Window Model

Recall that our optimal data-use model, M∗, generates forecasts using information from all of the
submodels, appropriately weighted by their time-varying submodel probabilities that maximize the
forecasting power. That is, M∗ assigns probability weights to the available submodels (data histories)
where each submodel is estimated separately, then the resulting submodel forecast are aggregated
by the submodel probability weights (in combination with the estimated model change probability).
Thus, that approach uses the entire data history available from t = 1, but assigns different weights to
each data history covered by each submodel.

Alternatively, we can truncate the data history, every period, at the point of most mass for the
submodel probability distribution for that period, which we estimate as the time-varying window
length (W∗). Then, we can fix the length of the data window, each period, using this W∗ measure
and compute our forecasts using that data window. In other words, in contrast to M∗, we switch the
order of aggregation in that we aggregate the data histories to the length of the W∗ window first and
then estimate the model and forecast using data corresponding to that window length. Of course, the
length of this window will vary over time as W∗ varies period-by-period. We will write this W∗ model
as MW∗ .

Table 7 reports comparison between these two time-varying data-use models. Interestingly, we
see that R2 of the Mincer–Zarnowitz regression is higher using the MW∗ model in almost all datasets,
but at the same time, as indicated by the intercept and slope coefficients, the forecasts are more biased
than the M∗ forecasts, but still significantly less biased than in the two benchmark models.
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Table 7. Time-varying weights versus time-varying window results.

Time-Varying Weights Time-Varying Window
(M∗) (MW∗ )

Panel A: Monthly Frequency, Sample Period 1885–2013

logRV (S&P)

Intercept −0.2893 −0.7724
(−1.25) (−4.11) ***

Slope 0.9574 0.8835
(−1.21) (−4.06) ***

R2 33.21% 39.00%
log(ML ) −1714.76 −1778.72

Panel B: Daily Frequency, Sample Period April 2007–February 2015

FisRCorr (SP, GC)

Intercept −0.0125 −0.0027
(−1.37) (−0.31)

Slope 1.0121 0.9507
(0.41) (−1.91) *

R2 38.15% 41.17%
log(ML) −514.54 −524.53

FisRCorr (SP, CL)

Intercept −0.0076 0.0056
(−0.67) (0.53)

Slope 1.0006 0.9634
(0.02) (−1.53)

R2 42.26% 45.38%
log(ML) −311.43 −298.23

FisRCorr (GC, CL)

Intercept −0.0118 0.0143
(−0.85) (1.11)

Slope 0.9963 0.9263
(−0.11) (−2.34) **

R2 29.21% 30.16%
log(ML) −400.80 −404.22

Notes: Mincer–Zarnowitz regressions of monthly logRV of the S&P index and daily FisRCorr of three futures
contracts on forecasts from two time-varying models are reported. t-statistics for the intercept being different
than 0 and the slope being different than 1 are reported in parentheses. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% confidence levels, respectively. R2 associated with the Mincer–Zarnowitz
regressions indicates the proportion of variability in the out-of-sample realized variable that is predicted by
the forecasts.

The only difference between the forecasts associated with model MW∗ and the forecasts from the
benchmark models, M1 and Mt−60, is the length of the data window. The fact that the MW∗ forecasts
are better than the benchmark model with respect to both bias and R2 (that is, the proportion of the
variation in the target explained by the forecast) confirms that it uses the better length of data window,
period-by-period, that drives the superior performance of our approach.

Note that when we compare the log-likelihoods across the two models in Table 7, the time-varying
weights model M∗ forecasts the distributions slightly better than the time-varying window model MW∗ .
This is not surprising given that the M∗ model updates all submodel probabilities period-by-period
based on their predictive content and uses those optimal weights to compute out-of-sample forecasts;
whereas the MW∗ model first finds the submodel (data history) that has the most predictive content
and then fixes the forecast estimation window at that value for that period.

It is clear from comparing the log-likelihood results reported in Table 7 to those for the benchmark
models reported in Columns 2 and 3 of Table 4, as well as from the Mincer–Zarnowitz forecast
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regression results presented in earlier tables and figures, the forecasts from both the time-varying
weights model M∗ and the time-varying window model MW∗ are far superior to the conventional
benchmark forecasts.

5. Robustness

5.1. Model Comparison with Alternative Metrics

This subsection revisits the model comparisons using alternative metrics. Recall that we have
used two metrics, coefficients and R2 from forecast regressions, to compare alternative models. We now
compare our models using two additional metrics, mean absolute error (MAE) and sum of squared
errors (SSE), both from the same Mincer–Zarnowitz forecast evaluation regressions. Two quantities are
defined below in which we use the estimated coefficients â and b̂ discussed in Section 4:

MAEi|M =
1
T

T

∑
t=1
|logRVi,t − â− b̂Et−1[logRVi,t|Ωt−1, M]| (25)

average SSEi|M =
1
T

T

∑
t=1

(logRVi,t − â− b̂Et−1[logRVi,t|Ωt−1, M])2 (26)

Table 8 reports comparisons between our four models, M1, Mt−60, M∗ and MW∗ , using these
two metrics. Overall, qualitatively, the same result holds for both metrics. As before, M∗ and MW∗

outperform the benchmark M1 and Mt−60 models significantly across all datasets. Interestingly, our
time-varying window model MW∗ outperforms the time-varying weights model M∗ in all four datasets
we consider and for both metrics.

Table 8. MAE and SSE from forecast regressions.

Expanding Window Constant Window Time-Varying Weights Time-Varying Window
(M1) (Mt−60) (M∗) (MW∗ )

Panel A: Monthly Frequency, Sample Period 1885–2013

logRV (S&P)
MAE 0.7230 0.6723 0.5986 0.5740
avg. SSE 0.9012 0.7568 0.6027 0.5505

Panel B: Daily Frequency, Sample Period April 2007–February 2015

FisRCorr (SP, GC)

MAE 0.3319 0.2749 0.2500 0.2430
avg. SSE 0.1649 0.1228 0.1024 0.0974

FisRCorr (SP, CL)

MAE 0.2987 0.2366 0.2263 0.2201
avg. SSE 0.1383 0.0927 0.0830 0.0785

FisRCorr (GC, CL)

MAE 0.2784 0.2490 0.2339 0.2314
avg.SSE 0.1229 0.1032 0.0911 0.0892

Notes: Mean absolute error (MAE) and average sum of squared errors (avg. SSE) from Mincer–Zarnowitz
regressions for each model are reported.

MAEi |M =
1
T

T

∑
t=1
|logRVi,t − â− b̂Et−1[logRVi,t|Ωt−1, M]|

avg. SSEi |M =
1
T

T

∑
t=1

(logRVi,t − â− b̂Et−1[logRVi,t|Ωt−1, M])2

5.2. Long-Horizon Forecasting

So far, our main variable of interest to be forecasted was limited to one-day-ahead realized
measures. One might question whether the forecasting power comes from high persistence associated
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with the time series of the realized measures rather than from superior forecasting models. We therefore
check whether our proposed models also have superior forecasting power in the long-horizon, as
well. Specifically, we replace the target measure (dependent variable in the Mincer–Zarnowitz forecast
regression) with the average realized measures of the next 60 periods from t+ 1–t+ 60. For example, the
Mincer–Zarnowitz regression for logRV using the forecasts from model M takes the following form:7

1
60

60

∑
j=1

logRVi;t−1+j = logRVi,t→t+60 = a + b× Et−1[logRVi;t|Ωt−1, M] + ut

Table 9 summarizes the results from the long-horizon Mincer–Zarnowitz regressions. The overall
results are largely consistent with Tables 2 and 3. The time-varying weights model always exhibits the
highest R2 compared to the two benchmark models, an expanding window weighting historical data
equally and a constant fixed-length window, in all realized measures we consider. The improvement is
not as large as the one-day-ahead forecast, but still relatively large for measures such as monthly logRV
(S&P) and FisRCorr (SP, GC). Note that the time-varying weights model still outperforms the constant
window model, which conditions on information from the past 60 periods, which is equal to the
forecasting horizon. The reason behind the superior performance of the time-varying weights model is
that it provides a forecast of the unconditional mean of the underlying data-generating process; thus,
it should perform well in forecasting a long-horizon, which proxies the unconditional mean. We hence
conclude that the time-varying weights approach is robust to long-horizon forecasting, outperforming
using all of the historical data weighted equally or using a fixed-length moving window.

Table 9. Forecast regression results for long-horizon .

Expanding Window Constant Window Time-Varying Weights Expanding Window Constant Window Time-Varying Weights
(M1) (Mt−60) (M∗) (M1) (Mt−60) (M∗)

Panel A: Monthly Frequency, Sample Period 1885–2013

logRV(S&P)

Intercept −11.7138 −4.4630 −4.2274
(−2.58) *** (−4.17) *** (−5.09) ***

Slope -0.7887 0.3134 0.3506
(−2.60) *** (−4.23) *** (−5.38) ***

R2 3.30% 9.99% 18.57%

Panel B: Daily Frequency, Sample Period April 2007–February 2015

logRV (SP) FisRCorr (SP, GC)

Intercept −7.9923 −3.1354 −3.7217 0.2784 0.0909 0.0784
(−2.00) ** (−2.68) *** (−3.88) *** (1.57) (1.50) (1.63)

Slope 0.2309 0.6957 0.6409 −0.4652 0.4907 0.5364
(−1.95)∗ (−2.86) *** (−4.08) *** (−1.80) * (−2.90) *** (−3.32) ***

R2 0.78% 49.02% 52.65% 1.00% 22.78% 33.15%

logRV (GC) FisRCorr (SP, CL)

Intercept −2.0881 −3.1775 −3.4293 0.2426 0.1218 0.1060
(−0.28) (−2.22) ** (−3.05) *** (1.65) * (1.46) (1.63)

Slope 0.8229 0.7010 0.6787 0.3888 0.6604 0.6872
(−0.25) (−2.26) ** (−3.07) *** (−1.32) (−1.95) * (−2.30) **

R2 4.53% 48.90% 53.14% 3.32% 45.20% 52.74%

logRV (CL) FisRCorr (GC, CL)

Intercept 5.0959 −1.7683 −1.5729 0.0456 0.1597 0.1490
(0.84) (−1.18) (−1.19) (0.09) (2.27) ** (2.58) ***

Slope 1.6283 0.8072 0.8299 0.7226 0.5127 0.5356
(0.91) (−1.22) (−1.22) (−0.22) (−2.84) ** (−3.32) ***

R2 18.13% 64.29% 67.59% 1.44% 24.94% 32.40%

Notes: Mincer–Zarnowitz regressions from each model are reported where the forecast variable of interest is
the long-horizon (60 periods) average. t-statistics for the intercept being different than 0 and the slope being
different than 1 are reported in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and
10% confidence levels, respectively. We use the adjustment of Hansen and Hodrick (1980) for standard errors
to compute t-statistics robust to overlapping data. R2 associated with these forecast regressions indicates the
proportion of variability in the out-of-sample realized variable that is predicted by the forecasts.

7 Recall that, under the null of their construction, the realized measures are time-additive.
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5.3. Alternative Forecasting Methods

Note that our approach is not dependent on a particular choice of statistical model as we do
not impose any restrictions on the forecasting method itself. Rather, our approach addresses the
issue of how many historical data to use and how to weight those data. All of the results we have
shown so far have compared our time-varying weights and time-varying window approaches to two
benchmark methods of computing a forecast of the sample average of the realized measures. A natural
question that arises is whether more sophisticated forecasting models of realized measures can alter
our findings.

We now show the robustness of our preferred time-varying window model, (MW∗ ), for
two alternative statistical approaches: exponentially-weighted moving-average (ExpWMA) and
AR(1) models. Specifically, we re-estimate the time-varying window model, as well as our two
benchmark data usage models, expanding window and constant window, for the ExpWMA and AR(1)
forecasting models.

Table 10 reports results for an exponentially-weighted moving average model with a smoothing
parameter of 0.97 for monthly data and 0.94 for daily data, following RiskMetrics . Since exponential
weighting of the historical data already captures a portion of the forecasting power, the improvement
in the R2 using a time-varying window model is not as significant as it was in the results summarized
in our previous sections. Nevertheless, we still see marginal improvements in R2 associated with
the forecasts for all the realized measures, with some notable improvements in the monthly logRV
(S&P) forecast.

Table 10. Forecast regression results for the exponentially-weighted moving-average (ExpWMA)
method.

Expanding Window Constant Window Time-Varying Window Expanding Window Constant Window Time-Varying Window
(M1) (Mt−60) (MW∗ ) (M1) (Mt−60) (MW∗ )

Panel A: Monthly Frequency, Sample Period 1885–2013

logRV(S&P)

Intercept −0.3687 −0.8555 −0.7179
(−1.31) (−3.46) *** (−3.92) **

Slope 0.9414 0.8677 0.8915
(−1.37) (−3.51) *** (−3.88) ***

R2 24.62% 26.33% 40.65%

Panel B: Daily Frequency, Sample Period April 2007–February 2015

logRV (SP) FisRCorr (SP, GC)

Intercept −0.2745 −0.3506 −0.8070 0.0044 0.0068 0.0057
(−1.26) (−1.62) (−4.23) *** (0.50) (0.78) (0.69)

Slope 0.9734 0.9660 0.9234 0.9616 0.9495 0.9417
(−1.27) (−1.63) (−4.17) *** (−1.41) (−1.89) * (−2.38) **

R2 51.98% 52.09% 55.97% 39.16% 39.34% 43.28%

logRV (GC) FisRCorr (SP, CL)

Intercept −0.5998 −0.6796 −0.8829 0.0137 0.0159 0.0119
(−1.81) * (−2.07) ** (−2.82) *** (1.31) (1.53) (1.18)

Slope 0.9440 0.9364 0.9183 0.9629 0.9559 0.9554
(−1.79) * (−2.06) ** (−2.77) *** (−1.52) (−1.83) * (−1.95) *

R2 31.49% 31.55% 32.87% 44.41% 44.55% 47.11%

logRV (CL) FisRCorr (GC, CL)

Intercept −0.1723 −0.2160 −0.3162 0.0157 0.0200 0.0230
(−0.88) (−1.12) (−1.68) * (1.22) (1.58) (1.91) *

Slope 0.9804 0.9757 0.9663 0.9436 0.9314 0.9182
(−0.93) (−1.16) (−1.66) * (−1.74) * (−2.15) ** (−2.77) ***

R2 52.09% 52.22% 53.19% 30.44% 30.53% 33.11%

Notes: Mincer–Zarnowitz regressions from each model are reported where the forecasts are generated using
the exponentially-weighted moving-average method. For monthly frequency, a smoothing parameter of
0.97 was used, and for daily data, a smoothing parameter of 0.94 was used. t-statistics for the intercept
being different than 0 and the slope being different than 1 are reported in parentheses. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% confidence levels, respectively. R2 associated with these forecast
regressions indicates the proportion of variability in the out-of-sample realized variable that is predicted by
the forecasts.
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Next, in Table 11, we report results using an AR(1) forecasting model. Those results are largely
consistent with Table 10. Interestingly, the constant window model now performs the best in forecasting
the monthly logRV(S&P) . However, for all other realized measures, the time-varying window model
still performs the best.

Table 11. Forecast regression results for the AR(1) method.

Expanding Window Constant Window Time-Varying Window Expanding Window Constant Window Time-Varying Window
(M1) (Mt−60) (MW∗ ) (M1) (Mt−60) (MW∗ )

Panel A: Monthly Frequency, Sample Period 1885–2013

logRV(S&P)

Intercept 0.1959 −0.3810 −1.1933
(0.96) (−2.12) ** (−7.37) ***

Slope 1.0257 0.9424 0.8183
(0.83) (−2.10) ** (−7.36) ***

R2 42.72% 44.33% 42.58%

Panel B: Daily Frequency, Sample Period April 2007–February 2015

logRV(SP) FisRCorr(SP,GC)

Intercept −0.4016 −0.6282 −1.1191 −0.0107 0.0054 0.0030
(−1.86) * (−3.28) *** (−6.28) *** (−1.07) (0.63) (0.36)

Slope 0.9662 0.9406 0.8932 1.0062 0.9354 0.9277
(−1.61) (−3.22) *** (−6.22) *** (0.18) (−2.46) ** (−3.00) ***

R2 51.69% 56.63% 57.69% 31.08% 39.57% 42.99%

logRV(GC) FisRCorr(SP,CL)

Intercept −0.3448 −1.2086 −1.5986 0.0426 0.0098 0.0210
(−0.76) (−3.70) *** (−5.29) *** (3.55) *** (0.94) (2.08) **

Slope 0.9801 0.8874 0.8516 0.9403 0.9572 0.9235
(−0.46) (−3.66) *** (−5.21) *** (−1.95) * (−1.78) * (−3.36) ***

R2 20.67% 29.56% 31.06% 32.56% 44.82% 45.81%

logRV(CL) FisRCorr(GC,CL)

Intercept 1.1764 −0.2740 −0.2449 −0.0685 0.0290 0.0253
(3.99) *** (−1.33) (−1.23) (−3.38) *** (2.20) ** (2.04) **

Slope 1.1495 0.9690 0.9738 1.0744 0.8924 0.8949
(4.59) *** (−1.40) (−1.22) (1.47) (−3.28) *** (−3.47) ***

R2 38.48% 48.93% 50.66% 18.84% 27.49% 31.00%

Notes: Mincer–Zarnowitz regressions from each model are reported where the forecasts are generated from
an AR(1) method. t-statistics for the intercept being different than 0 and the slope being different than 1
are reported in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% confidence
levels, respectively. R2 associated with these forecast regressions indicates the proportion of variability in the
out-of-sample realized variable that is predicted by the forecasts.

Note that the time-varying window model, MW∗ , applied for these two tables was handicapped
in the following sense. The time-varying window measure, W∗, was constructed from the time-varying
weights model that maximizes the forecasting power for an equally-weighted average forecast, In
other words, the superior performance of the time-varying window model using ExpWMA or AR(1)
forecasting methods is not obvious. If those alternative statistical forecasting methods were integrated
into the time-varying weights estimation, the MW∗ approach would be expected to perform even better
than the simple robustness results presented in this section. Therefore, we conclude that our method
of combining data histories through time-varying weights is robust to the alternative forecasting
methods.

6. Concluding Comments

In complex environments with material uncertainty about the future, almost all strategic decisions
depend on good forecasts. Forecasting out-of-sample is fraught with potential biases and inefficiencies
arising from model uncertainty. Sources of the latter include uncertainty about changing fundamentals
and associated parameters (model instability), structural breaks and nonlinearities due, for example,
to regime switching.

In this paper, we focus on forecasting correlations of stock returns with commodities. Correlations
between stock returns and commodities are particularly important since they measure how much
diversification benefit can be achieved by investing across different asset classes. The time series
of variances and correlations between stocks and commodities exhibit frequent shifts. This feature
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makes forecasting challenging. Using a longer data sample does not necessarily lead to better forecasts
and can possibly introduce additional bias. On the other hand, using a fixed-length moving window
requires some method of selecting the best window length. Since forecasts are often sensitive to the
data sample used to derive the forecast, an approach that weights historical data according to their
predictive content at each point in time should provide superior real-time forecasts in the presence of
uncertainty about changes in the data generating process.

We evaluate two alternative data usage models, which we compare to standard benchmarks.
Our first alternative, a ‘time-varying weights’ model, uses all of the available data and estimates
weights for data histories (submodels) according to their their out-of-sample predictive content.
Bayesian model average forecasts for each period combine an estimated model change probability
with a probability-weighted average of submodel forecasts, integrating out submodel uncertainty.
Our second alternative, a ‘time-varying window’ model, builds on the ‘time-varying weights’ model
by truncating the data history, every period, at the point of most mass for the submodel probability
distribution. We redo our forecasts using this time-varying window length. Our empirical analyses
reveal that these two alternative data usage models provide superior forecasts to several benchmark
models for forecasting correlations.

We compare our time-varying weights and time-varying window models of data usage to standard
benchmarks. Our first benchmark is the sample average of realized variances and realized correlations
based on an expanding window as new data arrive. Our second benchmark, motivated by industry
practice, is the moving average associated with a fixed-length moving window. Further, since our
method is not dependent on any particular forecasting model, but rather evaluates alternative data
usage models, we provide several robustness checks for the forecasting efficacy of the time-varying
weights and time-varying window approaches. These include long-horizon forecasts, as well as
exponentially-weighted moving average and AR(1) forecasting models.
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Appendix A. Estimation

In this section, we discuss the details of the estimation and implementation procedures.

Appendix A.1. Deriving Forecasts

As discussed in the previous section, we focus on the case when the unconditional distribution of
the underlying process is normal. To build the marginal likelihood of our model for the observation set
{x1, . . . , xt}, we begin from the predictive likelihood of observation xj associated with the submodel
Mτ as in Equation (9). Recall that we need to integrate out the uncertainty associated with the
parameter vector θ first. In order to do this, we need to simulate θ from its posterior distribution given
the submodel Mτ . With the notation θ = {µ, σ2}, we first note that the normal likelihood function
leads to the following equation:

p(xτ , . . . , xj−1|θ) =
j−1

∏
s=τ

1√
2πσ2

exp(− 1
2σ2 (xs − µ)2). (A.1)

Bayes’ rule now allows us to write the posterior distribution of θ as:

p(µ, σ|xτ , . . . , xj−1) ∝ p(xτ , . . . , xj−1|θ)p(µ)p(σ2). (A.2)
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Since the parameter vector θ consists of two parameters, we can use the standard Gibbs sampling
technique to simulate θ using the above relationship. Gibbs sampling is an iterative MCMC procedure
with minimal computing time to effectively simulate from the posterior distribution of the above type.
Each iteration of Gibbs sampling is represented by the following two simulations, which only require
random draws from the normal distribution.

1. Simulate µk from p(µ|σ2
k−1, xτ , . . . , xj−1)

2. Simulate σ2
k from p(σ2|µk, xτ , . . . , xj−1)

The above steps are repeated 5000 times after burning the initial 500 samples to minimize the initial
value effect. Chib (2001), Geweke (1997) and Robert and Casella (1999) provide detailed information
regarding MCMC methods including Gibbs sampling. Furthermore, Johannes and Polson (2005)
survey financial applications of the MCMC method.

Now, given a set of simulated draws of {θ(s)}N
s=1, we can compute the integral in Equation (9) by

numerical integration:

p(xj|Ωτ,j−1, Mτ) =
1
N

N

∑
s=1

p(xj|Ωτ,j−1, θ(s), Mτ); (A.3)

where:

p(xj|Ωτ,j−1, θ(s), Mτ) =
1√

2πσ2(s)
exp(− 1

2πσ2(s)
(xj − µ(s))2). (A.4)

Given Equation (A.3) for the predictive likelihood of each submodel, we can combine them using
the submodel probabilities and the estimate of the λ process as discussed in the previous section. This
gives us the marginal likelihood of observing xj as follows:

p(xj|Ωj−1, Λj) =

[ j−1

∑
τ=1

p(xj|Ωτ,j−1, Mτ)p(Mτ |Ωj−1, Λj−1)

]
(1− λj) + p(xj|Ωj,j−1, Mj)λj. (A.5)

Now, the only remaining uncertainty is about λ. Recall that in Section 3.3, we derived the
posterior distribution of λ. Again, we need a numerical technique to sample from this posterior
distribution. We adapt the Metropolis-Hastings algorithm with a random walk to simulate λ.
Specifically, given the most recent draw from the Markov chain λ(i), we simulate λ

′
= λ(i) + e

where e is a normally-distributed noise term. We then compute the probability of acceptance by
min{p(λ

′ |Ωt−1)/p(λ(i)|Ωt−1), 1}. With this probability, we accept the new λ
′

and λ(i+1), otherwise
we keep λ(i) and continue. After a suitable number of simulated {λ(i)}N

i=1 have been generated, we
integrate out the uncertainty about λ to obtain the marginal likelihood of observing xj:

p(xj|Ωj−1) ≈
1
N

N

∑
i=1

p(xj|Ωj−1, λ(i)). (A.6)

Lastly, integrating out the uncertainty associated with λ and summing over all observations, we
have the full marginal likelihood of our model:

p(x1, . . . , xt) =
t

∏
j=1

p(xj|Ωj−1). (A.7)
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Appendix A.2. Priors

Note that all of the previous discussions are based on assuming that we have certain prior beliefs
about the hyper-parameters of θ and the λ process. Since we have not really specified what they are,
we now discuss the exact distributional assumptions made on priors to calibrate our model. Basically,
all prior distributions are chosen to be a conjugate prior so that the computational burden is minimized.
Since the effect of the prior distribution disappears rapidly as we have enough observations, the result
of our calibration is quite robust to the choice of a specific prior.

Priors of the parameter vector regarding the mean and variance of the underlying process are
assumed to follow normal and inverse gamma distributions, respectively. We use the following
notation for hyper-parameters:

µ ∼ N(b, B)

σ2 ∼ IG(v/2, s/2).

Lastly, the prior distribution of λ is assumed to be a beta distribution:

λ ∼ Beta(α, β).

All hyper-parameters are set to match the historical moments of data.
Due to the computational complexity, it is quite challenging to introduce new submodels every

period. Therefore, we only allow new submodels to be introduced every 12 months, representing one
year, for the monthly forecasts, and every 22 days, representing roughly one month in business days,
for the daily forecasts. This reduces our computational time significantly while maintaining superior
performance of our model over benchmark models. Intuitively, the allowance of more frequent model
changes will only increase the power of our model as the benchmark models are special cases of our
model for which only specific submodels are allowed.

Appendix B. Forecasts

Similarly, we can also compute the posterior moments of the parameter vector θ, in case we are
interested. Again conditioning and summing over all possible submodels, we have:

E[g(θ)|Ωt, Λt] =
t

∑
τ=1

E[g(θ)|Ωτ,t, Mτ ]p(Mτ |Ωτ,t, Λt); (A.8)

where all expectations are computed using numerical integration with MCMC draws described
earlier. So far, we have assumed that Λt+1 is given and deterministic. When we also estimate the
probability of model change, extra uncertainty needs to be integrated out. Using the notation Eλ to
denote the expectation taken with respect to the posterior distribution of λ, we have general formulas
below for the forecasts equation derived previously.

E[g(xt+1)|Ωt] = EλE[g(xt+1)|Ωt, λ]

= ∑t
τ=1 E[g(xt+1)|Ωτ,t, Mτ ]Eλ[p(Mτ |Ωt, λ)(1− λ)]

+ E[g(xt+1)|Ωt+1,t, Mt+1]Eλ[λ].

(A.9)

Again, all expectations with respect to λ need to be computed by numerical integration with
MCMC draw of λ(s). The equations below summarize this extra step to handle the uncertainty
associated with λ.
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Eλ[p(Mτ |Ωt, λ)(1− λ)] ≈ 1
N

N

∑
s=1

p(Mτ |Ωt, λ(s))(1− λ(s)) (A.10)

Eλ[λ] ≈
1
N

N

∑
s=1

λ(s). (A.11)
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